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Introduction

In this thesis we present the diffusion maps, a framework based on diffusion processes
for finding meaningful geometric descriptions of data sets. A diffusion process can be
described via an iterative application of the heat kernel which has two main characteristics:
it satisfies a Markov semigroup property and its level sets encode all geometric information
of the space. The kernel acts by integration with respect to a measure, suitably related to
the features of the space.

The Markov property ensures that the behavior of a process in the future only depends
on its value at the initial time ¢y, not on the values it attained in the past. First order
ODEs trivially have this characteristic, since the solution of a Cauchy problem is unique

() = Au(t),

u(to) = up.
The same peculiarity is shared also by the heat flow, where the linear operator u — Au
is replaced by the Laplace operator u — Awu. In chapter 1, we will describe stochastic
processes, Markov semigroups and their infinitesimal generator, which are processes that
have this memoryless property.

Geometrical properties of the space are classically described by Riemannian geome-
try. Diffusion in this setting is expressed in terms of a heat operator, associated to the
Laplacian operator also called Laplace-Beltrami operator. From the general theory of
self-adjoint and nonnegative operators on a Riemannian manifold, it follows the existence
of a heat kernel e **, which is a compact operator, and it contains as much geometric
information as the metric itself. A crucial result is the Hodge theorem for compact, con-
nected, oriented Riemannian manifold, which states that there is an orthonormal basis of
L?(M, g) of eigenfunctions of the Laplacian. Projection on this eigenfunctions is at the
basis of dimension reduction results.

The core of the thesis is the description of diffusion maps, introduced by Coifman
and Lafon [I4][I5][16]. They are a general framework able to associate to a data set a
probability measure, which describe its density, and a kernel, which contains its geometric

information. Iterative application of the kernel induces a diffusion on the data. The diffu-
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sion kernels a™, obtained after m iterations of the process, will be compact operators, all
with the same countable family of eigenfunctions. The projection on the first eigenvectors
naturally leads to a dimensionality reduction algorithm, which maps high-dimensional vec-
tor into a low-dimensional one with minimal loss of information. These type of processes
are very useful since high dimensionality is in general an obstacle to an efficient processing
of the data. Therefore, if the number of variables which efficiently describe a data set is
small, it is reasonable to transform the representation of the data into a more efficient low
dimensional description.

This treatment will be organized in two main sections. In the first one, we focus on
defining the diffusion process on a measure space (€2, i), where 2 is any data set and p can
be interpreted as a probability measure. In this setting, the local geometry is described by

a symmetric and positive preserving function k(z,y) and it allows to define an appropriate

kernel Ke.y)
T,y
a(z,y) = ———~
= dayaty)
with d?(x = [ k(z,y)du(y). This normalization of the kernel is called graph Laplacian.

Hence, thanks to a(zx,y), we can construct the diffusion operator

Af(x) = /Q oz, 9)  (9)du(y).

whose properties enable us to find an eigendecomposition of the kernel using an orthonor-
mal basis for L?(, p), namely a(z,y) = > ;o0 XNi¢i(2)¢;i(y). If for a given accuracy &
we retain only the eigenvalues Ao, ..., Ap—1 th;t, raised to a certain power m exceed this
accuracy, it is possible, using the corresponding eigenfunctions ¢y, ..., ¢p—1, to embed the

data points into RP:
Dpm: Q —RP

Ay do(x)
AT 1 ()

T —

Apt1bp—1()
The maps of the family ®,,, are called diffusion maps, while each component of a
map is called diffusion coordinate. In order to understand why this embedding makes
sense, we show that the weighted Euclidean distance on this space, namely ||z — y||2 =
SPT A (i) — ¢i(y))?, approximates the diffusion distance on the dataset €, that is

Dy, (z,y) = a™(z,2) +a™(y,y) — 2™ (z,y),

which is strictly related to the number of paths connecting points x and y. In particular,

this approximation illustrates that nearby points in RP are correlate to nearby points in
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the data space €2, where, the notion of proximity is described by a large number of paths,
arisen from the diffusion process.

The second section is devoted to the case in which 2 = M is a Riemannian submanifold
of R™. Using the procedure described above, we can define a family of diffusion operators
A¢ o parametrized by a parameter o € R and € > 0, where the kernel is defined renormal-

_ 2
izing a rotation-invariant function h(@)

, infinitely differentiable with an exponential
decay. The main result will concern the following operator, interpreted as the infinitesimal

generator of the diffusion operators

as € — 0. In particular, we show that for a suitable function f

A(fg'™)  Alg'?)
qlfa qlfoz

f7 (1)

;E}% Ls,af =

where ¢(z) is the density of points on M. Two values of « are investigated in details:
a =0 and o = 1. In the first case, i.e. a =0, leads to

Afq
q

Formula proves that, when the density is uniform, meaning ¢ is constant, L. ¢ is the

A rad
_7qf:Af+2<gz q,gradf). (2)

gll}(l) La,Of(x) =

Laplace-Beltrami operator on M. However, the density is not always uniform. In that

case, we see that, setting o = 1, we get:
lim L. 1 f=lm Af+ R, =Af. (3)
e—0 e—0

Formula means that, even though the density may not be uniform, we are able to
recover the Laplace-Beltrami operator. For this reason, the normalization of the kernel
using the parameter a = 1 is called Laplace-Beltrami. Moreover, as a byproduct, in the
a = 1 case, it is possible to approximate the Neumann heat kernel e~** on L?(M), using
the diffusion operator A, ;:

i% Ail =e A,

Finally, we illustrate the ideas previously discussed by numerical examples studying
sets of data. Usually these quantities are composed by a finite numbers of points, that
is, we deal with Q = {z1,...,zx}. The first thing to do is to handle the implementation
problems linked with the discretization of the quantities involved in our algorithm:

N
d(z;) = ;ks(xi,xj) ,oalxg,xg) = m

for all z; , x; € 2. Then we generate examples of datasets and, using a Gaussian kernel,

2
k(zi,2;) = exp <M)

e
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we compute the eigenvectors and eigenvalues of the diffusion operator. We can achieve

different interesting results:

- dimensionality reduction: we consider randomly arranged pictures of the word
"3D", viewed under different angles. These pictures can be reorganized using the
first non trivial eigenvectors: they recover the main parameters that describe these

images, namely the angle of the rotation along the z-axis and along the y-axis.

- representations of complex geometric structures: we consider a set of un-
ordered points Q2 € R3 on a curve. We then compute and plot the embedding built
using the first two nontrivial eigenvectors: we obtain the points reorganized on a
closed curve in a coherent ways with the organization of the points following the

curve.

- global geometric information from local structures: we generate a set that is
the union of clusters. Studying the diffusion operator, we notice that it is possible

to recover a block structure that gives us information about the whole set.

- robustness to noise perturbation: we consider a perturbed version of a set,
for example a manifold, and we plot the embedding. The results obtained are not

affected by the noise, being actually unalterated.

The elaborate can be divided in three main parts. The first part, covering chapters
1 and 2, describes the Markov semigroup property and the geometric properties of heat
kernels in the classical Riemannian setting. Chapter 3 consists of its central core, the

description of diffusion maps, and chapter 4 contains numerical examples and results.
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Chapter 1

Introduction to Markov

semigroups

The main purpose of this chapter is to introduce the notion of Markov semigroup. In
order to do so, we first recall the definition of stochastic process and then, the one of

Markov property.

1.1 Stochastic Process

Definition 1.1. (Stochastic process) Let (Q, F, P) denote a probability space and I an
arbitrary nonempty index set. A stochastic process is a parametrized collection of random

variables { X }ier assuming values in R™.

As a result, a stochastic process is a function of the variable (t,w), where t € I CR

and w € Q. Hence, it is sometimes usual to fix w € ) and to consider the function:

X.(w) : T —R"
t— Xt(OJ),

for all w € Q). These are called sample paths of the stochastic process.

One of the most important results about a stochastic process is the Kolmogorov’s exten-

sion theorem. To understand it, we have to introduce the finite-dimensional distributions
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of a stochastic process {X;}rer :

P(Xt S .'L') :Ft(.’ﬂ),
P(Xy, <1, Xy, < 29) =F4, 4, (21, 22),

P(Xy, <@1,..., X4, <) =F;, 4 (21,00, 20),

where ¢,¢; € [to,T] C I, z,z; € R",n > 1 and Fy, _,, is a distribution function for all

n

n > 1. This system of distributions satisfies the following two conditions:

1) Symmetry condition: if {iy,...,i,} is a permutation of the number {1,...,n} then,

for arbitrary instants and n > 1,

Ftily---,ti,,, (xil’ ) xin) = Ftl ,,,,, tn (mla cee axn)'
2) Compatibility condition: for m < n and arbitrary t,,11,...,tn € [to, T},
Ftl,-~7tm7tm+17m7tn (l‘l, ey L, OO, .y, OO) = Ftl,...,tm (xl, . 73}‘7”).

Theorem 1.1.1 (Kolmogorov’s extension theorem). For every family of distribution func-
tions that satisfy the symmetry and compatibility conditions, there exists a probability space
(2, F, P) and a stochastic process { Xt }ie[t,, 1) defined on it that possesses the given dis-

tributions as a finite dimensional distributions.

This means that is equivalent to give a family of random variables or a family of

distributions.

1.2 The Markov Property

We would like to give a formal mathematical definition of the Markov property, which
can be roughly presented as follows (see [I]) : "if the state of the process at a particular time
s (the present) is known, additional information regarding the behavior of the process at
r < s (the past) has no effect on our knowledge of the probable development of the process
at t > s (in the future)" .

Suppose that I = [to, 7] and let { X;};c[+,,7) be a stochastic process defined on a certain
probability space (Q, F, P). We define F([t1,t2]) = F (X, t1 <t < t2) to be the smallest

sub o-algebra of F with respect to which all the random variables X; for t; <t < t5 are
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measurable. In other words, F([t1,t2]) contains the "history" of the process from time #;

to time ¢ and is generated by the cylinder events
{w: X5, (w) € By,...,X;,(w) € By} = (X5, € By,...,Xs, € Byp),
with ¢ <s1 <...<s, <ty, By,...,B, € B(R"), where B(R") is the Borel set on R™.

Definition 1.2. (Markov process) A stochastic process { X }¢cp,, ) defined on the prob-
ability space (92, F,P) is called a Markov process if the following Markov property is
satisfied:

P(X, € BIF(lto,s]) = P(X, € BIX,), (L1)

with tg < s <t <T and B € B(R").

There are various equivalent formulations of the Markov property:
Theorem 1.2.1. The following conditions are equivalent:

o {Xi}iepto,r) is a Markov’s process;

o fortg < s<t<T andY a random variable F([t,T))-measurable and integrable

E(Y[F([to, s])) = E(Y]X); (1.2)
o fortg < s<t<T, Aec F([t,T])-measurable and integrable,
P(A|F([to, s])) = P(A|Xs);
o fortg<t; <t<ty<T, As €F([to,t1]) and Az € F([t2,T]),
P(A; N A3 X;) = P(A1]| X)) P(As| Xy);
o forn>1,t<t1 <...<t, <t<T and B € BR"),

P(X, € B|Xy,,...,X.,) = P(X, € B|X,).

Proof of these assertions can be found, for example, in [2] p. 80-85].

1.3 Transition Probabilities

Definition 1.3. (Transition probability) A function P(s,z,t, B) is called transition prob-
ability if satisfies the following properties:

1) P(s,x,t,-) is a probability on B(R™) for fixed s <t and x € R™.
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2) P(s,-,t,B) is a B(R™)-measurable function for fixed s <t and B € B(R™). Further-
more,

P(s,a.t, B) = / P(u,y.t, B)P(s, z,u, dy), (1.3)

this identity is called Chapman-Kolmogorov equation.
3) For all s € [to,T] and B € B(R™), we have

1 forxeB
0 forx¢B.

P(s,z,8,B) = 1p(x) =

Remark 1.1. If { Xy }4cp4, 77 is a Markov process, we have that P(X; € B|Xj) is a transition
probability of the Markov process X; for fixed s,t € [tg,T]. So, we shall also use the
notation

P(s,z,t,B) = P(X; € B| X, = z),

which is the probability that the observed process will be in the set B at time t if at time

s, where s < t, it was in the state x.

Remark 1.2. Let us suppose that the probability P(s,,t,-) has a density, i.e. for all
x € R", and B € B(R")

P(s,2,1, B) = / p(s, 7, ,y)dy,
B

where p(s,z,t,y) is a non negative valued function that is measurable with respect to y
and whose integral is equal to 1. Then, the Chapman-Kolmogorov equation reduces to

/ p(s,2.t, 2)dz =P(s, .1, B) = / Plu,y.t, B)P(s,z,u, dy)
B

n

=/ P(u,yJ,B)p(s,x,u,y)dy:/ /p(u,y,t,Z)p(sw,u,y)dzdy
n n»JB

_ / / D, st 2)p(s, 2, u, y)dyds,
B n

from which it follows that
pls,2,t2) = [ pls,,u,)plag.t2)dy

More precisely, this means that the probability of a transition from x at time s to z at time
t is equal to the probability of the transition to y at an intermediate time u, multiplied by
the probability of the transition from y at the time u to z at the time ¢, summed over all

intermediate values y.

The transition probabilities for Markov processes are really importants because all
finite-dimensional distributions of the process can be obtained from them and from the

initial distribution at time tg.
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Theorem 1.3.1. If {Xt}te[to,T] is a Markov process, P(s,z,t, B) its transition probability
and Py, the distribution of X;, (i.e. Pi,(A) = P(Xi, € A), for all A € B(R™)) then for

finite dimensional distributions
P(Xy, €By,...,X:, €By) , to<t1 <...<t, <T, B; € B(R"),
we have
P(Xy € By,..., X, € By) =
/n/B / tn—1yTn—1,tn, Bn) P(tn—2,Tn_2,tn_1,dxn_1) - P(to, xo, t1,dx1) P, (dxo),
and hence, in particular,
P(X, € B) = / Plto.,t, B)Py(da).

For proof see [6], pp 151].

Thanks to this theorem, we can recover a Markov process from the transition probabil-
ities and from the initial distribution, using Theorem to construct, from P(s,z,t, B)
and Py, consistent finite-dimensional distributions and from them, in accordance with
Kolmogorov extension theorem, the desired process. In other words, we have proved the

following theorem.

Theorem 1.3.2. Let P(s,x,t, B) denote a transition probability, where s,t € [to,T). Then
for every initial probability Py, on B(R™) there exists a probability space (0, F,P) and a
Markov process X; defined on it, which has transition probability P(s,xz,t, B) and for which
X, has the distribution Py,.

This result is very useful because, generally, in applied problems, we have to deal with
transition probabilities rather than Markov processes. Hence, it is convenient to know

that is possible to construct a Markov process from a family of transition probabilities.

Definition 1.4. (Homogeneous Markov Process) A Markov process { X }icps,, 7 is said to
be homogeneous with respect to time if its transition probability P(s,x,t, B) is stationary.

In other words, the condition
P(s+u,z,t+u,B) = P(s,x,t, B)
is identically satisfied for tg < s <t<Tandtmg <s+u<t+u<T.

In this case, the transition probability is a function only of x,¢ — s, and B. Hence, we

can write it in the form

P(t—s,z,B)=P(s,z,t,B), 0<t—s<T —t.
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Therefore, P(t,x, B) is the probability of transition from x to B in time ¢, regardless of
the actual position of the interval of length ¢ on the time axis. For homogeneous processes,

the Chapman-Kolmogorov equation becomes

n

P(t—s,z,B) = P(s,z,t,B) = / P(u,y,t, B)P(s,x,u,dy) =

= P(t —u,y, B)P(u — s,z,dy).
RTL

If we denote with h = ¢ —u and k = u — s, we get that the equation (1.3)) becomes

P(h+ ka0, B) = / P(h,y, B)P(k. z. dy).

n

As a rule, homogeneous Markov processes are defined on an interval of the form [tg, 00),
so that the transition probability P(t,x, B) is defined for ¢ € [tg, 00).

Example 1.1 (Wiener Process). The Wiener process is a n-dimensional homogeneous

Markov process W; defined on [0, 00) with stationary transition probability

N(z,t1d,), t>0
5£()7 t= 0,

P(t,z,-) =

where N is the normal distribution. That is, for ¢ = 0, we have the Dirac delta centered

at x, while for ¢ > 0, we deal with

P(t,z,B) = P(Wy4s € BIW, = z) = / (2mt) "2 dy.
B

By virtue of the familiar formula for gaussian densities
/ n(s,x, z)n(t, z,y)dz = n(s + t,z,y),
the Chapman-Kolmogorv equation holds for

—ly—=|?

p(t,z,y) = n(t,z,y) = (2rt) "/ 2e— =

In general, we take the initial probability P, equal to dg, that is Wy = 0 and, since
n(t,z +z,y+2) =n(t,z,y) for all z € R",

we are dealing with a space-wise as well as time-wise homogeneous process. The function
W, is frequently known as mathematical model of the Brownian motion of a free particle

in absence of friction.
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1.4 Markov Semigroups

Generally speaking, a semigroup A = (A;);>¢ is a family of operators acting on some
suitable function space with the semigroup property A o Ay = Asrs where t,s > 0 and
Ay = Id. These semigroups appear in the probabilistic context describing the family of
laws of Markov process (X¢);>o living on a measurable space . So, the fundamental
object of investigation consist of a family A = (A;);>¢ of operators defined on some set of

real-valued measurable functions on (€2, F).

Definition 1.5 (Markov operator). The operator A; defined on some set of real-valued
measurable functions on (2, F) is called Markov operator if it satisfies the following prop-

erties:
1) mass conservation: A;1 =1, where 1 is the constant function ;
2) positive preserving: if f >0, then A;f > 0.

Very often property 1) may be relaxed to A;1 < 1.

Definition 1.6 (Markov semigroup). A family of operators A = (A;);>¢ defined on the
bounded measurable functions on a state space (€, F) is called a Markov semigroup if A;

is a Markov operator for every ¢ > 0 and the following properties are satisfied:

1) for every t > 0, A; is a linear operator sending bounded measurable functions on

(Q, F) to bounded measurable functions;
2) initial condition: Ay = Id, the identity operator;
3) semigroup property: for every t,s > 0 we have Ay, = Ay o Ag;
4) continuity property: for every f € L?(Q), Arf converges to f in L%(Q2) as t — 0.

It is useful to know that Markov operators A;, t > 0, as given in Definition may

be represented by stochastic kernel.

Definition 1.7 (Kernel). A (non-negative) kernel on (2, F) is a map k == Q x F — R4

satisfying the following two conditions:
1) for any fixed set B € Q0 , the function k(- , B) is measurable;
2) for any fixed z € , the set function k(x,- ) is a measure on (€, F).

A kernel k is called finite, if

k(z, ) < o0 for all x € Q;
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bounded, if
sup K (z,Q) < oo;
zeQ
stochastic, if
k(z,)=1 for all z € Q.

Thanks to this notion, Markov operators can be represented by probabilistic kernels,
which correspond to the transition probabilities of the associated Markov process. Namely,

for every bounded measurable function f: Q — R,
Arf () =/f(y)pt(x,dy), t>0, z€Q, (1.4)
Q

where p;(x, dy) is for every t > 0 a probability kernel.
The distribution at time t of the underlying Markov process (X;):>o starting at x is thus
given by the probability p:(z, ).

Very often the family of kernels p;(z, dy) have densities with respect to a measure.

Definition 1.8 (Density kernel). A Markov semigroup (A;);> on (£2, F) is said to admit
density kernels with respect to a reference o-finite measure p on F if there exists for every
t > 0 a positive measurable function p;(z,y) defined on Q x Q (up to a set of 4 ® p-measure
0) such that, for every bounded or positive measurable function f:  — R and (p-almost)

every x € (),

Af(x) = /Q F@)pele, v)duly).

In this case, [, p¢(z,y)du(y) = 1 for p-almost every € Q, reflecting the fact that
Ayl = 1. In order to A;f to make sense for any f € L*(Q,p) in this definition, it is in
general required that, for all ¢ > 0 and p-almost every x € €2,

/Q P, y)2dp(y) < oo. (1.5)

Example 1.2. For the Wiener process W; we have

_ly—=|?

Af(@) = @et) " [ fe Ty

|=|2
= (277)_"/2/ e” 2 f(x+Vitz)dz, t > 0.
Since now, we have described how to construct a Markov semigroup from a Markov
process. Conversely, given a Markov semigroup, the construction of a Markov process
associated to it relies on the Chapman-Kolmogorov equations which express the semigroup

property from a probabilistic point of view.
Let A = (A4;)i>0 be a Markov semigroup on L?(Q) according to Definition The
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semigroup property A;o A; = A; s translates to the kernel pi(z, dy) of the representation
(1.4) : for all t,s >0, z €

Pt+s (*T” dy) = / pt(za dy)ps (JC, dZ)

z€Q

and when the kernels admit densities,
pesslen) = [ puCep o, 2)dn(o).

Now, starting from any point z € , we can construct a Markov process (X;);>o on
Q by specifying the distribution of (Xy,,...,Xy,) with 0 < ¢ < ... < t, see [, pp
17]. In particular, if we are in R” we can recover the finite-dimensional distributions and
consequently the Markov process thanks to Theorems and

1.5 Infinitesimal generator

A Markov semigroup A = (A;);>0, as defined in Deﬁnition is driven by an operator
called the infinitesimal generator of the Markov semigroup. We suppose that our semigroup
is defined on the Hilbert space L?(, 11), and we call D the domain of the semigroup (A;)¢>0
on which the derivative at t = 0 of A; exists in L?(, p).

Definition 1.9 (Infinitesimal generator). Let A = (A;)i>0 be a Markov semigroup with
state space (€2, F) and a measure p. The operator that maps f € D to the derivative L f

at t = 0 of Ay is a linear operator, called the infinitesimal generator L of A in L?(Q, p).

In view of the connection with the Markov process (X;):>o associated with the semi-
group A = (A4;)>0, the generator L will also be called the Markov generator of (X;)¢>o.
The linearity of the operators A; ,for every t > 0, together with the semigroup property,
shows that L is the derivative of A; at any time ¢ > 0. Namely, for ¢,s > 0,

1 1 1
;[At-i-s - At] == At;[As — Id] == <S[AS — Id]) At.

Letting s — 0 then yields
atAt == AtL == LAt (16)

The semigroup (A¢)¢>0 will often be called the heat semigroup or heat flow with respect to
the generator L and thus solving the heat equation (|L.6]).

Example 1.3. For the n-dimensional Wiener process W;, we must calculate

o nja g Jre €@ 4 V) — f(2))dz
Lf(x) = (2m) 7"/ lim = - :
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For this we use Taylor’s theorem, which for every twice continuous partially differentiable

function f yields

d d d
f(a:—l—\/iz)—f(a:):\/iz:zlfz ZZ Z]fl,]

d
ZZ% fi5(@) = fi()),

i=1 j=1

l\D\i*

N =+

+

where Z is a point between x and = + v/tz. When we substitute this into the expression

given above for Lf(x), we get

d
1 %f 1
M=5 252 72

where A is the Laplace operator.



Chapter 2

Elements of Riemannian

geometry

We recall here a few elements of Riemannian geometry, and in particular the notion of
Laplace and Heat operator in this setting, so that we will generalize it to diffusion maps

in the next chapter. The presentation is taken from [I0] [I1] [12] [13].

2.1 Riemannian Manifolds

Definition 2.1 (Riemannian manifold). A Riemannian manifold (M, g) is a smooth man-
ifold M with a family of smoothly varying positive definite inner products g = g, on T, M

for each p € M. The family g is called Riemannian metric.

Example 2.1. (1) On R™, the standard Riemannian metric is given by the standard inner
product g,(v,w) = v-w for all v,w € T,R™ for all p € R™. We call R” with this metric
Fuclidean space.

(2) If M is a submanifold of Euclidean space, then M has a natural Riemann metric
given by g,(v,w) = v - wy,a. This so called induced metric is the metric used in the

classical theory of curves and surfaces in Euclidean three space.

Let us indicate by x(M) the set of all vector fields of class C* on M and by D(M)

the ring of real valued functions of class C°° defined on M.

Definition 2.2 (Connection). Let M be a differentiable manifold and let V be a mapping

Vi X (M) x x(M) = x(M)
(X,Y) —~ VY.

We say that V is a connection on M if it satisfies the following properties:

11
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1. VixigvZ = fVxZ +gVy Z;
2. V(Y +2Z) = VxY + VxZ;
3. Vx(fY) = X(f)Y + fVxY;

with X|Y, Z € x(M) and f,g € C*(M).

Proposition 2.1.1 (Covariant derivative). Let M be a differentiable manifold with a
connection V. There exists a unique correspondence which associates to a vector field

V along the differentiable curve ¢ : I —s M another vector field ¥ along ¢ called the

dt
covariant derivative of V' along ¢ such that:

D(V+W)
(a) at

= % + % where W is a vector field along c;

(b) D(({tv) = %V + f% where f is a differentiable function on I;

(¢) if V is induced by a vector field Y € x(M), i.e. V(t) =Y (c(t)), then BY =V g./a;Y.

Proof. First, suppose that exists a correspondence satisfying the conditions (a), (), (c).

Let ¢ : U C R® — M be a system of coordinates with ¢(I)Ne(U) # 0, let (c'(t),...,c"(t))

9
ozt

locally as V' = 37", v/ X;, where n is the dimension of the manifold, v/ = v/(t) and
X; = X,;(c(t)). By (a) and (b) we have

be the local expression of ¢(t), t € I and X; = Then we can express the field V

DV dv? DX
- =X J7J
dt dt J+zj:v dt

J

By (c) and Definition since X; = X, (c(t)) we have:

DX,
@ = Vel Xs Vg ax X
dc? ..
:ZEVXin, i, =1,...n.
Therefore,
DV dvj
J

The expression (2.1) shows that if there is a correspondence satisfying the conditions
above, then such a correspondence is unique.
To show existence, define % in o(U) as in . It is easy to verify that this quantity

verifies the desired properties:
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(a): Suppose V and W vector fields along ¢, then we have

DV +W d(vd 7)
gzz (v +w - X, + Z vj—l—wj Vx, X;

dt
Zdv] Z X ZE’UVXX +Z—wvxx

:Zd;tx —|—ZE'UJVXX +Z X —1—2%@0 Vx X

J ] 2,7
DV N DW
Tdt dt

(b): supposef a differentiable function on I

buv) _ > d(fl:j)xj +> %fvjVXin

dt
J 2,7
df . dvI dct .
df DV
BRTARENTS

(c): suppose V is induced by a vector field Z along ¢, then

VacjarZ = Z

dt —
_ D) DV
dt dt

If 1/}( ) is another coordinate neighborhood , with (W) N (U) #  and we define by

¥ in (W) by (2.1), the definition agree in (W) N (U), by the uniqueness of ‘Z—‘t/ in
gp(U). It follows that the definition can be extended over all of M, and this concludes the
proof. O

Remark 2.1. Choosing a system of coordinates (x!,...,2"), where n = dim M, about p

Y =) X, 7= FX,
J J

and writing

where X; we have

de ’

VyZ = VZ WX, ZzX ZyJVXzX Zy —|—zVX i)

7, Jy



14 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

Setting Vx, X; = >k Ff,iXk, we conclude that the F% are differentiable functions and
that

VyZ = Z(Y(zk) + Zyizjfﬁj)Xk.
k i

From now on denote g(v, w) with (v,w) and g¢;; = (X;, X;).

Definition 2.3 (Connection compatible with the metric). A connection V on a Rieman-

nian manifold M is said to be compatible with the metric if and only if
X(Y,Z) = (VxY, Z) + (Y, VxZ), X,Y,Zex(M).

Definition 2.4 (Symmetric connection). A connection V on a smooth manifold M is said

to be symmetric if
VxY - VyX =[X,Y] forall X,Y € x(M).

Theorem 2.1.2 (Levi-Civita). Given a Riemannian manifold M, there exists a unique

connection V on M satisfying the conditions:
a) V is symmetric;

b) V is compatible with the Riemannian metric.

The connection given by the theorem will be referred as the Levi-Civita connection or

Riemannian connection on M.

Proof. Suppose initially the existence of such a V. Then

X<Y,Z> = (VXY,Z)—i—(Y,VXZ), (2.2)
Y(Z,X>:<VYZ,X>+<Z,V§/X>, (23)
Z(X.Y) = (V1X,Y) + (X,V,Y). (2.4)

Adding (2.2) a (2.3) and subtracting (2.4)), using the symmetry of V we have that
XY, Z2)+Y{(Z,X)-Z(X,Y)=(X,Z],Y)+ (Y, Z], X) + {([X, Y], Z) + 2(Z,Vy X).
Therefore, we find the Koszul formula
1

(Z,VyX) = §{X<Y, Y+ Y{(Z,X)—-Z(X,Y)— (X, Z],Y) - (Y, Z], X)) — (X, Y], Z)}.
(2.5)

The expression (2.5 shows that V is uniquely determined from the metric (, ) since Z is

an arbitrary vector field. Hence, if it exists, it will be unique.

To prove the existence, define V by (2.5). It is easy to verify that V is well defined

and satisfies the desired conditions:
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a):
9(VyX = VxY,Z) = g(Vy X, Z) — g(VxY, Z)
= —20(1X,Y].2) + 34([¥ X], 2)
91X, Y], 2) = g(~[X.Y],2).
b):

9(VxY, Z) + g¥,Vx 2) =Xg(¥, 2) + 3{g(1X. Y], 2) + ([, Y] X) + ([, X], V)
-9([2,Y], X) —g([2,Y, X]) — g([X, Y], Z)}
=Xg(Y, 2).
O

Remark 2.2. Suppose that we have a coordinate system (U, ¢) on M. It is customary
to call the functions I‘ﬁj defined on U by Vx, X; = >, I‘ijk the Christoffel symbols of
the connection. It is possible to recover these symbols from the metric g. In fact, if we
consider X; = 27 , X = agﬂ X = 6 =%, it follows from the proof of the Theorem m
that

0 0 0

ik T 59k 5 i = Xig( Xy, Xi) + X;9( Xy, Xi) — Xpg(Xi, Xj) =
= g([Xs, X, Xj) + 9([Xy, Xi], Xi) + 9([Xs, X;], X&) +29(Xe, Vx,; X)
= QQ(Xk,VXin),

where we have used the fact that [X;, X;] = 0 for all ¢ # j. So we have,
0 0
ergzk { -9k + g7 Jik ngj}~

Since the matrix (grm,) admits an inverse (¢*™), recalling that >_, gikg’* = ;x, we obtain
that

0 0 0
ZF” Zglkg Z{angjk + i Ik~ wgij}gmk7
%/_/
=01,m
" Fm_EZ{i . _|_i. _i} mk (2.6)
9 = 9z Ik T i Ik T eR9ia g9 '

The equation ({2.6)) is a classical expression for the Christoffel symbols of the Riemannian

connection in terms of g;; , i.e. given by the metric.
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Example 2.2. For the Euclidean space R™ we have Ffj = 0. In terms of the Christoffel

symbols, the covariant derivative has the classical expression

DV " X,
WZZ{%+ZFZW dt } X

k .7

Observe that % differs from the usual derivative in the Euclidean space by terms which
involve the Christoffel symbols. Therefore, in Euclidean spaces the covariant derivative

coincides with the usual derivative.

2.2 Connection of a Riemannian submanifold

Now, we would like to investigate the case of the Levi Civita connection for Riemannian

submanifold.

Definition 2.5 (Riemannian submanifold). Let (M, §) be a Riemannian manifold. (M, g)

is a Riemannian submanifold of (M, g) if:
1) M is a submanifold of M:;
2) for any p € M, h,, is the restriction of g, to T, M.

So, let (M,g) be a Riemannian submanifold of (M,§) and assume that M is n-

dimensional, and is of codimension d in M.

Remark 2.3. Recall that if f: M — M is an immersion, then we can split TpM into the
direct sum
T,M = T,M @ (T,M)*,

where (T, M )t is the orthogonal complement of T,M in TpM . Clearly, this decompo-
sition is valid because T,M is naturally identified with a subspace of Tf(p)M via the
map df: T,M — Tf(p)M. Here df is injective on T, M because f is required to be an

immersion. In this set, if v is an element of TpM with p € M, we can write
v=v" 4+ 0" with v* € T,M and vV € (T, M)™*.

We call v the tangential component of v and v the normal component of v.

Denote with V and V the Riemannian connection of M and M respectively and con-
sider X and Y local extension of the field X and Y on M. We would like to show that

VxY = (VgV)7

and this is the Riemannian connection relative to the metric induced on M by M.
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In particular, let X be a vector field on M, and p € M. Then there exists an open
subset U of M containing p, and a vector field X defined on U, which restriction to M NU
is X. Let then (U, ¢) be a chart for M around p such that ¢(U N M) = R™ x {0} ¢ R*+,
In this chart, let X =), ai%, where a’ is a smooth function on U N M. Just set

X(67 ) = Y67 (,0))

Proposition 2.2.1. In the previously notation we have

(VxY), = (Vi) (2.7)

Proof. Let X,Y and Z be local extensions for the vector field X,Y and Z on M. Then
X = Z?ild)zi%, with XfUmM = X' fori < n,XfUmM = 0 for i > n, and likewise for Y
and Z. This shows that ([X,Y])p = (X, Y])p, and §(X,Y)=¢g(X,Y) forallpe UN M.
Just apply to both connections V and V to find that

(VY. Z) = g(VxY,Z)

on U N M, and so we can conclude that

(VXY)p = (VXY)T
because we are dealing with elements of T, M since we are on U N M. O

Example 2.3. Let us analyse the case of Riemannian submanifolds of Euclidean space. If
M is a Riemannian submanifold of R™, then formula (2.7)) implies that a smooth curve 7
in M is a geodesic of M if and only if its second derivative 4" in R™ is everywhere normal
to M:
V') =" + ")
~—— S——
ETymM  e(TyyM)*+

but,

0= Vimy(t) =~"()"

and so we can conclude that the geodesics of M are the curves with normal acceleration.

2.3 Geodesics and Exponential map

In what follows, M will be a Riemannian manifold, together with its Levi-Civita con-

nection and I C R.

Definition 2.6 (Geodesic). A parametrized curve v : I — M is a geodesic at to € I if

%(%) = 0 at the point to. If y is a geodesic at ¢ for all ¢t € I |, we say that - is a geodesic.
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At times, by abuse of language, we refer to the image v(I) , of a geodesic v, as a
geodesic.
We can determine the local equations satisfied by a geodesic v in a system of coordinates

(U, z) about y(tp). In U a curve ~

will be a geodesic if and only if

D d~y d%a® e dxtdxiN 0
= —(—) = F .
0 dt( dt) zk:( dit? + ZZJ: Yodt dt )(%ck

Hence the second order system

o o da
R N N = R (2.8)
iy J

dt? Udt dt

yields the desired equations. In order to study the system ([2.8]) it is convenient to consider
the tangent bundle.

Definition 2.7 (Vector bundle). A smooth n-dimensional vector bundle is defined by a
triple (E, M, ) where E and M are a pair of smooth manifolds, E the total space, M
the base, and 7 is a surjective map, 7 : E — M the projection, satisfying the following

conditions:

a) Each set E, = 77 !(p) called the fiber of E over p is endowed with the structure of

vector space.

b) For each p € M there exists a neighborhood U of p and a diffeomorphism ¢: 7 =1(U) —

U x R™ called a local trivialization of E such that the following diagram commutes:

Y (U) —2— U xR"

" |

(where 71 is the projection onto the first factor.)
c) The restriction of ¢ to each fiber ¢ : E, — {p} x R™ is a linear isomorphism.

Example 2.4 (Tangent bundle). Let us define the tangent bundle defining the base as
M, the total space as the set

T™ = |_| T,M = UpEM{p} X TpyM = {pv); peM , ve T;DM}
peM

and the projection m : TM — M such that 7(v,) = p. The triple (T'M, M, ) is a vector
bundle, the tangent bundle. In fact, the first property follows from the definition of the
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tangent space. Then, if we consider a chart (U, z) of M around p € M, for all p € U we
define
oy 1 HU) — U x R"
vy > (2t et ™),

where v!, ..., v™ are the coordinates of vp With respect to the basis {3%17 R %}. This

map clearly satisfies the property b) and c).
So, using the tangent bundle we can say that if v is a geodesic then the curve

drl(t) dx™(t)

tes (2 (t),..., 2" (), T ER R

)

satisfies the system
da* yk

dt (2.9)

%:fzi,jfijzyj k=1,....,n

in terms of coordinates (x,..., 2" y!,...,y™) on TU. Therefore, the second order system
(2.8) on U is equivalent to the first order system (2.9) on TU.

Let us recall the following result from differential equation:

Theorem 2.3.1. If X is a C* field on the open set V in the manifold M andp € V then
there exists an open set Vo C V, a number § > 0 and a C™ mapping ¢ : (=9,0)xVy — V
such that the curve t — o(t,p),t € (—0,0) is the unique trajectory of X which at the instant
t = 0 passes through the point p for every p € Vj.

Regarding the notation, the mapping ¢; : Vo — V given by ¢i(p) = (¢, p) is called
the flow of X on V; the smooth map p — X(p) € T, M is called vector field in T M.

Lemma 2.3.2. There exists a unique vector field G in T M whose trajectories are of the

form t — (y(t),~'(t)) where v is a geodesic on M.

Proof. We shall first prove the uniqueness of GG, supposing its existence. Consider a system
of coordinates (U,1) on M. From the hypothesis, the trajectories of G on TU are given
by t — (v(t),7/(t)) where « is a geodesic. It follows that ¢t — (v(t),7'(t)) is a solution of
the system of differential equation . From the uniqueness of the trajectories of such
a system, we conclude that if G exists, then it is unique.

To prove the existence of G, define it locally by the system . Using the uniqueness,
we conclude that G is well defined on T M. O

Definition 2.8 (Geodesic field and flow). The vector field G defined above is called the
geodesic field on T'M and its flow is called geodesic flow on T'M.

Applying Theorem at the point (p,0) € TM we obtain the following fact.
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Proposition 2.3.3. For each p € M there exist an open set U in TU where (U,x)
is a system of coordinates at p and (p,0) € U, a number § > 0 and a C*° mapping
@ :(=0,0) xU — TU such that t — @(t, p,v) is the unique trajectory of G which satisfies
the initial condition ©(0,p,v) = (p,v) for each (p,v) € U.

It is possible to choose U in the form
U={(p,v) €eTU; peVandv € T,M with |[v| <e1},

where V' C U is a neighborhood of p € M. We are saying that defining the geodesic
as the composition of 7 and ¢, namely v = 7 o ¢, while |v| < €1, the geodesic (¢, p,v)
exists in an interval (—4,0) and is unique. Actually it is possible to increase the velocity
of a geodesic by decreasing its interval of definition or vice-versa. This follows from the

following Lemma of homogeneity.

Lemma 2.3.4 (Homogeneity of a geodesic). If the geodesic y(t,p,v) is defined on the
interval (=6, 6), then the geodesic y(t,p, av),a € R,a > 0, is defined on the interval (-2, %)

a’ a

and

Y(t,p, av) = y(at, p,v).

Proof. Let h: (—2,2) — M be a curve given by h(t) = y(at,p,v). Then h(0) = p and

since h'(t) = av'(at,p,v), we have %(to) = av. In addition, considering the covariant
derivative

D /dh ,

dt (E) = Vih'(t) = ¢* Vo (arp0)Y (at, p,v) = 0,

where for the first inequality, we extend h/(t) to a neighborhood of h(t) in M. Therefore,

h is a geodesic passing through p with velocity av at the instant ¢ = 0. By uniqueness

’V(atvpvv) = h(t) = W(tvpv CLU).

O

Proposition 2.3.5. Given p € M there exist a neighborhood V of p € M , a numbere > 0
and a C* mapping v : (—=2,2) xU — M , U ={(p,w) e TM;p € V,w € T,M, |w| < £}
such that t — ~(t,p,w),t € (—2,2) is the unique geodesic of M which, at the instantt =0
passes through p with velocity w, for every p in V' and for every w € T,M, with |w| < e.

Proof. The geodesic (¢, p, av) of Proposition is defined for |¢t| < ¢ and for |v| < e7.
€1

From the Lemma of homogeneity, (t, g, 57”) is defined for |t| < 2. Taking € < 57, we
obtain that the geodesic (¢, ¢, w) is defined for [¢| < 2 and |w| < e. O
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We saw that any initial point p € M and any initial velocity v € T, M determine
a unique geodesic, this implicitly defines a map from the tangent bundle to the set of
geodesic in M. More importantly, it allow us to define a map from the tangent bundle
to M itself, by sending the vector v to the point obtained following the geodesic for time
t=1.

Definition 2.9 (Ezponential map). Let p € M and let Y C T'M be the open set previously
defined. Then, the map exp : Y — M given by

v
exp(p,v) :7(17]7,1}) :7(|U|5p7m) (p,'U) Gua

is called the exponential map on U.

It is clear that exp is differentiable, in fact it is the evaluation of the smooth map
~(t,p,v) at t = 1, and hence it is smooth. Frequently, we shall utilize the restriction of

exp to an open subset of the tangent space T),M, that is, we define
exp, : B:(0) CT,M — M

by exp,(v) = exp(p, v).

Proposition 2.3.6. Given p € M , there exists an € > 0 such that exp, : B.(0) C
T,M — M is a diffeomorphism of B:(0)onto an open subset of M.

Proof. Let us calculate d(exp,,)o :

dlexp,)olw) = (expy0))| = S0 p )|
:%<’7<t7p7 ,U)>‘t:0 =".

Hence, d(expp)o is the identity of T}, M, and it follows from the inverse function theorem

that exp,, is a local diffeomorphism on a neighborhood of 0. O

Definition 2.10 (Normal neighborhood). Any open neighborhood U of p € M that is the
diffeomorphic image under exp,, of the ball B, (0) C T, M is called a normal neighborhood
of p.

Remark 2.4. A choice of orthonormal basis {e;} for T,M is equivalent to an isomorphism
E:R" — T,M by E(z',...,2") =, 2'e,. If U is a normal neighborhood of p, we can

combine the isomorphism with the exponential map to get a coordinate chart
p=E"" oexp;1 U — R™

Such coordinates are called normal coordinates centered at p.
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2.4 Laplace operator on a Riemannian manifold

At this point we can develop analysis on manifold with the metric and we would like
to define the Laplace operator on function on M. We begin to define the Hilbert space of

real valued functions on M.

2.4.1 L? space of functions

From this point on, we assume that the given manifold M is oriented and connected.
We are looking for an n-form «(x) such that (f,g) = (f,9); = [y, f(x)g(x)(z) defines
a positive definite inner product; such an « is callled volume form.

First of all, we would like to understand what the volume of a Riemannian manifold
should be. For the sake of simplicity, we will just compute the volume of a coordinate chart
and then, using a partition of unity we can recover the full volume of M. So, consider
a positively oriented coordinate neghborhood U around p with coordinates (z?,...,z").
Let v1,...,v, be a positively oriented basis of T),, M. Then % => aka.

With all this notation we define the volume of U to be ’

vol(U) :/ det(a¥)dz' A ... A da™.
U

Sincegij:<8i,8
xT

where A = (o) . Thus
det g = det(AA") = (det A)?,

and so vol(U) should be [, \/detg dz! A ... A da".

Definition 2.11 (Volume form). We define the volume form of a Riemannian metric to be

the top dimensional form, i.e. a differential form of top degree, which in local coordinates

is given by
dvol = v/det gdz* A ... A dz™,
whenever ( 881 ey a‘?" ) is a positively oriented basis of the tangent space.

Remark 2.5. The volume form dvol is well defined on M. In fact, for the Riemannian
manifold (M, g) consider an atlas {(Uy, ¢a) tacr and suppose that exist «, 5 € I such that
p € Uy NUg with p € M. If we suppose the coordinates in U, are (z!,...,2") and in Up

are (y',...,y"), we would like to show that

dvol |y, (p) = \/det gdz' A ... Ada™ = \/det gdy' A ... Ady" = dvol |y, (p).



2.4. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD 23

We know that

dxl/\.../\dx"zdetJ<ax,>dy1/\.../\dy".
oyI

Denoting with g;;(z) = g(52, 5% ) and g;(y) = g(azq, , aiyj) we have

g(z)=J Tg(y)J "

and so,
det g(z) = det J 2 det g(y)

using the Binet formula and the properties of the determinant. We can then conclude that

Vdet g(z)dzt A. .. Adz™ = \/det g(y) det J=2det Jdy* A...dy" = \/det g(y)dy* A...Ady".

We have already said that our goal is to study the Laplace operator associated to a
Riemannian manifold. The natural setting to do this is the Hilbert space of quadratic

integral functions.

Definition 2.12 (L?(M, g)). Let (M, g) be an oriented Riemannian manifold and consider
the space C$° (M) of smooth functions with compact support with the global inner product

defined by
f.ga = /]v (@)l dvol(@) (2.10)

We define the Hilbert space L?(M, g) to be the completion of C°(M) with respect to the

inner product (2.10]).

2.4.2 The Laplacian on functions

The Laplace operator on functions, sometimes called Laplace-Beltrami operator, rep-
resents the first important tool to study a Riemannian manifold from an analytic point of
view. The definition one can give of Laplace operator is analogue to (minus) the Laplacian
— (% +...+ %) in R™. Recall that in R™, for a smooth function f: R® — R, we

have

n 82 .
_ ; (c')xiJ;z = —div(grad f).

In particular we see that the second definition is somehow intrinsic, so it can be given in

more general setting.

First of all we define the gradient of a smooth function i.e.

grad: C°(M) — TM,

where (M, g) is a Riemannian manifold. In Euclidean setting grad f = >, g ;1 (gi and so

it is a vector field on R”, while df = 3. 2L dx is a 1-form on R™ such that

i Oxt

df (X) = (grad f, X), VX € x(R")
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where (-, -) here denotes the Euclidean metric. Now this kind of relation between vector
fields and 1-forms can be recovered in a Riemannian manifold since we have a metric. For

a Riemannian manifold (M, g), define, Vo € M

TyM — T;M

Qg,p:

v vt vt (w) = (v, w),

So ayg p, is just the canonical isomorphism between a finite dimensional vector space with a
metric and its dual. We denote this isomorphism again with a. Moreover the Riemannian
metric g induces an inner product on each cotangent space 7y M under the isomorphism
a, namely for v*, w* € TyM

(v, W), = (v,w),

We want to compute the expression in local coordinates of the metric on the cotangent.
First suppose that v = % then
g 0
'U* -— ) = =, = (ii-
(6333 ) <63ﬂ 8x3> Jis

9oy = > gi7d27, hence (32, g% 525 )* = da? . Therefore

So v* = (

8 ik, 0 0
glde'sde) =D ol 5 g0 = S0 o )
Kl

ik _j ik
= ZQZ 9ok =Y g% 6
k.l k
= g%,
Therefore we can say that in local coordinates, the metric of the cotangent is represented
by the inverse matrix of g.

Now we are ready to define the gradient of a smooth function on an arbitrary Riemannian

manifold.
Definition 2.13 (Gradient). Let (M, g) be a Riemannian manifold. We set the gradient
to be the composition

grad: C°°(M) 5 A'T*M 2 y (M)

It is easy to check that this produces the ordinary gradient in Euclidean space, in fact

in local coordinates, for f € C°°(M) we have

grad f = a1 (df) = a™}( . gj;dxl) = ' ga];afl(dxi)
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Note that the gradient of f is a vector field on M, so the divergence shall be a functional
defined on x(M). In order to give this definition, we need to introduce the concept of

contraction of a form along a vector field.

Definition 2.14 (Contraction of w along X). Let (M, g) be a Riemannian manifold and
X a vector field on M, w a k-form. The contraction of w along X is defined as the k — 1
form i xw that satisfies the following request: suppose Vi, ..., Vi_1 elements of the tangent
space, then

ixw=w(X,V1,...,Vi_1).

Example 2.5. Let us calculate the contraction of w = dvol along X = ad
ixw=(=1)"1/detgdz' A... NdE' A ... dz",
where with d#' we indicate that dz® does not appear in the wedge product.
It is easy to check that the contraction is linear with respect to X and w, in fact:

1) suppose w,n to be k-form, f, g differental functions on M
ix(fwtgn) = (fo+gn(X,..) = fu(X,...) +gn(X,...)
2) suppose X,Y vector field on M, a,b differential function and w a k-form
taxtbyw =w(aX +0Y,...) =aw(X,...) + bw(Y,...)
thanks to the multilinearity of the form.

From now on, suppose w = dvol = /det gdz' A ... A dz”

Definition 2.15 (Divergence). Let (M, g) be a Riemannian manifold and X a vector field
on M. The divergence of X is defined as the quantity that satisfies the following identity

divX - w = d(ixw).

Example 2.6. Let us calculate the divergence of X = 86

i_10vdetg

VI ti Adaz* A ANdEE A A dz"
Ozt

div(X) - w = d(ixw) = (—1)
dy/det g

= o YT det AL A da

= — ! adet.gdxl/\.../\da:"

Vdetg Ox'

1 0
= det g tr(g~*

T Jdetg oat?

4 0
= —tr(g 183@1'9)0')7

Yzt AL A da”
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using Jacobi’s formula for the derivative of the determinant. We can conclude that

2o —ug L),

di
iv( ox g ox?

Clearly, the divergence is linear thanks to the linearity of the differential and the

contraction.

Proposition 2.4.1. Let (M, g) be a Riemannian manifold, let a be a function of C°°(M)
and X a vector field on M, then we have

div(eX) = adiv(X) + da(X). (2.11)
Proof. Let us calculate

div(aX) - w =d(isxw) = d(aixw) = da N ixw + ad(ixw),

where
da/\zxw—Z\/det x]dx( YAzt AL ANdEEA L da"
7,7=1
= 8951 X)y/det gdz' A .
i=1
=da(X) w

So we conclude that

div(aX) -w =da(X) - w+ adiv(X) - w = (da(X) + div(X))w.

Example 2.7. If we suppose X =", by 2+ 557, We have

div(X Zdw( )
= 3 (52) + Zdbi(%)
= S h(-trl e
= > bi(tr

8xk)

(%l

Now we are ready to give the definition of the Laplacian.
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Definition 2.16 (Laplacian). Let (M, g) be a Riemannian manifold and let f € C*°(M).
The Laplacian of f, denoted by Af, is defined as minus the divergence of grad f, i.e.

Af = —div(grad f).

In local coordinates, if f is in C°° (M), we know that grad(f) =), (Z] (%’;gij> %,
S0
0 0 of ..
—1 %
div(grad f) = Z(Zag ) r(g e )+2i:axi<j 8:53'9])
iy 0 o*f . é)f gt
- _ ~J g 1 ij
;; aa:a'g trlg 8mig+z axiaxﬂ'g + i Oxd Oz
_ 11 8f ;;0detg Z e of 0g¥
 2detyg > 0219 Tor Ox 16 79 iy 827 dat
Since

mzax]<ngkaf)_

Ov/det g ik 0
\/detgz oxJ Z 81”“

Ik

Z oxi 5ack

Vdetg

1 Odetg ik OF ik B
\/det Z 2 /detg 07 Z ax’f T 8:103 (“)xk Z 8xk8m1 -

11 f ;;0detyg %f i ﬁai = div(grad f).

~ 2detg v 0019 "oz . oriows? ” Ox O’

As a consequence, in local coordinates, for f € C°(M)
1 0 o Of
Af=— — — det Jk ZJ
1= i g (VR S )
1 0 L Of
=— — | /detg g7 —
Vdet g 0z ( 99 833’)

where in the last equality we used the Einstein convention for the sum.

Remark 2.6. We can give another definition of the Laplacian on functions, studying the

first variation of the functional

= /|gradf\2dvol.

kaxﬂ B
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Suppose h € C§°, let us compute the derivative of the functional in the direction h:

%A(f+th)‘t:0 :2/gradf~gradhdvol
=2/<g’1Vf,g’1Vh>gdvol
=2 / g Ygg 1 (V £, Vh) dvol
:2/ det gg~ 1 (V f, Vh)dx
=7 Vaetgg? 1L pda
=2 [ e (Vg 5 bl

n

where we used the integration by parts formula and dx = dz' A ... A dz™. So, we can

conclude that the first variation of the gradient is

/ —Afhdvol;

in this way we have given an analytical definition of the Laplacian on functions, a valid

alternative to the geometric one using forms.

2.5 Hodge theory for functions

In this section we would like to investigate the Hodge theorem for compact, connected,
oriented Riemannian manifold, which states that there is an orthonormal basis of L?(M, g)
of eigenfunctions of the Laplacian; hence if we restrict our attention to the space spanned

by the first IV eigenvectors, we can write

A1
A2

AN

where \;’s are the eigenvalues.
A complete presentation of the proof of the theorem can be found in [I3]. Here we will

point out some remarkable definitions and properties that allow to demonstrate the result.

2.5.1 Heat operator

The proof of the theorem exploit the heat operator, so we begin with its definition.
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Definition 2.17 (Heat kernel). Let (M, g) be an oriented, compact, connected Rieman-
nian manifold. Suppose there exists a function e(t, z,y) € C>°(RT x M x M) such that

(O +Ay)e(t,z,y) =0
limy o+ [y, e(t, z,y) f(y) dvol(y) = f(x), Vf € L*(M,g).

Here A, denotes the Laplacian acting in the y variable. We say that e(t, z,y) is the heat

kernel on M.

Even if it’s not clear from the definition, if the heat kernel exists, it is symmetric and

unique. Hence we can rewrite the first condition as
(0r + Age(t, z,y) = 0.

So we can interpret the heat kernel as the kernel of the resolvent operator for the heat
equation associated with the Laplacian: 0; + A, = 0. Indeed the resolvent operator, also

called heat operator, is given by:
e f(w) = [ eltia) i) dvolly), v € 1
M

This means that, given a temperature distribution on our manifold, say f € L2?(M,g),
then setting f(t,z) = e~ f(z), we have

(O + Ay)f(t,z) =0
f0,2) = f(x), VeeM
where f(0,2) = limy—o f(t, x).

The definition we gave corresponds to a general setting, now we specialize it in the

case of the Laplacian and the operator defined below is actually a heat operator.

Definition 2.18 (Heat Operator). Let (M, g) be a compact, oriented, connected Rieman-

nian manifold and let e(¢, z,y) be its heat kernel. We define the heat operator as

e '8 L3(M, g) — L*(M, g)

fo /Me(t,-,wf(y) dvol(y).

We may regard the heat kernel as a compact operator, thanks to compactness theorem

in Sobolev spaces

LA(M,g) <= IX(M, ).
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Moreover, the heat operator is self-adjoint:

2ra)= [ ([ etanimar) s

-/ ( / Ie(t,ym)g(x)dx) o

= (f, e "%g),

by the symmetry of the heat kernel e(t,z,y). By the spectral theorem for self-adjoint
compact operators on Hilbert spaces, there exists an orthonormal basis of L?(M,g) con-

A with egenvalues ;(t) 1229 0. We can

sisting of eigenfunctions for the heat operator e~
prove that the v;(¢)’s are strictly positive, i.e. 0 is not an eigenvalue of e~** thanks to the

semigroup property of the heat operator

Lemma 2.5.1. e t8e¢=58 = ¢~ (t+s)A

It is possible even to show that

Lemma 2.5.2. There exist \; € R such that, for allt
Vit) =e”

2.5.2 Hodge theorem

Theorem 2.5.3 (Hodge Theorem for Functions). Let (M,g) be a compact, connected,
oriented Riemannian manifold. There exists an orthonormal basis of L?*(M,g) consisting
of eigenfunctions of the Laplacian. All the eigenvalues are positive with a finite multi-
plicity, except that zero is an eigenvalue with multiplicity one. Moreover the eigenvalues

accumulate only at infinity.

A straightforward consequence of the Hodge theorem for functions is that the formal
sum

> e Mgi(x)di(y),

i

converges point-wise to the heat kernel e(t, z,y).

Proposition 2.5.4. Let (M,g) be a compact, connected, oriented Riemannian manifold
and let e(t,z,y) € C®(RY x M x M) be the heat kernel for functions. Then we have the

point-wise convergence

e(t,x,y) = Z e Nl (x)i(y).

Corollary 2.5.5. The series tr(e ') :== 3. e~ converges for each t > 0 and sum is
fM e(t,xz,x)dx.



Chapter 3

Diffusion maps

In this chapter we extend the notion of heat kernel, initially given in the Riemannian
setting, to a general diffusion process for geometric description of data sets, called diffusion

maps.

3.1 Definition of the diffusion process

As we saw in the previous chapter, a diffusion process in a Riemannian setting can be
realized via a geometric heat kernel, which contains the properties of the space. In analogy,
starting with a geometric kernel, we will show how to define an operator satisfying the
Markov property, whose eigendecomposition produces an embedding of the data in R™
via diffusion maps. In this space, the Euclidean distance defines a diffusion metric that

measure the proximity of points in the given set of data.

3.1.1 Construction of a diffusion operator

Let (2, F, 1) be a measure space, where {2 is a set whose points are abstract objects
and p can be thought as a counting measure or a probability one, with the request that
() < oo.

Consider then a function & : 2 x @ — R which assigns a real number to a given object

pair that satisfies the following admissibility conditions:
e k is symmetric : k(z,y) = k(y, ),
e [ is positive-preserving : for all x and y in Q , k(x,y) > 0,

e [ is positive semi-definite: for all bounded function f defined on €2,
/Q/Qk(w,y)f(w)f(y)du(af)du(y) > 0.

31
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The number k(z,y) is usually interpreted as a measure of similarity between the points

and y and it represents our a priori information on Q.
Remark 3.1. The admissibility conditions allow the function k to define a notion of neigh-
borhood, i.e. the neighborhood of x corresponds to all points y such that k(x,y) is nu-

merically significant. In other words, if we suppose ¢ > 0 we can define:
Upe ={y €Q; 0<k(z,y) <e}.

Furthermore, the positive preservation property will allow to renormalize k£ in order to
define a diffusion process on the data and the third condition is necessary for imposing

the positivity of the diffusion metric.

We would like to construct a diffusion process on the data. This result can be achieved
by interpreting the function k as a kernel; we need to renormalized it, in order to interpret

it as a probabilistic density. Denote

2 (x) = / ke, y)duly),

we notice that this quantity is well defined because k(z,y) > 0. Then a(z,y) = 12(21(5))

satisfies
/Q&(x,y)du(y) =1,
moreover a(z,y) > 0, for all z and y € Q.

Definition 3.1. (Kernel operator) The diffusion operator A corresponding to the kernel

a(z,y) is defined naturally as:

Af(x) = [ iz, 9) (0)duly).

From an analysis perspective, this operator can be viewed as an averaging operator as
it fixes constant functions and it is also positive-preserving: if f > 0 then Af > 0. We can
easily check that the function a satisfies the positive-preserving property and it is positive
semi-definite, but it does not posses the symmetric feature.

So we can renormalized a :
i 1 k(z,y)
a(z,y) = d(x)a(x,y)@ = m7

in this way we have a(z,y) = a(y, z). Then, we can defined naturally the kernel operator

associated:
Af@) = [ alws)f@)nts).
Remark 3.2. The normalization a(z,y) = d](“gj@) is sometimes called graph Laplacian

normalization because of a connection with the spectral theory of a graph [I7]. More

details about this association can be found in Chapter 4.
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The new kernel a(z,y) is therefore conjugate to the stochastic one a(z,y), and share
the same spectrum and its eigenfunctions are obtained by conjugation by d. In what

follows we will use A rather than A as a diffusion operator.

Theorem 3.1.1. The diffusion operator A with kernel a
Af@) = [ ate.s) )ty
is bounded from L?(S), p) into itself. Its norm is
[All =1

and it is achieved by the eigenfunction d(x):

Moreover, A is symmetric and positive semi-definite.

Proof. Let us begin the proof by showing the boundness of the operator, hence we need
to determine M > 0 such that [|Af||;2q ) < M| fllz2q,,- First, we notice that:

[ atenswant) = [ FE0 )auts)
7 [ ren Z8auty)
! v P\
sd(z)< /Q k:(:my)du(y)) ( /Q k(z,y) L du(y))

([ s )"

using the Schwartz inequality with f(x,y) = k(z,y)"/?, g(z,y) = k(x, y)lm% It follows
that

IASIZ: = (Af, Af) 2 = /Q |AF () Pdpu(x) =

:/|/ alz,y) f)du(y) Pdu(z // z,y) z d p(y)dp(z)

'f /kxydu Jdu(y /|f ) Rdpu(y) = 113

We can affirm that M = 1 and A is bounded from L? into itself.
Then we have, by definition,

[Allgp = sup [|Af] L2

£l 2=1
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Thanks to the previous point we can say that
[All,, <1

and, since d(z) is an eigenfunction of A corresponding to eigenvalue 1:
Ad(z) = /Q a(z, y)d(y)du(y)

[ k(x,y) il
= [ Seaut) = ).

we can then conclude that 1 = || A4]|.

The operator A is symmetric, in fact for all f,g € L?(Q, u) we have

(Af,g) = / al) f0)duv)g(@)dn(x) = /Q oz, 9)  (9)g(x)du(z) du(y),

x 2

(f, Ag) :/Qxﬂ f(@)dp(z)a(z,y)g(y)du(y) =/Q a(z,y) f(x)g(y)du(x)du(y)

x 2

Hence, (Af,g) = (f, Ag) from which it follows that the operator is not only symmetric,
but also self-adjoint.

Lastly, we show that A is positive semi-definite: for all f € L?(, 1) we have

= a(x x x = x f@) 1) x
rn = [ [ awaf@iwan@ain = | [ e ZE I @ = o
thanks to the positivity of k. O
In addition, if we assume that
[ ale.Pdute)duty) < . (3.1)
QxQ

we can show that A is a compact operator. In fact, we can apply the following proposition,

whose a complete proof can be found in [7, pp 43].

Proposition 3.1.2. If (Q, F, 1) is a measure space and a € L*(Q2x Q, F x F, pux i), then

(Af)(x) = /Q a(z, 9) f(4)du(y)

is a compact operator and ||A| < ||a| ;.

Remark 3.3. The request on the kernel of equation (3.1)) is compatible from a probabilistic
point of view with the equation (1.5).
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3.1.2 Spectral decomposition of the diffusion kernel

Previously, we proved that the diffusion operator is compact and self-adjoint. We can
then apply the spectral decomposition theorem for an operator on an Hilbert space and
find an orthonormal basis of eigenfunctions for L?(, 1) with respect to the operator A.
We denote with {\;};en the eigenvalues of the operator A and {¢;};en the corresponding

eigenfunctions.

Lemma 3.1.3. Let {\, }nen be the eigenvalues sequence for a compact self-adjoint oper-

ator A. If the sequence is infinite, then A, — 0 for n — oo.

Proof. Suppose that the sequence {\, },en does not converge to 0, for n — co. So, there
exists € > 0 such that |[A,| > e for all m > n. If m # n with n,m > n, denoting with

{en}nen the set of the corresponding eigenfunctions, we have

| Aen — Aem||® = | Anen — Ameml> = A2 + A2, > &2,

m

and this shows that (Ae,)nen has no convergent subsequences, a contradiction to the

compactness of A. O

Lemma 3.1.4. If A is a compact self-adjoint operator, then either £||A|| is an eigenvalue

of A.

Proof. Denote with 7(A) = max{|\,| ; A\, eigenvalue of A} and recall the spectral radius

formula: r(A) = limnHOOHA"Hl/n . Then, also
r(A) = lim A" = lim A7) = lim AP = |A].
n—r00 n—00 n—r0o0

The only thing we need to prove to conclude is that HAHzn = || A%"||. First, suppose n = 1:
|Az|)* = (Az, Az) = (A" Az,z) = (A%z,2) < || A%||]«],
taking the supremum over all z of norm 1 we obtain
1AI* < (142
On the other hand,
1A% < [[Alll| Azl < [AllIA]l|=] = [|A]* |,

taking the supremum
2
1A%] < [|A]%.

Let be n > 1 and prove the statement by induction: first,

n n—1 271—1 on
1A% 2|l < 1A% 1A% < [1AIIF 1Al ] = A1 [l=]],
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hece,
1A% | < |47

Finally, notice that

2" 2" 2271
1AI™ = sup [Az|" = sup ([|4=]")*"
llzll=1 llzll=1

if we consider the quantity
(1A2[*)*" = ((Aw, Az))*" " < (| A%|[|=])*",

taking the supremum we have

271—1

om on—1 n
AP < (142D = A== =147

O

Remark 3.4. Tt follows from these Lemmas that the eigenvalues of the diffusion operator

are distributed between 0 and 1. In other words we have
1=X o>\ > ...

with \; > 0, for all ¢ € N.
As we previously stated, we would like to find a spectral decomposition of the kernel.

In order to do so we need a special basis for L?(Q x ).

Proposition 3.1.5. Let be {¢n }nen an orthonormal basis for L*(2), then {¢ndm }n.men

is an orthonormal basis for L*(Q x Q).

Proof. First thing to do is to check that {¢,,¢m }n.men is an orthonormal set for L?(Qx Q):

(Pn(@)bm(y), Pi()B;(y)) = - On (@) P (y)di ()95 (y)dp(z)dp(y)
 ib = 1 ifn=i, m=j
0 otherwise.

Then, we can see if the orthogonal of the space generated by {¢, ¢} is empty. In other
words, suppose h € L?(Q x Q) such that (h, ¢,$,,) = 0, we would like to show that h is

the null function. Consider

0= J M onto o) = | </Q e y>¢n<y)du<y>> b @)ib(z).

and note that, since {@, }men is a basis for L?(Q) the function = — [, h(x, y)dn (y)dp(y)

is zero almost everywhere for each n. Denoting with

E, = {x €Q; /Qh(:ay)ﬂbn(y)du(y) # 0}
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we have that E = U,>oFE,, is a null set. We can say that h(z,y) = 0 for all z € Q\ E
almost everywhere.
Finally, since h € L?(2 x Q) we have

‘@w@M@WM //memmm>Aw@mmmmw@w,

and this concludes the proof. O

Let us consider then the kernel a(x,y), seeing this as a function of y we can apply the

following decomposition:

a(z,y) = ch(x)qbl(y) (3.2)

i>0

We can easily check that the coefficients ¢;(z) are in L*(Q), in fact

00 > /QXQ|a(x,y)|2d,u( )dpu(y /ngcz y)[Pdp(z)dp(y)
//ZMIW ) Pdu(z)dpty ;/m|w ) [ leo)Pduta)
;/q|@ ﬂmnwm

and then we can write

x) = Z a; kOr(T). (3.3)
k>0
Putting in we obtain:
Y) =3 aixdi(x)di(y). (3.4)
i>0 k>0
Observing that :
Anon(x) = Ay (z) = / a(z,y)on(y / D> aiktn(@)di(y)on(y)dp(y)
Q >0 k>0
= > aindr(z)(¢ily = Y aixtk(@)0in = anpdr(@
i,k>0 i,k>0 k>0

it follows that ap, , = A, while ap, k = 0 for all k # h. We can conclude:

z,y) = Y A ()5 (y)- (3.5)

J=0

An analogous decomposition holds for the kernel related to the diffusion operator A™,
with m > 1.
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Proposition 3.1.6. Let '™ (z,y) denote the kernel of A™. Then we have

Y) = N'i(x);(y)- (3.6)

Jj=0

Proof. Let us begin with writing explicitly the operator

A" f(x) :/Q L XQa(x,zl)a(%xz)~~~a(xm—17$m)f(xm)du(zl)-~du(93m)- (3.7)
| ——

m

We have already shown that for the kernel holds the following decomposition:

a(w, 1)a(@y, 22) - a(@m-1,2m) = Y A Gi(2)¢7 (21) -+ 67 (Tm—1) i (Tm),

>0

reorganizing the equation ([3.7) we obtain
A" f(x </¢ l’ldﬂxl/¢ (x2)dp(x2) - /(b (Tm—1)dp(Tm—1)-
>0
'/Q)‘zm@(ﬂ?)@(xm)f(xm)du(xm)).

Since {¢y }nen is an orthonormal basis for L(2), we have [, ¢7(xx)dp(zy) = 1, for all
i1>0and k=1,...m — 1. It follows that

A f(a /ZW@@%MWMW, (3.8)
>0
and defining a™ (2, y) = 3,5 A" ¢i(2)di(y) we can conclude. O

Remark 3.5. Using the definition and the properties of diffusion operators A = (A™),,>0,
defining A° = Id, we may notice that there are some analogies with the Markov semigroup,
even if, here, there is a discretization of the continuous parameter of the definition. In
fact, each A™ with m > 0 satisfies the properties of a Markov operator as in Definition
thanks to Theorem Another straightforward consequence of Theorem [3.1.1] is
that the first property of Definition is verified. Furthermore, the semigroup property

holds: on one hand we have

m—+n ) = aern x — m+n () s ;
A f () L () () dp(y) A;a 6:(2)6:(0) f (0)du(y)
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on the other hand

aran o) = ([ imant)) = am ([ ¥ i)

F(z)

= [ E e FE)

- / ST Gi(0)i(2) / S A 64(2)64(0) F () dp(y)dia(2)
Q% Q“;

- / SN ) 042124 ) )2

= [ ouePantz) [ 576160 £ )ity
Q Q%

=1
Finally, it is verified also the continuity property: for every f € L2(Q)

am s =113 = [ (4 ) = £@)? ) = | ( / a%y)f(y)du(y)—f(x>)2du<x>,

Q

sending m to 0 we have

/Q</Q Fwdnty) =1 (x))2d“<x) = /Q C? 4 f(2)? — 2Cf(x)dp(z) < C? + C% — 20% =0,
=C

if we suppose that u is a probability measure.

3.1.3 Diffusion maps and metrics

The main goal of this subsection is to define a map that transports the data into a
particular [? space, in which the usual distance corresponds to a distance on €. The first
thing to do is to define this distance, and we would do that using the spectral decomposition
presented in the previous subsection.

Maintaining the previous notation, we introduce the following mapping:

po(x)
d(z) = | d1(2) |,

in which each eigenfunction is interpreted as a coordinate on the set. This map takes

abstract entities and provides a representation of the data as point in an Euclidean space.
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Definition 3.2. (Diffusion metric) Let (Q,F,u) be a measure space, A the diffusion
operator associated to a kernel a(z, y). We define the family of diffusion metrics {D,, }rm>1

as
Dy (z,y) = ™ (z,2) +a™(y,y) — 2a™(z,y).
Proposition 3.1.7. Let (2, F, ) be a measure space and {dp }nen the orthonormal basis

associated to the diffusion operator A. Then,

m 2
=Y AN(¢ilx) — i) = llz —y]*.
i>0
In other words, the diffusion metric can be computed as a weighted Fuclidean distance in

the embedding space, the weights being AJ*, AT, . ..

Proof. The proof is a mere computation, in fact
Dy (z,y) = a™(z,2) +a™(y,y) — 20" (2, y)

=D AT(G @) + Y AGHY) —2) AT di(@)gily) = D AT (dil) — ¢iy)*.

>0 >0 >0 >0
O

Proposition 3.1.8. The diffusion distance can be expressed using the L? norm of the

diffusion kernels:
D3, (x,y) = /Q\am(w’ 2)—a™(y,2)"dp(z) = a™ (@) —a™ (Y, )T (3.9)
Proof. Let us begin with the calculation of the L? norm of the functions:

/|a w,2)—a™(y, 2) [ dp(z) = /Q(am(a:,z) a™(y, 2))dp(z)
/(z:/\ngz il ZA¢¢i(Q)¢i(2))2du(z)

>0 >0

ZW ([ oi@Po22du) + [ autuPout:Pau)

4/@@@@Mﬁ@@ﬂ
_ Z)\zm (¢2 + ¢2( ) — 2¢1(x)¢z(y))
1>0

On the other side, we have
D3 (z,y) = a®™(z,2) + a®(y,y) — 2a°" (2, y)

=D NG (@) + YN y) — DN 26i(@)9(y)

>0 >0 >0

= > (63(2) + 62 (y) — 20:(0)6i(v)).

i>0
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Using these results, we can derive that D,, is a semi-metric metric in the classical
sense. First of all, the symmetry is satisfied thanks to the symmetry of the kernel a(x,y).

Moreover, D,,, is non negative and it verifies the triangular inequality:
D) = [ Ja"(@.2) =™ (3. ()
= / la™(z, 2) — a™(h, z) + a™(h, z) — a™(y, 2)|du(z)
< [lam (.2 = a0 2)Pdu() + [ Jam(0,2) = " . 2) ()

= DQm(:L'?h) + D27n(h7y)'

Remark 3.6. We can give a probabilistic interpretation about the diffusion distance, since
it is strictly correlated to the number of paths connecting x and y. It is small if there are
many high probability paths between two points and it will be large if, on the contrary,

the number of connection is small. Recall the equivalent definition
D) = [ a7 (0.2) = ™ (3. 2) du).

We can assume that the kernels have compact support, so that the integral is extended
to neighborhood of points x and y. Moreover, the integral is extended on the set when
1 is different from 0, which is the set where the density of points of the data set is high.
Hence, the distance is small if the density of points is high in a neighborhood containing
x and y. It is high if the density is small in a set containing both points. In order to give
a probabilistic interpretation, we identify kernels with probabilistic density of a stochastic
process. This is depicted in Figure (3.1). We can notice that B and C' are well connected
because we have many paths that joint them. On the contrary, A and B are very distant
because they are connected by few paths. To sum up, we can say that, since we are
speaking by a probabilistic point of view, if we have many paths between two points, the
probability to joint them is higher respect to the probability to joint two points connected
by less paths.

We can therefore introduce the family of diffusion maps {®¢ i pen given by

M1 (z)
)\t (bz(ﬂ?)
Bop(e)=| . : (3.10)
)‘;d)p(x)
Each component of ®; ,(z) is called diffusion coordinate and the map ®;,: Q@ — RP

embeds the dataset into a Euclidean space of dimension p. In other words, we have proved

the following Corollary.
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Figure 3.1: Example of diffusion distance in a set of points, created by Lafon in [I5]. Points B
and C are close in the sense of D,,; on the contrary because of a presence of a bottleneck, point

A and B are very distant from each others.

Corollary 3.1.9. The embedding generated by the eigenfunctions allows a dimensional-
ity reduction of the data. Indeed, for a given accuracy 6, we retain only the eigenvalues
Aly ..., Ap that, when raised to the power m, exceed the § threshold, and we use the corre-

sponding eigenfunctions ¢1,..., ¢, to embed the data points into RP.

3.2 The case of submanifolds in R"

In this section we analyse the case that €) is a subset of R™. In particular, we assume
the data lie on a submanifold of R™ and we show how different operators can recover
the Riemannian geometry. The main goal is to recover the manifold structure regardless
the distributions of the sample points. In order to do so, we will introduce a family of
diffusion processes, parameterized by a number a € R which can be tuned up to specify

the influence of the density. Two values of a are of particular interesting:
e o = 0, the diffusion reduces to the one defined in the previous section;

e « =1, if the points approximately lie on a submanifold of R, we obtain an approx-

imation of the Laplace-Beltrami operator.

As for the notation, let M be a C*° compact manifold of dimension d in R™ and p be a
measure on M. The metric on M is that induced by that of the ambient space R™. We

shall assume that u has a density with respect to the Riemannian measure dxr on M, i.e.



3.2. THE CASE OF SUBMANIFOLDS IN RV 43

du(x) = g(x)dz. This density can be thought as the density of the sample points in our
data set, thus it does not have to be uniform.

From now on we make the fundamental assumption that the only objects that are
observable are defined in relation with the geometry of the ambient space R™ and the
distribution du(x) = g(z)dz of the points. For instance, we have access to the Euclidean
distance between two points, or it make sense to compute integral against du but we do not
have the knowledge of the geodesic distances on M. Likewise, the action of the Laplace-
Beltrami operator cannot be observed as it is an object of the intrinsic geometry of M.
Our goal is to show that by using the geometry of the ambient space we can approximate
objects whose definitions rely on the intrinsic geometry only.

We restrict our attention to a family of rotation invariant kernels, i.e. of the form

be(a,y) = h(””“"‘y”2>

£

where we assume that h is a function infinitely differentiable with an exponential decay

at infinity.

3.2.1 Family of diffusions

Let us set up the family of diffusions that will allow us to recover the Riemannian

structure regardless the probabilistic terms. We fix @ € R and a rotation invariant kernel

ke(z,y) = h('w—g”). Let

ge(x) = [ ke(z,y)q(y)dy
M
and form the new kernel L
@ (z,y)
kK (2,y) = — .
‘ q2()q2(y)

We normalize the quantity k% (z,y) by setting

a2(0) = [ Kep)at)ay
M
and by defining the stochastic kernel

k& (x,
aaa(x,y) = M

d2 ()
Let A, , be defined by

Acof(2) = /M te.o (@ 9)F (4)a(w)dy,

even in this case we can think about this operator as a Markov operator. In fact, A. ,1 =1
and if f > 0 then A, of > 0.
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Our main result will concern the operator
Id—-A
L., = . ea
€
as € — 0 and it can be interpreted as the infinitesimal generator associated to a Markov

semigroup. This will be more clear thanks to the results of the next paragraphs.

3.2.2 Technical Results

In this subsection we prove an asymptotic expansion for the operator L., acting on

a submanifold M C R™. We start by comparing the metric defined on the manifold with
that defined on the (local) projection of the submanifold over the tangent space.
We assume M to be C'°° and compact. Let x € M be a fixed point not on the boundary,
T, M be the tangent space to M at x and {ey,...,eq} be a fixed orthonormal basis of
T, M. In what follows, we introduce two systems of local coordinates in the neighborhood
of z.

First, we consider normal coordinates: the exponential map exp, generates a set of
orthogonal geodesics (71, . . ., 7q) intersecting at x with initial velocity (eq, ..., eq), and any
point y in a sufficiently small neighborhood of = has a set of normal coordinates (s1, ..., $q)
along these geodesics. Therefore, any function f defined on M in the neighborhood of z

can be seen as a function f of (s1,...,84); in this case if f € C? we have

d 82 _
Af(l’) = 72@.]0(0770)7
=1 4

where A is the Laplace Beltrami operator on M .

Remark 3.7. If x is on the boundary M of M | and if we choose e1,...,e4_1 to be in the
tangent space of this boundary at x, while e4 is normal and pointing in, then the normal
derivative of a function f at x is defined as
Lw=-2Low)

The second system of coordinates is given by the orthogonal projection u of y on
T, M. More precisely, the coordinates (u1,...,uq) are given by u; = (€ — y,€;)g.. The
submanifold is now locally parameterized as y = (u, g(u)), where g: R — R"~%. Since
u= (uy,...,uq) are tangent coordinates, we must have that %(0) =0.

Locally we have the following diagram :

(81,.+.,84) Yy = o

~—

exp, projection

In what follows we will convert all quantities depending on (s, ...,sq) or y into func-

tions of u. For the notation, Q. . (u) denotes a generic homogeneous polynomial of degree
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m of the variable u = (uy,...,uq) whose coefficients depend on z. Since these poly-

nomials form an equivalence class, we might abuse the notation and write, for instance

Qac,m(u) + Qx,m(u) = Qx,m(u)

Lemma 3.2.1. Ify € M is in an Euclidean ball of radius /% around x, then
si = u; + Qu3(u) + O(e?) (3.11)
for e sufficiently small.

Proof. Let v be the geodesic connecting x and y parameterized by arclength. We have
~4(0) = x and let s be such that y(s) = y. If y has normal coordinates (s1,...,sq), then

we have
57 (0) = (s1,.--,84) Y (0) = (vi,...,vq).

A Taylor expansion yields

and so
/ 52 " S
ui = {(5) = 1(0), ) = (57/(0), ) + 5 (2 (0) i) +
We can notice that (v”(0),e;) = 0 by definition of a geodesic, recalling the Proposition
0) =

<7(d) (O)a ei> + <O(S4)7 ei>'

Moreover, since '( (v1,...,vq) and s7'(0) = (s1,...,8q4) = (sv1,...,80q), We
have that s = Z—T for all i =1,...,d. In particular, s> = Z—z = :—z and using the expansion
we obtain 5 1 1

=(P(0),e) = Qus(u).

We can then conclude using the fact that y is in an Euclidean ball of radius €'/2 around
x. O

Clearly, in analogy with the previous proof, we can obtain an expansion of a high order

for the formula (3.11)), i.e.
si = u; + Qu3(u) + Qualu) + O(%?). (3.12)

Lemma 3.2.2. If y € M is in an Euclidean ball of radius €'/ around x, then for ¢

sufficiently small we have:
lz = ylI* = [|ull® + Qu.a(u) + Qu,5(u) + O?). (3.13)

Proof. The manifold is locally parameterized by u ~ (u,g(u)), where g: R¥ — R~
Writing ¢ = (gi+1,- .-, 9n) and applying Pythagore’s theorem, we obtain

n

2 2
lz —yl* = llul® + > gilw)®.

i=d+1
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Clearly, ¢;(0) = 0 and %(O) = 0. As a consequence, using the Taylor expansion

g +Zuz ulgz Zuuj Uk gz

:O k,j=1 k

@M—*

d

4
> weujunds, o, 9:(0) +O(lull*)
,jyh=1

=bj,(u) =cj,o(u)

—bi 2 (1) + ¢i.0 (w) + O([Ju]) ),

we get that g;(u)? = bf$(u) + 2b; ¢z + (9(||u||6) Setting Q 4(u) = Zle bi»(u)? and

Qu5(u) = 2?21 2b; 4¢; » we proved the ||
O

Lemma 3.2.3. If y € M is in an Euclidean ball of radius €'/? around x, then, for e

sufficiently small, we have:
dy _ 2
det| - ) =1+ Qz,2(u) + Qu,3(u) + O(e7). (3.14)

Proof. Let us denote with A = (Z—Z) the matrix obtained by the change of variable
($1,--+,84) — (u1,...,uq). Using (3.12), we know that

14+ Quo(ur) + Qu3(ur) Qz2(u2) + Qz 3(u2) e Qz2(uq) + Qu.3(uq)
Ao Qu2(u1) + Qg 3(ur) 1+ Qe2(uz) + Qzzluz) ... Qr,2(ua) + Qz3(uq)
Qz2(u1) + Qz3(ur) Qz.2(u2) + Qz 3(u2) coo 14+ Qu2(ua) + Qa 3(ua)

If we call H(u) = det (A(u)), via the Taylor expansion in 0 we have

H(u) = H(O) + (VH(0), u) + %UT Hess H(0)u + ...

and so, to conclude the proof we only need to show that H(0) = 1 and VH(0) = 0.
Clearly, H(0) = 1 thanks to the form of the matrix A. To prove that the vector

0 0
VH(O) (a lH‘u 07...,audHu_0>

is the null vector, let us calculate each term:

9
3ui

8A)|u:0:1-tr 1 =0,

9 det Aj,—o = det Atr(A™"
5ui

HW:O - 8UZ
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where, in the second equality, we used the Jacobi’s formula for the derivative of the

determinant of an invertible matrix; and in the third equality we used the fact that

O Qz71(ui) +QI72(U1) 0

A 6’(1,1 -

0 ... Qr’l(ui)-i—Qx’g(ui) ... 0

Let ke(x,y) be an isotropic kernel :
|z — yl®
ks(‘ra y) = h(i)a
€
where h is assumed to have an exponential decay and let G be the corresponding operator

1
Gof@)= 5 [ Kele) )y,
€2 Jm
Lemma 3.2.4. Let f € C3(M) and let 0 < v < 3. Then we have, uniformly for all
x € M at distance larger than €7 from OM,

Gef (@) = mof (@) + e 52 (w() f(x) = Af(@)) + O(?),

where
mo = / WlulPdu — and  my = / u2h(|ju]®)du
Rd R4

and w is a term that depends on M.

Proof. First of all, we notice that the domain of integration can be restricted to the
intersection of M with the ball of radius €7 around z up to an error of order O(g?). In

fact,

1 1
Gofa)= & / b, ) F )y + he(2,y) f () dy
€2 JyeM;||z—y||>e €2 JyeM;|lz—yll<e¥

and

! Lyl
=9 kel @il < 17 [ (2 jay
€2 JyeMillz—y|>e” €z Jm €

2
<Ifl / (122 d=
zeM;||z||>ev—1/2
<l | Ih(l2])ldz
Izl >er=1/2

< C|Ifll Q" F)e -1/
< Ol fl Q7 F)e "1/,
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where we have used the exponential decay of the kernel and consequently the polar co-

ordinates, in order to obtain @, a polynomial of the form Q(x) = ‘rn; + 57 n—2an=3 4 |
Moreover, the last inequality follows from the fact that since 0 < v < 1/2, we have

-2 -3 . . . .
—e773 <e e Z, Clearly, because this term is exponentially small, we can say that is

bounded by O(g?). Therefore,

1
Gt = [ () Fy)dy + O(2).

€2 JyeMillz—y| <e”
Now that things are localized around z, we can Taylor expand the function (s1,...,sq) —
fly(s1,...,sq)):

d d f(
af( 1 0% f
+;s gi 52:: +Qx3(51,...,sd)+(9(52),

where f(s1,...,84) = f(y(s1,...,5q)). Invoking 1} we obtain
d

~ af(0) d
RCEDNE s I
=1 j=1

7

-‘r Qz3(u) + 0(62).

Likewise, because of equation (3.13]), the Taylor expansion of the kernel is

h(:c—y|2> _h<||u||2) N (Qm(u) N Q“(“))h'(”“f) Lo,

9 9 3 9

Using equation (3.14]) to change the variable s — u in the previous integral defining by
G f(x) yields:

Ao [ () ¢ (S (D)

) d : d 27
x (f(O) + Zulagiio) + ! Z ulujg fa(s) + Qw,g(u)>
i=1 v ‘,3_1 J

X (1 + Qm,2(u) + Qq«,g(u))du + O(g%+2).

This identity can be dramatically simplified by identifying odd functions and setting their

integral to zero. One is left with

4G f / F(0 IIUH ) (Z - ) (HUII

)
W OREC ) + 70 atn(1D)
o

£

+ Qx,2(u)h(@> %( Zl azgsD f© )

+ @t ;(fj

w)

Qz,2(u)

)d +O(e212),
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where the domain of integration has been extended to R? thanks to the exponentially

decay of h. Changing the variable according to u +— \/cu,

~ d 2 f
Gfe) =F0) [ wllPydu+ 5 (3 GEDY [ adn(ul)a

ig=1 8Si88j
+¢f(0) /Rd(QxA(U)h/(IIUIIQ) + Qe 2 (w)h(||u]*))du + O(e?),
where we have used the homogeneity of ;4 and (), 2. Finally, observing that

d o7
O =t amd 3 THT - —ar)

we end up with

Gef(x) = mof(x) + e (w(a) f(2) = Af(x)) + O),
where )
wle) = = [ (@ualw(Jul) + Qua(wh(u])du
2 JRa
The uniformity follows from the compactness and smoothness of M. O

Lemma 3.2.5. Let f € C3*(M) and let 0 < v < 1/2. Then we have, uniformly for all
x € M at distance less than or equal to €7 from OM

G (x) = mi(a) (o) + VEmS () 2L (a0) + O(c),

where xg s the closest point to x that belongs to the boundary and where m§(x) and m5(z)

are bounded functions of x and .

Proof. Let xg be the closest point to x on the boundary, where closeness is measured with
the norm of the ambient space. This point is uniquely defined if the boundary is smooth
and ¢ is small enough. Let us pick a specific orthonormal basis of T, M so that the first
(d—1) vectors ey, ..., eq—1 belong to the tangent space Ty,,0M of the boundary at xg. As
before, we can now consider the projections u = (v, uq) of points y in the neighborhood of
x onto Ty M, where v = (u1,...,uq_1) € R¥1 is the projection over the first (d— 1) basis
vectors and ug € R is the projection over e4 (pointing in). By definition of xg, we have
(x — xg,e;) =0fori=1,...,d — 1, and therefore = has coordinates (0,7) where n > 0.
The proof is very similar to that of the previous lemma, so we can truncate the integral
defining G, f(z) by considering only points y that are at most at distance €7 from x. The
correction term is exponentially small, and therefore can be bounded by O(g). In addition

to this truncation, we decompose the domain into slices. More precisely, we define

S(ud) = {(Uaud) € Rd ) H(Uaud) - (Oan)H < E’Y}-
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To compute the integral defining G, f(z) up to a order &, we can integrate over all S(ugq)
for ug € [n—eY,m+¢£7]. Now this is not good enough as we want to take advantage of the

symmetries of the kernel. We therefore consider

d—1
= m RiS(ud),
i=1

where R; is the reflection on R? defined by
Ri(ul, ey U1, Uy Ujg 1y - - - ,ud) = (Ul, ey Uiy, Uy Uit 1y - - - ,ud).

This domain has now all the symmetries that we need. Moreover, up to a term of
order €2, the projection of M onto T, M is a hypersurface (in R?) with equation
ug = o(u1,...,uq4—1), where ¢ is a homogeneous polynomial of degree 2. Consequently,
up to an error of the same order, it is approximately preserved by all the reflections R;.

In particular, going from the slices S(ugq) to S(ug) is only generating an error of order ¢.

G.f _E—d/z/nﬁ”/ud) <||U| + (7 — ua)® )f(u)dvdud+(’)(5),

where u = (v, uq). For the same reason, starting the integration from ug = 0 generates an

error of order «¢:
n+e” 2 _ 2\ _
G.f(z) = g—d/2/ / h(””' + (1= ua) )f(u)dvdud +0(e).
0 S(ua) €

If we Taylor expand f around u = 0, we obtain:

d ~ d— ~
=70+ 3 2O 4 o) Z PO i (w +000)

Now, the symmetry of the kernel implies that for ¢ =1,...,d — 1,

2 - 2
[ a(ee Oz g
S(ua) =

Therefore, the only first order term of the Taylor expansion that survives is the partial

derivative along ug. We can conclude that

O (1) + 00,

G f(2) = mi () f (o) + VEm3 (2) 2

with

1

n+e” 2 - -2
mg(x) = e_d/Q/ [ h(”vl + )dvdud / / h(||ul|*)dvdug
0 S(ud) € S(ud
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and

n+e” 2 _ 2 e’
mi(x) = —5_d/2/ / h<||v| + (1 = ua) )uddvdud = —/ ud/ h(||ul|?)dvdug.
0o Jsa 2 Ve v B

Clearly, these functions are well behaved as

[N

mi) < [ Quldeand i) < [ bl

The uniformity follows from the compactness and smoothness of M and of its boundary
oM.
O

We now use these results to obtain an asymptotic expansion for the operator L. .. To
simplify the notations, we can assume that function h is scaled in such a way that mg =1
and my = 2, where mg and my are defined in Lemma [3.:2.4] We recall that, the operator

A has eigenvalues and eigenfunctions on M:
Ap; = Nig,

and we suppose that ¢; verifies the Neumann condition d¢; = 0 at the boundary oM.
Moreover, thanks to Theorem these eigenfunctions form a Hilbert basis of L?(M).
Let

Ex =span{¢; ; 0<i< K}

be the linear span of the first K + 1 eigenfunctions. We even know that, thanks to
Proposition m if we denote with e(t,z,y) € C®°(RT x M x M) the heat kernel for

functions, that

e(t,z,y) =Y e M ei()i(y)-
i
Proposition 3.2.6. For a fized K > 0, we have on Eg

l-—a -«
lim L. o = A(‘f"lq ) _ A((f g,
e—0 q < qg

Proof. We fix 0 < v < 1/2 and we start by focusing on the set M. of points of M that

are at distance larger than £ from M. We now that
4=(x) = q + e(wg — Aq)
and that, consequently,
o _ o Ag

Let
ke(z,y)

R = e )
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and for ¢ € Fy, define

Ko (x) = /M K (2, 1)) a(y)dy.

\
'y
o

Q

—~
~ :
~
3
m
—
8
<
~—
Q\

Q

—
—_
Q
o™

—

\

&
~—
~—

(=}

—~

=

-

—~~

<

~—
U

<

— ([ keleota = +az [ ketem)o)(TE - witdy) + O)

A
=q¢ “(og' " + é‘(OAZSqu1 + (1= a)weg' ™ — A(d)ql’“))) + O(e?)

A A -«
= g (o ol - aos + astl - SO o),

Consequently,

Ag  A(g'™*)
q qgt=e

4o = K°1 :qgaql—a(ue((l—a)wm )) +O().

Taking the ratio of the last two equations yields the expansion for the operator

K (w.y) ot o D@ A (@) :
| e otwatway = of >+s<¢><> S >+o<e )

There, uniformly on M.,

A(pg')(x)
= (z)

Alg' ™) (x)

La,a¢(x) = qlfa(l,)

— ¢(x) + O(e). (3.15)

Now, on M\ M. , we have

ae(x) = mi(@)alo) + VEmS () g (20) + (),

which implies that

4-() ™ = mi(x)q(wo) (1 - a\ﬁz;gi q(;) %(:ﬂo)) +0(e).
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As a consequence,

e olao) + Vami(n 2

1 Jq

q(xo) 5(%))(?(%)

¢(x0) + Vemi(z)

1 g
q(z)™ Ov

K20(@) =g.(0) " (L2

mi(a)" !

— ay/em§(z) " q(zo)' ~OmS ()

= qe(x)*“( o

mi ()T

~—~
+
— O
©

)1701

(w0)p(z0)

— avEmj ()~ q(z)'~mS () (z0)6(x0)) + O(e),

where we have used the fact that ¢ verifies the Neumann condition at g and therefore

can be taken out of any derivative across the boundary. Thus,
KZ¢(z) = (K214 O(¢))¢(x0)
and since d% = K1, for x € M\ M.,

K&o(z)
W = ¢(wo) + O(e)

and, therefore, uniformly on M\ M.,
Le,a¢($) = O(]-) (316)
To summarize the situation:

e uniformly on M. we have

Alpg' ) (x)
g~ ()

e uniformly on M \ M. we have

Ls,ad)(m) =

L op(x) = O(1).

Since we are interested in the L? convergence of this operator on M, we have:

A(pg' ™) () Afg' ™) (x)
L. o¢(z) = — T + R,
able) = SELI g S
where R. = O(e) if M has no boundary and R. = O(g?) for any v € (0, %) if M has a
boundary. O

Remark 3.8. If we make no assumption on the normalization constants mg, ms, repeating
the calculations of Theorem [3.2.6] we obtain

[ Er sty = ote) + e <¢<x)A(q1a)(I) - A(¢q1a)(x)> +OE)

dg () 2my ) ' (x)

and so, uniformly on M.,

Leatle) = 5

a 2m0
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3.2.3 The case of a =0

Setting o = 0, from Proposition we can observe that

A A
lim Le g(z) = S P 2
e—0 q q

grad q

grad ¢),

This result proves that when the density is uniform, then the operator is equal to the

Laplace-Beltrami operator on M.

Remark 3.9. If we put g = ¢q, then we have

A A
Ls,Og = M - 97(]
q q
and
Aq

g
Lg,o(f) =Ag—g—.
q q
So, by conjugation with the density, we obtain that L. has the form Laplacian plus
potential. However, since in most application the density is not uniform, this method is

clearly inappropriate if the goal is to recover the intrinsic geometry of the manifold.

3.2.4 The case of o =1

Let us suppose now that o = 1. We have:

ks(x,y)) ,d\(z) = /M kL (z,y)q(y)dy , Alg(x) = /M “ai(p) Wal)dy.

1 _
he(@,y) = q&‘(x)QE(y

g

Applying Proposition [3.2.6] to the operator L. 1, this leads to
lim L. 1¢ = lim A¢ + R, = Ag,
e—0 e—0

and so we are able to recover the Laplace-Beltrami operator even if the density is not
uniform. Moreover, as a byproduct, it is possible to recover the Neumann heat kernel
et on L}(M), using A. ;.

Proposition 3.2.7. For any t > 0, the Neumann heat kernel e~ can be approzimated
t

on L*(M) by AZ,:

A

limAZ, =e
Proof. In the Proposition [3.2.6] we showed that on F
L.y =A+R. orequivalently A.;=1—¢cA—¢eR..

To obtain the result on the heat kernel, we note that

b UK>O Ex = LQ(M)
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e (A.1)e>0 is uniformly bounded in L?(M, dzx) by 1

and therefore the result needs only to be proven on E for any fixed value of K > 0. We
also remark that if B is a bounded operator with ||B|| < 1 and nonnegative spectrum,

then for any g >0

(I + B)? 1||_||Zﬂ (ﬂ HIB||<25 b (ﬂle)llBlll

1!
>1 >1
<+ [IBI? = 1= +[B[)" - |IB]
<A+ IBIDA+ BN 1Bl < 81+ 1B~ BI.

For a fixed K > 0, if ¢ is small enough, then (I — £A) is invertible, and has norm less

than 1, in which case :

142, = (T —e0)?| —eA—eR.)t — (I -cA)||

t

|z

(I —eA)=(I —eB) 5(I —eA —eR.)* — (I — M)
(I —eA)=[(I —eA) (I —eA —eR.)* ]|
I(
I(

I—cA—cR)< — 1|
I—cR.): — 1|
<t(L+ [eRe[) M| Rel| = O(|R|)-

IA A

IA

Now, on Eg, one has (I —eA)!/e = e=*» + O(e). To prove this statement we need to use
the Theorem 10.33 of [9, pp 266]. In fact, if we define f(x) = (1 — ex)¥/¢ | and we put
f(A) = (I —eA)t/® we have

(I — D)4 = F(A)or = f(M)dr = (1 — eXe) /"o

with {Ax} and {¢x} eigenvalues and eigenfunctions of A. Now, since we are interested in

the limit &€ — 0, changing the variable according to € — t/n,

tAg

lim (1 — —5)"¢y = e ey
n

n—oo
This is actually how the heat operator act behaves on the eigenfunctions of the Laplacian,

allowing us to affirm
(I —eA)/e = e £ O(e).

Finally, we can conclude that

tA
fig Ay =712
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Chapter 4

Numerical experiments

This chapter is subdivided in two principal parts.

The first one focuses on the dis-

cretization of the quantities involved in the diffusion process. In the second one, we will

applicate the algorithm to different sets, in order to do a geometric analysis of the data.

4.1 Discretization of the continuous case

In applications, we usually have to deal with finite dataset, so we would suppose our

set is composed by N points, X = {x1,xo, ...,

Normalized Graph Laplacian

zn}. In particular:

Continuous Discretization
Density d(z) = [ ke (y)dy d(zi) = 3, ex kel@i 7))
Diff operator | Auf(x) = [y ’“d((“;f” y)a(y)dy Aaf (@) = ¥y ex "5 ()
Sym operator | Agym f(z) = JX \/:(7(‘”\/")7 (V) a(W)dy | Asymf(z;) = ZzJeX \/%\/z]— (x;)

Laplace Beltrami Normalization

Sym operator

Continuous Discretization
Density d(z) = [ k-(z,y)q(y)dy d(z:) =32, ex ke(wi, ;)
1" norm ke (w,y) = ity ke (s, 21) = a5t
274 norm ~(90) = fxl% (z,y)q(y)dy Cz(xz) = ijeX ];78(731"73]’)
Diff operator Aaf(z) = [ kg((w’)y Lf (y)q(y)dy Aaf(xi) =35 ex %J‘ ()
ke (z, 1/)  ke(zixy)

Asym f(xi) = ZxJEX Vdz)\/d(=5)

flx

;)

57
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4.1.1 Some details on discretization

The procedure to obtain the diffusion operator on this set is linked to the one of
recovering a weighted graph on the data. In fact, a popular way to describe the affinities
between data points is using a weighted graph, see for example [18],[26], [27], which vertices
correspond to the data points X = {x1,za,...,2x}, the edges are formed between every
pair of nodes, and the weights k(z;,z;) for i,5 € N quantify the affinities between the
nodes. In this way the function k& has the twofold interpretation of kernel and affinity

function. Since the quantities are finite, we define the pairwise affinity matrix K
Kij = k(zi, z;)

for some k(-,-). Actually, in this thesis, we use the Gaussian kernel

2
k(z;,xj) = exp (—Hl‘z zill )

3

Remark 4.1. The Gaussian kernel describes well the affinities between points, in fact the
smaller is the parameter ¢, the faster the exponential decreases and hence the weight func-
tion k& becomes numerically insignificant as we move away from the center. Furthermore,
it is easy to check that this kernel satisfies the admissibility conditions required from the
diffusion map’s method. So, from this kernel, we construct the diffusion matrix in relation

to the normalization we consider.

In order to recover the graph Laplacian normalization, we define D as the diagonal

matrix
N
D;; = E Kij,
=1

then A, := DK is the diffusion matrix.

Remark 4.2. Thanks to the connection with the graph theory we can understand why
this normalization is called graph Laplacian. This notion is linked to the definition of the
Laplacian on a graph which complete construction can be found in [I7]. We only point

out that Laplacian matrix £ is defined as
L=D-K.

We can apply another normalization to recover the operator with which we are actually
working:

L=D"'£=I-D'K.

L is commonly called random walk Laplacian on a graph.
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Concerning the Laplace-Beltrami normalization, we apply the graph Laplacian nor-

malization to a different weighted matrix:

K=D'KD™
From K we can define
N
Dii = Z f(ij
j=1

to recover the diffusion operator Ay := D™1K.
Our objective is to calculate the eigenvalues and eigenvectors of the diffusion operator Ay,

and in order to do so we use the symmetric operator associated to it:
Asym = DY?2A,D71/? = D=2 D~1/2,

The matrix Asym is known in [28] as normalized affinity matriz. It is easy to recover
the eigenvalues and eigenvectors of Asym thanks to the properties of symmetric matrices.

Then we can switch to the ones of A4 thanks to the following Lemma.

Lemma 4.1.1 (Normalization Lemma). Let v be an eigenvector of Asym with eigenvalue

\, then D=2y is an eigenvector of Aq with eigenvalue \.

Proof. Consider the matrix Agym = D 2K D12 and let {Ai; vi}i>o0 be the correspond-

ing eigenvalues and eigenvectors:

AsymVi = A\iv;
D Y2PKD V20, = Ay
D_1/2(D_1/2KD_1/21)i) _ D_I/Q()\ﬂ)i)
D'K®; = )\,
Ag®; = N\,

with ®; = D~1/2y,. O

4.1.2 Algorithm and implementation

In this subsection we develop the algorithms for constructing diffusion maps on a data
set X = {x1,z2,...,2N}, using the Gaussian kernel. We give the codes to implement the

affinity matrix K and for recovering the diffusion maps.
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4.1.2.1 Weighted affinity matrix

Some comments need to be done in relation to the free parameters that define the
weighted affinity matrix.
First, we illustrate two different ways to chose the € parameter of the Gaussian kernel,
suggested in [I5] and [29].
Lafon suggests to use € to be of the order of the average smallest non-zero value of ||z; —

xjHQ, that is,
N

S min [z
in = — min ||la;—;||"
Emin N : 1931-75;5]- i g

1=

In [29] the author proposes € to be the order of the mean value of the matrix K, namely,
Emean = 4 * mean(K)/N.

There is not a priori better choice for this parameter, and for each case we need to chose
it in relation to the feature we want to study.

Furthermore, besides the standard construction of the affinity matrix K

(KstandaTd)ij = k(l’i, .’L’j),

there is another construction suggested in [29]. The advice is to take into account only
the points that are at distance smaller then e, in a way that reduces the neighborhood of

the point. In other words, starting from the matrix K, it is possibile to define K, as

k(xg,xy) if k(ag,zj) <e
(Ke)ij = ’ !
0 otherwise.

In the following we give Matlab code for the computation of the affinity matrix.

function [K,epsilon]=WeightMatrix (X, Params)

7INPUT: X = n x m matrix, with n number of points and m
is the

% dimension of the points;

% Params = structure composed by the following

p%{I'EllIlCtCI‘S

% — .epsilon = 'mean’ or ’'min’;

% — .wm = ’'standard’ or ’eps nbr’;

J0OUTPUT: K =n x n weighted matrix of a Gaussian kernel
with

% parameter epsilon;

% epsilon = width parameter of the kernel.
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n=size (X,1);
sd_X=zeros(n,n);
for i = 1: n
for j = 1l:n
sd_X(i,j)=norm (X(i,:)-X(j,:) ,2) 2;
end
end
if strcmp (Params.epsilon , ’mean’)

m=4xmean (nonzeros (sd_X));
epsilon=m/n;

elseif stremp (Params.epsilon , 'min’)
h=0;
for i = 1:n

h=h+min (nonzeros (sd_X(i,:)));

end
epsilon=h/n;

end

if stremp (Params.wm, ’standard’)
K=exp((—1/epsilon )x*sd_X);

elseif stremp(Params.wm, ’'eps nbr’)
K=exp((—1/epsilon)x*sd_X);
K(K>epsilon ) =0;

end

4.1.2.2 Diffusion Maps

61

We notice that the diffusion map algorithm depends a priori from a large number of

parameters, for example:

- number of eigenvalues to consider to recover the diffusion map;

- time of diffusion ¢;

- type of normalization used.

All these choices are incorporated in the code thanks to a structure that collects all this

parameters.
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Another remark is about the use of the Matlab computation of eigenvalues and eigenvectors
of the symmetric matrix Asym. In literature, two Matlab functions are used to achieve
this result, eig and svd. The first function is the common one to effectuate this task, the
second one exploits the Singular Value Decomposition of a matrix. Some details about the
singular value decomposition are given in Appendix B. We simply recall the decomposition

for a symmetric matrix:

Asym =USVT,

where, S is a diagonal matrix composed by the eigenvalues, U = V in which the columns

contain the eigenvectors of A.

function [diffusion_map, Lambda, Psi, Asym, A_ diff] =
DiffusionMap (K, Params)
YINPUT: K =1n x n affinity matrix of the data set X of

dimension n

% Params = structure composed by the following parameters
% - .t = time of diffusion

% — .maxInd = dimension of the diffusion maps;
% — .normalization = ’lb’ or ’gl’

% — .eig = ’svd’ or ’standard’

JOUTPUT: diffusion__map = maxInd—1 x n matrix representing the
diffusion map;

% Lambda = first maxInd eigenvalues;

% Psi = n x maxInd matrix of first maxInd

eigenvectors;

% Asym = n x n symmetric matrix of diffusion;
% A_ diff = n x n matrix of diffusion.

if exist(’ 'Params’, var’ )&& ~isfield (Params, 't ’)
Params.t = 1; % by default the time of diffusion is equal to
1.

end

if exist(’Params’,’ var’ )& & ~isfield (Params, 'maxInd’)
Params.maxInd = 6; %by default we only consider the first
six eigenvalues.

end
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D = sum(K,2) ;

if strcmp (Params.normalization, ’Ib’) % laplace—beltrami, by
default is the graph laplacian type.
inverse_D = spdiags(1./D,0,size (K,1) ,size(K,2));
K = inverse_Dx*Kxinverse_ D
D = sum(K,2);
end
inverse_sqrt_D = spdiags(sqrt (1./D),0,size(K,1) ,size(K,2));

Asym = inverse_sqrt_D % K x inverse_sqrt_D;

if exist(’Params’, ’'var’) && ~isfield (Params, ’'cig’)
[v,lambda] = eig(Asym) ;
[lambda,I] = sort(diag(lambda), descend’); %by default , eig
doesn’t return the values sorted.
Lambda = lambda (1:Params.maxInd);
v = v(:,I(1:Params.maxInd));
else
[U,S,~]= svd(Asym) ;
lambda = diag(S); %by default, svd returns the values sorted
Lambda = lambda (1:Params.maxInd) ;
v = U(:, 1:Params.maxInd);
end
%normalize the eigenvectors

v = v./ repmat(sqrt(sum(v."2)),size(v,1) ,1);

%pick the eigenvectors for Adiff

Psi = inverse_sqrt_D x v;

Psi = Psi./ repmat(sqrt(sum(Psi.”2)),size(Psi, 1) ,1);
ind = 2:length (Lambda) ;

clear inverse_sqrt_D

% diffusion map
diffusion_map = (Psi.*(repmat(Lambda’.” Params.t,size(Psi,1),1))

)
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diffusion_map = diffusion_map (:,ind) ’;

inverse_ D = spdiags(1./D,0,size (K,1) ,size(K,2));
%diffusion operator
A _diff = inverse_D=x*K;

4.1.3 Factors of Error

Since the diffusion map method focuses on discover the underlying manifold upon
which the data are embedded, we can suppose that our set X = {z1,...,zy} consists
of finitely many points on M. Then we have to concentrate on two type of errors, the
one due to the fact that the points do not lie exactly on M and the error caused by the
discretization.

About the discretization, we can consider the points as realizations of i.i.d. random
variables {X7,..., Xy} with density ¢ (supported on M) and than it follows from the
law of large numbers that as N goes to infinity, all of the discrete sums above converge at
least in some weak sense and modulo a renormalization by 1/N to a continuous integrals

(Monte Carlo integration):

N
Jm 3 leay) = /. By
For a finite value of N, the relative error is expected to be of the order of O(N~2e=4/4)
and the same estimate should apply to the error of approximating A. , f(z;) by Ac o f(z:),
where with the bar we indicate the discretization version of the continuos case. A rigor-
ous estimates for the accuracy of the approximation is shown in [22], where the error of

approximation of A, o f(z;) by Aa,a f(;) verifies
Ao f(2:) = Acof(2i)] = O(N "3~/

with high probability. This bound can be further refined [23] by noticing that the numera-
tor and denominator of the expression defining flg,a f(x;) are correlated random variables

and so it is possible to derive the following estimate:
e f (i) = Acaf ()| = O(N"2e7V/4H12),
with high probability.

Corollary 4.1.2. In order to achieve a given precision with high probability, the number

N of sample points must grow faster than 5_%_%, where d is the dimension of M.
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Next, we wish to explore the fact that the data points of X might not lie exactly on M.
Precisely, suppose that X is a perturbed version of M, that is, there exists a perturbation
function n: M — X with a small norm (the size of the perturbation) such that every
point in X can be written as x + n(x) for some x € M. The function n plays the role
of some additive noise on the data. Then, assuming that the kernel k. is smooth, we can

linearize the effect of the perturbation:

e 4 () + () = ke(,9) + 0<”j§>

and, as a consequence, the perturbation of A, , is the same order

it n

Aco = Acn + O(H\[l') (4.1)
where Aeﬂ is the perturbed version of A, ,. To obtain the effect of the perturbation on
the eigenvalues and eigenfunctions, we refer to classical theorems of perturbation theory,

like Weyl’s theorem.

Theorem 4.1.3 (Weyl’'s Theorem). Let A and E be a N x N symmetric matrices. Let
A1 > ... > Ay be the eigenvalues of A and 5\1 > ... > S\N be the eigenvalues offl =A+FE.
Then | A — Ni| < ||E|l,-

In this way we can use Weyl’s theorem to get error bounds for the eigenvalues computed.
For a complete proof of this theorem, see [20, pp 198]. We then can clearly say that, in
our case

Slllp|5\l — M| < lAca — Acall-

So, the bound on the error in equation (4.1]) shows that

Corollary 4.1.4. The approzimation is valid as long as the scale parameter \/e remains

larger than the size of the perturbation.

4.1.4 Information carried by the first eigenvector

In literature, [26] [27][28], it is known that the dominant eigenvectors of diffusion matrix,
i.e. the ones corresponding to largest eigenvalues, are supposed to extract some important
information on the dataset. In this subsection we would try to understand how the first
non trivial eigenvector of the diffusion matrix is able to extract important features, thanks
to the connection with graph theory.

In [26], the justification follows from discussing the task of finding clusters in a weighted
graph G of N nodes. The author represents a cluster using a column vector x whose it"

entry captures the participation of node ¢ in that cluster. If a node does not participate
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in a cluster, the corresponding entry is zero, furthermore the restriction that the norm of

x is one is imposed. Then, based on the link weights of the graph k;; the quantity
Z kijxixj = .IITK.T
4,J

is defined as the measure for the cohesiveness of the cluster in G. A maximally cohesive
cluster x can be found by maximizing the above expression. The Rayleigh-Ritz theorem
[25, pp 176] states that the maximum value of the above expression will be A4, , the
maximum eigenvalue of K, and the corresponding eigenvector will be the optimal x.
Another interesting approach follows from [27]. Here the authors try to give a correct
segmentation of an image I, turned into a weighted graph G, searching the optimal par-
tition of the graph by defining the normalized cut disassociation measure. This leads to

consider the second eigenvectors of the generalized eigenvalues system
(D= W)y = ADy

with opportunity constraint, to solve, theoretically, our problem by a continuous point of

view. With this method, a reiteration is recommended for further extraction.

4.2 Analysis of datasets

In this section we would like to develop the ideas illustrated so far by numerical ex-
amples: we generate sets X and we compute the eigenfunctions and eigenvalues of the

diffusion operator. Then, we plot the embedding that is obtained.

4.2.1 Closed curve

We recall that, on a closed curve of length [ parametrized by arc lenght, the Laplacian
is merely the second derivative. In fact, let us suppose our curve I' C R" is parametrized

by s:[0,27] — T, then
0? ”
Acf(s) =~ 25 F8) = —£(s).

Since the curve is closed, we can consider the following eigenvalue problem

f'(x)=-Mf(z), z€T, A>0
f(0) = f(2m)
f1(0) = f'(2m)

to find an orthonormal basis of eigenfunctions given by

2rmx, . 2Tmx . o
Z )?Sln( l )}m:l'

{1, cos(
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Embedding the curve I' using the first two non trivial eigenfunctions results in a circle in

the plane:

I(s) — {cos(?),shﬂ?)}. (4.2)

We applied the diffusion maps algorithm to a toroidal spiral, a trefoil knot, an epitrochoid.
The results are shown in Figure . We obtain the points reorganized on a closed curve
in a coherent ways with the organization of the points following the curve. Moreover, when
we use the Laplace-Beltrami normalization, we recover a circle in the plane, accordingly to
[£2] These examples also show that the weighted graph Laplacian embedding is sensitive
to the density of the points. In particular, when the density has a peek, this embedding

tends to map all points around this peak to a single point, creating a corner.

Original data in R3. i ‘Embedding for Graph Laplacian Embedding for Laplace Beltrami.
i "
—~—
o \ .
a
o \
- \ i
B e e 0 e ok e ww e e ok e
: A
Original data in R3. ‘Embedding for Graph Laplacian Embedding for Laplace Beltrami

Embedding for Graph Laplacian Embedding for Laplace Bekrami

Figure 4.1: 900 randomly sampled from a toroidal spiral, a trefoil knot and an epitrochoid; their
embedding using the graph Laplacian (2"¢ column); their embedding using the Laplace-Beltrami

normalization (3" column).
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4.2.2 Curves with endpoints

Similarly, for a curve with two endpoints and of length [, i. e. I' C R™ parametrized
by s:[0,1] — T such that I'(0) = @ and I'(1) = b, the Neumann eigenfunctions recover

from the eigenvalue problem

Af(x)=-Af(z), z€T, A>0
f'a) = f'(b)

oo

are {1,cos(j7)}52; -

Figure (4.2)) shows us the embedding of a spiral helix obtained by the two normalizations
and the eigenvalues and eigenvectors corresponding to the different operators. Even in this
case, we can notice the ability of the algorithm to recover the organization of the points

following the curve.

4.2.3 Surfaces

We now consider the spectral embedding of the Swiss Roll dataset. The Swiss Roll is
a 2-D manifold embedded in R?, described by the following equation:

x = itcost te0,3n];
y=itsint te€[0,37];
z=20ms  sel0,1].

One of the characteristics of the diffusion map method is the one to recover the underlying
manifold on which the data lie. So, we expect to recover a rectangle in the diffusion space.
Figure presents the results obtained by the diffusion map algorithm. We can observe
that both normalizations try to recover the underlying manifold, but the result obtained

by graph Laplacian normalization is affected by the density of the points.

4.2.4 Image dataset

In this context we can observe that the diffusion map can have a twofold interpretation:
each column of the diffusion map present the coordinates of the embedding, each row

represents a feature function on the data. Some examples illustrate this idea.

4.2.4.1 Images parameterized by one real number

We study a sequence of face images from the UMIST Face Database 1-a 1-e. Each
picture is a pre-cropped 112 x 92 pixels gray image. The diffusion map method of Laplace-
Beltrami type is applied as follows:
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Figure 4.2: From top to bottom, from left to right: 900 randomly sampled points from a spiral
helix, first eigenvalues of the diffusion operator corresponding to different normalization, embed-
ding via graph Laplacian, embedding via Laplace Beltrami normalization, first two eigenvectors
for the diffusion operator via graph Laplacian, first two eigenvectors for the diffusion operators

via Laplace Beltrami type.
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Figure 4.3: 3000 randomly sampled points from a swiss roll manifold. From left to right: original

data set in R®, embedding via graph Laplacian, embedding via Laplace Beltrami normalization.
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- Initially, the pictures are indexed by the time parameter, or equivalently, by the
angle. To illustrate the capability of reorganization of the method, the pictures are

randomly arranged so that they appear unordered.

- The Euclidean distances between the images in the set are measured. The eigen-
functions of the Laplace Beltrami operator in this structure are computed. Finally,

the pictures are ordered according to their values.

To begin, we chose a set of 24 faces of the same person turning his head. The result about
the organization is illustrated in Figure , where we can see that reparameterizing our
dataset according to the reordered values of the first eigenvector, let us recover the more
important parameter of our set. In fact, we can say that it is the angle of rotation of the
head.

Unorganized pictures Organized pictures
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05

0.4

0.3

0.2

0.1

0.3

0.2

0.1

-0.1

-02

-03

First non trivial ei

Figure 4.4: Results about images of the same person turning his head and spectral analysis.

Regarding the spectral analysis of this diffusion process, we can observe the last two

pictures in Figure (4.4). The first non trivial eigenfunction associates a real number to
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each image, this graph looks like that of half a period of cosine, which is the first non-trivial
Neumann eigenfunction of the Laplace Beltrami on a non closed curve, as we have seen
previously. Therefore, the data seem to be approximately lying along a curve in R!12%92,
and the eigenfunction allows to recover the organization of the data with respect to the
angle of rotation of the face. So, the method allows us to recover the fundamental feature
of the set and moreover, to achieve dimensionality reduction.

Repeating the same process to a different dataset, composed by twelve images, we obtain

coherent results with the previous experiment, illustrate in Figure (4.5)).

Unorganized p1ctures Organized pictures

First non trivial eif

Figure 4.5: Results about images of the same person turning his head and spectral analysis.

4.2.4.2 Images parameterized by two real numbers

We study a database of images parameterized by two real numbers. More precisely,
the set is composed of a sequence of 420 images (75 x 81 pixel) of the word "3D" viewed
under different angles. The images are generated using Blender 2.79, a tridimensional

computer graphics software. In particular, we create a three dimensional model of the
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two characters 3 and D. Then, the object is rotated along the vertical axis (angle #) and
horizontal axis (angle ¢), like shown on Figure . The data are sampled considering 6
and ¢, uniformly distributed from —20 to 20 degrees with a step of 2 degrees.

Figure 4.6: Sample of original set. The angle 6, x-axis, is discretized 20 times between -20 and

20 degrees. The angle ¢, y-axis, is discretized 20 times between -20 and 20 degrees.

We apply to the data the diffusion maps algorithm, using the Laplace-Beltrami normal-
ization with Gaussian kernel, ¢,,;, and the standard construction of the matrix. We plot

the image of the set by the mapping (¢1, ¢2), as we can see in Figure ([4.7).

Figure 4.7: The set is mapped into R? via (¢1, ¢2).
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The result is that, the orientation of the object can be controlled by the two coordinates
¢1 and ¢2, so the natural parameters of the dataset has been recovered by the algorithm.

Clearly, even in this case we achieve dimensionality reduction.

Embedding

085
3 09 0% 1 105 11 115 12

Figure 4.8: Right: some images are plotted in (¢1,¢2). The natural parameters 6 and ¢ are

recovered.

4.2.5 Variation of parameters
4.2.5.1 Epsilon parameter

When we implement the function to obtain the weight affinity matrix, we add the choice
for the £ parameter. Let us see how this parameter is going to affect the performance of

the algorithm. We consider two cases:
- Emin = § Ly Wit e |71
- Emean = 4 *mean(K)/N

in the case of the epitrochoid, the trefoil knot, the toroidal spiral respectively. In Figure
we can recover the embedding of the curves with these different values. We can
remark that there is not a priori best choice, in fact, while for the embedding via graph
Laplacian normalization the choice of the parameter change mostly the sign, even if in the
toroidal spiral is the same, in the embedding of the Laplace Beltrami type we see that for
the trefoil knot the choice of €,,;, recover the perfect embedding, while for the toroidal

spiral the choice of &,,¢qn recover it.
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Figure 4.9: Embedding comparison between €,,in and emean. Epitrochoid (1“ row), trefoil knot

(2™ row), toroidal spiral (3" row). Embedding via graph Laplacian normalization (1°* column),

2nd

embedding via Laplace Beltrami normalization (2"¢ column).
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Figure (4.10)), shows the eigenvalues that are recovered from the different type of nor-

malization. In general, we can remark that the eigenvalues recovered from the diffusion

operator obtained by the use of the parameter €,,;, decrease rapidly towards zero, while

the others have a law rate of convergence.

Graph Laplacian eigenvalues

Laplace Beltrami eigenvalues

mean mean
min min
1
08
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" 0 "
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Graph Laplacian eigenvalues 1 Laplace Beltrami eigenvalues
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100 200 300 400 500 60 700 800 900 o 100 200 300 400 500 600 700 800 900
Graph Laplacian eigenvalues 1 Laplace Beltrami eigenvalues
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min min
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Figure 4.10: Eigenvalues comparison between €,,in and €mean. Epitrochoid (ISt row), trefoil knot

(2™ row), toroidal spiral (3" row). Eigenvalues of graph Laplacian normalization (1 column),

eigenvalues of Laplace Beltrami normalization (2"¢ column).
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4.2.5.2 Construction of affinity matrix

Here we point out the main difference of the construction of K, considering K standard,emean »
Ktandard,emins Kmin and Kpean.
Figure illustrates the various embeddings. The first thing we notice is that the
worst case to recover the geometry is the one via K,,eqn- The others methods can be

compared.

Embedding for Graph Laplacian

ling for Laplace Beltrami

Embedding for Graph Laplacian

0.06

Figure 4.11: Embedding with different affinity matrix. Epitrochoid (1% row), trefoil knot (2"¢
row), toroidal spiral (3" row). Embedding via graph Laplacian normalization (1" column),

embedding via Laplace Beltrami normalization (2" column).

Figure (4.12)) allows us to make an analysis of the eigenvalues recovered from different con-
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structions. The standard construction with &,,¢q, decrease rapidly towards zero and this
can make us think that it is the most useful method to achieve dimensionality reduction.

The worst case is the one with the K,,¢qn as confirmed by the embedding. (4.12).
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Figure 4.12: Eigenvalues of different constructions of affinity matrix. Epitrochoid (1% row),

trefoil knot (2" row), toroidal spiral (37 row). Eigenvalues of graph Laplacian normalization

2nd

(1% column), eigenvalues of Laplace Beltrami normalization (2" column).
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4.2.6 Powers of Ad and multiscale geometric analysis of dataset

We have mentioned that, the kernel represents the probability of transition in one time
step from node x to node y. So, for ¢ > 0, the probability transition from x to y in ¢

tth power A, of A4. Here, the idea is that taking

time steps is given by the kernel of the
different powers of A4, will reveal relevant geometric structure of the set at different scales.
This will allow us to underline the fact that ¢ plays the role of a scale parameter.

In order to illustrate this idea, we generate a set X of 900 points in the plane that is

actually a union of three clusters, as shown in Figure (4.13). From this set, we build a

Original datain R3
T

)

Figure 4.13: Set containing 3 clusters.

llz =yl

graph with Gaussian weights e Wwith e = 0.7. On Figure we plot several
powers of the matrix Ay, namely for ¢t = 6, ¢ = 30 and ¢t = 1000. The block structure
of this powers reveals the multiscale structure of the data: at ¢ = 6 the set appear to be
made of 3 distinct clusters. For ¢ = 30 the two closest clusters have merged. Last, at
t = 1000, all clusters have merged. Clearly, the block structure does not depend on the
specific ordering of the points, since this problem is overcome by the introduction of the

diffusion coordinates that reorganize the data regardless the given ordering of the set.
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Figure 4.14: Powers of diffusion matrix. Diffusion matrix via Graph Laplacian (1°* column),
diffusion matrix via Laplace-Beltrami (2"¢ column). Powers t = 6 (1°* row), t = 30 (2" row),
t = 1000 (37 row).
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Actually, if we compare the powers of the diffusion operators obtained by the two
different normalization, we can see that the Laplace-Beltrami type is faster than the graph
Laplacian’s. In fact, while for ¢ = 500 the graph Laplacian diffusion presents a subdivision
of the set, the Laplace-Beltrami type presents the set as if the three clusters have already

merged.
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Figure 4.15: Comparison between graph Laplacian and Laplace-Beltrami normalization. Diffusion
2nd

matrix via Graph Laplacian (1** column), diffusion matrix via Laplace-Beltrami ( column).

Powers t = 500 (1°¢ row), t = 1000 (2"¢ row).
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4.2.7 Robustness to noise

We now illustrate the robustness of the method affected by perturbations. In Figure
we consider a perturbed version of the epitrochoid used in Figure . We represent
the embedding obtained by (¢1, ¢2) and, compared to the organization of data points that
we would have obtained from a perfect epitrochoid, the results obtained are not affected

by the noise, being actually unalterated.

Perturbed data in R3 Embedding for Laplace Beltrami affected by noise
wen o5
il T

= 250, .
/ A Y 0.04 N
-8 N

e,
1 s o5 N

sord

Figure 4.16: Left: the perturbed epitrochoid of Figure lb Right: embedding of the curve using

the firs two non trivial eigenfunctions.
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Appendix A

Conditional expectation

Consider (Q, F, P) a probability space and a random variable X : Q@ — R™.

Definition A.1. Suppose G C F is a sub o-algebra of 7. Then F[X|G] is the unique
random variable Y :  — R™ such that:

e E[X|G] is G-measurable;
° fGE[X|Q]dP = fGXdP for all G € G.
We list now some of the basic properties of conditional expectation:

Proposition A.0.1. Suppose that Z : Q — R™ is another random variable such that
E[|Z|] < o0, a,b € R™. Then the following states hold:

1) E[aX +bZ|G] = aE[X|G] + bE|Z|G);
2) E[E[X|G] = E[X];

3) E[X|G] = X if X is G-measurable;

4) E|X|G] = E[X] if X is independent of G;

5) E[Z - X|G) = Z - E[X|G] if Z is G-measurable, - inner product in R™.

Proof. 1) [, E[aX +bZ|GldP = [,aX +bZdP =a [, XdP +b [, ZdP = aE[X|G] +
bE[Z(G).

2) E[E[X|G)] = [, EIX|G)dP = [, XdP = E[X].
3) Suppose B € R" be a Borel set, let G = X~1(B) € G, then

P(X €B) = /GXdP = /GE[X|g}dP = P(E[X|G] € B).
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4) Let G € G, then
/XdP:/ngdP:/XdP/ 1GdP:E[X]P(G):E[X}/ 1GdP:/ E[X)dP;
G Q Q Q Q G

furthermore E[X] is G—measurable, then E[X|G] = E[X] by uniqueness.

5) We need to prove the statement only for indicatrice functions and then extend the

result for all measurable functions. Let Y =1y , H € G and G € G. Then,

/ E[1xX|GldP = / 1y XdP = XdP = / 1y XdP = / 1, E[X|GdP.
G G GnH G G

O
Theorem A.0.2. Suppose G, H o-algebras such that H C G, then E[X|G] = E[E[X|G]|H].

Proof. Let H € H, since H C G, we have H € G. Then,
/ E[E[X|G]|H]dP = / E[X|G]dP = / XdP.
H H H

It follows from unicity that E[X|G] = E[E[X|G]|H]. O

Theorem A.0.3 (The Jensen Inequality). Let be ¢ : R — R s.t. E[|¢(X)|] < oo, then
¢(E[X]G]) = El6(X)|F].

Corollary A.0.4. The following states hold:
- |E[X|9]] < E[1X]|9];
- |EX|GI? < E[IX[*|9];

- if X, — X in L?, then E[X,|G] — E[X|G] in L.



Appendix B

Singular Value Decomposition

The SVD is a very important decomposition which is used for many purposes. In this

section K can be either R or C, furthermore suppose that m > n.

Theorem B.0.1 (Singular values decomposition). For any A € K™*"  there exist two

orthonormal (or unitary) matrices U € K™*™ and V € K"™*™ | such that

A=UxVT (or A=UxVH), (B.1)

where,

1 0

="

0 O

and ¥y = diag(o1, 02, ...,0.), its diagonal elements are arranged in the order:
o1>09>...20.>0, r=rank(A).

The elements o1,09,...,0, together with 0,41 = ... = 0, = 0 are called the singular

values of matriz A. The column vector u; of matrix U is called the left singular vector of
A, and the matriz U is called the left singular matriz. The column vector v; of matriz V is

called the Tight singular vector of A, and the matriz V is called the right singular matriz.

The proof of the Theorem (B.0.1]) can be seen in [I9] [20].

The SVD of matrix A can also be written as:

A= ZaiuiviH. (B.2)
i=1
Recall that if A is a square n X n matrix with n linearly independent eigenvectors x; , i =
1,...,n, then A can be factorized as
A=XAX1 (B.3)
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where X is the square n x n matrix whose i*" column is the eigenvector z; of A and
A is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e.
A = diag(A1,...,A,). Note that only diagonalizable matrices can be factorized in this
way.

For symmetric and Hermitian matrices, the eigenvalues and singular values are obviously
closely related. A nonnegative eigenvalue, A > 0, is also a singular value, o = A. The
corresponding vectors are equal to each other, u = v = z. A negative eigenvalue, A < 0,
must reverse its sign to become a singular value, 0 = |A|. One of the corresponding
singular vectors is the negative of the other, u = —v = z. This follows from the fact that
all the eigenvectors of an Hermitian matrix are linearly independent, and they are mutual
orthogonal, namely the eigen-matrix X = [z1,...,2,] is a unitary matrix and X ! = X .
So, it holds that X# AX = A = diag(\1,...,\n), or A = XAX* which can be rewritten

as

i=1
In other words, we prove the following theorem.

Theorem B.0.2. Let A = UXV7T be the SVD of the m x n matriz A. Suppose A is
symmetric, with eigenvalues \; and orthonormal eigenvectors xz;. In other words A =
XAX~1 s an eigendecomposition of A with A = diag(A1,..., ), X = [21,...,7,] and
XXT =1;. Then an SVD of A is A = XSV, where 0; = |\;| and v; = sgn(\;)z;, with
sgn(0) = 1.
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