Bolelli, Maria Virginia
(2019)
Diffusion Maps for Dimensionality Reduction.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (6MB)
|
Abstract
In this thesis we present the diffusion maps, a framework based on diffusion processes for finding meaningful geometric descriptions of data sets. A diffusion process can be described via an iterative application of the heat kernel which has two main characteristics: it satisfies a Markov semigroup property and its level sets encode all geometric features of the space. This process, well known in regular manifolds, has been extended to general data set by Coifman and Lafon. They define a diffusion kernel starting from the geometric properties of the data and their density properties. This kernel will be a compact operator, and the projection on its eigenvectors at different instant of time, provides a family of embeddings of a dataset into a suitable Euclidean space. The projection on the first eigenvectors, naturally leads to a dimensionality reduction algorithm. Numerical implementation is provided on different data set.
Abstract
In this thesis we present the diffusion maps, a framework based on diffusion processes for finding meaningful geometric descriptions of data sets. A diffusion process can be described via an iterative application of the heat kernel which has two main characteristics: it satisfies a Markov semigroup property and its level sets encode all geometric features of the space. This process, well known in regular manifolds, has been extended to general data set by Coifman and Lafon. They define a diffusion kernel starting from the geometric properties of the data and their density properties. This kernel will be a compact operator, and the projection on its eigenvectors at different instant of time, provides a family of embeddings of a dataset into a suitable Euclidean space. The projection on the first eigenvectors, naturally leads to a dimensionality reduction algorithm. Numerical implementation is provided on different data set.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Bolelli, Maria Virginia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
diffusion maps dimensionality reduction Laplace-Beltrami operator graph Laplacian eigenmaps
Data di discussione della Tesi
29 Marzo 2019
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Bolelli, Maria Virginia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
diffusion maps dimensionality reduction Laplace-Beltrami operator graph Laplacian eigenmaps
Data di discussione della Tesi
29 Marzo 2019
URI
Statistica sui download
Gestione del documento: