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Abstract

This thesis explores the ultraviolet behavior of gravity coupled to Yang-Mills fields within
the Asymptotic Safety scenario. We employ a perturbative approach based on the di-
mensional expansion in d = 2 + ¢, which allows for a controlled analytical continuation
and circumvents ambiguities associated with heat kernel methods for quantizing the
metric. We calculate the one-loop beta functions for the Einstein-Yang-Mills system
and analyze the renormalization group flow. To interpret the physical implications, we
evaluate the flow on-shell using two different schemes to handle the equations of motion.
In both schemes, we identify a non-Gaussian fixed point, suggesting the theory could
be asymptotically safe. However, we discover a discrepancy between the schemes in the
limit d — 4, where in one case the non-Gaussian fixed point merges with the Gaus-
sian fixed point. This result highlights a potential scheme dependence in the on-shell
analysis. A parallel investigation in d = 4 — e dimensions confirms the perturbative
non-renormalizability of the theory, as no interacting fixed point is found. Our findings
support the utility of the d = 2 + € expansion as a tool to investigate quantum gravity
while also underscoring the challenges in extrapolating results to four dimensions.
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Introduction

Finding a consistent and fundamental quantum theory of gravity remains one of the most
challenging open problems in theoretical high-energy physics. One motivation for pur-
suing such a theory arises from seemingly simple questions, such as: How do elementary
particles interact through the gravitational field? Further motivation comes from the
breakdown of both the Standard Model (SM) of particle physics and General Relativ-
ity (GR). Both the theories are affected by singularities. In GR, curvature singularities
appear in both black hole and cosmological spacetimes. Their resolution is expected to
require quantum effects, thus motivating the search for a quantum theory of gravity.
From dimensional analysis, such a theory is expected to become relevant at the Planck

scale,
Mpianek = \/ﬁC/TN ~ 10GeV.

In quantum field theory it is well known that coupling constants become functions of the
energy scales entering the renormalization process. In turn this implies a modification
of the classical scaling properties of a theory. Such energy dependence of a coupling a is
encoded in its beta function 5

a

Ba = :U’aa

where 4 is the renormalization scale. If a coupling grows indefinitely as the energy scale
increases, i.e. as distances become shorter, we have a breakdown of perturbation theory.
If this happens at finite energy we say that the theory has a Landau pole. One may
hope that the theory still makes sense in a non-perturbative regime. However, if a non-
perturbative ultraviolet (UV) completion exists, one must consider the appearance of
new physics. A hint about the missing physics comes from the scale of the Landau poles:
experimental results from the LHC indicate that the SM remains internally consistent
up to the scale where quantum gravity is expected to become relevant, while the Landau
poles occur far above the Planck scale. This motivates the idea that an ultraviolet com-
pletion could emerge from the inclusion of quantum gravity in the SM. A conservative
approach is building a quantum field theory of the metric which avoids the introduc-
tion of new fields for gravity and relies on the QFT framework that has shown to be
successful for all other fundamental interactions. Following this approach, the perturba-
tive quantization of the classical description for gravity results in a non-renormalizable



theory: logarithmic divergencies of the theory require the addition of new terms to the
Lagrangian in order to absorb the divergencies. Each new term comes with a coupling
which has a low-energy value as a free parameter of the theory that needs to be fixed
by observations. Einstein-Hilbert gravity requires an infinite number of free parameters
making the theory non-predictive at high energies [8, 20, 38]. One could react differently
to this outcome. A possible reaction is the acceptance of failure of perturbative approach
and the pursue of a non-perturbative quantization, for example, this approach is the one
of Loop Quantum Gravity. Another possibility is accepting that quantum gravity con-
stitutes an effective field theory valid at low energies, whose UV completion requires the
introduction of new degrees of freedom and symmetries as in String Theory. In a less
radical approach one could retains the fields known from GR and ask whether there is a
symmetry principle that one can impose to reduce to a finite number the free parameters.
One proposal along this line is the Asymptotic Safety scenario [40], which is a quantum
realization of scale symmetry [14]. As we said before, in quantum field theory, couplings
are scale-dependent, so it is not guaranteed that a theory that is consistent at one scale
remains consistent as we change to a smaller distance scale/larger momentum scale. A
restoration of scale symmetry can be achieved in theories where the effect of quantum
fluctuations balances out at finite values of couplings, corresponding to non-Gaussian
fixed point of the renormalization group (RG). At these values, this quantum scale sym-
metry allows one to construct models which hold up to arbitrarily short distance scales.
The name asymptotic safety is related to the fact that this quantum scale symmetry is
almost as good as asymptotic freedom, where quantum fluctuations vanish asymptoti-
cally. Most importantly, this symmetry allows to recover predictivity of effective field
theories. In fact, one can think of quantum scale symmetry as just another symmetry
one imposes on the dynamics of the theory, restricting the possible interaction structures
and thereby reducing the number of undetermined couplings, i.e., the free parameters of
the model. In the case of Einstein’s gravity, the asymptotic safety conjecture is based
on the premise that the theory, if seen as a quantum field theory of the metric tensor,
is ultraviolet complete thanks to the presence of a suitable fixed point of the renormal-
ization group. This was confirmed by Reuter [33] using background and Wilsonian RG
methods, on which most of the recent literature of the topic is now based. However, the
application of these methods often comes at the price of having to deal with effective
action that is scheme- and gauge-dependent. A way to overcome this problem would be
to address scheme- and gauge-dependence in a setting in which the UV fixed point is
still perturbative. As originally suggested by Weinberg [40], this setting is provided by
gravity in d = 2 + € dimensions, that exhibits an UV fixed point for Newton’s constant
motivating the asymptotic safety since its inception. Recently the approach in d = 2+ ¢
was reconsidered [25, 26, 27] in light of gauge and parametric dependence induced by the
background splitting. Considering the obvious limitation of the continuation to d = 4,
which requires the limit € — 2, certainly outside the validity of perturbation theory, this
approach should be regarded as a complementary approach to the functional one. In



this work we want to extend this approach considering Yang-Mills theory together with
gravity. We structure the thesis as follows:

In Chapter 1 we review the idea of Asymptotic Safety, starting from the definition
of the theory space and explaining how the existence of a non-Gaussian fixed point is
related to a UV completion. Finally, following the original Weinberg’s idea, a motivation
the study of gravity in d = 2 + € is given.

In Chapter 2 we review the methods used to compute the RG flow of the theory.
In particular we will review how heat kernel methods and the background field method
can be used to compute the effective action at one-loop. We will also explain how to
analytically continue the theory to d = 2 + € in dimensional regularization together with
modified minimal subtraction scheme.

In Chapter 3 we test the methods introduced in the previous chapter for the simple
case of Yang-Mills in flat spacetime. An extension for the curved spacetime is given.
This analysis leads to the necessity to include dynamical degrees of freedom for gravity.

In Chapter 4 we finally consider the case of the Einstein-Yang-Mills theory, we com-
pute the beta functions of the theory in d = 2 + € keeping as on-shell essential coupling
once the Yang-Mills coupling and the Newton’s constant, and again, the cosmological
constant and the Newton’s constant. We analyze how the presence of the Yang-Mills
interaction affect the Non-Gaussian fixed point and the Asymptotic Safety scenario.



Chapter 1

Asymptotic Safety

In this chapter we want to review the key idea of asymptotic safety [6, 13, 14, 30, 31, 33,
34, 35],. In particular, we emphasize that its definition is independent from the functional
RG approach and the Wilsonian way of thinking of path integrals. We will also justify
the setting of d = 2 + € as a complementary approach to assess the asymptotic safety
scenario, which gives further motivation for the work of this thesis.

1.1 Theory space

To present the idea of asymptotic safety, it is necessary to introduce some useful defini-
tions and tools. First, we need to define theory space. Given a general set of fields ¢(x),
the theory space consists of all action functionals

A:p— Alg] (1.1)

depending on this set. The functionals are subject to certain symmetry requirements,
for example, Zo-symmetry for a single scalar, or diffeomorphism invariance if ¢ denotes
a spacetime metric. The theory space {A[ -]} is fixed once the field content and the
symmetries are fixed. Now we can assume that it is possible to find a set of "basis
functionals” {P,[- |}, typically local operators constructed with the fields ¢ and their
derivative. Every point of the theory space has an expansion [34] of the from

Alp] = Z = U Pu[d] . (1.2)

«

The coefficients u,, are called generalized couplings and are the local coordinates of the
theory space. More precisely, one usually consider the subset of essential couplings, i.e.,
those coordinates which cannot be absorbed by a field reparametrization. The couplings
that can be eliminated by field redefinitions are called redundant couplings. At this point,
we need to assume that the RG defines a vector field 5 on the theory space [30]. The RG
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Figure 1.1: Schematic sketch of the theory space. The points of the theory space are
the action functionals A[-]. The RG defines a vector field 5 on the theory space. The
corresponding RG flow consists of the RG trajectories k — I'y. They start at .S and end
at the standard effective action T'.

flow, given by the integral curves of the vector field 3, describe the dependence of the
action functionals on an energy scale k, or alternatively, one can consider a "RG time”
t = log k. We identify theories with RG trajectories k — I'y. They start, for £ — oo, at
the bare action S and terminate at the ordinary effective action I' at £ = 0. Since only
the essential couplings are coordinates on the theory space, I', and S may differ by a
simple, explicitly known functional. The natural orientation of the trajectories is from
higher to lower scales k, the direction of increasing ”coarse graining”. Expanding ['y as
in (1.2),

Tu[g] = Y Jta(k) Pald], (1.3)

the trajectory is defined by the running couplings u,(k). In standard jargon one would
refer to 4, (k = o0) as the "bare” parameters and to 4,(k = 0) as the "renormalized”
parameters. Fig. 1.2 gives a schematic summary of the structures of the theory space.
It is useful to re-express the couplings in terms of their dimensionless counterparts u, =
k%, where d, is the canonical mass dimension of #,. It can generally be expected
that when k goes to infinity some couplings u, (k) also go to infinity. What we want



to avoid is that the dimensionless couplings u, diverge. This can happen even at some
finite scale kmax, as in QED and ¢* theory, signaling a breakdown of the theory. In this
case the theory holds for a finite energy range and it is said to be an Effective Field
Theory.

1.2 The idea of Asymptotic Safety

The basic idea of asymptotic safety can be understood as follows. Naively, the boundary
of the theory space sketched in Fig. 1.2 separates points with all essential (dimension-
less) coordinates {u,} well defined, from points with undefined, divergent couplings. In
this context, the task of renormalization theory consists in constructing theories corre-
sponding to "infinitely long” RG trajectories. These trajectories should lie entirely in
the theory space and should not leave the theory space in the UV limit £ — o0 nor in the
infrared (IR) limit £ — 0. Every such trajectory defines one possible quantum theory.
We can consider the case in which the RG flow admits a fixed point (FP), which is de-
fined as a point u¥ in the theory space such that the beta functions of the dimensionless
couplings vanish, i.e.

- Oug (k)
P = F ok

The RG trajectories have small ”velocity” near a fixed point because (3, are small there;
and directly at the fixed point, the running stops completely and scale invariance is
recovered. As a result, the theory corresponding to the trajectory running into such a
fixed point, does not escape the theory space for £k — oo and has a well behaved action
functional. Such a theory does not suffer from divergent couplings and is said to be
asymptotically safe from unphysical divergences and represents a UV complete theory.
Weinberg proposed, in the context of gravity [40], to use a Non-Gaussian fixed point
(NGFP) to take the limit &k — oo. A NGFP is a fixed point where not all couplings u?
vanish. Alternatively, in a Gaussian fixed point (GFP) we have u* =0, Vo =1,2. ..
One important aspect is that dimensionful couplings keep running according to a power
law involving their canonical mass dimensions d,:

=0 at wu, =u. (1.4)

to (k) = ut k. (1.5)
Furthermore, non-essential dimensionless couplings are not required to reach the fixed

point.

1.3 UV critical hypersurface

One can try to evaluate how many asymptotically safe trajectories there are in theory
space. To address this task one important concept is the one of UV critical hypersurface



associated to a FP. Given a NGFP, its UV critical hypersurface Sy consists of all
points of theory space which are pulled into the NGFP by the inverse RG flow, i.e. for
increasing k. Assuming that this surface is a smooth manifold, its dimension is equal to
the dimension dim Sy of its tangent space at the FP. The latter can be computed in
the following way. In the vicinity of the fixed point the flow can be linearized:

aUOz(k) *
o = ;Maﬁwﬁ(m — up), (1.6)
where o5
M,z3 8_u5 - (1.7)

The general solution to this equation reads
(ko \ ™
olk) = uk + | — 1.8
wlh) =i+ et () (18)

where v* are the right-eigenvectors of the matrix M with eigenvalues —)\;, i.e.,

2]\/[&5 vp = —A v, (1.9)
B

Since the matrix M is not symmetric in general the eigenvalues are not guaranteed to be
real. However, we can assume that the eigenvectors from a complete basis. Furthermore
ko is a reference scale, and ¢; are constants of integration. If u, (k) describes a trajectory
corresponding to an asymptotically safe theory, it must lie in Syy and approach u}
as k — o0. As a result, we must set ¢; = 0 for all i corresponding to eigenvalues with
positive real part, the ones with Re \; < 0. On the other hand, the dimensionality of the
critical hypersurface is given by the number of eigenvalues with negative real part, i.e.,
Re A; > 0. The corresponding eigenvectors span the tangent space to Sy at the NGFP.
The number of free parameters of the theory is equal to the dimension of Syy. Thus,
the theory is more predictive when the Sy has lower dimension. The ideal situation
would be a theory with a one dimensional critical hypersurface. In this case there would
be a single renormalizable trajectory and once we have determined the initial position
at some scale k, the theory is completely determined. At the opposite extreme, if Syy
was infinite dimensional, the theory would not be predictive. The intermediate case is
a theory with finite dimensional critical surface. Such a theory space would have the
same good properties of perturbatively renormalizable and asymptotically free theory,
because it would be well behaved in the UV and it would have only a finite number
of undetermined parameters. To conclude this section we show how asymptotic safety
represents the generalization of renormalizability and asymptotic freedom to the case

10
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Figure 1.2: Graphics taken from [13]. Illustration of a fixed point (light purple dot) with
its UV critical hypersurface (purple). RG trajectories starting off the critical hyper-
surface (teal) are pulled towards the fixed point along the irrelevant direction (roughly
aligned with g3), before the IR repulsive directions g; and g, kick in and drive the flow
away from the fixed point. The linearized flow is indicated by the black (relevant direc-
tions) and green (irrelevant direction) arrows.

when the FP does not correspond simply to a free theory [30]. To do so we can consider
the example of a GFP, corresponding to a free theory. The beta functions have the form

Oug,
ok

The functions f, = k(du./0k) represent the loop corrections, which vanish at the GFP. In
this case the eigenvalues of the matrix M are just given by the canonical mass dimension

k= = —dog + k7% B, . (1.10)

-\ = —d;. (1.11)
The relevant couplings are the ones that are power counting renormalizable, and the

critical surface consists of the power counting renormalizable actions. Fig. 1.3 gives an
illustration of fixed point together with its critical hypersurface.

11



1.4 Whyd=2+e¢

Gravity is the domain of fundamental physics where the problem of finding a UV com-
pletion is most acute, and so it is here that most work on asymptotic safety concentrated,
following Weinberg original suggestion [40]. The first important observation is that the
Newton’s constant Gy is not dimensionful for every spacetime dimension d. In d = 2
the G is dimensionless and it has asymptotically free beta function,

Bayor — Gar, (1.12)

meaning that in principle one could obtain consistent predictions from perturbation
theory that are valid up to arbitrarily high energies. d = 2 is referred as the critical
dimension of the Einstein-Hilbert action. This result is not particularly useful for the
physically interesting d = 4 case, unless one realizes that in d = 2 + € one can re-instate
the canonical mass dimension of the Newton’s constant and find that its RG running, in
units of of an RG scale k, it is

—eGn + fayc — Gy (1.13)

This means that we have a scale invariant value G% ~ O(e), arising as a fixed point
solution of B;, = 0, and so, an asymptotically safe theory. Weinberg conjectured that
gravity could be asymptotically safe in d > 2 and, most importantly, in d = 4. The
existence of the non trivial UV fixed point G}, guarantees that, at least for small e there
is a UV completion. This has given a reason to push forward the investigation of the
asymptotic safety conjecture which has received increasing attention over the past few
decades [6]. Most of the literature has eventually settled on the use of a non-perturbative
method known as functional RG [34, 35]. However, the non perturbative approach suffers
from a severe renormalization scheme dependence which mixes both with gauge and
parametrization dependence making unclear which are the physical predictions of the
theory in terms of observables. In [26] was suggested that asymptotic safety conjecture
pursuit should couple the functional RG with a less scheme-dependent approach such
as the perturbative framework, following Weinberg’s original idea. They addressed the
problem of the analytical continuation from d = 2 + € to d = 4 proposing an original
procedure that will be explained in Chapter 2. In this work, we will follow this approach.

12



Chapter 2

Heat Kernel, Effective Action, and
analytical continuation

The heat kernel finds many applications in physics and mathematics [12, 23, 39, 2,
3, 4],. An application in quantum field theory is the calculation of effective actions
incorporating quantum corrections to the classical results. The definition of effective
action and the computation of the one-loop approximation can be found in Appendix
A. The heat kernel was first introduced in QFT by J. Schwinger who proposed that the
Green’s functions could be related to the dynamical properties of a fictitious particle
with spacetime coordinates depending upon a proper time parameter. The relation was
obtained originally for a Dirac field in flat spacetime and in this case the heat kernel
naturally arises. B. DeWitt extended this procedure to curved spacetime and found
recurrence relations between heat kernel coefficients. In this chapter we will review the
heat kernel techniques with the Seeley-DeWitt expansion in curved spacetime, and their
role in the computation of one-loop perturbative contributions to the effective action.
We will also review the background field method as a technique for the computation of
the effective action. Finally, we will also introduce the procedure to analytically continue
metric theories from d = 2.

2.1 Heat equation and Seeley-DeWitt expansion

In the following we will be interested in elliptic differential operators that are supposed
to be defined over a riemannian d-dimensional manifold M¢?, and are assumed to have

the general form
O,=-D:+E(x), D,=V,+A4,, (2.1)

where A, is a matrix-valued vector gauge connection, £ is endomorphism acting on the
multi component fields. These may be scalars, spinors, vectors etc. and can be regarded
as sections of some vector bundle over M?. In the end, V, = d,+ T, is the covariant

13



derivative including the appropriate spin connection on M¢? according to the type of field
on which it acts. To extend the results to the usual spacetime it is necessary to assume
an analytic continuation of any minkowskian metric to one of euclidean signature. The
Green function G for the operator © on M¢? is formally defined by requiring it to satisfy

0,G(z,2') = 6%z, 2'), (2.2)

in which ¢ is the biscalar -function generalizing the usual flat space Dirac delta, con-
sidering a scalar function ¢(z)

| dt Vgt otw) = ota). (2.3)

The heat kernel function is defined as the solution of the following differential equation

2G(siz, @) + O0,G(s;z,2") =0 (2.4)
0s
with initial condition
G(0;z,2") = 6D (x, a"). (2.5)

If we solve the diffusion equation (2.4) implicitly
G(s;2,2") = ('] e ]a), (2.6)

we can see that the heat kernel is related to the Green function G by

o0

G(x,2') = f ds G(s;x, ). (2.7)

0

The heat kernel function has an asymptotic expansion for s — 0% which captures the
ultraviolet properties of the Green function. Following DeWitt [12], it has the form

Az, 2')1/? _ oz

g(S;Q?,SL’/): (471'8)‘1/2 e

2 ap(z,2')s". (2.8)

k=0

In Eq.(2.8) several bitensors are introduced, the most fundamental is o(x,2’) called
geodetic interval or Synge-DeWitt’s world function. It is defined as half of the square
of the geodesic distance between = and z’. The bitensor A(z,2’) is known as van Vieck
determinant and is related to the world function and the determinant metric by

/ 1 82 /
Az, z") = WO O det <—Wa(x,x )) . (2.9)

14



Together, o and A ensure that the leading term of the Seeley-DeWitt parametrization co-
variantly generalizes the solution of the heat equation in flat space. They are constructed
only from the metric and satisfy the so called crucial relations

oo, = 20, (2.10)

Aot 4 20V, AV = dAM?, (2.11)

for which we suppressed the bitensor coordinates and we used the notation in which
subscripts of o indicate covariant derivatives, i.e. oy, ., = V,, ...V, 0. Finally,

the bitensors ag(z,2") are the coefficients of the asymptotic expansion, also known as
Seeley coefficients, they depend on the detailed form of the operator O and contain its
geometrical information, which includes curvatures, connections and interactions. They
are determined by the equations

kay + 0" D,ay + A_1/2(9(A1/2ak_1) =0,

O'MD!LG/O = 0,
obtained from (2.4),(2.5),(2.8) in conjunction with (2.10),(2.11).
The ultraviolet properties are local in renormalizable theories and for the case of the

heat kernel locality correspond to x ~ 2’ and it is captured by the coincidence limit in
which 2’ — z. Given any bitensor B(x,z’), its coincidence limit is defined as

[B] == lim B(z,z'). (2.13)

'z

(2.12)

One important note is that covariant derivatives do not generally commute with the
coincidence limit, so

V[B] + [VB]. (2.14)

The coincidence limits of the bitensors o(x,z’) and A(x, z’) and their derivatives can be
obtained by repeated differentiation of the crucial relations, and the same can be done
with the Seeley coefficients differentiating (2.12). The calculation for the case of a scalar
field can be found in can be found in Appendix B. Here we report the first coincidence
limits for the Seeley coefficients [22, 39] which are used later

l[ao] =1
R
[&1] = ]16 —E,
1 1/.1 1 (2.15)
=0, M+ -|(1-R-E) —-D*FE
Laz] = 758w +2<6R ) 6

1 1 vpo v
+ g5 [E(RW,MR“ 7 — R, R™) + V2R] ,

where 1 is the identity acting on the fields and €2, == [D,,, D, ] is the curvature associated
to the covariant derivative D,,.

15



2.2 Background field method and one-loop contri-
bution

A useful technique for computing the effective action is the background field method
[1, 37, 32]. The generating functional for a generic field ¢ with action S[¢] and source .J

1S

Z[J] = eW[J] = fDWSWWWW, (2.16)

where W[J] is the generating functional of the connected diagrams. The effective action
is defined by

SWJ]

[le] = m}n{W[J] —Jddx J¢} where ¢ =

In the background field method one splits the field into a background and a fluctuation,
ie.

o(z) = ¢(x) + (). (2.18)
The background has to be considered as an inert spectator in the quantization process,

while the quantum fluctuation is the field has to be path-integrated over. The background
functionals are defined as

ZB[j; 90] _ ez’WB[j,go] _ JDQB ez'S[t,o-i-q;]+idezjd;7

: B (2.19)

[u[é: ] — min {WB[J; o [ atais ]} .
J

It is possible to obtain an useful relation performing the following change of variable in
Eq.(2.19), . .
p—>9=p+9, (2.20)

and considering the measure as translational invariant. One finds
Zp Ty p) = Z[J]e 1 T2
WalJig] = WIT - [ a'a Jgl, (221)
Lpl@; 0] =Tlg +¢].
Considering ¢ = 0 in the last equation of (2.21), we get the following identity
Tlp] = p[0;¢] - (2.22)

This last equation says that to compute the effective action I'[(p] we can compute the
vacuum effective action the presence of the background ¢. We remind the reader that

16



we are not working in the Lorentzian signature, so in the following we will consider the
analog definitions for the Euclidean signature. In Appendix A we show how the one-loop
perturbative contributions to the vacuum effective action for given background fields
are given in terms of the determinants of operators such as . These can be naturally
defined in general in terms of the functional trace of the heat kernel by

“ ds

log Det O = Tr log O = —J —Tr e*9, (2.23)

o S

sO

where e~*“ admits the asymptotic expansion (2.8). We get

Fds 1 A Cods . d
Tr log O = —J ? W 2 tr [CLk]S = — Z J;) WS 2tr [CLkL (224)
k

0 >0 k=0

where the remaining trace is on the remaining indices of the heat kernel coefficients. Eq.
(2.24) allows to write quantum corrections in terms of the heat kernel coefficients.

2.3 Three steps for analytical continuation

The strategy adopted for dealing with the regularization of the theories discussed in
this work is dimensional regularization (DR) with modified minimal subtraction (MS)
of the divergences close to the critical dimension of the theory. For example, in gravity
derit = 2, so we subtract the poles 1/d — 2 and a finite part after analytic continuation
of the results in the dimensionality. However, some difficulties arise when one tries to
apply MS to a quantum theory of the metric. The most prominent one is that several
tensor contraction as g,/ = d appear when taking the trace of the heat kernel coefficients.
These might change the finite part of the subtractions when multiplying a pole, or in the
worst case, entirely remove a divergence. This could make ambiguous the status of some
divergences. To deal with these problems we will follow three steps for the analytical
continuation as described in [26]. The idea behind this procedure is that, at the end of
the day, we want to consider analytical continuation of our results above d = 2.

1. The first step is the analytical continuation of the covariant Feynman diagrams, or
quantum corrections, in the dimension, i.e. d = 2 — d = 2 — (. At this moment
( # —e introduced previously. Practically this means to analitically continue the
d appearing in (2.24). For ¢ > 0 the diagrams that are relevant for perturbation
theory converge. This is the regime in which we compute radiative corrections.
The divergences thus appear as poles 1/¢ and must be subtracted with counterterm
operators. Finally, their coefficients assemble into beta functions of renormalized
couplings.
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2. The second step of the procedure is related to the dimensionality appearing in
tr [ax]. Any time a tensorial contraction returns the dimension of spacetime, we
denote that dimension as D using a different notation with respect to the previous
one to emphasize the different treatment. The simplest example is of course g/ =
D. It is very imporant at this point not to substitute D = 2 nor D = 2 — ( or
D = 2 + ¢ when computing divergences. This has the advantage that D appears
parametrically in computations, much like N appears in the renormalization of
SU(N) gauge theory. Similarly to gauge theories, by setting D = 2 or D = 4 the
metric fluctuactions have the expected degrees of freedom in a given dimension.

3. The third step is finally the continuation of the results to d > 2. This is done by
continuing D = 2 + € with € which corresponds the the forbidden region ¢ < 0.
This explains why this operation is separated from the process of dimensionally
regularizing the theory. This is done after having regulated and renormalized
the model and obtained a beta function. This step introduces the dimensionless
coupling through the replacement G — Gu~¢, where p is the RG scale, effectively
measuring the coupling constants in units of .

A summary of the general strategy is the following: to eliminate poles in { coming from
diagrams entirely through M S subtraction (first step), so the express the beta functions
as D-dependent objects (second step), that can be continued to d > 2 (third step).
Using these steps one could investigate the two dimensional limit by taking D = 2 + €
and € — 0, but can also estimate the four dimensional limit by taking D = 2 + ¢ and
e — 2. Clearly the limit ¢ — 2 can be dangerous, for this reason, we recall that the
results based on perturbation theory must be considered together with results coming
from non-perturbative methods. The advantage of this procedure is that it breaks down
the problematic dimensional continuation of gravitational theory in manageable steps,
in a way that it is under control and can be discussed at separate moments.
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Chapter 3
Yang-Mills

The following chapter will involve the analysis of Yang-Mills theory. In the first part
we’ll restrict our analysis to flat-space case in order to the review the renormalization
scheme proposed in Chapter 2 with a well-known result. In the second part the focus
will be the curved spacetime. It will emerge the need to include dynamical degrees of
freedom related to the metric.

3.1 Yang-Mills theory in flat spacetime

The objective of this section is to obtain one-loop divergences of a non-abelian gauge
field theory in four dimensions. The action in the Euclidean formulation is

d a va
SYM = @ d J'FMVFM (31)
where g is the coupling constant, [,/ are the components of the field strength tensor
F,, ie.

F,, = —iF, ", (3.2)

t* are the generators of the SU(N) group. The field strength tensor is defined by the
commutator of the covariant derivative

D, =0, + A, =0, — At (3.3)
so it takes the form
F., =[D,, D, =0,A, — 0, A, + [Au, Al (3.4)
Expanding in components and considering the relation
[t ¢7] = i fabere, (3.5)
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where f% are called structure constants of the Lie group, we obtain
a a a abc pb pc
Fi, = 0,A, — 0, A + [ AL AT (3.6)

To conclude this set of definitions we give also the infinitesimal transformation of the
gauge field introducing the adjoint representation for the generators of the Lie algebra,

ie. (tgdj)“b = i fab,

§AS = Do = 0,0 + f* Ao, (3.7)
Note that using this normalization the gauge coupling is removed from the covariant
derivative ad moved as a coefficient of the whole action.

3.1.1 Background field method

The effective action will be computed through the background field method [32, 36]. We
split the gauge field into a background field and a fluctuating quantum field, namely

AL = Al +a,. (3.8)
The field strength decomposes as
a Aa Aa abc Ab pc
i, = 0,4} — 0,A, + [ A A
+ 0,a;, + fabCAZ L, — 0uay, + fabcaZAi + fabcal;af,
Aa Aa abc Ab pc
= 0, A, — A, + [*CALA (3.9)
+ 0ual + [ A al — 0,al — [P ATl + [ a)al,
= Fu, + Dya;, — Dyaj, + f“bcaZaf,,
where, in the last line, F,, = 0,A% — 0,A% + f*°Ab A¢ is the field strength of the
background field, and D, al = d,af + fabCAZaf, is the covariant derivative with respect
to the background field in the adjoint representation. One important observation is the
transformation (3.7) can be split in different ways between background and fluctuation.

One way is to keep the background fixed and attribute all the variation to the quantum
field:

S AL =0,
St _ [ o (3.10)
« 7 I

These are called”” quantum gauge transformations”. Another way to split the transfor-
mation is

S A0 = Dya = 0 + [P, .
(SaB)aZ _ fabCaZOéc, ’



so that the background transforms as a connection and the quantum field as a matter
field in the adjoint representation. These are called ”background gauge transformations”.
The gauge fixing is meant to break the quantum gauge transformations but is possible to
choose it in such a way to preserve the background gauge invariance. This is extremely
advantageous since it will constraint the effective action. Using Faddeev-Popov method
[32] or BRST quantization method [37] we can obtain the following gauge-fixing term
covariant with respect to the background gauge field

1 _
Lor = —=(D"a%)? 3.12
and the ghost term B
£GH = EaD‘uDuCa. (313)
Then the gauge fixed Lagrangian is
1 n N a N a0 abc b c\2 1 N a2 —a MK a
L= 4—g2(FW + Dya;, — Dyay + f*a,a;) 292€(D ay,)” + " D" D" (3.14)

To compute the effective action I'[A] to one-loop order we drop linear terms in the
fluctuating field aj; and then integrate over the terms quadratic in aj and the ghost
fields (see Appendix A). To integrate the quadratic terms is necessary to work out the
terms in (3.14) quadratic in each of the various fields. It is convenient to choose the
Feynman gauge § = 1. The terms quadratic in aj, are

1 |1 -
£ = | L (Dyat — Dyal)? + P pabat + DV (3.15)
g

a

After integrating by parts and using anti-symmetry of the structure constants we can
rewrite

= 2{@ D?*)® g + (D" D*)® — (D*D¥)*]al, — af, f**“F**ag} . (3.16)

CL

We can recognize the commutator of covariant derivatives and use the relation
[DV’ Du]ab _ —iFV“C( 2dj>ab _ qucjcacb (317)

where we used the adjoint representation for the generators. Substituting in (3.16) we
get

LY = 5 { —(D?)* g — 2f**F"]ag} . (3.18)
We can rewrite this equation as

LY = — o AR aeqs (3.19)



where B
AHvac _ _g,m/(D2)ac + E,Lwac; Ervac — _zfachb,uu (320)

The effective action will be a functional of two fields: I'[a; A]. We are interested in the
special case aj, = 0, in this case D, = D), and the ghost term is simply

Lop = AZ (3.21)
where

Agy = D*. (3.22)

3.1.2 Effective action and beta function

The effective action at one-loop is given by

e TIA] fDa Dé De 6_(SYM[A]+S£2)+SGH)

— e*Sy]w[A] JDQ e*Sd4z‘C‘(12) JDEDC 678d4x[«GH (323)

= =Sl (Det AP )3 (Det (—Ady)).

Taking the logarithm we get
- 1
I'[A] = Sym[A] + §Tr InA —TrIn(—Agn). (3.24)

Following [5] and [39] we can use the integral representation to relate the Tr In A to the
heat kernel coeflicients. We have

1 1 (“d *d
=TrIn A—Trn (—Agpn) = ——J s P f Ty ems(=han) (3.25)
2 2)y s 0 S

sA

and recognizing e~*2 as the heat kernel function we can expand (see Appendix B)

%Tr A~ Trln (—Ags) — 2J B LSV (Tr an(A) — 2Tr ax(~Agn)) s
0

5 (4ms)2 k>0

(3.26)
Let’s work on the right hand side of the equation
1 (*ds 1 k
_§L S T St [ar(A)] =2 tr [ap(—Aan)])s", (3.27)

k=0

note the coincidence limit on the heat kernel coefficients. To regularize this integral it is
necessary to introduce a mass parameter m using the exponential e‘st, ie.

_Z Z J 47T d/2 sF— 1711/26*37?12 (tI‘ [ak(A)] — 2 tr [ak(—AGH)]) (328)

k>0
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We can rewrite equation (3.28) as

_EZ(tr [ax(A)] — 2 tr [ax(—Ach)]) 1d/2 OOds sho1=d/2g=sm? (3.29)
2 (47) 0

and recalling the definition of the Gamma function,

Q0
['(z) = J dt t*~te, (3.30)
0
we have
* 2 d
L ds sF717d2gmsm” — ppd=2k (k - §> . (3.31)
Substituting in (3.29), we get
—EZ(tr [ar(A)] — 2 tr [ax(—Agn)]) ! mT2 (k- d (3.32)
22 k k o)) tgmyan 5 -

Since we are interested in the case d = 4, it is clear from (2.24) that quartic divergences
appear for k = 0, the quadratic ones for £k = 1, and the logarithmic ones for £ = 2. The
quartic divergences are field-independent so will neglect them. There are no quadratic
divergences because tr £ = 0 and both a; vanish. The logarithmic divergences are given
by the last one of (2.15). For the rest of this section we will drop the bar notation for
the background field. For the operator A we get

D 1
tr [ax(A)] = Jddx (— wo FP7 + —E'””bEpU“b)

12 2
_ Jddx <2Fa Fbpafcadfdbeéce + Z_Lfachcpafaded )
1277 2 po
(3.33)

D
- J ds (—EFWUFgU@aab + 2F000F300250d>

24— D
_ J ddg;( - CQF‘W"F‘;U) ,

while, for the ghost operator —Agy, we get

12 re

1
tr [aa(—Agy)] = Jddx EFWFP

- = fdda: (—@FWFG ) : (3.34)

In both these equations we introduced the Casimir invariant C5 through the relation

facdfbcd _ 025017‘ (335)
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For the adjoint representation of the group SU(N) we have Cy = 2. Substituting (3.33)
and (3.34) in (3.32), we have

—_ r{2--= d Cy FJEFHe 3.36
2 (4mya2"" < 2) T\ ) (3:36)
Now we can perform the analytic continuation d — d = 4 — ¢, resulting in
1 1 c € 26— D
- 4m)im T (5) | Cy F, 0 Fme. 3.37
2(47r)2(7r)2m 2 f x( 12 ) 2w (3.37)
Considering the expansions
2
r (f) — 250, (3.38)
2 €
where v is the Euler-Mascheroni constant,
m™ ¢ =1—eclog m+ O(e?), (3.39)
and .
(4m)2 =1+ 5log 4m + O(e?), (3.40)
we get
1 . 1 2 1 4 (26—D o papw
_§mlglocw<z—’y+210ga+log 4W)fd$( 12 >C’2FWF (3.41)

Using MS scheme we are left with

1 (QG—D

7 ) Oy log % f dx Fo Fom (3.42)

The one-loop effective action has the form

T[A] = Syu[A] - 1 (26—D

H d a %
Cylog — | d% F¢ F%. 3.43
(4)? 12 > QOng T ( )

We can define the renormalized coupling gg as

1 1 1 [26—D [
- Colog = 3.44
W a1 e (34
from which g
gr(m) = ERET = (3.45)
\/1 — a3 Colog £
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We can finally compute the beta function for the coupling constant

2 96_D 22 %-D  m—1
o] _ @(1_<9_6_0210g ﬂ) <9_6_Om )
m

dm|,,_, 2 )2 3 (4m)?2 3 um? .
(3.46)
1 1 26-D
Blgr) = —=—— ———Chg>. (3.47)

2 (4m)2 3
We recovered the well known Yang-Mills beta function. At this point we could follow the
third step for the analytical continuation described in Chapter 2 and move form d = 4.

In Chapter 4 we will perform the explicit computation for Einstein-Yang-Mills theory in
d=2+e.

3.2 Yang-Mills in curved space

In the following section we will compute UV divergences for Yang-Mills theory in curved
space. The relevance of such calculations, without considering also the fluctuations of the
metric and hence quantum gravity, has been disputed. Nevertheless, the considerations
of field theories with classical background fields on curved space occurs in semiclassical
contexts and the techniques involved are necessary preliminary to considering quantum
gravity. The action in presence of a general background metric g, takes the form

1
Syn = fd‘*x \/54—”2F§UFW (3.48)

where

Fi, =V, AL =V, A% + fa”CAZA; = 0, AL — 0, A% + fabCAZA; (3.49)

and V,, is the covariant derivative related to the metric g,,. We changed the notation
from g to n for the coupling constant to avoid confusion with the metric. The last equality
is due to the fact that we are studying the torsionless case in which the Christoffel symbols
are symmetric f‘ZV = f";u.

3.2.1 Background field method

As in the previous section we can use background field method, define A}, = flz +ay, and
keep only quadratic terms in a since we are interested in one-loop calculations. We can
write

Fi, = Ft, + Dyal — Dyaj, + f*a)a;, (3.50)
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where now D, is a covariant defivative which contains both the connections due to the
metric g, and the gauge field A7, namely

D,a% = V,a% + f“bcleai = dual — TP a% + f“bc/_liai. (3.51)

wrp

We can choose to consider a gauge fixing term related to the condition
D,a™ = 0. (3.52)

Following the previous calculation as in the flat space case we arrive to the following
quadratic contribution to the action

A = 1 —]' a vV N2\a al DV PDerla ra rabc cv
Sl A, g;a] = _772 Jd4x \/§§ [au(—g“ D?)*%qb + ag[ DY, D¥] bab + ELf begbig, ] )
(3.53)

Differently with respect to the previous case, the commutator is not just the Yang Mills
field strength, considering the matrix valued form we have

(DY, D¥] = [V", V"] + [V, A] + [A¥, V"] + [A%, AM] = [V, V] + F*. (3.54)

Recalling that the commutation relation of covariant derivatives of a controvariant vector
field V7 is
[V, VoIV =R, LV, (3.55)

we can rewrite the commutator term in (3.53) explicitly in the components

a7y wplaeb b a(vp\ab, b _ _apprvusab, b vuc pach _a b
ay[V?, V] %a;, + al,(F"")%a,, = ay R0 a, + F™° f*aa,,

v _ _ 3.56
= aZR”"é“baf, + F“”“f“bcaZai. ( )
Substituting in (3.53) we get
1 —]' a v N2\a a PV Sa ra rabe cv
P Jd% \/55 la5 (=g D*)®al, + af, R* 6%a), + 2F}, f*a"a®] . (3.57)
At the end, we are left with an elliptic operator of Laplace type
A = —g"(D*)® + B (3.58)
with a covariant derivative containing the connection
(wﬂ)ypac = fabcAZéyp - ffwéac (359)
and an endomorphism ) )
EH — RIVEP 4 2F Y fobe, (3.60)
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The field strength corresponding to the connection (3.59) is

(Qu), " = Rp"/w 0% + FSV f“bcép". (3.61)

The ghost term corresponding to the gauge condition (3.52) is just

Lan = A%y (3.62)
with
A%, = (D*)™ (3.63)
where B
D = 0,0 + [ A (3.64)

3.2.2 Effective action and divergences
Following the exact same procedure as in the previous section we get

_ _ 1
P[4;9] = Sya[A;g] + Tr log A — Tr log (~Agn)- (3.65)

Following the previous section, in d = 4 the we have quartic, quadratic and logarithmic
divergences. The quartic one are proportional to

tr [ap(A)] — 2 tr [ao(—Agw)] (3.66)

The coefficients are
tr [aog(A)] = Jd% VGD(N? — 1), (3.67)
and

tr [ao(—A)qn] = f iz JGN? —1). (3.68)

Again, as in the flat case, the quartic divergences are field-independent and can be
neglected. The quadratic divergences are instead proportional to

tr [a1(A)] — 2 tr [a1(—Acn)], (3.69)
and the corresponding coefficients are
i R
tr [a1(A)] = | d°z \/§€(N -1)(D-6), (3.70)

and _
tr [al(—AGH) = Jdd$ \/gg(NQ — 1) . (371)
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Putting these coefficients into (3.69) we get the following quadratic divergence.
fddx %J\ﬂ —1)(D-38). (3.72)
Finally, the logarithmic divergences are proportional to
tr [az(A)] — 2 tr [aa(—AgH)], (3.73)

and the coefficients are

24—-D o D —15 _ _
tr [QQ(A)] = fddl‘ \/gl ( 12 ) CQFMVaFﬂVa + < 180 ) (N2 - 1)RNV,00'RMVpO-

N=DN n2_nyp,mew + (P212) (2 - w2
(%) (=)

180 72 ’
(3.74)
and
i faa(—Aan)) = [ va| Y (R — Bl 4 2R2) - Loy
ras(-Acnl]) = | dw V| o5 | Buvpo — R R + SR ) — 50 v
(3.75)
Putting (3.74) and (3.75) in (3.73), we get
2% - D\ . . _ D17 _
f = \/5[< 12 )CQFWF“”G " < 180 ) (N = DBy B
(3.76)
92— D o D14 _
N? - 1)R,, R"™ N? —1)R?*|.
(B ) o - e + (228 (- R

Looking at these divergences, it is clear the need to introduce the dynamical terms
for gravity in the action. We will consider the Einstein-Yang-Mills theory in the next
chapter.
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Chapter 4

Gravity + Yang Mills

To introduce the dynamical degrees of freedom of gravity it is necessary to consider a
gravitational term in the action, in particular we choose the Euclidean Einstein-Hilbert
action:

SEH[Q] = fddﬁ \/5(90 - 913)7 (4-1)

in which we introduced the curvature scalar R and the couplings gy, g1 related to the
cosmological and Newton’s constant. We choose gy to be exactly the cosmological con-
stant, while the strength of the gravitational interaction is weighted by G, which we
choose to be g; = G~!. Action (4.1) is manifestly invariant under diffeomorphisms. In-
finitesimal diffeomorphisms act as changes of coordinates and are generated by a vector
field, a# — x* + £#(z), resulting in a transformation of the metric

OcGur = Legu = Vuby + Vil (4.2)

Since the composition of two transformations is still a transformation, the diffeomor-
phisms from a group, whose algebra is obviously closed

[0¢, 0] = Ops¢, 6c, 15 (4.3)

where one the right hand side the commutator denotes the standard Lie brackets of two
vector fields. Considering also the Yang Mills part we have an action of the form

1
Slg, Al = Jddx N <90 — R+ WFSVF“W) (4.4)

The analogous calculation for Lorentzian metrics differs by an overall sign. The equations
of motion for the action (4.4) are

1
59#1/(90 - glR) + glR;w = T;u/; (45)
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where

1
T =~ <FMO“1FW“ — ZRﬁa}?aﬁag,w) , (4.6)

and
D, F*% =0, (4.7)

4.1 The gravitational path integral

The path integral is formally given by
7 = J DgDA 51941, (4.8)

This integral is divergent due to the invariance under diffeomorphisms and gauge trans-
formations for the action. To make sense of this integral one could follow the Faddeev-
Popov procedure or the BRST quantization method. Both the procedures are analogous
to the constructions for Yang-Mills theories, with a crucial difference: in Yang-Mills
theory there is no difficulty in taking a ”zero connection” and therefore the use of back-
ground field method is optional. In the case of gravity it is not clear how to make sense
of the action for a ”"zero metric”, or more generally degenerate metrics. It is debatable
whether such configurations should be taken into account or not. As a consequence, the
use of the background field method is almost unavoidable. Let’s therefore split

_ A
Y = Guv + hyw + §hup9p oy
Al = A+ af,

(4.9)

where g and A are the classical backgrounds, h and a are the quantum fields or fluc-
tuations and A is an arbitrary parameter to test the parametric dependence of results.
Notice that when A = 1, (4.9) matches the exponential parametrization to the quadratic
order. The split allows us to preserve manifest covariance under the background version
of (4.2). The gauge fixing term must fix (4.2) seen as a transformation of h,, at fixed
arbitrary g,,, which is non-linear because of the right hand side of (4.9). To construct the
correct transformation of h,, order-by-order in h,, itself, we need to invert the relation

GupV uE” + GupV i€ = ehy + Mnupg” 0chany + O(R?). (4.10)
Using (4.9) on metrics and connections on the left hand side, we find

5§huu = gpuvugp + gpuvugp + O(h)7 (411)
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where indices can be raised and lowered by the background metric. In order to preserve
the background symmetry we will consider the following gauge fixing terms

Sarn = 29_1 Jddﬂ? Vg futv,
@ (4.12)

_ 1_
fM = Vphpu - §Vuh,

and
1

G Jdd:v VG(D,at)?, (4.13)
where o and «y are gauge fixing parameters, h = g"’h,,, and D, is a covariant derivative
containing both the connections due to the spacetime metric and the SU(N) group as in
the previous chapter. In the following we will consider v = 1 and a = 1 for convenience.
The gauge fixing terms (4.13) and (4.12) come with two ghost terms. Introducing the
ghost fields &, ¢* for the diffeomorphisms, and b, b* for the gauge transformations, we
have

SGF,a =

ScHp = Jddiﬂ VG befule_,

(4.14)
= Jdd:c VGc, (Vg™ + R*)c,.
and
SGHa = fdd:c VG 0% (D)0’ (4.15)
The corresponding operators are, respectively,
Ain = Vg™ + R™ (4.16)
and )
Ata = (D*)®. (4.17)

4.1.1 Quadratic expansion

The second order perturbation of the action (4.4) together with the corresponding gauge
fixing terms (4.12) and (4.13), contains three contributions due to the quadratic contri-
bution in h, in a, and a product of linear contributions in h and a, so we can write
_ 2 2
Slh,a; g, A) = S + Si7) + S (4.18)

,a a,

The term Sﬁz is analogue to what we obtained in the previous chapter, i.e.
- 1 a ra
Sf; = Jddx \/§2—772au Arvab g (4.19)
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where B
A/gé:ab _ _gyu<D2)ab + Ev,u,l/zzb7 (420)

and _ _
E,u/ab _ Ruuéab + 2Fcuufcab' (42]_)

The S ,(12,)1 is more complex due to the structure of the operator. It reads as follows.

2 =01 vpo
Sf(t,})z = fddx \/§E h/u/ OZhP hpa (422)
where B
Q7 = [T 2 4 e (4.23)
We have
vpo ]' - —Vo — o =V, — UV =po
K*r7 = 29" + 979" — 3"g”) (4.24)
and
[iweo _ Fﬂ,uoapypa N F,upaFwaa B F’p)\aF’o)\ag/u/ B ()\ _ Q)F’VAa Fo/\ag,up
200 2qup° 2 gn* dgin?
LSRRG (AP GY go (A 1)g"7g"
47917727 491f)2 ) 201
()\ _ 1)FH)\aF5)\ag;w'ng B ()\ o Q)Fu)\a FP/\agya N gO()\ o 1)@#/}91/0’
8 g 4g1m? 291
()\ _ 1)F‘H>\aﬁw)\a§ppgu o B F_‘,u)\aF_‘ u)\agpo N gogw/gpo
8g117° 2017 291
F QF’K)\(I—/.LV—pO' _ A—1 _ A—1 _ A—1 _
+ KA 89177-(]2 9 + gpaRuV + 5 guaRup + 5 gupRua + g;,LO'RVp
A—1_ - _ 1—A _ 1=\ _ 1 _
+ g#ﬂRWf + g# VRPU + g#agVﬂR + gNPgVUR _ 5@#”@90}%

2
— RHpvo _ puovp

(4.25)

At this point gravity exhibits a new aspect that was not present in the previous cases.
The form of the operator O}, is not immediately useful for the computation. This
happens because the general formula to compute the one-loop effective action is given in
terms of a functional determinant of a differential operator, In this context, a differential
operator is an object mapping from the space of symmetric tensors to itself. What we
computed above is instead an bilinear form, mapping two copies of symmetric tensors to
real numbers. In the standard language of differential geometry the O} is a covariant
symmetric tensor, while a differential operator is a tensor with one covariant and one

controvariant index. The importance of this observation lies in the fact the while the

32



determinant of a differential operator is basis-independent whereas the determinant of
a covariant tensor is not. The reason why this can be confusing is that the position
of indices in the sense of four-dimensional tensors may be opposite to the one in the
functional sense. The solution is given defining an ultralocal metric in the space of
symmetric tensors, namely the DeWitt super-metric

2

Yuv,po = g,upgya + guagup - mguugpau (426)

that is manifestly symmetric under the exchange of the first two indices. It satisfies the
equation

g, (0% 1 (63 (0%
Yow,po V" A= 1#5 = 5(%55 + 5V55). (4.27)
With this choice we have
KHro = 7HV7pU7 K;ulpa = Yuv,po s (428)

and the definition of the correct kinetic operator Ay, comes from

(App) '’ = K,Iulagoﬁfw = V2100 + W,,"7, (4.29)
where
e — 90D A= 187,05 (A= 187,08 Pt Fo
" 91 . 4% g
(A — 1)(5Vu 6",,Faﬁ“F’a5“ N e F’La N FVN“F*;;“
g "o nPa
B ()\ — 2) (5“,,F7a“FW“ B ()\ — 2)(57,,F“0‘“Fua“
2772g1 B 27729_1 -
(A= 2)8, FY 29F,, (A = 2)07, FrOCR,,
 2P; 2P0
CESF o5 20 - DF Y G 20005 G (4.30)
U (d—2)n*q - q1(2-d)
(A =2) Byt Fogrg, 4\ - 1)gu R
2(d - 2)n’q, d—2

+A=10" R, +(AN=1)§",R, +(N—1)",R",
+ (A=1)0",R", + 29" R, + (1 — \)§",0" ,R

_ — 1)g"*qg,, R

+(1—=XN)8" 0" R+ 20 ;)92 G ht

— 2R+ B ).
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The mixed term S (2}1 can be written as

52— Jddx \f\ﬁh Ot ab + Jd% \Fﬁ DO By (4.31)

7

The operators O**" and O?’" can be separated into an endomorphism plus a piece
proportional to a covariant derivative, namely

O,u,upb ,uz/pb + V,prb v)\

i (4.32)
(’)3,?“” — prow V(ZZ)WAV)\>
where the endomorphism part P**? is
PMV,Db _ Ppb,uV _ 2\/1> (AV‘IF’MPCfbaC + AuaFVpCfbac + Aaappac]cbacguu
g1
- - 1 _
o AaaFI;Cfbacgup o AaaF;é{Cfbacgup o §gl/pvaF,uab (433)
1—1/047 rpb 1— — rwvab 1—a7 I, vpb 1—1/7 pab
+ g7V FH? — —ghPN (FY + —gHV o B + —gH" N  FP7 |
2 2 2 2
and the vector parts are
Vst = L (Fyegee 4 BRbgre — FRbg — Frvs — Fresy) (4.34)
¢ 2\/91m
and
1 _ _ _ _ _
b v b_uv v v b_pv v b=
Viand"s = 5oy (FN " = FP0 = P00 = P9 = F0g™) (4.35)
The vector terms satisfy
Vgt = Ve, (4.30

In the same spirit of what we did earlier, we lower the indexes of the operator Of‘;;ap b

defining the operator A, namely
Apayn” = Vuas Oy (4.37)

The endomorphism takes the form

1 _ _ _ _ _
P pb _ AVaF pc pbac Acase | ac bac Aaaéprac bac
o 9 1
+ AMaFVPCfbac + mAaaF;;c]cbacg/W . §5£VQFM0¢I) (438)

1 _

1 - _
— Z6°V F,°° Avayas
2% Ll
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and the vector

1
NI

We remind that this operation doesn’t solely lower indexes but transform hessians into
differential operators. We verified that it is possible to make A disappear by using the
gauge covariant derivative and making the equations explicitly invariant under back-
ground transformations. However, we chose to use the covariant derivative V on both
ar, and hy,,. The operator Oap}f " is already in the correct form since it acts on tensors
., with lower indexes, so we can write simply

201G, - _
d+g; o Fl'pbguA - Fupbgwx> . (4'39)

‘/(ha) uupbA = <5£F;L>\b + 5zF1/)\b -

buv buv
Apbm = OppH, (4.40)

Now we can define the fields ¥ and ¥T as
1. a
U = l no } UM =[raS b,  A=12 (4.41)

a f(ﬂ(]},L/))O'

OAB _ l
v Ahayu™’ (Dnn)

] A B=1,2. (4.42)

Using these definitions and neglecting for the moment the S-dependent term, the quadratic
expansion of the action takes the particular simple form

1
S = Jddx NG 5\1/%1“3 05w, (4.43)

where

e 10
N :[0 vaﬁ’“”]‘ (4.44)

4.2 Effective action

The one loop correction effective action is given by

1
F[g, A] = S[g, A] + QTI' 10g O\p —Tr IOg (_AGH,h) —Tr log (_AGH,G,) (445)

and can be expressed in terms of the heat kernel coefficients.
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4.2.1 Heat kernel coefficients

To compute the heat kernel coefficients of the operator Oy it is convenient to write in a
form that is compatible with heat kernel coefficients formulae (2.15), namely

Oy = D2 + Ey + (Vg)sV?, (4.46)

where 5 _gnA(DQ)ab 0
~D% = [ 0 _vglz(;], (4.47)
Bu=| B2 1] (4.49

and 0 —
Vg = [V(ha)w“g Wé) ﬁ] : (4.49)

At this point, it is important to notice the presence of a term which was not considered
in the computation of the heat kernel coefficients (2.15), namely the vector part Vy. To
take care of this term we will follow [29]. Considering an operator of the form (4.46), i.e.

A=-D*+V,V'+E, (4.50)

where D is a covariant derivative and E, V), are two matrices, the heat kernel coefficients
are

[ao(A)] =1,
1
[a1(A)] = Z + éRl’
1 1 1 1 1 (4.51)
A)]l = = 2 7 - = oo uvpo V;UJ il oY 1
[aa(A)] GV ( +5R)+(180RMR 180RMR +7QR)
1 1 1
—7?+ -RZ + —Y, Y™
+2 +6R + otn ,
with
7 = —E—V,5" - 8,5",
Y;w = [D/JJDI/:I + Gum (452>
G’W = VMSV — VVSH + S“S,, — SVSM,
and

1
Su= 5V (4.53)
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Now we use formulae (4.51) for the operator Oy. The first coefficient is

§g 0 D(D + 1)] s

tr [ag(Og)] = tr [ ; %] :fdda;\/g[(zvt1)p+ 5

Before computing the second coefficient, we show as intermediate result the matrix Z
for the operator Oy. It reads

7 [ _E/-i)\ab _ %L(Va2a>n>\ab _prapo %@B‘/(ZZ)PO'B] (4 55)
_P;w/\b + %Vﬂv(ha);w/\bﬁ _Ww/pa - %L(Vth)WpU 7 '
where
1 (D? —AD + 2)Fr,a Frab
<‘/a2a)n)\ab _ . (_ — Fr b Faﬁ Fa,@ag K (456)
g1n (D —-2)
and
1 — = — o I oaa 0 a—= I aap a= O
(thh)uupg = 91_772 (Fuaanaagu - F,F %9, — F,"F".g,
[ 0a T a=po Faﬁapaﬁag Vgpo [ oa 17 pa
HRERG - S 2’; —2F, % F,p (4.57)

B _ 4Fpo¢aFJ ag B _
—_92F paFVO'a a JpY FyaaFU ag P | .
14 + (D _ 2) o g;U« >

Now we can trace Z and put it in the second of (4.51). We get

(D3(A = 1) + D?(13 — 5)) — 20D + 16(\ — 1)) F,, g0 F*he
4g1m*(D — 2)

13 N? 13 _
D* [ = — )\ D{———+A\ 1—-N?—4)) R|.
Again, before computing the coefficient as(Oyg), we give as intermediate result Z* and

Y, Y* . Since we are interested in tracing these matrices we can just focus on their
diagonals elements. Neglecting explicit indexes, we can write the diagonal part of Z2 as

+

(4.58)

Dy = [(E + Vi) + (P = 3VaVi) (P = 5VaVi) 0

0 (P = 3VVi) (P = 4VaV5) + (W + 113 )2

(4.59)
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and the diagonal part of Y, Y* is

. Y, VY[,LV 11 0
(YNVY“ )diag = |:< a 0 ) (Yuyyuu)22:| ) (460)
where
v N N 1 ’
(YY) = <[DM7DV] 7 (VamVina) V(ah)quaw))
1 (4.61)
+ 1 (ViVany = ViMan) (V¥ Vina)” = V' Vi)
and
v v v 1 ’
(Y YH)?2 = ([Vm Vil + 7 (Vi Viaay — V(ha)vv(ah)u))
1 (4.62)
+ Z(ﬁy‘/(ha)u — ViVinay) V*Viany)” = V" Viary)) .
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Tracing these matrices and putting the results into (4.51) we find

2 F,, o o F,, o Fv b Foya pous
tr [as(Og)] = Jdd:ﬁ Vil (DN B 4oy (D,n) 85 — y oy(D NS
91 gin gin
F VaFW bFa bFﬁua F CLF“VbF aFaﬁb
+C4(D7)‘) - 052 f +C5(D7>‘) = 2 ZB
gin gin
F VaF’,u,z/aF'a bF'aﬁb F VaFW bFa,LLC abe
+C6(D7>‘) . 24ﬁ +C7(D7/\> . = 2 f
gin 9
AuaAVbFMacFyadfadefbce

+ Cg(D, )\)CQFW,CLFW/G + Cg(D, )\) g 7]2
1

AyaAubF’ acF_’Vad ace £bde
K f f + CH(D7 )\)

AgAabF’MVCFyudfacefbde

+ Cl()(D, /\)

i i
- R vy R
+ Clg(D, /\)RMVRMV + C13<D, /\)—2M + 014<D, /\)go—
S an 9
F VaF,uuaR B Frvafpoap oo
+Cl5(D, /\)M—2 +016<D, >\)R2 +C17<D,/\) B re
oant gin
Frvappoap o 3 B
+ Clg(D, >\) 917]2 mp + Clg(D, )\)RuypgRquU
_ B AaaF’,va abc@aF Vc
+ CQ()(D, /\)RuypgRﬂpya + Co1 (D, )\) 9]10772 K’
vaﬁ Vavocpuua Aaame) abcvupa c
+ CQQ(D, )\) Hg 772 + CQg(D, )\) gf7]2 =
1 1
vaﬁﬁauav F Ba Agpaub abcv F Be
+C24(D, )\) 25 = +CQ5(D, )\) f 5 il
g1m g11
?QF‘ Vavupp,aa ?ap Vaﬁocﬁuua
+ 626<D, )\) = ) + CQ7(D, )\) = 5 ,
gin gin

(4.63)

where we neglected total derivatives. The explicit coefficients ¢; can be found in Ap-
pendix B. The heat kernel coefficients for the operator —Agp, were already computed
in the previous chapter and are given by (3.68),(3.71) and (3.75). Finally, the heat kernel
coefficients of the operator —Agp ), are

tr [ao(—Ocun)] = J iz \/GD (4.64)

tr [ar(—Omn)] = f 'y \/gg(p L 6), (4.65)
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and

D+ 15 90— DY\ 5 = D+12
tr [a2<_OGH,h)] = Jd T \/7[ ( 180 ) R/LVPUR“VPU+( 120 ) R,u,yR“”-F( 72 ) R2
(4.66)

4.3 Beta function in d =2 + ¢

We can now write explicitly the quantum corrections in (4.45). Following the same
computation present in Chapter 3 we get

Z Hk mye <k g) (4.67)

where we defined

Hk = tr [ak(Oq;)] —21tr [ak(—AGH,h)] — 2 tr [ak<_AGH,a)] . (468)

We can now set d = 2 — ¢ and remember from (2.24) that in d = 2 the logarithmic
divergences arise for k = 1. Recalling the expansions (3.38),(3.39),(3.40), and using MS
scheme we get

I'[A g] = S[A g] - E 1og — Hi, (4.69)
with
2 —_ f— —_

lefddx{D<D A=D1 +D1-XN+2-4\) g
D—2 o

D3\ — 1) + D*(13 — 5)) — 20D + 16(\ — 1) E,,*Fre (470)

4(D —2) Q2 :
D2(13 — 12\) — 8(2N2 — 1 — 6A) + D(2N? — 17 + 12/\)R}
12 :

Physical results are obtained by going on-shell. This means that the metric must be
expanded around a stationary point of the action, in other words the background metric
G and the background vector field A, must satisfy the equations of motion (4.5) and
(4.7) respectively. At this point, we choose to use the equation of motion (4.5) in two
different ways, the first time we express the volume operator in terms of the field strength
F and the Ricci scalar R, effectively trading go for 7 and g;. The second time we solve
the equation of motion for F', ending up with counterterms that only depend on the
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geometrical content of the theory.. Performing the first substitution in (4.70) we get

F VaF’;wa B
" = fddx {Al 4+ B R}
an o
B Jdd 4+9D —4D? F, *Frve N D? + D(2N? — 5) + 16(1 — NQ)R
B 2(D —2) g1n> 12 ‘

(4.71)

Notice how the dependence on the parametrization parameter vanished, accordingly to
the fact the physical results are independent from the parametrization. Recalling that
g1 is the inverse of the Newton constant G, we can define the following renormalized
couplings

1 11 "
=+ —B log — 4.72
Gon Gy A % (4.72)
and 1 1 1 GyA
= g £ (4.73)
dny,  4An*  Am n? m
We can rewrite G
N
= ; 4.74
(G 1+ Ci—;VBl log £ (4.74)
and
_ n
Nr = : (4.75)
\/1 — %Al log £
The beta functions follow straightforwardly
B 5
B((GN)R) = E(GN>Ra (4.76)
and
Ay
Bnr) = _%(GN)R R - (4.77)

We can re-instate the canonical mass [25, 26|, as explained in Section 2.3, and find the
beta functions of the dimensionless couplings constants (Gx)r and 7g, we get

_ B

B((GN)R) = E(GN)QR + Gy, (4.78)
and 1
B(iir) = _T;(GN)R MR — <1 - g) MR - (4.79)

It is important to realize that having regulated the theory close two dimensions we can
now identify d and D. In this case we can write ¢ = D — 2, and the beta functions

become
_ Bl

B((G)r) = TG+ (D= 2)G, (430)
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and
B(ir) = _%(GN)R MR — (#) MR - (4.81)

To find the fixed point we need to set 3((Gn)r) = 0 = B(7jr), we find the coordinates
G* and n* for two fixed points, a Gaussian one and a UV one. The Gaussian point is

FPgauss = (0,0), (4.82)
the UV one is
FPUV = (G*v O) ) (483>
with
48w (D — 2)

G* = (4.84)

D? + D(2N2?2 —5) +16(1 — N?)
G* has a complicated dependence on D and N, in Fig. 4.1 we plot its graph. We
can observe that fixing D = 4, G* exists and has a positive value for N > v/3/2 ~
1.224. The Gaussian fixed point is instead indeterminate, all possible values of 7 lead to
vanishing beta functions taken GGy = 0. This is a symptom of the fact that Yang-Mills
is asymptotically free in D = 4.We notice that exactly in D = 2 the beta function of n
is ill-defined because A; has a pole.

To find the critical exponents we need to linearize the flow around FPyy, namely

aGNﬁ<GN) 0 B(GN> B B_ﬂl_G* 4 (D _ 2) 0 ]
|: 5’GN5(77) gnﬁ(n) ] (G*.0) o |:2 0 _%G* __4-D | > (485)

2

where we dropped the bar notation and the subscript R to refer to dimensionless renor-
malized couplings. The matrix is in diagonal form and the critical exponents are given
by its eigenvalues

A =2-D,
 D?+ (2N? + 87) D* + —12D(2N? + 15) + 32 (2N? — 5) (4.86)
2(D? + D(2N% — 5) + 16(1 — N?)) '

Ay =

For D > 2 the first eigenvalue \; is always negative and relevant. The second eigenvalue
related to n has a complicated dependence on N and D. In D = 2 it is negative for
N > 1/41/6 ~ 2.614. In D = 4 it is negative for N > 1/3/2 ~ 1.221. Finally, in the case
of Quantum Chromodynamics (QCD) N = 3 and the critical exponent \s is negative and
relevant in the whole range 2 < D < 4. Alternatively, we can substitute the equation of
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Figure 4.1: UV fixed point G*. G* depends on D and N. In this picture we consider
the case of the first on-shell substitution. We observe regions in which G* exists "safely”
and is positive (pink) and regions in which G* is not defined or is negative (green).

motion (4.5) in (4.70), writing F' in terms of go/g; and R in (4.70), we get

H}Q) = Jddﬁ{Ag? + BQR}
1

o 2D(4+ 9D — 4D2) 90
- i o
(D + D*(2N? + 87) ~ 12D(2N + 15) + 32(2N? - 5))
- 12(D —4) } '

As above, we can define the following renormalized coupling

A2 ,LL
Jor = 9o — EGNQO log m (4.88)
and
1 1 Bg 1%

= — + 2 g L. 4,
(GN>R GN+47T Ogm ( 89)
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Figure 4.2: One-loop phase diagram of Gravity + Yang-Mills. G is the Newton coupling
and 7 is the Yang-Mills coupling, they are coordinates in the theory space. Red dots
indicate the non trivial fixed point FPyy and the Gaussian fixed point FPg..s. We set
D — 3.656 and N — 3.

The corresponding beta functions are respectively

A
B(g0s) = 902 (GN)R (4.90)
and 5
B((Gn)r) = - (Grk- (4.91)
Considering the dimensionless couplings in d = 2 + € we get
_ Ay 5 _
B(g0) = - 90x(GN)r = (24 €)50 . (4.92)
and
_ By - _
BUGN)R) = E(GN)R +eGy . (4.93)

As in the previous calculation we consider in this case the possibility that e = D — 2 has
a finite value, we can thus write

A _
B(g0) = -0 (Gw)r — Do (4.94)
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and

B((G)n) = (G + (D= 2)Gix (4.95)
Setting 5(go,) = 0 = B((Gn)r), we find the fixed points
FPgauss = (0,0), (4.96)
and
FPyy = (G*,0), (4.97)

where now G* is

o - 487(D? — 6D + 8) (4.98)
~ D3+ D2(87 + 2N2) — D(180 + 24N?2) — 160 + 64N2 '

In Fig. 4.3 we plot its graph. Again we have a complicated dependence on D and N.
This time G* = 0 for both D = 2 and D = 4. A promising observation is that G* exists
and is positive for N = 3 in the range 2 < D < 4. However, the discontinuity in D = 2
seems to suggest that our perturbative approach is not enough to trust the analytical
continuation in this scheme. For D > 4 we find only negative values of G* differently to
the previous case. In Fig. 4.4 we plot the flow of the beta functions near D = 4. We
notice that the two fixed points are very close, this is a hint of the fact that for D = 4
they will merge. We can now linearize the flow around FPyy, we get

Oy B(GN) %OB(GN)} _ l%G* +(D-2 0 (4.99)
aGNﬁ(QO) agoﬁ(QO) (G*,0) 0 2_7?G* - D
The critical exponents are
M=2-D (4.100)
and
3 2 2 _ _ 2 2
Ny — _D(D + D*(2N* — 105) + D(252 — 24N?) + 32 + 64N*?) (4.101)

D3 + D?(87 + 2N2) — 12D(15 + 2N?) + 32(2N2 — 5)

The first eigenvalue is the same as before. For N = 3 the second eigenvalue in negative
around D = 2 and positive around D = 4. The coupling g is relevant when ¢ — 0 and
becomes irrelevant as € — 2.

4.4 Beta function in d =4 — ¢

To compute the beta function in d = 4 — € we have to consider k& = 4 in (4.67) and
perform the expansion in €, remembering the M.S scheme we get
P[4, 3] = S[A, 3] — —— H, log » (4.102)
9 g (471')2 2 108 m )
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Figure 4.3: UV fixed point G*. G* depends on D and N. In this picture we consider the
case of the second on-shell substitution. We observe regions in which G* exists ”safely”
and is positive (pink) and regions in which G* is not defined or is negative (green).

where Hy can be explicitly calculated substituting (4.63), (3.75) and (4.66) into (4.68).
Einstein-Yang-Mills theory is clearly non-renormalizable in d = 4, however, we can con-
sider an effective field theory approach in which terms quadratic in curvatures R, R, Ry p0,
terms in powers of the tensor F' greater than 2 and terms proportional to (D,F* )2,
are suppressed by a energy parameter. In D = 4 this should not be possible since the
couplings of these quadratic curvatures are massless, however, we work in a general D
and perform the truncation before considering the limit D — 4. In this way, we could
retain terms that can be reabsorbed in renormalized couplings. Differently with respect
to the previous section, to go on-shell, it convenient to only consider the case in which
one we solve the equation of motion for F. This is because proceeding with the first
substitution, which keeps terms proportional to F' and R, we obtain again terms that
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Figure 4.4: One-loop phase diagram of Gravity + Yang-Mills. G is the Newton coupling
and 7 is the Yang-Mills coupling, they are coordinates in the theory space. Red dots
indicate the non trivial fixed point FPyy and the Gaussian fixed point FPgaus. We set

D — 3.17 and N — 3.

cannot be absorbed. Computing on-shell Hy we get

3(D—4)*(D —2)? g
C,D(96 — 28D + D?)
3(D — 4)? gon
—656 + 408D — 107D? + 34D — 6D* gy
l 3(D—-4)*(D—2) 91
C2(96 28D + D?) 5] 5
- 3(p-4p 7 ] } '

D(416 — 180D + 14D? — 2D? + D*) ¢?
H2 _ Jdd$ { ( + + )90

We can define the following renormalized couplings

9 (Gn)?

1 [D(416 — 180D + 14D* — 2D? + D*)
)2

Pom =90~ (4 3(D — 4)2(D — 2)2
C2D(96 = 28D + D) )
3(D _ 4)2 go7) 0og E)

47

(4.103)

(4.104)



and

1 _L+ 1 _02(96—28D+D2)77_2
(GN>R B GN (471')2 3(D—4)2 GN
—656 + 408D — 107D? + 34D3 — 6D*
3(D—4)%2(D —2)
The corresponding beta functions are as follows

1 D(416 — 180D + 14D? — 2D% + D¥)
(47)2 3(D — 4)2(D — 2)2
.1 CaD(96 28D + D%
(47)2 3(D — 4)?

(4.105)

1!
goGn | log —.
m

6(905’,) =

9. (GNn)F
(4.106)

9037712% ;

and

1 C5(96 — 28D + D?) ,
G = — G
B((GN)r) ()2 3D — 1)° nr(GN)R
1 —656 4+ 408D — 107D? + 34D3 — 6D*
(47)? 3(D—4)2(D —2)
At this point we want to analytically continue our results to D = 4 — ¢, as before we can
obtain the following beta functions for the massless couplings

1 D(416 — 180D + 14D? —2D3 + D% , _

(4.107)

9or (GN)?}’% :

Bo0) = (i 3D =D —g (G
1 CoD(96 —28D + D?) (4.108)
+ (@n)? 3(D — 4)2 Jor"R
— (4= €)gog »
and
B((Gx)n) = — 1 Cy(96 — 28D + D2)ﬁ12g(GN)R

(4)? 3(D —4)?
1 —656 + 408D — 107D? + 34D% —6D* _ _
+ Gox(GN)R
(47)? 3(D—4)2(D -2) f
+ (2 - 6)(@]\/’)3.
Considering the possibility of continuing to finite values of € = 4 — D, we can write

1 D(416 — 180D + 14D? — 2D3 + D*%) G2

(4.109)

B(d0r) :(47r)2 3(D —42(D — 2)2 90, (GN)R
1 CyD(96 —28D + D?*) (4.110)
+ (@n)? 3(D — 4)2 9or"R
— D gog,
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and

. 1 C5(96 —28D + D?) ,

B((Gn)r) = — ()2 30D — 1) Nz(GN)r
1 —656 + 408D — 107D? + 34D% — 6D* (4.111)
T e 3(D — 4)2(D — 2) Gou (G )

+ (D —-2)(GNn)r-

Unfortunately, we cannot find a Non-Gaussian fixed point for this set of beta functions.
However, this was expected since Einstein-Yang-Mills in non-renormalizable in D = 4.
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Conclusions

In this thesis, we investigated the Asymptotic Safety scenario for a theory of gravity cou-
pled with Yang-Mills fields. Our analysis was conducted within the perturbative frame-
work of a dimensional expansion around two dimensions, in d = 2 + e. This approach,
recently reconsidered in [25, 26, 27], allows for a controlled analytical continuation of
the theory’s RG flow, overcoming some of the ambiguities that arise when applying heat
kernel methods directly to the quantization of the metric field.

Our investigation began with preliminary analyses to test the methodology. We first
reviewed the well-understood case of Yang-Mills theory in flat spacetime before extending
the calculation to a curved spacetime background. The emergence of divergences pro-
portional to geometric invariants, such as the Ricci scalar, in the curved space analysis
confirmed the necessity of including dynamical degrees of freedom for gravity itself.

The core of our work focused on the full Einstein-Yang-Mills system. We computed
the one-loop effective action and derived the beta functions for the theory’s essential
couplings. To analyze the physical properties of the RG flow, we evaluated the results
on-shell by applying the equations of motion. This was performed using two distinct
substitution schemes. In the first scheme, the cosmological constant was expressed in
terms of the Yang-Mills field strength and the Ricci scalar. In the second, the field
strength was written in terms of the cosmological constant and the Ricci scalar. In
both cases, we identified a non-Gaussian fixed point (NGFP) that could serve as a UV
completion for the theory. However, we observed a notable discrepancy between the two
on-shell schemes when examining the limit D — 4. While the first scheme maintained
a distinct NGFP, the second scheme showed that the NGFP merges with the Gaussian
fixed point in this limit, suggesting a return to a trivial UV behavior. This highlights a
potential scheme dependence in the on-shell analysis within this framework.

Finally, we attempted to apply the same perturbative logic to the theory in D = 4—¢
dimensions. As expected for a perturbatively non-renormalizable theory, we were unable
to locate a non-Gaussian fixed point, confirming that, at this level of approximation, the
theory does not exhibit asymptotic safety in four dimensions.

For future work, an interesting path would be to extend the analysis in D = 4 —
€. As suggested by recent studies, quadratic divergences, typically disregarded in a
minimal subtraction scheme, may play a crucial role and influence the beta functions
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[24]. Adopting a suitable non-minimal renormalization scheme to properly account for
these effects could potentially alter the UV properties of the theory and offer new insights
into the asymptotic safety of gravity and matter.
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Appendix A

Effective action and loop expansion

A.1 Effective action

The standard functionals in euclidean QFT are defined by

Z|J] = erWl1 — quse—;swh;w

WL (A1)

0J;

Z|[J] is the standard generating functional of diagrams, W[J] is the generating func-
tional of connected diagrams and I'[¢] is the effective action. Note that we used hyper-
condensed notation J;¢' = §d*zJ(x)p(x). We keep h which we use as loop counting
parameter, in fact, at loop oreder L one gets a factor AX~'. One may now invert the
Legendre transform defining I'[¢] by

[[p] = Jip' — W[J] where ¢ =

T N R (A2)

Using these relations on finds an equation for the effective action

=) [ py (st e) (A.3)
and after performing the shift ¢ — ¢ + ¢ in the path integral one has
JD¢ e ﬁ S[e+e] +;L 6F¢¢] ¢Z (A4)

We can use this equation to study the expansion in loop, namely, the A expansion. It is
convenient to use a compact notation and expand the classical action in a Taylor series

Sle + 0] = Z (A.5)

o4



where S,[¢] == %EO]. We can use the same notation for I'y[¢] := 51;_([;,4. We get

exp (—%(F[so] - s[ﬂ)) = JDd) exp (—ﬁsg - Z ni plo" + (Fl[ |- Sl[so])qﬁ)

(A.6)
and rescaling ¢ — vho:
exp (4Tl = 81D ) = [ Do e ( 351" = ) S, [l + —=(Tile] - sl[so]w)
_3 (A.7)

The equation depends only on I'[¢] := I'[¢] — S[p]. Expanding I'[¢] in powers of &
e}
N (A8)
n=1

where the sum start from n = 1 so that the bar over I'™ is not needed anymore, we get

the following master equation
& 1
Sulle" + Y heTy” [@]é) :
n=1

exp (— zllh”_lf‘ ") ) Jng exp (——52 Z
(A.9)

This equation is analyzed by matching the powers of & in the perturbative expansion.

ﬁ,
2

A.1.1 Approximation at 1-loop (n =1)
Using n = 1 in Eq.(A.9) we keep the i independent terms and get

_F<1 JDQS ¢ E @lp2+O(R/?) _ (Det 52[90])_% _ e—%lnDeth[s&] _ e—%TrlnSg[cp]
(A.10)
so that ) .
F(l)[w] = 5111 Det So[p] = §Tr In Ss[¢]. (A.11)

The effective action at 1-loop order is given by

I[¢] = Sle] + gTr In Sy[¢] + O(R?). (A.12)
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Appendix B

Heat Kernel (in curved space)

The heat kernel function is defined as the solution of the following differential equation

99&%3152-%cag¢ga;xq::o (B.1)
s
with initial condition

G(0;z,2") = 6D (x, ") (B.2)

where 6@ (z,2') is the biscalar §-function that generalizes the usual flat space Dirac
delta, and x, 2’ are (coordinates of) points on an euclidean (i.e. riemannian) manifold of
dimension d. To extend the results to the usual spacetime it is necessary to assume an
analytic continuation of any Minkowski metric to one of euclidean signature. Restricting
our attention to simple scalar fields, we can consider an operator O, of Laplace-type

O=—g"V,d,+E (B.3)

in which £ = E(x) is a local endomorphism acting multiplicatively on the scalar field’s
bundle. If we solve the diffusion equation (B.1) implicitly

G(s;x,2') = (| e™9 |2), (B.4)

we can see that heat kernel function is related to the Green function G, which is formally
defined by

0,G(z,2') = 6D (z,2). (B.5)
Thus,

0

G(x,z") —f dsG(s;x,2'). (B.6)

0
The heat kernel function has an asymptotic expansion for s — 0 which captures capture
the ultraviolet properties of the Green function. Following DeWitt [12], it has the form

A ! 1/2 o(z,x’
(,2) ” G Z ar(z,2')s". (B.7)

—6
d/2
(dms)? =0

G(x,2') =
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In Eq.(B.7) several bitensors are introduced, the most fundamental is o(z,z’) called
geodetic interval or Synge-De Witt’s world function. It is defined as half of the square
of the geodesic distance between x and z’. The bitensor A(z,2’) is known as van Vieck
determinant and is related to the world function and the determinant metric by

/ 1 (’/32 /
Az, z') = WO CILE det (—Wa(a:,x )) . (B.8)

Together, 0 and A ensure that the leading term of the Seely-De Witt parametrization
covariantly generalizes the solution of the heat equation in flat space, where O ~ —02. Fi-
nally, the bitensors ai(z, 2") are the coefficients of the asymptotic expansion and contain
the geometrical information of the operator 0. The ultraviolet properties are local in
renormalizable theories and for the case of the heat kernel locality correspond to = ~
and it is captured by the coincidence limit in which 2 — x. Given any bitensor B(z, x’),
its coincidence limit is defined

. s /
[B] = wl/li)an(a:,x ). (B.9)
One important note is that covariant derivatives do not generally commute with the
coincidence limit, so

V[B] + [VB]. (B.10)

The coincidence limits of the bitensors o(x,z’") and A(x,z’) and their derivatives can be
obtained by repeated differentiation of the crucial relations, obtained in [12] by geomet-
rical observations for geodesics, they read

o0t = 20, Ama,j‘ + 201V ,AY? = dAY? (B.11)

in which we suppressed the bitensor coordinates and we introduced the notation in which
subscripts of o indicate covariant derivative, i.e. o, ., = V,, ...V, 0. We can start
with the first of Eq.(B.11) obtaining

gy, = O'#VO'M <B12)

Oup = Oupo™ + 00", (B.13)

Ovps = Ouvpe 0" + Ol + 0o, + 00", (B.14)

Ovpor = Opwpor0" + Ope 0" + Oppr 0ty + 0p0*y . + Opperot, (B.15)
+ 00y + 0ot + oot

Now we can compute coincidence limits considering that we already know

[o] = lim o(z,2) = 0. (B.16)

' —>x

57



Using (B.16) and the first of (B.11) we get also
[0,] = 0. (B.17)

We notice that using (B.17), the coincidence limit of (B.12) is a trivial identity, while
for (B.13) we have

[O_uu] = g,uu- <B18)

To compute coincidence limits for (B.14) and (B.15), we need to use some commutation
laws for covariant differentiation together with (B.16),(B.17) and (B.18). We have

[UVpG] - hm (Uupa + Upuo + Uaup) (Blg)

and we now subtract 3[o,,,] and use the Ricci identity
—2[0up0] = [Opo] = [Ovpo] + [Toup] — [0upo]

= ([9vo] = 10000 ]) + ([9000] = [000]) + ([Owop] = [0ups]) (B.20)
= [Vo[V, Vo] + [V,[V., Volo] + [R,,f',] = 0,

where in the last line the first two terms disappear because we assume a torsion-free
theory, and the last term because of (B.17), so

[0vpo] = 0. (B.21)

A consequence of considering a torsion-free theory is reflected by the symmetry for the
first two indexes closest to o, namely [0, ] = [0,,..]. For the four-derivative term,
using (B.21), we have

[o l/pUT] = [Uﬂfpa] + [UOVPT] + [Upvch] + [UVPUT]' (B.22)
Now we can subtract 4[o,,,-| and use the relation

(Vs VolTow = R, AT + R0, (B.23)

T Ttpep uvo
which, in the case of T}, = o0, gives simply
[V, Vo, = 0. (B.24)
We get
[praT] [UTVpO] [Uupor] + [UUUpT] - [praT] + [UpyaT] - [UupoT]
= [0vrpo] = [0vpor] + [00vpr] = [O0por]
([JVTpU] [gupTU]) + ([UVpTU] - [OVPUT]) + ([JVUPT] - [UVPUT]) <B25)

[ ( pTl/ )] [v (Rpau )] + [[an VT]UPV]
= Ryrvo + Roour-
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Using symmetries of the Riemann tensor we get

1
[UVpUT] = g(Rl/O'Tp + Rm-op)- (B26)

Other relations can be obtained taking contractions in (B.15) and performing further
differantiation, as

[O-Z/Vogp] = VPR <B27)

and
d i 8V“V R 4R R 4R RKvPe B.28
[UMVU]_E Iz +ﬁ v _E wvpo ( )
We can now analyze A in the same fashion, differentiating the second of (B.11), we get
AV, AV =V, APl + Aol + 201V A2 4 204V, VA1 (B.29)
AV, V,AV? =V, V, Aol + VAPl + VAol 4+ APk (B.30)

+20% VAV 4200V VAV + 201V, VAV 4 200V, Y,V A2,
Before computing coincidence limits we notice that by definition we have
[A] = 1. (B.31)
In Eq.(B.29), using coincidence limits of o, we get trivially
[V,AY?] = 0. (B.32)

In Eq.(B.30), in particularly using (B.26) we get

1
[V,V,AY?] = —5 B (B.33)
and similarly
1
[V,V,A7?] = & Bov (B.34)

We can obtain an other useful relation taking the contraction and then differentiating
Eq.(B.30), namely
AV, V'V, AV =V, V'V, Ao 4+ VIV, AP f 4+ VY, A e B, A P B
+ VpV”Al/Qau“V + V”Al/QJM"Vp + VpAl/QUMMVV + Amau"y”p
+ 201" VAV 4 261 YV VAV 4 200, VUV, AN
+ 201V, V'V, AV + 201 V7,V , AV + 261V T,V , A2
+ 20" V'V, V,AY? + 26"V VYV, VAV,
(B.35)
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taking the coincidence limit we get

1 1 1
[V, V'V, AY?] = —5(lol, ]+ [R}'V,AY?]) = —slol), ] = =5 V,R. (B.36)

pvop pvop 6

Another differentiation gives

iRQ_i

v 1 Vpo
55— g B R+ 55 R R (B.37)

1
[V'V, VIV, A2 = — VIV R+ 20

As we did for ¢ and A, we can compute coincidence limits for the coefficients ay(x,z’)
differentiating and inductively using

kay, + 0"V a, + ATV2O(Aap1) =0 (B.38)

with the boundary condition 6#V ,a¢. The recursive equation (B.38) is obtained by (B.1),
(B.7), together with (B.11). In the case of a simple scalar field the first coefficient is
trivially ag(x,2") = 1 because the Seely-De Witt expansion solves the diffusion equation
in flat space. For an operator as (B.3) and for k£ = 1 we have

[a,] = [A7Y2Vr0,AY? — E] = —g - E. (B.39)

Not without reason we can continue differentiating (B.38) in the case k = 1 to also get
the coincidence limits for the first and the second derivative of the coefficient a;. The
resulting equation for the first derivative is

2[V,a,] = [A7V*V, V'V ,AY?] -V, E, (B.40)

substituting the result (B.36), the equation takes the form
1
[Voai] = —EV,,R -V, E. (B.41)

The equation for the second derivative is

3[V'V,a1] = [V'V, A2 ViV ,AY? — [V'V, A2 EAY?)
+[ATVAVYY, VAV AV 1 [ATV2 . vV, VY, AV (B.42)
. [A—I/Q . VVVVE . AI/Q] . [A—I/Q . E . vl/vVAl/Q]

using the previous results for A, we get

1 1 1 1
[V'V,a1] = —1—5V2R = g B + o5 Ruwpo B = §V2E. (B.43)
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We will conclude with the computation of the coincidence limit for the second coefficient,
in the case k = 2, (B.38) becomes

2ay + 0"V yay + ATV (—g"'V .0, + E)(AY?ay), (B.44)

and the coincidence limit is
2[as] = [A™2g"'V 0, (AY?a;) — ATV Eay]
= [¢"(V,.0,AY% - ay + 0,AY*V ,ay + V,AY?0,a, + AY?V ,0,a1) + Eay] (B.45)
= [V*0,AY? - ay + V*d,a1 + Eay,
which using (B.39), (B.43) and (B.33), becomes

1 1 1
_ _RQ__ QR__
[a2] = 7 30V 180

B.1 tr [ay(Oy)]

In this section we write down the explicit coefficients ¢; presented in subsection 4.2.1
Eq.(4.63).

1 1 1 1
LR oo R'P° + ZF? — “V?E + —RE. (B.4
Ry R 4 5o Ryuypo R + S B = <NE + <RE. (B.46)

D(4(1 — 4X + 3)2) — 2D()A — 2) — 3D%(\ — 1) + D3(\ — 1)?

D,)\) = B.4
Cl( ’ ) (D_2)2 ’ ( 7)
6(D,\) = DA\ —1)2 + D3(—9 + 16 — 7A2) + D2(19 — 28\ + 10A2)
R 2(D — 2)? s,
N D(6 — 34X + 20A%) — 16(2 — 6) + 3\?) '
2(D — 2)2 ’
3D? —2D — 16
(D) = D* +3D?*(15 — 24\ + 8)%) — 6D?(25 — 32\ + 8)%)
e 13(D — 2)? 550,
N —4D(95 — 168\ + 72)?) + 32(31 — 48\ + 18)\?) ‘
48(D — 2)2 ’
3D? —2D — 16
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ce(D,\) =

3D*(\ — 1)% 4+ 3D2(—45 + 78X\ — 33)2) + D2(163 — 252 + 90A?)

48(D — 2)?

L —AD(31—33) + 3X°) — 8(5 — 18 + 12))

C12 (C, )\) =

613(D, )\) =

616(D, )\) =

48(D — 2?) ’
7(4 — 5D + D?)

12(D—-2)

D

CS(D7)‘) =2- Ea

CQ(Da >‘) =1 3
2 —4D + D?

D -2

C11(D, )\) =1 s
—D3 + D?*(723 — 2N? — 1440\ + 720))
360(D — 2)
N 2D(—2971 + 92N? + 1440)) — 360(—9 + N? — 32X + 24)\?)
360(D — 2) ’
—3D*(13 — 20X + 8A?) + D(155 — 72X) + 4(35 — 144X + 72)\?)
12(D — 2)
D3(=13 + 25X — 12)2) + D*(37 — 73\ + 36)?)
6(D —2)
N D(—22 — 28\ + 242%) + 48\ (4 — 3))
6(D —2) ’
D3(—13 + 25X — 12)2) + D*(121 — 197\ + 84)?)
24(D — 2)
. —12D(17 — 20\ + 6A%) — 8(25 — 59X + 30A?)
24(D — 2) ’
D?*(13 — 120)* + D?*(—795 + 2N? + 1512\ — 720)\?)
144(D - 2)

C7(D, /\) = —

Clo(D, /\) =

014(D, )\) =

015(D7 )‘) =

| ~2D(=613 + 14N? 4 552) — 144)%) + 48(11 + N? — 76) + 48X°)

144(D — 2)
c17(D,A) = 2,
(52 — 29D + D?)
12(D—2)

Clg(D, )\) =

1
c1o(D,\) = %(W + D(=31 + 2N?) — 30(—47 + N?)),
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(B.52)

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)



Cgo(D,A)ZZl,
Cgl(D,/\)Il,
1

D =
022( ,)\) o4’
CQg(D, /\) = —1,
1
12”7
D?—4D +2

D -2 ’
D?—4D +2
12(D—2)
AD? — 11D + 2

CQ4(D,)\) = —
CQ5(D, >\) = —
026(D7 /\) =

CQ7(D, )\) = —

24(D — 2)
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(B.66)
(B.67)

(B.68)
(B.69)

(B.70)

(B.71)
(B.72)

(B.73)



Appendix C

Metric perturbations

In this appendix we collect some formulae to compute metric perturbations. Since we
are interested in the expansion of the gravitational action around a general background
to second order in h,,, I will omit O(h?) in the following expressions. We will consider
an expansion of the metric as in the main text

] N
Juv = Guv t h,uu + §hup9p ho . (Cl)

The inverse metric can be expanded as

1% — v v A 12
g =g" — v+ <1 - 5) h*"h, (C.2)

where the convention is that indices are raised and lowered with g,,. The variation of
the volume element is

Vgl = /19l [1 + %h + (%hQ + %h“”hwﬂ (C.3)

where h = g""h,,,. The variations of the Christoffel symbols are

T 1 2
I, =10, + %0 4 102, (C.4)
where 1
o) = i(ﬁﬁ,f’ + Vb —VPh), (C.5)
1 _ _ _ _
L0 = S Vahy + (3 = DBV by + At Vil = M VPhyal. (C6)

Parenthesis indicate symmetrization. From this expansion one can obtain the variation
of the Riemann tensor.

Rt =R+ R+ RMC) (C.7)

vpo vpo vpo
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where
(1) 5 a > U le
R = RFE, h o+ Ruapaht + —V V“h,m — §V Vi hyo
1
2

Y,V 0

1
AV ——V“V ohue + VVhl,,, 3

and

A « 1o ()‘ B 2) aD
R = 2hfho_ R", 5+ B"*h) Ryaps + 5 hPR R 500

1. 1
WV oV ks + SV e = SHVaVohy,

v wie 1= wie] 1= a v
= Vahue VN, + 2 Vahy, VoG + 2V hye V" By

R R, N -

A v A Avwilw A [ Avwilw
= VoV o = ThV Vol = TV Voo

AT A [ AwiAw A [ AwilAw
= MV hue = TV o+ Th VIV hy,

AN

1 e 1o o
TV g+ TV haa Vo

o e I, oo 1o
+ VMoo = 7V 0 Voo — 1V, Vahyo

A A A
+4th VFhpe + h“V VN + h“VVh

(/\ ) a7 O A avy O 2—A a7 O
+ Th“ V.V, hoa + th V., Vht, + 1 RN,V b

A
+ hSV Vahg +

_ _ A—1)= _ 1o _
VahyoV ,hH 4 ( )V,,hmv h* — Zvah“ V,hya

+ (A~ )V“hmv hy — é?“h 2V phoa + ZL\V RV yhiga

1_ - A—
— (Vb Ve (
= o = = ac ()\ B 1) = = o
+ ZV h’zvghya — vah“ Vohya + 1 V#h,aVsh,

Aeyy o Al
+ TV ohye = TVV gl

W

W~
\_/

_ _ 1_ _
Vl,hpavah”o‘ + vahyavah“a

W

The expansion of the Ricci tensor is

R* = R 4+ RMV 4 RH?) (C.10)
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We find

1 _ 1 _ _
w(l) — _ Zppa Zpape _ paBp oK
R = 2h Rl,a—l—zhy R, —=h* R, 5

_ L . - (C.11)
= VeV 4 VLR 4 SV — SV

1 o _ 1 ]
RAD = 2(2= N ha 0 Ryg + 7Aha” b, R + (1= SA ) ha™ b7 Ryt

- %hﬂ"‘ hy® R* 5o + %h’“ VoV, hg — %?ah%?“h# + %vahmvﬁhaﬂ
- %h“a VsVah,” + %h”‘ﬁ VsVah ! + ;1(2 —A) WV VP, — %lx h,* ¥V VPhH,
SV 4 (1 ) Vo Vo 4 DAV RT )
+ ivah%vyh“a + i(/\ —2)Vho’V, " + i(A — 2) h** ¥,V 3h,"
+ i(x —2) PV, Vgh*, + ix VPh, NVt hes) + 3(1 —2)\) V,h* NV hyp
+ ivah%v“w + i(/\ —2) V3ho’VFh,* + i/\ h,* VHV sho”
+ i(x — 2) h*P VIV ghye + %(1 —A) WP NIV s
(C.12)
Finally, the expansion of the Ricci scalar is
R=R+ RWY + R®, (C.13)
with
RY =V, V,h" —V*h — "R, (C.14)
and
R® = (2= MhfR"R,, + “=—h" 1" R, pe + H"'V,V,h — i?uh?“h
+ %vuhwmh;) + VPRV, A + (A= 2)h*'V Vb . (C.15)

&2 A—1-= _ 3 _ _
(1= N Ry + 2R VPR 4 (Z - A) ¥ VP
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