Ferrara, Gianmarco
(2025)
Gravity and Yang-Mills in d=2+ε.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
This thesis explores the ultraviolet behavior of gravity coupled to Yang-Mills fields within the Asymptotic Safety scenario. We employ a perturbative approach based on the dimensional expansion in d=2-ε, which allows for a controlled analytical continuation and circumvents ambiguities associated with heat kernel methods for quantizing the metric. We calculate the one-loop beta functions for the Einstein-Yang-Mills system and analyze the renormalization group flow. To interpret the physical implications, we evaluate the flow on-shell using two different schemes to handle the equations of motion. In both schemes, we identify a non-Gaussian fixed point, suggesting the theory could be asymptotically safe. However, we discover a discrepancy between the schemes in the limit d->4, where in one case the non-Gaussian fixed point merges with the Gaus- sian fixed point. This result highlights a potential scheme dependence in the on-shell analysis. A parallel investigation in d = 4 - ε dimensions confirms the perturbative non-renormalizability of the theory, as no interacting fixed point is found. Our findings support the utility of the d = 2 - ε expansion as a tool to investigate quantum gravity while also underscoring the challenges in extrapolating results to four dimensions.
Abstract
This thesis explores the ultraviolet behavior of gravity coupled to Yang-Mills fields within the Asymptotic Safety scenario. We employ a perturbative approach based on the dimensional expansion in d=2-ε, which allows for a controlled analytical continuation and circumvents ambiguities associated with heat kernel methods for quantizing the metric. We calculate the one-loop beta functions for the Einstein-Yang-Mills system and analyze the renormalization group flow. To interpret the physical implications, we evaluate the flow on-shell using two different schemes to handle the equations of motion. In both schemes, we identify a non-Gaussian fixed point, suggesting the theory could be asymptotically safe. However, we discover a discrepancy between the schemes in the limit d->4, where in one case the non-Gaussian fixed point merges with the Gaus- sian fixed point. This result highlights a potential scheme dependence in the on-shell analysis. A parallel investigation in d = 4 - ε dimensions confirms the perturbative non-renormalizability of the theory, as no interacting fixed point is found. Our findings support the utility of the d = 2 - ε expansion as a tool to investigate quantum gravity while also underscoring the challenges in extrapolating results to four dimensions.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Ferrara, Gianmarco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Quantum gravity,Asymptotic Safety,Yang-Mills,QFT in Curved Spacetime
Data di discussione della Tesi
29 Ottobre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Ferrara, Gianmarco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Quantum gravity,Asymptotic Safety,Yang-Mills,QFT in Curved Spacetime
Data di discussione della Tesi
29 Ottobre 2025
URI
Statistica sui download
Gestione del documento: