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Introduction

In this thesis we present the diffusion maps, a framework based on diffusion processes
for finding meaningful geometric descriptions of data sets. A diffusion process can be
described via an iterative application of the heat kernel which has two main characteristics:
it satisfies a Markov semigroup property and its level sets encode all geometric information
of the space. The kernel acts by integration with respect to a measure, suitably related to
the features of the space.

The Markov property ensures that the behavior of a process in the future only depends
on its value at the initial time t0, not on the values it attained in the past. First order
ODEs trivially have this characteristic, since the solution of a Cauchy problem is uniqueu′(t) = Au(t),

u(t0) = u0.

The same peculiarity is shared also by the heat flow, where the linear operator u → Au

is replaced by the Laplace operator u → ∆u. In chapter 1, we will describe stochastic
processes, Markov semigroups and their infinitesimal generator, which are processes that
have this memoryless property.

Geometrical properties of the space are classically described by Riemannian geome-
try. Diffusion in this setting is expressed in terms of a heat operator, associated to the
Laplacian operator also called Laplace-Beltrami operator. From the general theory of
self-adjoint and nonnegative operators on a Riemannian manifold, it follows the existence
of a heat kernel e−t∆, which is a compact operator, and it contains as much geometric
information as the metric itself. A crucial result is the Hodge theorem for compact, con-
nected, oriented Riemannian manifold, which states that there is an orthonormal basis of
L2(M, g) of eigenfunctions of the Laplacian. Projection on this eigenfunctions is at the
basis of dimension reduction results.

The core of the thesis is the description of diffusion maps, introduced by Coifman
and Lafon [14][15][16]. They are a general framework able to associate to a data set a
probability measure, which describe its density, and a kernel, which contains its geometric
information. Iterative application of the kernel induces a diffusion on the data. The diffu-
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sion kernels am, obtained after m iterations of the process, will be compact operators, all
with the same countable family of eigenfunctions. The projection on the first eigenvectors
naturally leads to a dimensionality reduction algorithm, which maps high-dimensional vec-
tor into a low-dimensional one with minimal loss of information. These type of processes
are very useful since high dimensionality is in general an obstacle to an efficient processing
of the data. Therefore, if the number of variables which efficiently describe a data set is
small, it is reasonable to transform the representation of the data into a more efficient low
dimensional description.

This treatment will be organized in two main sections. In the first one, we focus on
defining the diffusion process on a measure space (Ω, µ), where Ω is any data set and µ can
be interpreted as a probability measure. In this setting, the local geometry is described by
a symmetric and positive preserving function k(x, y) and it allows to define an appropriate
kernel

a(x, y) = k(x, y)
d(x)d(y)

with d2(x) =
∫

Ω k(x, y)dµ(y). This normalization of the kernel is called graph Laplacian.
Hence, thanks to a(x, y), we can construct the diffusion operator

Af(x) =
∫

Ω
a(x, y)f(y)dµ(y),

whose properties enable us to find an eigendecomposition of the kernel using an orthonor-
mal basis for L2(Ω, µ), namely a(x, y) =

∑
i≥0 λiφi(x)φi(y). If for a given accuracy δ

we retain only the eigenvalues λ0, . . . , λp−1 that, raised to a certain power m exceed this
accuracy, it is possible, using the corresponding eigenfunctions φ0, . . . , φp−1, to embed the
data points into Rp:

Φp,m : Ω −→ Rp

x 7→


λm0 φ0(x)
λm1 φ1(x)

...
λmp−1φp−1(x)

 .

The maps of the family Φp,m are called diffusion maps, while each component of a
map is called diffusion coordinate. In order to understand why this embedding makes
sense, we show that the weighted Euclidean distance on this space, namely ‖x − y‖2 =∑p−1
i=0 λ

m
i (φi(x)− φi(y))2, approximates the diffusion distance on the dataset Ω, that is

D2
m(x, y) = am(x, x) + am(y, y)− 2am(x, y),

which is strictly related to the number of paths connecting points x and y. In particular,
this approximation illustrates that nearby points in Rp are correlate to nearby points in
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the data space Ω, where, the notion of proximity is described by a large number of paths,
arisen from the diffusion process.
The second section is devoted to the case in which Ω =M is a Riemannian submanifold
of Rn. Using the procedure described above, we can define a family of diffusion operators
Aε,α parametrized by a parameter α ∈ R and ε > 0, where the kernel is defined renormal-
izing a rotation-invariant function h(‖x−y‖

2

ε ), infinitely differentiable with an exponential
decay. The main result will concern the following operator, interpreted as the infinitesimal
generator of the diffusion operators

Lε,α = Id−Aε,α
ε

as ε→ 0. In particular, we show that for a suitable function f

lim
ε→0

Lε,αf = ∆(fq1−α)
q1−α − ∆(q1−α)

q1−α f, (1)

where q(x) is the density of points on M. Two values of α are investigated in details:
α = 0 and α = 1. In the first case, i.e. α = 0, (1) leads to

lim
ε→0

Lε,0f(x) = ∆fq
q
− ∆q

q
f = ∆f + 2〈grad q

q
, grad f〉. (2)

Formula (2) proves that, when the density is uniform, meaning q is constant, Lε,0 is the
Laplace-Beltrami operator on M. However, the density is not always uniform. In that
case, we see that, setting α = 1, we get:

lim
ε→0

Lε,1f = lim
ε→0

∆f +Rε = ∆f. (3)

Formula (3) means that, even though the density may not be uniform, we are able to
recover the Laplace-Beltrami operator. For this reason, the normalization of the kernel
using the parameter α = 1 is called Laplace-Beltrami. Moreover, as a byproduct, in the
α = 1 case, it is possible to approximate the Neumann heat kernel e−t∆ on L2(M), using
the diffusion operator Aε,1:

lim
ε→0

A
t
ε
ε,1 = e−t∆.

Finally, we illustrate the ideas previously discussed by numerical examples studying
sets of data. Usually these quantities are composed by a finite numbers of points, that
is, we deal with Ω = {x1, . . . , xN}. The first thing to do is to handle the implementation
problems linked with the discretization of the quantities involved in our algorithm:

d(xi) =
N∑
j=1

kε(xi, xj) , a(xi, xj) = k(xi, xj)
d(xi)d(xj)

for all xi , xj ∈ Ω. Then we generate examples of datasets and, using a Gaussian kernel,

k(xi, xj) = exp
(
−‖xi − xj‖

2

ε

)
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we compute the eigenvectors and eigenvalues of the diffusion operator. We can achieve
different interesting results:

- dimensionality reduction: we consider randomly arranged pictures of the word
"3D", viewed under different angles. These pictures can be reorganized using the
first non trivial eigenvectors: they recover the main parameters that describe these
images, namely the angle of the rotation along the x-axis and along the y-axis.

- representations of complex geometric structures: we consider a set of un-
ordered points Ω ∈ R3 on a curve. We then compute and plot the embedding built
using the first two nontrivial eigenvectors: we obtain the points reorganized on a
closed curve in a coherent ways with the organization of the points following the
curve.

- global geometric information from local structures: we generate a set that is
the union of clusters. Studying the diffusion operator, we notice that it is possible
to recover a block structure that gives us information about the whole set.

- robustness to noise perturbation: we consider a perturbed version of a set,
for example a manifold, and we plot the embedding. The results obtained are not
affected by the noise, being actually unalterated.

The elaborate can be divided in three main parts. The first part, covering chapters
1 and 2, describes the Markov semigroup property and the geometric properties of heat
kernels in the classical Riemannian setting. Chapter 3 consists of its central core, the
description of diffusion maps, and chapter 4 contains numerical examples and results.
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Chapter 1

Introduction to Markov
semigroups

The main purpose of this chapter is to introduce the notion of Markov semigroup. In
order to do so, we first recall the definition of stochastic process and then, the one of
Markov property.

1.1 Stochastic Process

Definition 1.1. (Stochastic process) Let (Ω,F , P ) denote a probability space and I an
arbitrary nonempty index set. A stochastic process is a parametrized collection of random
variables {Xt}t∈I assuming values in Rn.

As a result, a stochastic process is a function of the variable (t, ω), where t ∈ I ⊆ R

and ω ∈ Ω. Hence, it is sometimes usual to fix ω ∈ Ω and to consider the function:

X·(ω) : I −→ Rn

t 7→ Xt(ω),

for all ω ∈ Ω. These are called sample paths of the stochastic process.

One of the most important results about a stochastic process is the Kolmogorov’s exten-
sion theorem. To understand it, we have to introduce the finite-dimensional distributions

1



2 CHAPTER 1. INTRODUCTION TO MARKOV SEMIGROUPS

of a stochastic process {Xt}t∈I :

P (Xt ≤ x) =Ft(x),

P (Xt1 ≤ x1, Xt2 ≤ x2) =Ft1,t2(x1, x2),
...

P (Xt1 ≤ x1, . . . , Xtn ≤ xn) =Ft1,...,tn(x1, . . . , xn),
...

where t, ti ∈ [t0, T ] ⊆ I, x, xi ∈ Rn, n ≥ 1 and Ft1,...,tn is a distribution function for all
n ≥ 1. This system of distributions satisfies the following two conditions:

1) Symmetry condition: if {i1, . . . , in} is a permutation of the number {1, . . . , n} then,
for arbitrary instants and n ≥ 1,

Fti1 ,...,tin (xi1 , . . . , xin) = Ft1,...,tn(x1, . . . , xn).

2) Compatibility condition: for m < n and arbitrary tm+1, . . . , tn ∈ [t0, T ],

Ft1,...,tm,tm+1,...,tn(x1, . . . , xm,∞, . . . ,∞) = Ft1,...,tm(x1, . . . , xm).

Theorem 1.1.1 (Kolmogorov’s extension theorem). For every family of distribution func-
tions that satisfy the symmetry and compatibility conditions, there exists a probability space
(Ω,F , P ) and a stochastic process {Xt}t∈[t0,T ] defined on it that possesses the given dis-
tributions as a finite dimensional distributions.

This means that is equivalent to give a family of random variables or a family of
distributions.

1.2 The Markov Property

We would like to give a formal mathematical definition of the Markov property, which
can be roughly presented as follows (see [1]) :"if the state of the process at a particular time
s (the present) is known, additional information regarding the behavior of the process at
r < s (the past) has no effect on our knowledge of the probable development of the process
at t > s (in the future)" .

Suppose that I = [t0, T ] and let {Xt}t∈[t0,T ] be a stochastic process defined on a certain
probability space (Ω,F , P ). We define F([t1, t2]) = F(Xt , t1 ≤ t ≤ t2) to be the smallest
sub σ-algebra of F with respect to which all the random variables Xt for t1 ≤ t ≤ t2 are
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measurable. In other words, F([t1, t2]) contains the "history" of the process from time t1
to time t2 and is generated by the cylinder events

{ω : Xs1(ω) ∈ B1, . . . , Xsn(ω) ∈ Bn} = (Xs1 ∈ B1, . . . , Xsn ∈ Bn),

with t1 ≤ s1 ≤ . . . ≤ sn ≤ t2, B1, . . . , Bn ∈ B(Rn), where B(Rn) is the Borel set on Rn.

Definition 1.2. (Markov process) A stochastic process {Xt}t∈[t0,T ] defined on the prob-
ability space (Ω,F , P ) is called a Markov process if the following Markov property is
satisfied:

P (Xt ∈ B|F([t0, s])) = P (Xt ∈ B|Xs), (1.1)

with t0 ≤ s ≤ t ≤ T and B ∈ B(Rn).

There are various equivalent formulations of the Markov property:

Theorem 1.2.1. The following conditions are equivalent:

• {Xt}t∈[t0,T ] is a Markov’s process;

• for t0 ≤ s ≤ t ≤ T and Y a random variable F([t, T ])-measurable and integrable

E(Y |F([t0, s])) = E(Y |Xs); (1.2)

• for t0 ≤ s ≤ t ≤ T , A ∈ F([t, T ])-measurable and integrable,

P (A|F([t0, s])) = P (A|Xs);

• for t0 ≤ t1 ≤ t ≤ t2 ≤ T , A1 ∈ F([t0, t1]) and A2 ∈ F([t2, T ]),

P (A1 ∩A2|Xt) = P (A1|Xt)P (A2|Xt);

• for n ≥ 1, t0 ≤ t1 ≤ . . . ≤ tn ≤ t ≤ T and B ∈ B(Rn),

P (Xt ∈ B|Xt1 , . . . , Xtn) = P (Xt ∈ B|Xtn).

Proof of these assertions can be found, for example, in [2, p. 80-85].

1.3 Transition Probabilities

Definition 1.3. (Transition probability) A function P (s, x, t, B) is called transition prob-
ability if satisfies the following properties:

1) P (s, x, t, ·) is a probability on B(Rn) for fixed s ≤ t and x ∈ Rn.
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2) P (s, ·, t, B) is a B(Rn)-measurable function for fixed s ≤ t and B ∈ B(Rn). Further-
more,

P (s, x, t, B) =
∫

Rn
P (u, y, t, B)P (s, x, u, dy), (1.3)

this identity is called Chapman-Kolmogorov equation.

3) For all s ∈ [t0, T ] and B ∈ B(Rn), we have

P (s, x, s, B) = 1B(x) =

1 for x ∈ B

0 for x 6∈ B.

Remark 1.1. If {Xt}t∈[t0,T ] is a Markov process, we have that P (Xt ∈ B|Xs) is a transition
probability of the Markov process Xt for fixed s, t ∈ [t0, T ]. So, we shall also use the
notation

P (s, x, t, B) = P (Xt ∈ B|Xs = x),

which is the probability that the observed process will be in the set B at time t if at time
s, where s ≤ t, it was in the state x.

Remark 1.2. Let us suppose that the probability P (s, x, t, ·) has a density, i.e. for all
x ∈ Rn, and B ∈ B(Rn)

P (s, x, t, B) =
∫
B

p(s, x, t, y)dy,

where p(s, x, t, y) is a non negative valued function that is measurable with respect to y
and whose integral is equal to 1. Then, the Chapman-Kolmogorov equation reduces to∫

B

p(s, x, t, z)dz =P (s, x, t, B) =
∫

Rn
P (u, y, t, B)P (s, x, u, dy)

=
∫

Rn
P (u, y, t, B)p(s, x, u, y)dy =

∫
Rn

∫
B

p(u, y, t, z)p(s, x, u, y)dzdy

=
∫
B

∫
Rn
p(u, y, t, z)p(s, x, u, y)dydz,

from which it follows that

p(s, x, t, z) =
∫

Rn
p(s, x, u, y)p(u, y, t, z)dy.

More precisely, this means that the probability of a transition from x at time s to z at time
t is equal to the probability of the transition to y at an intermediate time u, multiplied by
the probability of the transition from y at the time u to z at the time t, summed over all
intermediate values y.

The transition probabilities for Markov processes are really importants because all
finite-dimensional distributions of the process can be obtained from them and from the
initial distribution at time t0.
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Theorem 1.3.1. If {Xt}t∈[t0,T ] is a Markov process, P (s, x, t, B) its transition probability
and Pt0 the distribution of Xt0 (i.e. Pt0(A) = P (Xt0 ∈ A), for all A ∈ B(Rn)) then for
finite dimensional distributions

P (Xt1 ∈ B1, . . . , Xtn ∈ Bn) , t0 ≤ t1 < . . . < tn ≤ T , Bi ∈ B(Rn),

we have

P (Xt1 ∈ B1, . . . , Xtn ∈ Bn) =∫
Rn

∫
B1

· · ·
∫
Bn−1

P (tn−1, xn−1, tn, Bn)·P (tn−2, xn−2, tn−1, dxn−1) · · ·P (t0, x0, t1, dx1)Pt0(dx0),

and hence, in particular,

P (Xt ∈ B) =
∫

Rn
P (t0, x, t, B)Pt0(dx).

For proof see [6, pp 151].
Thanks to this theorem, we can recover a Markov process from the transition probabil-

ities and from the initial distribution, using Theorem 1.3.1 to construct, from P (s, x, t, B)
and Pt0 , consistent finite-dimensional distributions and from them, in accordance with
Kolmogorov extension theorem, the desired process. In other words, we have proved the
following theorem.

Theorem 1.3.2. Let P (s, x, t, B) denote a transition probability, where s, t ∈ [t0, T ]. Then
for every initial probability Pt0 on B(Rn) there exists a probability space (Ω,F , P ) and a
Markov process Xt defined on it, which has transition probability P (s, x, t, B) and for which
Xt0 has the distribution Pt0 .

This result is very useful because, generally, in applied problems, we have to deal with
transition probabilities rather than Markov processes. Hence, it is convenient to know
that is possible to construct a Markov process from a family of transition probabilities.

Definition 1.4. (Homogeneous Markov Process) A Markov process {Xt}t∈[t0,T ] is said to
be homogeneous with respect to time if its transition probability P (s, x, t, B) is stationary.
In other words, the condition

P (s+ u, x, t+ u,B) = P (s, x, t, B)

is identically satisfied for t0 ≤ s ≤ t ≤ T and t0 ≤ s+ u ≤ t+ u ≤ T .

In this case, the transition probability is a function only of x, t− s, and B. Hence, we
can write it in the form

P (t− s, x,B) = P (s, x, t, B) , 0 ≤ t− s ≤ T − t0.



6 CHAPTER 1. INTRODUCTION TO MARKOV SEMIGROUPS

Therefore, P (t, x,B) is the probability of transition from x to B in time t, regardless of
the actual position of the interval of length t on the time axis. For homogeneous processes,
the Chapman-Kolmogorov equation becomes

P (t− s, x,B) = P (s, x, t, B) =
∫

Rn
P (u, y, t, B)P (s, x, u, dy) =

=
∫

Rn
P (t− u, y,B)P (u− s, x, dy).

If we denote with h = t− u and k = u− s, we get that the equation (1.3) becomes

P (h+ k, x,B) =
∫

Rn
P (h, y,B)P (k, x, dy).

As a rule, homogeneous Markov processes are defined on an interval of the form [t0,∞),
so that the transition probability P (t, x,B) is defined for t ∈ [t0,∞).

Example 1.1 (Wiener Process). The Wiener process is a n-dimensional homogeneous
Markov process Wt defined on [0,∞) with stationary transition probability

P (t, x, ·) =

N (x, t Idn), t > 0

δx(·), t = 0,

where N is the normal distribution. That is, for t = 0, we have the Dirac delta centered
at x, while for t > 0, we deal with

P (t, x,B) = P (Wt+s ∈ B|Ws = x) =
∫
B

(2πt)−n/2e
−|y−x|2

2t dy.

By virtue of the familiar formula for gaussian densities∫
Rn
n(s, x, z)n(t, z, y)dz = n(s+ t, x, y),

the Chapman-Kolmogorv equation holds for

p(t, x, y) = n(t, x, y) = (2πt)−n/2e
−|y−x|2

2t .

In general, we take the initial probability Pt0 equal to δ0, that is W0 = 0 and, since

n(t, x+ z, y + z) = n(t, x, y) for all z ∈ Rn,

we are dealing with a space-wise as well as time-wise homogeneous process. The function
Wt is frequently known as mathematical model of the Brownian motion of a free particle
in absence of friction.
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1.4 Markov Semigroups

Generally speaking, a semigroup A = (At)t≥0 is a family of operators acting on some
suitable function space with the semigroup property At ◦ As = At+s where t, s ≥ 0 and
A0 = Id. These semigroups appear in the probabilistic context describing the family of
laws of Markov process (Xt)t≥0 living on a measurable space Ω. So, the fundamental
object of investigation consist of a family A = (At)t≥0 of operators defined on some set of
real-valued measurable functions on (Ω,F).

Definition 1.5 (Markov operator). The operator At defined on some set of real-valued
measurable functions on (Ω,F) is called Markov operator if it satisfies the following prop-
erties:

1) mass conservation: At1 = 1, where 1 is the constant function ;

2) positive preserving: if f ≥ 0 , then Atf ≥ 0.

Very often property 1) may be relaxed to At1 ≤ 1.

Definition 1.6 (Markov semigroup). A family of operators A = (At)t≥0 defined on the
bounded measurable functions on a state space (Ω,F) is called a Markov semigroup if At
is a Markov operator for every t ≥ 0 and the following properties are satisfied:

1) for every t ≥ 0 , At is a linear operator sending bounded measurable functions on
(Ω,F) to bounded measurable functions;

2) initial condition: A0 = Id, the identity operator;

3) semigroup property: for every t, s ≥ 0 we have At+s = At ◦As;

4) continuity property: for every f ∈ L2(Ω), Atf converges to f in L2(Ω) as t→ 0.

It is useful to know that Markov operators At, t ≥ 0, as given in Definition 1.5, may
be represented by stochastic kernel.

Definition 1.7 (Kernel). A (non-negative) kernel on (Ω,F) is a map k := Ω×F −→ R+

satisfying the following two conditions:

1) for any fixed set B ∈ Ω , the function k(· , B) is measurable;

2) for any fixed x ∈ Ω, the set function k(x, · ) is a measure on (Ω,F).

A kernel k is called finite, if

k(x,Ω) <∞ for all x ∈ Ω;
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bounded, if

sup
x∈Ω

K(x,Ω) <∞;

stochastic, if

k(x,Ω) = 1 for all x ∈ Ω.

Thanks to this notion, Markov operators can be represented by probabilistic kernels,
which correspond to the transition probabilities of the associated Markov process. Namely,
for every bounded measurable function f : Ω −→ R,

Atf(x) =
∫

Ω
f(y)pt(x, dy), t ≥ 0, x ∈ Ω, (1.4)

where pt(x, dy) is for every t ≥ 0 a probability kernel.
The distribution at time t of the underlying Markov process (Xt)t≥0 starting at x is thus
given by the probability pt(x, ·).
Very often the family of kernels pt(x, dy) have densities with respect to a measure.

Definition 1.8 (Density kernel). A Markov semigroup (At)t≥0 on (Ω,F) is said to admit
density kernels with respect to a reference σ-finite measure µ on F if there exists for every
t ≥ 0 a positive measurable function pt(x, y) defined on Ω×Ω (up to a set of µ⊗µ-measure
0) such that, for every bounded or positive measurable function f : Ω→ R and (µ-almost)
every x ∈ Ω,

Atf(x) =
∫

Ω
f(y)pt(x, y)dµ(y).

In this case,
∫

Ω pt(x, y)dµ(y) = 1 for µ-almost every x ∈ Ω, reflecting the fact that
At1 = 1. In order to Atf to make sense for any f ∈ L2(Ω, µ) in this definition, it is in
general required that, for all t > 0 and µ-almost every x ∈ Ω,∫

Ω
pt(x, y)2dµ(y) <∞. (1.5)

Example 1.2. For the Wiener process Wt we have

Atf(x) = (2πt)−n/2
∫

Rn
f(y)e−

|y−x|2
2t dy

= (2π)−n/2
∫

Rn
e−
|z|2

2 f(x+
√
tz)dz , t > 0.

Since now, we have described how to construct a Markov semigroup from a Markov
process. Conversely, given a Markov semigroup, the construction of a Markov process
associated to it relies on the Chapman-Kolmogorov equations which express the semigroup
property from a probabilistic point of view.
Let A = (At)t≥0 be a Markov semigroup on L2(Ω) according to Definition 1.6. The
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semigroup property At ◦As = At+s translates to the kernel pt(x, dy) of the representation
(1.4) : for all t, s ≥ 0, x ∈ Ω

pt+s(x, dy) =
∫
z∈Ω

pt(z, dy)ps(x, dz)

and when the kernels admit densities,

pt+s(x, y) =
∫

Ω
pt(z, y)ps(x, z)dµ(z).

Now, starting from any point x ∈ Ω, we can construct a Markov process (Xt)t≥0 on
Ω by specifying the distribution of (Xt1 , . . . , Xtk) with 0 ≤ t1 ≤ . . . ≤ tk, see [4, pp
17]. In particular, if we are in Rn we can recover the finite-dimensional distributions and
consequently the Markov process thanks to Theorems 1.3.1 and 1.3.2.

1.5 Infinitesimal generator

A Markov semigroupA = (At)t≥0, as defined in Definition 1.6, is driven by an operator
called the infinitesimal generator of the Markov semigroup. We suppose that our semigroup
is defined on the Hilbert space L2(Ω, µ), and we call D the domain of the semigroup (At)t≥0

on which the derivative at t = 0 of At exists in L2(Ω, µ).

Definition 1.9 (Infinitesimal generator). Let A = (At)t≥0 be a Markov semigroup with
state space (Ω,F) and a measure µ. The operator that maps f ∈ D to the derivative Lf
at t = 0 of At is a linear operator, called the infinitesimal generator L of A in L2(Ω, µ).

In view of the connection with the Markov process (Xt)t≥0 associated with the semi-
group A = (At)t≥0, the generator L will also be called the Markov generator of (Xt)t≥0.
The linearity of the operators At , for every t ≥ 0, together with the semigroup property,
shows that L is the derivative of At at any time t > 0. Namely, for t, s > 0,

1
s

[At+s −At] = At
1
s

[As − Id] =
(

1
s

[As − Id]
)
At.

Letting s→ 0 then yields
∂tAt = AtL = LAt. (1.6)

The semigroup (At)t≥0 will often be called the heat semigroup or heat flow with respect to
the generator L and thus solving the heat equation (1.6).

Example 1.3. For the n-dimensional Wiener process Wt, we must calculate

Lf(x) = (2π)−n/2 lim
t↘0

∫
Rn e

−|z|2/2(f(x+
√
tz)− f(x))dz

t
.



10 CHAPTER 1. INTRODUCTION TO MARKOV SEMIGROUPS

For this we use Taylor’s theorem, which for every twice continuous partially differentiable
function f yields

f(x+
√
tz)− f(x) =

√
t

d∑
i=1

zifi(x) + t

2

d∑
i=1

d∑
j=1

zizjfi,j(x)

+ t

2

d∑
i=1

d∑
j=1

zizj(fi,j(x̄)− fi,j(x)),

where x̄ is a point between x and x +
√
tz. When we substitute this into the expression

given above for Lf(x), we get

Lf = 1
2

d∑
i=1

∂2f

∂x2
i

= 1
2∆f,

where ∆ is the Laplace operator.



Chapter 2

Elements of Riemannian
geometry

We recall here a few elements of Riemannian geometry, and in particular the notion of
Laplace and Heat operator in this setting, so that we will generalize it to diffusion maps
in the next chapter. The presentation is taken from [10] [11] [12] [13].

2.1 Riemannian Manifolds

Definition 2.1 (Riemannian manifold). A Riemannian manifold (M, g) is a smooth man-
ifold M with a family of smoothly varying positive definite inner products g = gp on TpM
for each p ∈M . The family g is called Riemannian metric.

Example 2.1. (1) On Rn, the standard Riemannian metric is given by the standard inner
product gp(v, w) = v · w for all v, w ∈ TpRn for all p ∈ Rn. We call Rn with this metric
Euclidean space.

(2) If M is a submanifold of Euclidean space, then M has a natural Riemann metric
given by gp(v, w) = v · w|TpM . This so called induced metric is the metric used in the
classical theory of curves and surfaces in Euclidean three space.

Let us indicate by χ(M) the set of all vector fields of class C∞ on M and by D(M)
the ring of real valued functions of class C∞ defined on M .

Definition 2.2 (Connection). LetM be a differentiable manifold and let ∇ be a mapping

∇ : χ(M)× χ(M)→ χ(M)

(X,Y ) 7→ ∇XY.

We say that ∇ is a connection on M if it satisfies the following properties:

11
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1. ∇fX+gY Z = f∇XZ + g∇Y Z;

2. ∇X(Y + Z) = ∇XY +∇XZ;

3. ∇X(fY ) = X(f)Y + f∇XY ;

with X,Y, Z ∈ χ(M) and f, g ∈ C∞(M).

Proposition 2.1.1 (Covariant derivative). Let M be a differentiable manifold with a
connection ∇. There exists a unique correspondence which associates to a vector field
V along the differentiable curve c : I −→ M another vector field DV

dt along c called the
covariant derivative of V along c such that:

(a) D(V+W )
dt = DV

dt + DW
dt where W is a vector field along c;

(b) D(fV )
dt = df

dtV + f DVdt where f is a differentiable function on I;

(c) if V is induced by a vector field Y ∈ χ(M), i.e. V (t) = Y (c(t)), then DV
dt = ∇dc/dtY.

Proof. First, suppose that exists a correspondence satisfying the conditions (a), (b), (c).
Let ϕ : U ⊂ Rn −→M be a system of coordinates with c(I)∩ϕ(U) 6= ∅, let (c1(t), . . . , cn(t))
be the local expression of c(t), t ∈ I and Xi = ∂

∂xi . Then we can express the field V

locally as V =
∑n
j=1 v

jXj , where n is the dimension of the manifold, vj = vj(t) and
Xj = Xj(c(t)). By (a) and (b) we have

DV

dt
=
∑
j

dvj

dt
Xj +

∑
j

vj
DXj

dt
.

By (c) and Definition 2.2, since Xj = Xj(c(t)) we have:

DXj

dt
= ∇dc/dtXj =∇∑ dci

dt Xi
Xj

=
∑
i

dci

dt
∇XiXj , i, j = 1, . . . n.

Therefore,
DV

dt
=
∑
j

dvj

dt
Xj +

∑
i,j

dci

dt
vj∇XiXj . (2.1)

The expression (2.1) shows that if there is a correspondence satisfying the conditions
above, then such a correspondence is unique.

To show existence, define dV
dt in ϕ(U) as in (2.1). It is easy to verify that this quantity

verifies the desired properties:
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(a): Suppose V and W vector fields along c, then we have

D(V +W )
dt

=
∑
j

d(vj + wj)
dt

Xj +
∑
i,j

dci

dt
(vj + wj)∇XiXj

=
∑
j

dvj

dt
Xj +

∑
j

dwj

dt
Xj +

∑
i,j

dci

dt
vj∇XiXj +

∑
i,j

dci

dt
wj∇XiXj

=
∑
j

dvj

dt
Xj +

∑
i,j

dci

dt
vj∇XiXj +

∑
j

dwj

dt
Xj +

∑
i,j

dci

dt
wj∇XiXj

= DV

dt
+ DW

dt
.

(b): supposef a differentiable function on I

D(fV )
dt

=
∑
j

d(fvj)
dt

Xj +
∑
i,j

dci

dt
fvj∇XiXj

=
∑
j

df

dt
vjXj +

∑
j

f
dvj

dt
Xj +

∑
i,j

f
dci

dt
vj∇XiXj

= df

dt
V + f

DV

dt
.

(c): suppose V is induced by a vector field Z along c, then

∇dc/dtZ =
∑
i

dci(t)
dt
∇XiZ =

∑
i,h

dci(t)
dt
∇Xi(zh(c(t))Xh)

=
∑
i,h

dci(t)
dt

(
Xi(zh(c(t)))Xh + zh(c(t))∇XiXh

)
=
∑
h

dc

dt
(zh(c(t)))Xh +

∑
i,h

dci(t)
dt

zh(c(t))∇XiXh

= D(Z(c(t)))
dt

= DV

dt

If ψ(W ) is another coordinate neighborhood , with ψ(W ) ∩ ϕ(U) 6= ∅ and we define by
dV
dt in ψ(W ) by (2.1), the definition agree in ψ(W ) ∩ ϕ(U), by the uniqueness of dV

dt in
ϕ(U). It follows that the definition can be extended over all of M , and this concludes the
proof.

Remark 2.1. Choosing a system of coordinates (x1, . . . , xn), where n = dimM , about p
and writing

Y =
∑
j

yjXj Z =
∑
j

zjXj

where Xj = ∂
∂xj , we have

∇Y Z = ∇∑
j
yjXj

∑
i

ziXi =
∑
j,i

yj∇XjziXi =
∑
j,i

yj(Xj(zi) + zi∇XjXi).
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Setting ∇XjXi =
∑
k Γkj,iXk, we conclude that the Γkj,i are differentiable functions and

that
∇Y Z =

∑
k

(Y (zk) +
∑
i,j

yizjΓki,j)Xk.

From now on denote g(v, w) with 〈v, w〉 and gij = 〈Xi, Xj〉.

Definition 2.3 (Connection compatible with the metric). A connection ∇ on a Rieman-
nian manifold M is said to be compatible with the metric if and only if

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉, X, Y, Z ∈ χ(M).

Definition 2.4 (Symmetric connection). A connection ∇ on a smooth manifoldM is said
to be symmetric if

∇XY −∇YX = [X,Y ] for all X,Y ∈ χ(M).

Theorem 2.1.2 (Levi-Civita). Given a Riemannian manifold M , there exists a unique
connection ∇ on M satisfying the conditions:

a) ∇ is symmetric;

b) ∇ is compatible with the Riemannian metric.

The connection given by the theorem will be referred as the Levi-Civita connection or
Riemannian connection on M .

Proof. Suppose initially the existence of such a ∇. Then

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉, (2.2)

Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇YX〉, (2.3)

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉. (2.4)

Adding (2.2) a (2.3) and subtracting (2.4), using the symmetry of ∇ we have that

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 = 〈[X,Z], Y 〉+ 〈[Y,Z], X〉+ 〈[X,Y ], Z〉+ 2〈Z,∇YX〉.

Therefore, we find the Koszul formula

〈Z,∇YX〉 = 1
2{X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉 − 〈[X,Y ], Z〉}.

(2.5)
The expression (2.5) shows that ∇ is uniquely determined from the metric 〈 , 〉 since Z is
an arbitrary vector field. Hence, if it exists, it will be unique.

To prove the existence, define ∇ by (2.5). It is easy to verify that ∇ is well defined
and satisfies the desired conditions:
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a):

g(∇YX −∇XY, Z) = g(∇YX,Z)− g(∇XY, Z)

= −1
2g([X,Y ], Z) + 1

2g([Y,X], Z)

= −g([X,Y ], Z) = g(−[X,Y ], Z).

b):

g(∇XY,Z) + g(Y,∇XZ) =Xg(Y, Z) + 1
2{g([X,Y ], Z) + g([Z, Y ], X) + g([Z,X], Y )

− g([Z, Y ], X)− g([Z, Y,X])− g([X,Y ], Z)}

=Xg(Y, Z).

Remark 2.2. Suppose that we have a coordinate system (U,ϕ) on M . It is customary
to call the functions Γki,j defined on U by ∇XiXj =

∑
k ΓkijXk the Christoffel symbols of

the connection. It is possible to recover these symbols from the metric g. In fact, if we
consider Xi = ∂

∂xi , Xj = ∂
∂xj , Xk = ∂

∂xk
, it follows from the proof of the Theorem 2.1.2

that

∂

∂xi
gjk + ∂

∂xj
gik −

∂

∂xk
gij = Xig(Xj , Xk) +Xjg(Xk, Xi)−Xkg(Xi, Xj) =

= g([Xi, Xk], Xj) + g([Xj , Xk], Xi) + g([Xi, Xj ], Xk) + 2g(Xk,∇XjXi)

= 2g(Xk,∇XjXi),

where we have used the fact that [Xi, Xj ] = 0 for all i 6= j. So we have,∑
l

Γlijglk = 1
2

{ ∂

∂xi
gjk + ∂

∂xj
gik −

∂

∂xk
gij

}
.

Since the matrix (gkm) admits an inverse (gkm), recalling that
∑
i gikg

ji = δjk, we obtain
that

∑
l

Γlij
∑
k

glkg
mk

︸ ︷︷ ︸
=δl,m

= 1
2
∑
k

{ ∂

∂xi
gjk + ∂

∂xj
gik −

∂

∂xk
gij

}
gmk,

so
Γmij = 1

2
∑
k

{ ∂

∂xi
gjk + ∂

∂xj
gik −

∂

∂xk
gij

}
gmk. (2.6)

The equation (2.6) is a classical expression for the Christoffel symbols of the Riemannian
connection in terms of gij , i.e. given by the metric.
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Example 2.2. For the Euclidean space Rn we have Γkij = 0. In terms of the Christoffel
symbols, the covariant derivative has the classical expression

DV

dt
=
∑
k

{dvk
dt

+
∑
i,j

Γkijvj
dXi

dt

}
Xk.

Observe that DV
dt differs from the usual derivative in the Euclidean space by terms which

involve the Christoffel symbols. Therefore, in Euclidean spaces the covariant derivative
coincides with the usual derivative.

2.2 Connection of a Riemannian submanifold

Now, we would like to investigate the case of the Levi Civita connection for Riemannian
submanifold.

Definition 2.5 (Riemannian submanifold). Let (M̃, g̃) be a Riemannian manifold. (M, g)
is a Riemannian submanifold of (M̃, g̃) if:

1) M is a submanifold of M̃ ;

2) for any p ∈M , hp is the restriction of gp to TpM .

So, let (M, g) be a Riemannian submanifold of (M̃, g̃) and assume that M is n-
dimensional, and is of codimension d in M̃ .

Remark 2.3. Recall that if f : M −→ M̃ is an immersion, then we can split TpM̃ into the
direct sum

TpM̃ = TpM ⊕ (TpM)⊥,

where (TpM)⊥ is the orthogonal complement of TpM in TpM̃ . Clearly, this decompo-
sition is valid because TpM is naturally identified with a subspace of Tf(p)M̃ via the
map df : TpM −→ Tf(p)M̃ . Here df is injective on TpM because f is required to be an
immersion. In this set, if v is an element of TpM̃ with p ∈M , we can write

v = vT + vN with vT ∈ TpM and vN ∈ (TpM)⊥.

We call vT the tangential component of v and vN the normal component of v.

Denote with ∇ and ∇̃ the Riemannian connection of M and M̃ respectively and con-
sider X̃ and Ỹ local extension of the field X and Y on M . We would like to show that

∇XY = (∇̃X̃ Ỹ )T

and this is the Riemannian connection relative to the metric induced on M by M̃ .
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In particular, let X be a vector field on M , and p ∈ M . Then there exists an open
subset U of M̃ containing p, and a vector field X̃ defined on U , which restriction toM ∩U
is X. Let then (U, φ) be a chart for M̃ around p such that φ(U ∩M) = Rn ×{0} ⊂ Rn+d.

In this chart, let X =
∑
i a
i ∂
∂xi , where a

i is a smooth function on U ∩M . Just set

X̃
(
φ−1(x, y)

)
=
∑
i

ai(φ−1(x, 0)) ∂

∂xi
.

Proposition 2.2.1. In the previously notation we have

(∇XY )p = (∇̃X̃ Ỹ )T . (2.7)

Proof. Let X̃, Ỹ and Z̃ be local extensions for the vector field X,Y and Z on M . Then
X̃ =

∑n+d
i=1 X̃

i ∂
∂di

, with X̃i
|U∩M = Xi for i ≤ n, X̃i

|U∩M = 0 for i > n, and likewise for Y
and Z. This shows that

(
[X̃, Ỹ ]

)
p

=
(
[X,Y ]

)
p
, and g̃(X̃, Ỹ ) = g(X,Y ) for all p ∈ U ∩M.

Just apply to both connections ∇ and ∇̃ to find that

g̃(∇̃X̃ Ỹ , Z̃) = g(∇XY,Z)

on U ∩M , and so we can conclude that

(∇XY )p = (∇̃X̃ Ỹ )T

because we are dealing with elements of TpM since we are on U ∩M .

Example 2.3. Let us analyse the case of Riemannian submanifolds of Euclidean space. If
M is a Riemannian submanifold of Rn, then formula (2.7) implies that a smooth curve γ
in M is a geodesic of M if and only if its second derivative γ′′ in Rn is everywhere normal
to M :

γ′′(t) = γ′′(t)T︸ ︷︷ ︸
∈Tγ(t)M

+ γ′′(t)N︸ ︷︷ ︸
∈(Tγ(t)M)⊥

but,
0 = ∇γ̇(t)γ̇(t) = γ′′(t)T

and so we can conclude that the geodesics of M are the curves with normal acceleration.

2.3 Geodesics and Exponential map

In what follows, M will be a Riemannian manifold, together with its Levi-Civita con-
nection and I ⊂ R.

Definition 2.6 (Geodesic). A parametrized curve γ : I −→ M is a geodesic at t0 ∈ I if
D
dt (

dγ
dt ) = 0 at the point t0. If γ is a geodesic at t for all t ∈ I , we say that γ is a geodesic.
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At times, by abuse of language, we refer to the image γ(I) , of a geodesic γ, as a
geodesic.

We can determine the local equations satisfied by a geodesic γ in a system of coordinates
(U, x) about γ(t0). In U a curve γ

γ(t) = (x1(t), . . . , xn(t))

will be a geodesic if and only if

0 = D

dt
(dγ
dt

) =
∑
k

(d2xk

dt2
+
∑
i,j

Γkij
dxi

dt

dxj

dt

) ∂

∂xk
.

Hence the second order system

d2xk

dt2
+
∑
i,j

Γkij
dxi

dt

dxj

dt
= 0 k = 1, . . . , n, (2.8)

yields the desired equations. In order to study the system (2.8) it is convenient to consider
the tangent bundle.

Definition 2.7 (Vector bundle). A smooth n-dimensional vector bundle is defined by a
triple (E,M, π) where E and M are a pair of smooth manifolds, E the total space, M
the base, and π is a surjective map, π : E −→ M the projection, satisfying the following
conditions:

a) Each set Ep = π−1(p) called the fiber of E over p is endowed with the structure of
vector space.

b) For each p ∈M there exists a neighborhood U of p and a diffeomorphism φ : π−1(U) −→
U × Rn called a local trivialization of E such that the following diagram commutes:

π−1(U) φ−−−−→ U × Rn

π

y yπ1

U U

(where π1 is the projection onto the first factor.)

c) The restriction of φ to each fiber φ : Ep −→ {p} × Rn is a linear isomorphism.

Example 2.4 (Tangent bundle). Let us define the tangent bundle defining the base as
M , the total space as the set

TM :=
⊔
p∈M

TpM = ∪p∈M{p} × TpM = {(p, v); p ∈M , v ∈ TpM}

and the projection π : TM −→M such that π(vp) = p. The triple (TM,M, π) is a vector
bundle, the tangent bundle. In fact, the first property follows from the definition of the
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tangent space. Then, if we consider a chart (U, x) of M around p ∈ M , for all p ∈ U we
define

φU : π−1(U) −→ U × Rn

vp 7→ (x1, . . . , xn, v1, . . . , vn),

where v1, . . . , vn are the coordinates of vp with respect to the basis { ∂
∂x1 , . . . ,

∂
∂xn }. This

map clearly satisfies the property b) and c).

So, using the tangent bundle we can say that if γ is a geodesic then the curve

t 7→ (x1(t), . . . , xn(t), dx
1(t)
dt

, . . . ,
dxn(t)
dt

)

satisfies the system dxk

dt = yk

dyk

dt = −
∑
i,j Γkijyiyj k = 1, . . . , n

(2.9)

in terms of coordinates (x1, . . . , xn, y1, . . . , yn) on TU . Therefore, the second order system
(2.8) on U is equivalent to the first order system (2.9) on TU .
Let us recall the following result from differential equation:

Theorem 2.3.1. If X is a C∞ field on the open set V in the manifold M and p ∈ V then
there exists an open set V0 ⊂ V , a number δ > 0 and a C∞ mapping ϕ : (−δ, δ)×V0 −→ V

such that the curve t 7→ ϕ(t, p), t ∈ (−δ, δ) is the unique trajectory of X which at the instant
t = 0 passes through the point p for every p ∈ V0.

Regarding the notation, the mapping ϕt : V0 −→ V given by ϕt(p) = ϕ(t, p) is called
the flow of X on V ; the smooth map p 7→ X(p) ∈ TpM is called vector field in TM .

Lemma 2.3.2. There exists a unique vector field G in TM whose trajectories are of the
form t 7→ (γ(t), γ′(t)) where γ is a geodesic on M .

Proof. We shall first prove the uniqueness of G, supposing its existence. Consider a system
of coordinates (U,ψ) on M . From the hypothesis, the trajectories of G on TU are given
by t 7→ (γ(t), γ′(t)) where γ is a geodesic. It follows that t 7→ (γ(t), γ′(t)) is a solution of
the system of differential equation (2.9). From the uniqueness of the trajectories of such
a system, we conclude that if G exists, then it is unique.

To prove the existence of G, define it locally by the system (2.9). Using the uniqueness,
we conclude that G is well defined on TM .

Definition 2.8 (Geodesic field and flow). The vector field G defined above is called the
geodesic field on TM and its flow is called geodesic flow on TM .

Applying Theorem 2.3.1 at the point (p, 0) ∈ TM we obtain the following fact.
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Proposition 2.3.3. For each p ∈ M there exist an open set U in TU where (U, x)
is a system of coordinates at p and (p, 0) ∈ U , a number δ > 0 and a C∞ mapping
ϕ : (−δ, δ)×U −→ TU such that t 7→ ϕ(t, p, v) is the unique trajectory of G which satisfies
the initial condition ϕ(0, p, v) = (p, v) for each (p, v) ∈ U .

It is possible to choose U in the form

U = {(p, v) ∈ TU ; p ∈ V and v ∈ TpM with |v| < ε1},

where V ⊂ U is a neighborhood of p ∈ M . We are saying that defining the geodesic
as the composition of π and ϕ, namely γ = π ◦ ϕ, while |v| < ε1, the geodesic γ(t, p, v)
exists in an interval (−δ, δ) and is unique. Actually it is possible to increase the velocity
of a geodesic by decreasing its interval of definition or vice-versa. This follows from the
following Lemma of homogeneity.

Lemma 2.3.4 (Homogeneity of a geodesic). If the geodesic γ(t, p, v) is defined on the
interval (−δ, δ), then the geodesic γ(t, p, av), a ∈ R, a > 0, is defined on the interval (− δ

a ,
δ
a )

and

γ(t, p, av) = γ(at, p, v).

Proof. Let h : (− δ
a ,

δ
a ) −→ M be a curve given by h(t) = γ(at, p, v). Then h(0) = p and

since h′(t) = aγ′(at, p, v), we have dh(0)
dt = av. In addition, considering the covariant

derivative

D

dt

(dh
dt

)
= ∇h′(t)h′(t) = a2∇γ′(at,p,v)γ

′(at, p, v) = 0,

where for the first inequality, we extend h′(t) to a neighborhood of h(t) in M . Therefore,
h is a geodesic passing through p with velocity av at the instant t = 0. By uniqueness

γ(at, p, v) = h(t) = γ(t, p, av).

Proposition 2.3.5. Given p ∈M there exist a neighborhood V of p ∈M , a number ε > 0
and a C∞ mapping γ : (−2, 2)× U −→M , U = {(p, w) ∈ TM ; p ∈ V,w ∈ TpM, |w| < ε}
such that t 7→ γ(t, p, w), t ∈ (−2, 2) is the unique geodesic of M which, at the instant t = 0
passes through p with velocity w, for every p in V and for every w ∈ TpM , with |w| < ε.

Proof. The geodesic γ(t, p, av) of Proposition 2.3.3 is defined for |t| < δ and for |v| < ε1.
From the Lemma of homogeneity, γ(t, q, δv2 ) is defined for |t| < 2. Taking ε < δε1

2 , we
obtain that the geodesic γ(t, q, w) is defined for |t| < 2 and |w| < ε.
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We saw that any initial point p ∈ M and any initial velocity v ∈ TpM determine
a unique geodesic, this implicitly defines a map from the tangent bundle to the set of
geodesic in M . More importantly, it allow us to define a map from the tangent bundle
to M itself, by sending the vector v to the point obtained following the geodesic for time
t = 1.

Definition 2.9 (Exponential map). Let p ∈M and let U ⊂ TM be the open set previously
defined. Then, the map exp : U −→M given by

exp(p, v) = γ(1, p, v) = γ(|v|, p, v
|v|

) (p, v) ∈ U ,

is called the exponential map on U .

It is clear that exp is differentiable, in fact it is the evaluation of the smooth map
γ(t, p, v) at t = 1, and hence it is smooth. Frequently, we shall utilize the restriction of
exp to an open subset of the tangent space TpM , that is, we define

expp : Bε(0) ⊂ TpM −→M

by expp(v) = exp(p, v).

Proposition 2.3.6. Given p ∈ M , there exists an ε > 0 such that expp : Bε(0) ⊂
TpM −→M is a diffeomorphism of Bε(0)onto an open subset of M .

Proof. Let us calculate d(expp)0 :

d(expp)0(v) = d

dt
(expp(tv))

∣∣∣
t=0

= d

dt
(γ(1, p, tv))

∣∣∣
t=0

= d

dt
(γ(t, p, v))

∣∣∣
t=0

= v.

Hence, d(expp)0 is the identity of TpM , and it follows from the inverse function theorem
that expp is a local diffeomorphism on a neighborhood of 0.

Definition 2.10 (Normal neighborhood). Any open neighborhood U of p ∈M that is the
diffeomorphic image under expp of the ball Bε(0) ⊂ TpM is called a normal neighborhood
of p.

Remark 2.4. A choice of orthonormal basis {ei} for TpM is equivalent to an isomorphism
E : Rn −→ TpM by E(x1, . . . , xn) =

∑
i x

iei. If U is a normal neighborhood of p, we can
combine the isomorphism with the exponential map to get a coordinate chart

ϕ = E−1 ◦ exp−1
p : U −→ Rn.

Such coordinates are called normal coordinates centered at p.



22 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

2.4 Laplace operator on a Riemannian manifold

At this point we can develop analysis on manifold with the metric and we would like
to define the Laplace operator on function on M . We begin to define the Hilbert space of
real valued functions on M .

2.4.1 L2 space of functions

From this point on, we assume that the given manifold M is oriented and connected.
We are looking for an n-form α(x) such that 〈f, g〉 = 〈f, g〉M =

∫
M
f(x)g(x)α(x) defines

a positive definite inner product; such an α is callled volume form.
First of all, we would like to understand what the volume of a Riemannian manifold

should be. For the sake of simplicity, we will just compute the volume of a coordinate chart
and then, using a partition of unity we can recover the full volume of M . So, consider
a positively oriented coordinate neghborhood U around p with coordinates (x1, . . . , xn).
Let v1, . . . , vn be a positively oriented basis of TpjM . Then ∂

∂xi
=
∑
k a

k
i vk.

With all this notation we define the volume of U to be

vol(U) =
∫
U

det(aki )dx1 ∧ . . . ∧ dxn.

Since gij = 〈 ∂∂xi ,
∂
∂xj
〉 we have

gij =〈 ∂
∂xi

,
∂

∂xj
〉 = 〈

∑
k

aki vk,
∑
l

aljvl〉 =
∑
k,l

aki a
l
jδkl

=
∑
k

aki a
k
j = (AAt)ij

where A = (aji ) . Thus
det g = det(AAt) = (detA)2,

and so vol(U) should be
∫
U

√
det g dx1 ∧ . . . ∧ dxn.

Definition 2.11 (Volume form). We define the volume form of a Riemannian metric to be
the top dimensional form, i.e. a differential form of top degree, which in local coordinates
is given by

dvol =
√

det gdx1 ∧ . . . ∧ dxn,

whenever ( ∂
∂x1

, . . . , ∂
∂xn

) is a positively oriented basis of the tangent space.

Remark 2.5. The volume form dvol is well defined on M . In fact, for the Riemannian
manifold (M, g) consider an atlas {(Uα, φα)}α∈I and suppose that exist α, β ∈ I such that
p ∈ Uα ∩ Uβ with p ∈M . If we suppose the coordinates in Uα are (x1, . . . , xn) and in Uβ
are (y1, . . . , yn), we would like to show that

dvol |Uα(p) =
√

det gdx1 ∧ . . . ∧ dxn =
√

det gdy1 ∧ . . . ∧ dyn = dvol |Uβ (p).
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We know that
dx1 ∧ . . . ∧ dxn = det J

(
∂xi

∂yj

)
dy1 ∧ . . . ∧ dyn.

Denoting with gij(x) = g( ∂
∂xi ,

∂
∂xj ) and gij(y) = g( ∂

∂yi ,
∂
∂yj ) we have

g(x) = J−T g(y)J−1

and so,
det g(x) = det J−2 det g(y)

using the Binet formula and the properties of the determinant. We can then conclude that√
det g(x)dx1∧. . .∧dxn =

√
det g(y) detJ−2 det Jdy1∧. . . dyn =

√
det g(y)dy1∧. . .∧dyn.

We have already said that our goal is to study the Laplace operator associated to a
Riemannian manifold. The natural setting to do this is the Hilbert space of quadratic
integral functions.

Definition 2.12 (L2(M, g)). Let (M, g) be an oriented Riemannian manifold and consider
the space C∞c (M) of smooth functions with compact support with the global inner product
defined by

〈f, g〉M =
∫
M

f(x)g(x)dvol(x). (2.10)

We define the Hilbert space L2(M, g) to be the completion of C∞c (M) with respect to the
inner product (2.10).

2.4.2 The Laplacian on functions

The Laplace operator on functions, sometimes called Laplace-Beltrami operator, rep-
resents the first important tool to study a Riemannian manifold from an analytic point of
view. The definition one can give of Laplace operator is analogue to (minus) the Laplacian
−
(

∂2

(∂x1)2 + . . .+ ∂2

(∂xn)2

)
in Rn. Recall that in Rn, for a smooth function f : Rn → R, we

have

−
n∑
i=1

∂2f

(∂xi)2 = −div(grad f).

In particular we see that the second definition is somehow intrinsic, so it can be given in
more general setting.
First of all we define the gradient of a smooth function i.e.

grad: C∞(M)→ TM,

where (M, g) is a Riemannian manifold. In Euclidean setting grad f =
∑
i
∂f
∂xi

∂
∂xi and so

it is a vector field on Rn, while df =
∑
i
∂f
∂xi dx

i is a 1-form on Rn such that

df(X) = 〈grad f,X〉 , ∀X ∈ χ(Rn)
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where 〈·, ·〉 here denotes the Euclidean metric. Now this kind of relation between vector
fields and 1-forms can be recovered in a Riemannian manifold since we have a metric. For
a Riemannian manifold (M, g), define, ∀x ∈M

αg,p : TpM → T ∗pM

v 7→ v∗; v∗(w) = 〈v, w〉p .

So αg,p is just the canonical isomorphism between a finite dimensional vector space with a
metric and its dual. We denote this isomorphism again with α. Moreover the Riemannian
metric g induces an inner product on each cotangent space T ∗pM under the isomorphism
α, namely for v∗, w∗ ∈ T ∗pM

〈v∗, w∗〉p = 〈v, w〉p .

We want to compute the expression in local coordinates of the metric on the cotangent.
First suppose that v = ∂

∂xi then

v∗( ∂

∂xj
) =

〈
∂

∂xi
,
∂

∂xj

〉
= gij .

So v∗ = ( ∂
∂xi )

∗ =
∑
j gijdx

j , hence (
∑
i g
ij ∂
∂xi )

∗ = dxj . Therefore

g(dxi, dxj) =
∑
k,l

g(gik ∂

∂xk
, gjl

∂

∂xl
) =

∑
k,l

gikgjlg( ∂

∂xk
,
∂

∂xl
)

=
∑
k,l

gikgjlgkl =
∑
k

gikδjk

= gij .

Therefore we can say that in local coordinates, the metric of the cotangent is represented
by the inverse matrix of g.
Now we are ready to define the gradient of a smooth function on an arbitrary Riemannian
manifold.

Definition 2.13 (Gradient). Let (M, g) be a Riemannian manifold. We set the gradient
to be the composition

grad: C∞(M) d−→ Λ1T ∗M
α−1

−−→∼= χ(M)

It is easy to check that this produces the ordinary gradient in Euclidean space, in fact
in local coordinates, for f ∈ C∞(M) we have

grad f = α−1(df) = α−1(
∑
i

∂f

∂xi
dxi) =

∑
i

∂f

∂xi
α−1(dxi)

=
∑
i,j

∂f

∂xi
gij

∂

∂xj
.
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Note that the gradient of f is a vector field onM , so the divergence shall be a functional
defined on χ(M). In order to give this definition, we need to introduce the concept of
contraction of a form along a vector field.

Definition 2.14 (Contraction of ω along X). Let (M, g) be a Riemannian manifold and
X a vector field on M , ω a k-form. The contraction of ω along X is defined as the k − 1
form iXω that satisfies the following request: suppose V1, . . . , Vk−1 elements of the tangent
space, then

iXω = ω(X,V1, . . . , Vk−1).

Example 2.5. Let us calculate the contraction of ω = dvol along X = ∂
∂xi . We have

iXω = (−1)i−1
√

det gdx1 ∧ . . . ∧ dx̂i ∧ . . . dxn,

where with dx̂i we indicate that dxi does not appear in the wedge product.

It is easy to check that the contraction is linear with respect to X and ω, in fact:

1) suppose ω, η to be k-form, f, g differental functions on M

iX(fω + gη) = (fω + gη)(X, . . .) = fω(X, . . .) + gη(X, . . .)

2) suppose X,Y vector field on M , a, b differential function and ω a k-form

iaX+bY ω = ω(aX + bY, . . .) = aω(X, . . .) + bω(Y, . . .)

thanks to the multilinearity of the form.

From now on, suppose ω = dvol =
√

det gdx1 ∧ . . . ∧ dxn.

Definition 2.15 (Divergence). Let (M, g) be a Riemannian manifold and X a vector field
on M . The divergence of X is defined as the quantity that satisfies the following identity

divX · ω = d(iXω).

Example 2.6. Let us calculate the divergence of X = ∂
∂xi :

div(X) · ω = d(iXω) = (−1)i−1 ∂
√

det g
∂xi

dxi ∧ dx1 ∧ . . . ∧ dx̂i ∧ . . . ∧ dxn

= ∂
√

det g
∂xi

dx1 ∧ . . . ∧ dxn

= − 1√
det g

∂ det g
∂xi

dx1 ∧ . . . ∧ dxn

= − 1√
det g

det g tr(g−1 ∂

∂xi
g)dx1 ∧ . . . ∧ dxn

= − tr(g−1 ∂

∂xi
g)ω,
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using Jacobi’s formula for the derivative of the determinant. We can conclude that

div( ∂

∂xi
) = − tr(g−1 ∂

∂xi
g).

Clearly, the divergence is linear thanks to the linearity of the differential and the
contraction.

Proposition 2.4.1. Let (M, g) be a Riemannian manifold, let a be a function of C∞(M)
and X a vector field on M , then we have

div(aX) = adiv(X) + da(X). (2.11)

Proof. Let us calculate

div(aX) · ω = d(iaXω) = d(aiXω) = da ∧ iXω + ad(iXω),

where

da ∧ iXω =
n∑

i,j=1

√
det g(−1)i−1 ∂a

∂xj
dxjdxi(X)dx1 ∧ . . . ∧ dx̂i ∧ . . . dxn

=
n∑
i=1

∂a

∂xi
dxi(X)

√
det gdx1 ∧ . . . ∧ dxn

= da(X) · ω.

So we conclude that

div(aX) · ω = da(X) · ω + adiv(X) · ω = (da(X) + div(X))ω.

Example 2.7. If we suppose X =
∑
i bi

∂
∂xi , we have

div(X) =
∑
i

div
(
bi

∂

∂xi

)
=
∑
i

bidiv
(

∂

∂xi

)
+
∑
i

dbi(
∂

∂xi
)

=
∑
i

bi(−tr(g−1 ∂

∂xi
g) +

∑
i

∑
k

∂bi
∂xk

dxk( ∂

∂xk
)

=
∑
i

bi(−tr(g−1 ∂

∂xi
g) +

∑
i

∂bi
∂xi

.

Now we are ready to give the definition of the Laplacian.
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Definition 2.16 (Laplacian). Let (M, g) be a Riemannian manifold and let f ∈ C∞(M).
The Laplacian of f , denoted by ∆f , is defined as minus the divergence of grad f , i.e.

∆f = −div(grad f).

In local coordinates, if f is in C∞(M), we know that grad(f) =
∑
i

(∑
j
∂f
∂xj g

ij

)
∂
∂xi ,

so

div(grad f) =
∑
i

(∑
j

∂f

∂xj
gij
)

(−tr(g−1 ∂

∂xi
g) +

∑
i

∂

∂xi

(∑
j

∂f

∂xj
gij
)

= −
∑
i

∑
j

∂f

∂xj
gijtr(g−1 ∂

∂xi
g +

∑
i,j

∂2f

∂xi∂xj
gij +

∑
ij

∂f

∂xj
∂gij

∂xi

= −1
2

1
det g

∑
i,j

∂f

∂xj
gij

∂ det g
∂xi

+
∑
i,j

∂2f

∂xi∂xj
gij +

∑
ij

∂f

∂xj
∂gij

∂xi
.

Since

1√
det g

∑
j

∂

∂xj

(√
det g

∑
k

gjk
∂f

∂xk

)
=

1√
det g

∑
j

∂
√

det g
∂xj

∑
k

gjk
∂f

∂xk
+ 1√

det g
√

det g
∑
j,k

∂gjk

∂xj
∂f

∂xk
+ 1√

det g
√

det g
∑
j,k

gjk
∂2f

∂xk∂xj
=

1√
det g

∑
j

−1
2

1√
det g

∂ det g
∂xj

∑
k

gjk
∂f

∂xk
+
∑
j,k

∂gjk

∂xj
∂f

∂xk
+
∑
j,k

gjk
∂2f

∂xk∂xj
=

− 1
2

1
det g

∑
i,j

∂f

∂xj
gij

∂ det g
∂xi

+
∑
i,j

∂2f

∂xi∂xj
gij +

∑
ij

∂f

∂xj
∂gij

∂xi
= div(grad f).

As a consequence, in local coordinates, for f ∈ C∞(M)

∆f =− 1√
det g

∑
j

∂

∂xj

(√
det g

∑
k

gjk
∂f

∂xk

)

=− 1√
det g

∂

∂xj

(√
det g gij ∂f

∂xi

)
where in the last equality we used the Einstein convention for the sum.

Remark 2.6. We can give another definition of the Laplacian on functions, studying the
first variation of the functional

A(f) =
∫
|grad f |2 dvol .
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Suppose h ∈ C∞0 , let us compute the derivative of the functional in the direction h:

d

dt
A(f + th)|t=0 =2

∫
grad f · gradhdvol

=2
∫
〈g−1∇f, g−1∇h〉g dvol

=2
∫
g−1gg−1〈∇f,∇h〉dvol

=2
∫ √

det gg−1〈∇f,∇h〉dx

=2
∫ √

det ggij ∂

∂xj
f
∂

∂xi
hdx

=2
∫ 1√

det g
∂

∂xi
(
√

det ggij ∂

∂xj
f)hdvol,

where we used the integration by parts formula and dx = dx1 ∧ . . . ∧ dxn. So, we can
conclude that the first variation of the gradient is∫

−∆fhdvol;

in this way we have given an analytical definition of the Laplacian on functions, a valid
alternative to the geometric one using forms.

2.5 Hodge theory for functions

In this section we would like to investigate the Hodge theorem for compact, connected,
oriented Riemannian manifold, which states that there is an orthonormal basis of L2(M, g)
of eigenfunctions of the Laplacian; hence if we restrict our attention to the space spanned
by the first N eigenvectors, we can write

∆ ∼


λ1

λ2
. . .

λN


where λi’s are the eigenvalues.
A complete presentation of the proof of the theorem can be found in [13]. Here we will
point out some remarkable definitions and properties that allow to demonstrate the result.

2.5.1 Heat operator

The proof of the theorem exploit the heat operator, so we begin with its definition.
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Definition 2.17 (Heat kernel). Let (M, g) be an oriented, compact, connected Rieman-
nian manifold. Suppose there exists a function e(t, x, y) ∈ C∞(R+ ×M ×M) such that(∂t + ∆y)e(t, x, y) = 0

limt→0+
∫
M
e(t, x, y)f(y) dvol(y) = f(x), ∀f ∈ L2(M, g).

Here ∆y denotes the Laplacian acting in the y variable. We say that e(t, x, y) is the heat
kernel on M .

Even if it’s not clear from the definition, if the heat kernel exists, it is symmetric and
unique. Hence we can rewrite the first condition as

(∂t + ∆x)e(t, x, y) = 0.

So we can interpret the heat kernel as the kernel of the resolvent operator for the heat
equation associated with the Laplacian: ∂t + ∆x = 0. Indeed the resolvent operator, also
called heat operator, is given by:

e−t∆f(x) =
∫
M

e(t, x, y)f(y) dvol(y), ∀x ∈M.

This means that, given a temperature distribution on our manifold, say f ∈ L2(M, g),
then setting f(t, x) := e−t∆f(x), we have(∂t + ∆x)f(t, x) = 0

f(0, x) = f(x), ∀x ∈M

where f(0, x) = limt→0 f(t, x).
The definition we gave corresponds to a general setting, now we specialize it in the

case of the Laplacian and the operator defined below is actually a heat operator.

Definition 2.18 (Heat Operator). Let (M, g) be a compact, oriented, connected Rieman-
nian manifold and let e(t, x, y) be its heat kernel. We define the heat operator as

e−t∆ : L2(M, g)→ L2(M, g)

f 7→
∫
M

e(t, ·, y)f(y) dvol(y).

We may regard the heat kernel as a compact operator, thanks to compactness theorem
in Sobolev spaces

L2(M, g) e−t∆−−−→ L2(M, g).
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Moreover, the heat operator is self-adjoint:

〈
e−t∆f, g

〉
=
∫
M

(∫
M

e(t, x, y)f(y)dy
)
g(x)dx

=
∫
M

(∫
M

e(t, y, x)g(x)dx
)
f(y)dy

=
〈
f, e−t∆g

〉
,

by the symmetry of the heat kernel e(t, x, y). By the spectral theorem for self-adjoint
compact operators on Hilbert spaces, there exists an orthonormal basis of L2(M, g) con-
sisting of eigenfunctions for the heat operator e−t∆ with egenvalues γi(t)

i→∞−−−→ 0. We can
prove that the γi(t)’s are strictly positive, i.e. 0 is not an eigenvalue of e−t∆ thanks to the
semigroup property of the heat operator

Lemma 2.5.1. e−t∆e−s∆ = e−(t+s)∆.

It is possible even to show that

Lemma 2.5.2. There exist λi ∈ R such that, for all t

γi(t) = e−λit.

2.5.2 Hodge theorem

Theorem 2.5.3 (Hodge Theorem for Functions). Let (M, g) be a compact, connected,
oriented Riemannian manifold. There exists an orthonormal basis of L2(M, g) consisting
of eigenfunctions of the Laplacian. All the eigenvalues are positive with a finite multi-
plicity, except that zero is an eigenvalue with multiplicity one. Moreover the eigenvalues
accumulate only at infinity.

A straightforward consequence of the Hodge theorem for functions is that the formal
sum ∑

i

e−λitφi(x)φi(y),

converges point-wise to the heat kernel e(t, x, y).

Proposition 2.5.4. Let (M, g) be a compact, connected, oriented Riemannian manifold
and let e(t, x, y) ∈ C∞(R+ ×M ×M) be the heat kernel for functions. Then we have the
point-wise convergence

e(t, x, y) =
∑
i

e−λitφi(x)φi(y).

Corollary 2.5.5. The series tr(e−t∆) :=
∑
i e
−λit converges for each t > 0 and sum is∫

M
e(t, x, x)dx.



Chapter 3

Diffusion maps

In this chapter we extend the notion of heat kernel, initially given in the Riemannian
setting, to a general diffusion process for geometric description of data sets, called diffusion
maps.

3.1 Definition of the diffusion process

As we saw in the previous chapter, a diffusion process in a Riemannian setting can be
realized via a geometric heat kernel, which contains the properties of the space. In analogy,
starting with a geometric kernel, we will show how to define an operator satisfying the
Markov property, whose eigendecomposition produces an embedding of the data in Rn

via diffusion maps. In this space, the Euclidean distance defines a diffusion metric that
measure the proximity of points in the given set of data.

3.1.1 Construction of a diffusion operator

Let (Ω,F , µ) be a measure space, where Ω is a set whose points are abstract objects
and µ can be thought as a counting measure or a probability one, with the request that
µ(Ω) <∞.
Consider then a function k : Ω × Ω −→ R which assigns a real number to a given object
pair that satisfies the following admissibility conditions:

• k is symmetric : k(x, y) = k(y, x),

• k is positive-preserving : for all x and y in Ω , k(x, y) ≥ 0,

• k is positive semi-definite: for all bounded function f defined on Ω,∫
Ω

∫
Ω
k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0.

31
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The number k(x, y) is usually interpreted as a measure of similarity between the points x
and y and it represents our a priori information on Ω.

Remark 3.1. The admissibility conditions allow the function k to define a notion of neigh-
borhood, i.e. the neighborhood of x corresponds to all points y such that k(x, y) is nu-
merically significant. In other words, if we suppose ε > 0 we can define:

Ux,ε = {y ∈ Ω ; 0 < k(x, y) < ε}.

Furthermore, the positive preservation property will allow to renormalize k in order to
define a diffusion process on the data and the third condition is necessary for imposing
the positivity of the diffusion metric.

We would like to construct a diffusion process on the data. This result can be achieved
by interpreting the function k as a kernel; we need to renormalized it, in order to interpret
it as a probabilistic density. Denote

d2(x) =
∫

Ω
k(x, y)dµ(y),

we notice that this quantity is well defined because k(x, y) ≥ 0. Then ã(x, y) = k(x,y)
d2(x)

satisfies ∫
Ω
ã(x, y)dµ(y) = 1,

moreover ã(x, y) ≥ 0 , for all x and y ∈ Ω.

Definition 3.1. (Kernel operator) The diffusion operator Ã corresponding to the kernel
ã(x, y) is defined naturally as:

Ãf(x) =
∫

Ω
ã(x, y)f(y)dµ(y).

From an analysis perspective, this operator can be viewed as an averaging operator as
it fixes constant functions and it is also positive-preserving: if f ≥ 0 then Af ≥ 0. We can
easily check that the function ã satisfies the positive-preserving property and it is positive
semi-definite, but it does not posses the symmetric feature.
So we can renormalized ã :

a(x, y) = d(x)ã(x, y) 1
d(y) = k(x, y)

d(x)d(y) ,

in this way we have a(x, y) = a(y, x). Then, we can defined naturally the kernel operator
associated:

Af(x) =
∫

Ω
a(x, y)f(y)dµ(y).

Remark 3.2. The normalization a(x, y) = k(x,y)
d(x)d(y) is sometimes called graph Laplacian

normalization because of a connection with the spectral theory of a graph [17]. More
details about this association can be found in Chapter 4.
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The new kernel a(x, y) is therefore conjugate to the stochastic one ã(x, y), and share
the same spectrum and its eigenfunctions are obtained by conjugation by d. In what
follows we will use A rather than Ã as a diffusion operator.

Theorem 3.1.1. The diffusion operator A with kernel a

Af(x) =
∫

Ω
a(x, y)f(y)dµ(y)

is bounded from L2(Ω, µ) into itself. Its norm is

‖A‖ = 1

and it is achieved by the eigenfunction d(x):

Ad(x) = d(x).

Moreover, A is symmetric and positive semi-definite.

Proof. Let us begin the proof by showing the boundness of the operator, hence we need
to determine M > 0 such that ‖Af‖L2(Ω,µ) ≤M‖f‖L2(Ω,µ). First, we notice that:

∫
Ω
a(x, y)f(y)dµ(y) =

∫
Ω

k(x, y)
d(x)d(y)f(y)dµ(y)

= 1
d(x)

∫
Ω
k(x, y)f(y)

d(y) dµ(y)

≤ 1
d(x)

(∫
Ω
k(x, y)dµ(y)

)1/2(∫
Ω
k(x, y) |f(y)|2

d(y)2 dµ(y)
)1/2

=
(∫

Ω
k(x, y) |f(y)|2

d(y)2 dµ(y)
)1/2

,

using the Schwartz inequality with f(x, y) = k(x, y)1/2, g(x, y) = k(x, y)1/2 f(y)
d(y) . It follows

that

‖Af‖2L2 = 〈Af,Af〉L2 =
∫

Ω
|Af(x)|2dµ(x) =

=
∫

Ω
|
∫

Ω
a(x, y)f(y)dµ(y)|2dµ(x) ≤

∫
Ω

∫
Ω
k(x, y) |f(y)|2

d(y)2 dµ(y)dµ(x)

=
∫

Ω

|f(y)|2

d(y)2

∫
Ω
k(x, y)dµ(x)dµ(y) =

∫
Ω
|f(y)|2dµ(y) = ‖f‖2L2 .

We can affirm that M = 1 and A is bounded from L2 into itself.
Then we have, by definition,

‖A‖op = sup
‖f‖L2=1

‖Af‖L2 .
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Thanks to the previous point we can say that

‖A‖op ≤ 1

and, since d(x) is an eigenfunction of A corresponding to eigenvalue 1:

Ad(x) =
∫

Ω
a(x, y)d(y)dµ(y)

=
∫

Ω

k(x, y)
d(x) dµ(y) = d(x),

we can then conclude that 1 = ‖A‖.
The operator A is symmetric, in fact for all f, g ∈ L2(Ω, µ) we have

〈Af, g〉 =
∫

Ω×Ω
a(x, y)f(y)dµ(y)g(x)dµ(x) =

∫
Ω×Ω

a(x, y)f(y)g(x)dµ(x)dµ(y),

〈f,Ag〉 =
∫

Ω×Ω
f(x)dµ(x)a(x, y)g(y)dµ(y) =

∫
Ω×Ω

a(x, y)f(x)g(y)dµ(x)dµ(y)

Hence, 〈Af, g〉 = 〈f,Ag〉 from which it follows that the operator is not only symmetric,
but also self-adjoint.
Lastly, we show that A is positive semi-definite: for all f ∈ L2(Ω, µ) we have

〈Af, f〉 =
∫

Ω

∫
Ω
a(x, y)f(x)f(y)dµ(x)dµ(y) =

∫
Ω

∫
Ω
k(x, y)f(x)

d(x)
f(y)
d(y) dµ(x)dµ(y) ≥ 0

thanks to the positivity of k.

In addition, if we assume that∫
Ω×Ω

a(x, y)2dµ(x)dµ(y) <∞, (3.1)

we can show that A is a compact operator. In fact, we can apply the following proposition,
whose a complete proof can be found in [7, pp 43].

Proposition 3.1.2. If (Ω,F , µ) is a measure space and a ∈ L2(Ω×Ω,F ×F , µ×µ), then

(Af)(x) =
∫

Ω
a(x, y)f(y)dµ(y)

is a compact operator and ‖A‖ ≤ ‖a‖L2 .

Remark 3.3. The request on the kernel of equation (3.1) is compatible from a probabilistic
point of view with the equation (1.5).
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3.1.2 Spectral decomposition of the diffusion kernel

Previously, we proved that the diffusion operator is compact and self-adjoint. We can
then apply the spectral decomposition theorem for an operator on an Hilbert space and
find an orthonormal basis of eigenfunctions for L2(Ω, µ) with respect to the operator A.
We denote with {λi}i∈N the eigenvalues of the operator A and {φi}i∈N the corresponding
eigenfunctions.

Lemma 3.1.3. Let {λn}n∈N be the eigenvalues sequence for a compact self-adjoint oper-
ator A. If the sequence is infinite, then λn → 0 for n→∞.

Proof. Suppose that the sequence {λn}n∈N does not converge to 0, for n→∞. So, there
exists ε > 0 such that |λn| ≥ ε for all n ≥ n̄. If m 6= n with n,m ≥ n̄, denoting with
{en}n∈N the set of the corresponding eigenfunctions, we have

‖Aen −Aem‖2 = ‖λnen − λmem‖2 = λ2
n + λ2

m > ε2,

and this shows that (Aen)n∈N has no convergent subsequences, a contradiction to the
compactness of A.

Lemma 3.1.4. If A is a compact self-adjoint operator, then either ±‖A‖ is an eigenvalue
of A.

Proof. Denote with r(A) = max{|λn| ; λn eigenvalue of A} and recall the spectral radius
formula: r(A) = limn→∞‖An‖1/n . Then, also

r(A) = lim
n→∞

‖An‖1/n = lim
n→∞

‖A2n‖1/2
n

= lim
n→∞

‖A‖
2n
2n = ‖A‖.

The only thing we need to prove to conclude is that ‖A‖2
n

= ‖A2n‖. First, suppose n = 1:

‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax, x〉 = 〈A2x, x〉 ≤ ‖A2x‖‖x‖,

taking the supremum over all x of norm 1 we obtain

‖A‖2 ≤ ‖A2‖.

On the other hand,

‖A2x‖ ≤ ‖A‖‖Ax‖ ≤ ‖A‖‖A‖‖x‖ = ‖A‖2‖x‖,

taking the supremum
‖A2‖ ≤ ‖A‖2.

Let be n > 1 and prove the statement by induction: first,

‖A2nx‖ ≤ ‖A2n−1
‖‖A2x‖ ≤ ‖A‖2

n−1
‖A‖‖x‖ = ‖A‖2

n

‖x‖,
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hece,
‖A2n‖ ≤ ‖A‖2

n

.

Finally, notice that

‖A‖2
n

= sup
‖x‖=1

‖Ax‖2
n

= sup
‖x‖=1

(‖Ax‖2)2n−1
;

if we consider the quantity

(‖Ax‖2)2n−1
= (〈Ax,Ax〉)2n−1

≤ (‖A2x‖‖x‖)2n−1
,

taking the supremum we have

‖A‖2
n

≤ (‖A2‖)2n−1
= ‖A2·2n−1

‖ = ‖A2n‖.

Remark 3.4. It follows from these Lemmas that the eigenvalues of the diffusion operator
are distributed between 0 and 1. In other words we have

1 = λ0 ≥ λ1 ≥ . . .

with λi ≥ 0, for all i ∈ N.

As we previously stated, we would like to find a spectral decomposition of the kernel.
In order to do so we need a special basis for L2(Ω× Ω).

Proposition 3.1.5. Let be {φn}n∈N an orthonormal basis for L2(Ω), then {φnφm}n,m∈N

is an orthonormal basis for L2(Ω× Ω).

Proof. First thing to do is to check that {φnφm}n,m∈N is an orthonormal set for L2(Ω×Ω):

〈φn(x)φm(y), φi(x)φj(y)〉 =
∫

Ω×Ω
φn(x)φm(y)φi(x)φj(y)dµ(x)dµ(y)

= δn,iδm,j =

1 if n = i , m = j

0 otherwise.

Then, we can see if the orthogonal of the space generated by {φnφm} is empty. In other
words, suppose h ∈ L2(Ω × Ω) such that 〈h, φnφm〉 = 0, we would like to show that h is
the null function. Consider

0 =
∫

Ω×Ω
h(x, y)φn(x)φm(y)dµ(x)dµ(y) =

∫
Ω

(∫
Ω
h(x, y)φn(y)dµ(y)

)
φm(x)dµ(x).

and note that, since {φm}m∈N is a basis for L2(Ω) the function x→
∫

Ω h(x, y)φn(y)dµ(y)
is zero almost everywhere for each n. Denoting with

En =
{
x ∈ Ω ;

∫
Ω
h(x, y)φn(y)dµ(y) 6= 0

}
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we have that E = ∪n≥0En is a null set. We can say that h(x, y) = 0 for all x ∈ Ω \ E
almost everywhere.
Finally, since h ∈ L2(Ω× Ω) we have∫

Ω×Ω
|h(x, y)|2dµ(x)dµ(y) =

∫
Ω

∫
Ω
|h(x, y)|2dµ(x)dµ(y) =

∫
Ω\E

∫
Ω
|h(x, y)|2dµ(x)dµ(y) = 0,

and this concludes the proof.

Let us consider then the kernel a(x, y), seeing this as a function of y we can apply the
following decomposition:

a(x, y) =
∑
i≥0

ci(x)φi(y). (3.2)

We can easily check that the coefficients ci(x) are in L2(Ω), in fact

∞ >

∫
Ω×Ω
|a(x, y)|2dµ(x)dµ(y) =

∫
Ω×Ω
|
∑
i≥0

ci(x)φi(y)|2dµ(x)dµ(y)

≥
∫

Ω

∫
Ω

∑
i≥0
|ci(x)|2|φi(y)|2dµ(x)dµ(y) =

∑
i≥0

∫
Ω
|φi(y)|2dµ(y)︸ ︷︷ ︸

=1

∫
Ω
|ci(x)|2dµ(x)

=
∑
i≥0

∫
Ω
|ci(x)|2dµ(x) ≥

∫
Ω
|ci(x)|2dµ(x),

and then we can write
ci(x) =

∑
k≥0

ai,kφk(x). (3.3)

Putting (3.3) in (3.2) we obtain:

a(x, y) =
∑
i≥0

∑
k≥0

ai,kφk(x)φi(y). (3.4)

Observing that :

λhφh(x) = Aφh(x) =
∫

Ω
a(x, y)φh(y)dµ(y) =

∫
Ω

∑
i≥0

∑
k≥0

ai,kφk(x)φi(y)φh(y)dµ(y)

=
∑
i,k≥0

ai,kφk(x)〈φi(y), φh(y)〉 =
∑
i,k≥0

ai,kφk(x)δi,h =
∑
k≥0

ah,kφk(x),

it follows that ah,h = λh while ah, k = 0 for all k 6= h. We can conclude:

a(x, y) =
∑
j≥0

λjφj(x)φj(y). (3.5)

An analogous decomposition holds for the kernel related to the diffusion operator Am,
with m ≥ 1.



38 CHAPTER 3. DIFFUSION MAPS

Proposition 3.1.6. Let a(m)(x, y) denote the kernel of Am. Then we have

a(m)(x, y) =
∑
j≥0

λmj φj(x)φj(y). (3.6)

Proof. Let us begin with writing explicitly the operator

Amf(x) =
∫

Ω× · · · × Ω︸ ︷︷ ︸
m

a(x, x1)a(x1, x2) · · · a(xm−1, xm)f(xm)dµ(x1) · · · dµ(xm). (3.7)

We have already shown that for the kernel holds the following decomposition:

a(x, x1)a(x1, x2) · · · a(xm−1, xm) =
∑
i≥0

λmi φi(x)φ2
i (x1) · · ·φ2

i (xm−1)φi(xm),

reorganizing the equation (3.7) we obtain

Amf(x) =
∑
i≥0

(∫
Ω
φ2
i (x1)dµ(x1)

∫
Ω
φ2
i (x2)dµ(x2) · . . . ·

∫
Ω
φ2
i (xm−1)dµ(xm−1)·

·
∫

Ω
λmi φi(x)φi(xm)f(xm)dµ(xm)

)
.

Since {φn}n∈N is an orthonormal basis for L2(Ω), we have
∫

Ω φ
2
i (xk)dµ(xk) = 1, for all

i ≥ 0 and k = 1, . . .m− 1. It follows that

Amf(x) =
∫

Ω

∑
i≥0

λmi φi(x)φi(xm)f(xm)dµ(xm), (3.8)

and defining am(x, y) =
∑
i≥0 λ

m
i φi(x)φi(y) we can conclude.

Remark 3.5. Using the definition and the properties of diffusion operators A = (Am)m≥0,
defining A0 = Id, we may notice that there are some analogies with the Markov semigroup,
even if, here, there is a discretization of the continuous parameter of the definition. In
fact, each Am with m ≥ 0 satisfies the properties of a Markov operator as in Definition
1.5 thanks to Theorem 3.1.1. Another straightforward consequence of Theorem 3.1.1 is
that the first property of Definition 1.6 is verified. Furthermore, the semigroup property
holds: on one hand we have

Am+nf(x) =
∫

Ω
am+n(x, y)f(y)dµ(y) =

∫
Ω

∑
i

λm+n
i φi(x)φi(y)f(y)dµ(y),
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on the other hand

Am(Anf(x)) =Am
(∫

Ω
an(x, y)f(y)dµ(y)

)
= Am

(∫
Ω

∑
i

λni φi(x)φi(y)f(y)dµ(y)︸ ︷︷ ︸
F (x)

)

=
∫

Ω

∑
i

λmi φi(x)φi(z)F (z)dµ(z)

=
∫

Ω

∑
i

λmi φi(x)φi(z)
∫

Ω

∑
i

λni φi(z)φi(y)f(y)dµ(y)dµ(z)

=
∫

Ω

∑
i

λm+n
i φi(x)φi(z)2φi(y)f(y)dµ(y)dµ(z)

=
∫

Ω
φi(z)2dµ(z)︸ ︷︷ ︸

=1

∫
Ω

∑
i

λm+n
i φi(x)φi(y)f(y)dµ(y)

=
∫

Ω

∑
i

λm+n
i φi(x)φi(y)f(y)dµ(y).

Finally, it is verified also the continuity property: for every f ∈ L2(Ω)

‖Amf − f‖22 =
∫

Ω
(Amf(x)− f(x))2

dµ(x) =
∫

Ω

(∫
Ω
am(x, y)f(y)dµ(y)− f(x)

)2
dµ(x),

sending m to 0 we have∫
Ω

(∫
Ω
f(y)dµ(y)︸ ︷︷ ︸

=C

−f(x)
)2
dµ(x) =

∫
Ω
C2 + f(x)2 − 2Cf(x)dµ(x) ≤ C2 + C2 − 2C2 = 0,

if we suppose that µ is a probability measure.

3.1.3 Diffusion maps and metrics

The main goal of this subsection is to define a map that transports the data into a
particular l2 space, in which the usual distance corresponds to a distance on Ω. The first
thing to do is to define this distance, and we would do that using the spectral decomposition
presented in the previous subsection.
Maintaining the previous notation, we introduce the following mapping:

Φ(x) =


φ0(x)
φ1(x)

...

 ,

in which each eigenfunction is interpreted as a coordinate on the set. This map takes
abstract entities and provides a representation of the data as point in an Euclidean space.
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Definition 3.2. (Diffusion metric) Let (Ω,F , µ) be a measure space, A the diffusion
operator associated to a kernel a(x, y). We define the family of diffusion metrics {Dm}m≥1

as
D2
m(x, y) = am(x, x) + am(y, y)− 2am(x, y).

Proposition 3.1.7. Let (Ω,F , µ) be a measure space and {φn}n∈N the orthonormal basis
associated to the diffusion operator A. Then,

D2
m(x, y) =

∑
i≥0

λmi (φi(x)− φi(y))2 = ‖x− y‖2.

In other words, the diffusion metric can be computed as a weighted Euclidean distance in
the embedding space, the weights being λm0 , λm1 , . . .

Proof. The proof is a mere computation, in fact

D2
m(x, y) = am(x, x) + am(y, y)− 2am(x, y)

=
∑
i≥0

λmi (φ2
i (x)) +

∑
i≥0

λmi φ
2
i (y)− 2

∑
i≥0

λmi φi(x)φi(y) =
∑
i≥0

λmi (φi(x)− φi(y))2.

Proposition 3.1.8. The diffusion distance can be expressed using the L2 norm of the
diffusion kernels:

D2
2m(x, y) =

∫
Ω
|am(x, z)− am(y, z)|2dµ(z) = ‖am(x, ·)− am(y, ·)‖2L2 . (3.9)

Proof. Let us begin with the calculation of the L2 norm of the functions:∫
Ω
|am(x, z)−am(y, z)|2dµ(z) =

∫
Ω

(am(x, z)− am(y, z))2dµ(z)

=
∫

Ω

(∑
i≥0

λiφi(x)φi(z)−
∑
i≥0

λmi φi(y)φi(z)
)2
dµ(z)

=
[∑
i≥0

λ2m
i

(∫
Ω
φi(x)2φi(z)2dµ(z) +

∫
Ω
φi(y)2φi(z)2dµ(z)

− 2
∫

Ω
φi(x)φi(y)φi(z)2dµ(z)

)]
=
∑
i≥0

λ2m
i

(
φ2
i (x) + φ2

i (y)− 2φi(x)φi(y)
)
.

On the other side, we have

D2
2m(x, y) = a2m(x, x) + a2m(y, y)− 2a2m(x, y)

=
∑
i≥0

λ2m
i φ2

i (x) +
∑
i≥0

λ2m
i φ2

i (y)−
∑
i≥0

λ2m
i 2φi(x)φi(y)

=
∑
i≥0

λ2m
i

(
φ2
i (x) + φ2

i (y)− 2φi(x)φi(y)
)
.
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Using these results, we can derive that Dm is a semi-metric metric in the classical
sense. First of all, the symmetry is satisfied thanks to the symmetry of the kernel a(x, y).
Moreover, Dm is non negative and it verifies the triangular inequality:

D2
2m(x, y) =

∫
Ω
|am(x, z)− am(y, z)|2dµ(z)

=
∫

Ω
|am(x, z)− am(h, z) + am(h, z)− am(y, z)|2dµ(z)

≤
∫

Ω
|am(x, z)− am(h, z)|2dµ(z) +

∫
Ω
|am(y, z)− am(h, z)|2dµ(z)

= D2
2m(x, h) +D2

2m(h, y).

Remark 3.6. We can give a probabilistic interpretation about the diffusion distance, since
it is strictly correlated to the number of paths connecting x and y. It is small if there are
many high probability paths between two points and it will be large if, on the contrary,
the number of connection is small. Recall the equivalent definition

D2
2m(x, y) =

∫
Ω
|am(x, z)− am(y, z)|2dµ(z).

We can assume that the kernels have compact support, so that the integral is extended
to neighborhood of points x and y. Moreover, the integral is extended on the set when
µ is different from 0, which is the set where the density of points of the data set is high.
Hence, the distance is small if the density of points is high in a neighborhood containing
x and y. It is high if the density is small in a set containing both points. In order to give
a probabilistic interpretation, we identify kernels with probabilistic density of a stochastic
process. This is depicted in Figure (3.1). We can notice that B and C are well connected
because we have many paths that joint them. On the contrary, A and B are very distant
because they are connected by few paths. To sum up, we can say that, since we are
speaking by a probabilistic point of view, if we have many paths between two points, the
probability to joint them is higher respect to the probability to joint two points connected
by less paths.

We can therefore introduce the family of diffusion maps {Φt,p}t,p∈N given by

Φt,p(x) =


λt1φ1(x)
λt2φ2(x)

...
λtpφp(x)

 . (3.10)

Each component of Φt,p(x) is called diffusion coordinate and the map Φt,p : Ω −→ Rp

embeds the dataset into a Euclidean space of dimension p. In other words, we have proved
the following Corollary.
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Figure 3.1: Example of diffusion distance in a set of points, created by Lafon in [15]. Points B
and C are close in the sense of Dm; on the contrary because of a presence of a bottleneck, point
A and B are very distant from each others.

Corollary 3.1.9. The embedding generated by the eigenfunctions allows a dimensional-
ity reduction of the data. Indeed, for a given accuracy δ, we retain only the eigenvalues
λ1, . . . , λp that, when raised to the power m, exceed the δ threshold, and we use the corre-
sponding eigenfunctions φ1, . . . , φp to embed the data points into Rp.

3.2 The case of submanifolds in Rn

In this section we analyse the case that Ω is a subset of Rn. In particular, we assume
the data lie on a submanifold of Rn and we show how different operators can recover
the Riemannian geometry. The main goal is to recover the manifold structure regardless
the distributions of the sample points. In order to do so, we will introduce a family of
diffusion processes, parameterized by a number α ∈ R which can be tuned up to specify
the influence of the density. Two values of α are of particular interesting:

• α = 0, the diffusion reduces to the one defined in the previous section;

• α = 1, if the points approximately lie on a submanifold of Rn, we obtain an approx-
imation of the Laplace-Beltrami operator.

As for the notation, let M be a C∞ compact manifold of dimension d in Rn and µ be a
measure on M. The metric on M is that induced by that of the ambient space Rn. We
shall assume that µ has a density with respect to the Riemannian measure dx onM, i.e.
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dµ(x) = q(x)dx. This density can be thought as the density of the sample points in our
data set, thus it does not have to be uniform.

From now on we make the fundamental assumption that the only objects that are
observable are defined in relation with the geometry of the ambient space Rn and the
distribution dµ(x) = q(x)dx of the points. For instance, we have access to the Euclidean
distance between two points, or it make sense to compute integral against dµ but we do not
have the knowledge of the geodesic distances onM. Likewise, the action of the Laplace-
Beltrami operator cannot be observed as it is an object of the intrinsic geometry of M.
Our goal is to show that by using the geometry of the ambient space we can approximate
objects whose definitions rely on the intrinsic geometry only.

We restrict our attention to a family of rotation invariant kernels, i.e. of the form

kε(x, y) = h

(
‖x− y‖2

ε

)
,

where we assume that h is a function infinitely differentiable with an exponential decay
at infinity.

3.2.1 Family of diffusions

Let us set up the family of diffusions that will allow us to recover the Riemannian
structure regardless the probabilistic terms. We fix α ∈ R and a rotation invariant kernel

kε(x, y) = h

(
‖x−y‖2

ε

)
. Let

qε(x) =
∫
M
kε(x, y)q(y)dy

and form the new kernel
kαε (x, y) =

kε(x,y)

qαε (x)qαε (y) .

We normalize the quantity kαε (x, y) by setting

dαε (x) =
∫
M
kαε (x, y)q(y)dy

and by defining the stochastic kernel

aε,α(x, y) = kαε (x, y)
dαε (x) .

Let Aε,α be defined by

Aε,αf(x) =
∫
M
aε,α(x, y)f(y)q(y)dy,

even in this case we can think about this operator as a Markov operator. In fact, Aε,α1 = 1
and if f ≥ 0 then Aε,αf ≥ 0.
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Our main result will concern the operator

Lε,α := Id−Aε,α
ε

as ε 7→ 0 and it can be interpreted as the infinitesimal generator associated to a Markov
semigroup. This will be more clear thanks to the results of the next paragraphs.

3.2.2 Technical Results

In this subsection we prove an asymptotic expansion for the operator Lε,α acting on
a submanifoldM ⊂ Rn. We start by comparing the metric defined on the manifold with
that defined on the (local) projection of the submanifold over the tangent space.
We assumeM to be C∞ and compact. Let x ∈M be a fixed point not on the boundary,
TxM be the tangent space to M at x and {e1, . . . , ed} be a fixed orthonormal basis of
TxM. In what follows, we introduce two systems of local coordinates in the neighborhood
of x.

First, we consider normal coordinates: the exponential map expx generates a set of
orthogonal geodesics (γ1, . . . , γd) intersecting at x with initial velocity (e1, . . . , ed), and any
point y in a sufficiently small neighborhood of x has a set of normal coordinates (s1, . . . , sd)
along these geodesics. Therefore, any function f defined onM in the neighborhood of x
can be seen as a function f̃ of (s1, . . . , sd); in this case if f ∈ C2 we have

∆f(x) = −
d∑
i=1

∂2

∂s2
i

f̃(0, . . . , 0),

where ∆ is the Laplace Beltrami operator onM .

Remark 3.7. If x is on the boundary ∂M ofM , and if we choose e1, . . . , ed−1 to be in the
tangent space of this boundary at x, while ed is normal and pointing in, then the normal
derivative of a function f at x is defined as

∂f

∂ν
(x) = − ∂f̃

∂sd
(0).

The second system of coordinates is given by the orthogonal projection u of y on
TxM. More precisely, the coordinates (u1, . . . , ud) are given by ui = 〈x − y, ei〉Rn . The
submanifold is now locally parameterized as y = (u, g(u)), where g : Rd −→ Rn−d. Since
u = (u1, . . . , ud) are tangent coordinates, we must have that ∂g

∂ui
(0) = 0.

Locally we have the following diagram :

(s1, . . . , sd)←→︸︷︷︸
expx

y ←→︸︷︷︸
projection

u.

In what follows we will convert all quantities depending on (s1, . . . , sd) or y into func-
tions of u. For the notation, Qx,m(u) denotes a generic homogeneous polynomial of degree
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m of the variable u = (u1, . . . , ud) whose coefficients depend on x. Since these poly-
nomials form an equivalence class, we might abuse the notation and write, for instance
Qx,m(u) +Qx,m(u) = Qx,m(u).

Lemma 3.2.1. If y ∈M is in an Euclidean ball of radius ε1/2 around x, then

si = ui +Qx,3(u) +O(ε2) (3.11)

for ε sufficiently small.

Proof. Let γ be the geodesic connecting x and y parameterized by arclength. We have
γ(0) = x and let s be such that γ(s) = y. If y has normal coordinates (s1, . . . , sd), then
we have

sγ′(0) = (s1, . . . , sd) γ′(0) = (v1, . . . , vd).

A Taylor expansion yields

γ(s) = γ(0) + sγ′(0) + s2

2 γ
′′(0) + s3

6 γ
(3)(0) +O(s4),

and so

ui = 〈γ(s)− γ(0), ei〉 = 〈sγ′(0), ei〉+ s2

2 〈γ
′′(0), ei〉+ s3

6 〈γ
(3)(0), ei〉+ 〈O(s4), ei〉.

We can notice that 〈γ′′(0), ei〉 = 0 by definition of a geodesic, recalling the Proposition
2.7. Moreover, since γ′(0) = (v1, . . . , vd) and sγ′(0) = (s1, . . . , sd) = (sv1, . . . , svd), we
have that s = si

vi
for all i = 1, . . . , d. In particular, s3 = s3i

v3
i

= u3
i

v3
i
and using the expansion

we obtain
s3

6 〈γ
(3)(0), ei〉 = Qx,3(u).

We can then conclude using the fact that y is in an Euclidean ball of radius ε1/2 around
x.

Clearly, in analogy with the previous proof, we can obtain an expansion of a high order
for the formula (3.11), i.e.

si = ui +Qx,3(u) +Qx,4(u) +O(ε5/2). (3.12)

Lemma 3.2.2. If y ∈ M is in an Euclidean ball of radius ε1/2 around x, then for ε
sufficiently small we have:

‖x− y‖2 = ‖u‖2 +Qx,4(u) +Qx,5(u) +O(ε3). (3.13)

Proof. The manifold is locally parameterized by u 7→ (u, g(u)), where g : Rd −→ Rn−d.
Writing g = (gi+1, . . . , gn) and applying Pythagore’s theorem, we obtain

‖x− y‖2 = ‖u‖2 +
n∑

i=d+1
gi(u)2.
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Clearly, gi(0) = 0 and ∂g
∂ui

(0) = 0. As a consequence, using the Taylor expansion

gi(u) = gi(0)︸ ︷︷ ︸
=0

+
d∑
j=1

ui ∂uigi(0)︸ ︷︷ ︸
=0

+ 1
2

d∑
k,j=1

uiuj∂
2
uk,uj

gi(0)︸ ︷︷ ︸
=bi,x(u)

+ 1
6

d∑
k,j,h=1

ukujuh∂
3
uk,uj ,uh

gi(0)︸ ︷︷ ︸
=ci,x(u)

+O(‖u‖4)

=bi,x(u) + ci,x(u) +O(‖u‖4),

we get that gi(u)2 = b2i,x(u) + 2bi,xci,x + O(‖u‖6). Setting Qx,4(u) =
∑d
i=1 bi,x(u)2 and

Qx,5(u) =
∑d
i=1 2bi,xci,x we proved the (3.13).

Lemma 3.2.3. If y ∈ M is in an Euclidean ball of radius ε1/2 around x, then, for ε
sufficiently small, we have:

det
(
dy

du

)
= 1 +Qx,2(u) +Qx,3(u) +O(ε2). (3.14)

Proof. Let us denote with A :=
(
dy
du

)
the matrix obtained by the change of variable

(s1, . . . , sd) 7→ (u1, . . . , ud). Using (3.12), we know that

A =


1 +Qx,2(u1) +Qx,3(u1) Qx,2(u2) +Qx,3(u2) . . . Qx,2(ud) +Qx,3(ud)
Qx,2(u1) +Qx,3(u1) 1 +Qx,2(u2) +Qx,3(u2) . . . Qx,2(ud) +Qx,3(ud)

...
...

...
...

Qx,2(u1) +Qx,3(u1) Qx,2(u2) +Qx,3(u2) . . . 1 +Qx,2(ud) +Qx,3(ud)

 .

If we call H(u) = det
(
A(u)

)
, via the Taylor expansion in 0 we have

H(u) = H(0) + 〈∇H(0), u〉+ 1
2u

T HessH(0)u+ . . .

and so, to conclude the proof we only need to show that H(0) = 1 and ∇H(0) = 0.
Clearly, H(0) = 1 thanks to the form of the matrix A. To prove that the vector

∇H(0) =
(

∂

∂u1
H|u=0, . . . ,

∂

∂ud
H|u=0

)
is the null vector, let us calculate each term:

∂

∂ui
H|u=0 = ∂

∂ui
detA|u=0 = detA tr(A−1 ∂

∂ui
A)|u=0 = 1 · tr


0 . . . 0
...

...
...

0 . . . 0

 = 0,
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where, in the second equality, we used the Jacobi’s formula for the derivative of the
determinant of an invertible matrix; and in the third equality we used the fact that

A−1 ∂

∂ui
A =


0 . . . Qx,1(ui) +Qx,2(ui) . . . 0
...

...
...

...
...

0 . . . Qx,1(ui) +Qx,2(ui) . . . 0

 .

Let kε(x, y) be an isotropic kernel :

kε(x, y) = h
(‖x− y‖2

ε

)
,

where h is assumed to have an exponential decay and let Gε be the corresponding operator

Gεf(x) = 1
ε
d
2

∫
M
kε(x, y)f(y)dy.

Lemma 3.2.4. Let f ∈ C3(M) and let 0 < γ < 1
2 . Then we have, uniformly for all

x ∈M at distance larger than εγ from ∂M,

Gεf(x) = m0f(x) + ε
m2

2 (ω(x)f(x)−∆f(x)) +O(ε2),

where
m0 =

∫
Rd
h(‖u‖2)du and m2 =

∫
Rd
u2

1h(‖u‖2)du

and ω is a term that depends onM.

Proof. First of all, we notice that the domain of integration can be restricted to the
intersection of M with the ball of radius εγ around x up to an error of order O(ε2). In
fact,

Gεf(x) = 1
ε
d
2

∫
y∈M;‖x−y‖>εγ

kε(x, y)f(y)dy + 1
ε
d
2

∫
y∈M;‖x−y‖<εγ

kε(x, y)f(y)dy

and

| 1
ε
d
2

∫
y∈M;‖x−y‖>εγ

kε(x, y)f(y)dy| ≤ ‖f‖∞
1
ε
d
2

∫
M
|h
(‖x− y‖2

ε

)
|dy

≤ ‖f‖∞
∫
z∈M;‖z‖>εγ−1/2

|h(‖z‖2)|dz

≤ ‖f‖∞
∫
‖z‖>εγ−1/2

|h(‖z‖2)|dz

≤ C‖f‖∞Q(εγ− 1
2 )e−(ε(γ−1/2))2

≤ C‖f‖∞Q(εγ− 1
2 )e−ε(γ−1/2),



48 CHAPTER 3. DIFFUSION MAPS

where we have used the exponential decay of the kernel and consequently the polar co-
ordinates, in order to obtain Q, a polynomial of the form Q(x) = xn−2

2 + n−2
4 xn−3 + . . ..

Moreover, the last inequality follows from the fact that since 0 < γ < 1/2, we have
e−ε

(γ− 1
2 )2

≤ e−ε
γ− 1

2 . Clearly, because this term is exponentially small, we can say that is
bounded by O(ε2). Therefore,

Gεf(x) = 1
ε
d
2

∫
y∈M;‖x−y‖<εγ

kε(x, y)f(y)dy +O(ε2).

Now that things are localized around x, we can Taylor expand the function (s1, . . . , sd) 7→
f(y(s1, . . . , sd)):

f(y) = f(x) +
d∑
i=1

si
∂f̃(0)
∂si

+ 1
2

d∑
i,j=1

sisj
∂2f̃(0)
∂si∂sj

+Qx,3(s1, . . . , sd) +O(ε2),

where f̃(s1, . . . , sd) = f(y(s1, . . . , sd)). Invoking (3.11), we obtain

f(y) = f̃(0) +
d∑
i=1

ui
∂f̃(0)
∂si

+ 1
2

d∑
i,j=1

uiuj
∂2f̃(0)
∂si∂sj

+Qx,3(u) +O(ε2).

Likewise, because of equation (3.13), the Taylor expansion of the kernel is

h
(‖x− y‖2

ε

)
= h

(‖u‖2
ε

)
+
(Qx,4(u)

ε
+ Qx,5(u)

ε

)
h′
(‖u‖2

ε

)
+O(ε2).

Using equation (3.14) to change the variable s 7→ u in the previous integral defining by
Gεf(x) yields:

ε
d
2Gεf(x) =

∫
‖u‖<εγ

(
h
(‖u‖2

ε

)
+
(Qx,4(u)

ε
+ Qx,5(u)

ε

)
h′
(‖u‖2

ε

))

×
(
f̃(0) +

d∑
i=1

ui
∂f̃(0)
∂si

+ 1
2

d∑
i,j=1

uiuj
∂2f̃(0)
∂si∂sj

+Qx,3(u)
)

×(1 +Qx,2(u) +Qx,3(u))du+O(ε d2 +2).

This identity can be dramatically simplified by identifying odd functions and setting their
integral to zero. One is left with

ε
d
2Gεf(x) =

∫
Rd
f̃(0)h

(‖u‖2
ε

)
+ 1

2

( d∑
i,j=1

∂2f̃(0)
∂si∂sj

)
u2
ih
(‖u‖2

ε

)
+ f̃(0)Qx,4(u)

ε
h′
(‖u‖2

ε

)
+ f̃(0)Qx,2(u)h

(‖u‖2
ε

)
+Qx,2(u)h

(‖u‖2
ε

)1
2

( d∑
i,j=1

∂2f̃(0)
∂si∂sj

)
+ f̃(0)Qx,4(u)

ε
Qx,2(u)

+ Qx,4(u)
ε

Qx,2(u)1
2

( d∑
i,j=1

∂2f̃(0)
∂si∂sj

)
du+O(ε d2 +2),
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where the domain of integration has been extended to Rd thanks to the exponentially
decay of h. Changing the variable according to u 7→

√
εu,

Gεf(x) =f̃(0)
∫

Rd
h(‖u‖2)du+ ε

2

( d∑
i,j=1

∂2f̃(0)
∂si∂sj

)∫
Rd
u2

1h(‖u‖2)du

+ εf̃(0)
∫

Rd
(Qx,4(u)h′(‖u‖2) +Qx,2(u)h(‖u‖2))du+O(ε2),

where we have used the homogeneity of Qx,4 and Qx,2. Finally, observing that

f̃(0) = f(x) and
d∑
i=1

∂2f̃(0)
∂si∂sj

= −∆f(x),

we end up with

Gεf(x) = m0f(x) + ε
m2

2 (ω(x)f(x)−∆f(x)) +O(ε2),

where
ω(x) = 2

m2

∫
Rd

(Qx,4(u)h′(‖u‖2) +Qx,2(u)h(‖u‖2))du.

The uniformity follows from the compactness and smoothness ofM.

Lemma 3.2.5. Let f ∈ C3(M) and let 0 < γ ≤ 1/2. Then we have, uniformly for all
x ∈M at distance less than or equal to εγ from ∂M ,

Gεf(x) = mε
0(x)f(x0) +

√
εmε

1(x)∂f
∂ν

(x0) +O(ε),

where x0 is the closest point to x that belongs to the boundary and where mε
0(x) and mε

1(x)
are bounded functions of x and ε.

Proof. Let x0 be the closest point to x on the boundary, where closeness is measured with
the norm of the ambient space. This point is uniquely defined if the boundary is smooth
and ε is small enough. Let us pick a specific orthonormal basis of Tx0M so that the first
(d−1) vectors e1, . . . , ed−1 belong to the tangent space Tx0∂M of the boundary at x0. As
before, we can now consider the projections u = (v, ud) of points y in the neighborhood of
x onto Tx0M, where v = (u1, . . . , ud−1) ∈ Rd−1 is the projection over the first (d−1) basis
vectors and ud ∈ R is the projection over ed (pointing in). By definition of x0, we have
〈x − x0, ei〉 = 0 for i = 1, . . . , d − 1, and therefore x has coordinates (0, η) where η ≥ 0.
The proof is very similar to that of the previous lemma, so we can truncate the integral
defining Gεf(x) by considering only points y that are at most at distance εγ from x. The
correction term is exponentially small, and therefore can be bounded by O(ε). In addition
to this truncation, we decompose the domain into slices. More precisely, we define

S(ud) = {(v, ud) ∈ Rd ; ‖(v, ud)− (0, η)‖ ≤ εγ}.
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To compute the integral defining Gεf(x) up to a order ε, we can integrate over all S(ud)
for ud ∈ [η− εγ , η+ εγ ]. Now this is not good enough as we want to take advantage of the
symmetries of the kernel. We therefore consider

S̃(ud) =
d−1⋂
i=1

RiS(ud),

where Ri is the reflection on Rd defined by

Ri(u1, . . . , ui−1, ui, ui+1, . . . , ud) = (u1, . . . , ui−1,−ui, ui+1, . . . , ud).

This domain has now all the symmetries that we need. Moreover, up to a term of
order ε2, the projection of ∂M onto Tx0M is a hypersurface (in Rd) with equation
ud = ϕ(u1, . . . , ud−1), where ϕ is a homogeneous polynomial of degree 2. Consequently,
up to an error of the same order, it is approximately preserved by all the reflections Ri.
In particular, going from the slices S(ud) to S̃(ud) is only generating an error of order ε.

Gεf(x) = ε−d/2
∫ η+εγ

η−εγ

∫
S̃(ud)

h

(
‖v‖2 + (η − ud)2

ε

)
f̃(u)dvdud +O(ε),

where u = (v, ud). For the same reason, starting the integration from ud = 0 generates an
error of order ε:

Gεf(x) = ε−d/2
∫ η+εγ

0

∫
S̃(ud)

h

(
‖v‖2 + (η − ud)2

ε

)
f̃(u)dvdud +O(ε).

If we Taylor expand f̃ around u = 0, we obtain:

f(y) = f̃(0) +
d∑
i=1

ui
∂f̃(0)
∂si

+O(ε) = f(x0) +
d−1∑
i=1

ui
∂f̃(0)
∂si

− ud
∂f

∂ν
(x0) +O(ε).

Now, the symmetry of the kernel implies that for i = 1, . . . , d− 1,

∫
S̃(ud)

h

(
‖v‖2 + (η − ud)2

ε

)
uidv = 0.

Therefore, the only first order term of the Taylor expansion that survives is the partial
derivative along ud. We can conclude that

Gεf(x) = mε
0(x)f(x0) +

√
εmε

1(x) ∂f
∂nu

(x0) +O(ε),

with

mε
0(x) = ε−d/2

∫ η+εγ

0

∫
S̃(ud)

h

(
‖v‖2 + (η − ud)2

ε

)
dvdud =

∫ εγ−
1
2

−η
√
ε

∫
1√
ε
S̃(ud)

h(‖u‖2)dvdud



3.2. THE CASE OF SUBMANIFOLDS IN RN 51

and

mε
1(x) = −ε−d/2

∫ η+εγ

0

∫
S̃(ud)

h

(
‖v‖2 + (η − ud)2

ε

)
ud√
ε
dvdud = −

∫ εγ−
1
2

−η
√
ε

ud

∫
1√
ε
S̃(ud)

h(‖u‖2)dvdud.

Clearly, these functions are well behaved as

|mε
0(x)| ≤

∫
Rd
h(‖u‖2)du and |mε

1(x)| ≤
∫

Rd
|udh(‖u‖2)|du.

The uniformity follows from the compactness and smoothness ofM and of its boundary
∂M.

We now use these results to obtain an asymptotic expansion for the operator Lε,α. To
simplify the notations, we can assume that function h is scaled in such a way that m0 = 1
and m2 = 2, where m0 and m2 are defined in Lemma 3.2.4. We recall that, the operator
∆ has eigenvalues and eigenfunctions onM:

∆φi = λiφi,

and we suppose that φi verifies the Neumann condition ∂φi = 0 at the boundary ∂M.
Moreover, thanks to Theorem 2.5.3 these eigenfunctions form a Hilbert basis of L2(M).
Let

EK = span{φi ; 0 ≤ i ≤ K}

be the linear span of the first K + 1 eigenfunctions. We even know that, thanks to
Proposition 2.5.4, if we denote with e(t, x, y) ∈ C∞(R+ ×M ×M) the heat kernel for
functions, that

e(t, x, y) =
∑
i

e−λitφi(x)φi(y).

Proposition 3.2.6. For a fixed K > 0, we have on EK

lim
ε→0

Lε,αφ = ∆(φq1−α)
q1−α − ∆(q1−α)

q1−α φ.

Proof. We fix 0 < γ ≤ 1/2 and we start by focusing on the set Mε of points of M that
are at distance larger than εγ from ∂M. We now that

qε(x) = q + ε(ωq −∆q)

and that, consequently,
q−αε = q−α(1 + αε(∆q

q
− ω)).

Let
kαε (x, y) = kε(x, y)

qαε (x)qαε (y)
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and for φ ∈ Ek, define

Kα
ε φ(x) =

∫
M
kαε (x, y)φ(y)q(y)dy.

Then,

Kα
ε φ = q−αε (x)

∫
M
kε(x, y)q−αε (y)q(y)φ(y)dy

= q−αε

∫
M
kε(x, y)q−α(1− αε(∆q

q
− ω))q(y)φ(y)dy

= q−αε

(∫
M
kε(x, y)φ(y)q1−α(y)dy + αε

∫
M
kε(x, y)φ(y)(∆q

q
− ω)q1−αdy

)
+O(ε2)

= q−αε

(
φq1−α(1 + ε(∆φq1−α

φq1−α − ω)) + αε(φq1−α(∆q
q
− ω))

)
+O(ε2)

= q−αε

(
φq1−α + ε∆(φq1−α)− εφq1−αω − αεφ∆qq1−α + αεωφq1−α

)
+O(ε2)

= q−αε

(
φq1−α + ε

(
∆(φq1−α)− φq1−αω − αφ∆qq1−α + αωφq1−α))+O(ε2)

= q−αε

(
φq1−α + ε

(
αφ

∆q
qα−1 + (1− α)ωφq1−α −∆(φq1−α)

))
+O(ε2)

= q−αε q1−α
(
φ+ ε((1− α)ωφ+ αφ

∆q
q
− ∆(φq1−α)

q1−α )
)

+O(ε2).

Consequently,

dαε = Kα
ε 1 = q−αε q1−α

(
1 + ε((1− α)ω + α

∆q
q
− ∆(q1−α)

q1−α )
)

+O(ε2).

Taking the ratio of the last two equations yields the expansion for the operator

∫
M

kαε (x, y)
dαε (x) φ(y)q(y)dy = φ(x) + ε

(
φ(x)∆(q1−α)(x)

q1−α(x) − ∆(φq1−α)(x)
q1−α(x)

)
+O(ε2).

There, uniformly onMε,

Lε,αφ(x) = ∆(φq1−α)(x)
q1−α(x) − φ(x)∆(q1−α)(x)

q1−α(x) +O(ε). (3.15)

Now, onM\Mε , we have

qε(x) = mε
0(x)q(x0) +

√
εmε

1(x)∂q
∂ν

(x0) +O(ε),

which implies that

qε(x)−α = mε
0(x)−αq(x0)−α

(
1− α

√
ε
mε

1(x)
mε

0(x)
1

q(x0)
∂q

∂ν
(x0)

)
+O(ε).
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As a consequence,

Kα
ε φ(x) =qε(x)−α

( q(x0)1−α

mε
0(x)α−1φ(x0) +

√
εmε

1(x)∂(q1−α(mε
0)−αφ)

∂ν
(x0)

− α
√
εmε

0(x)−αq(x0)1−αmε
1(x) 1

q(x0)
∂q

∂ν
(x0)φ(x0)

)
+O(ε)

= qε(x)−α
( q(x0)1−α

mε
0(x)α−1φ(x0) +

√
εmε

1(x)∂(q1−α(mε
0)−α)

∂ν
(x0)φ(x0)

− α
√
εmε

0(x)−αq(x0)1−αmε
1(x) 1

q(x0)α
∂q

∂ν
(x0)φ(x0)

)
+O(ε),

where we have used the fact that φ verifies the Neumann condition at x0 and therefore
can be taken out of any derivative across the boundary. Thus,

Kα
ε φ(x) = (Kα

ε 1 +O(ε))φ(x0)

and since dαε = Kα
ε 1, for x ∈M \Mε,

Kα
ε φ(x)
dαε (x) = φ(x0) +O(ε)

and, therefore, uniformly onM\Mε,

Lε,αφ(x) = O(1). (3.16)

To summarize the situation:

• uniformly onMε we have

Lε,αφ(x) = ∆(φq1−α)(x)
q1−α(x) − φ(x)∆(q1−α)(x)

q1−α(x) +O(ε);

• uniformly onM\Mε we have

Lε,αφ(x) = O(1).

Since we are interested in the L2 convergence of this operator onM, we have:

Lε,αφ(x) = ∆(φq1−α)(x)
q1−α(x) − φ(x)∆(q1−α)(x)

q1−α(x) +Rε,

where Rε = O(ε) if M has no boundary and Rε = O(εγ) for any γ ∈ (0, 1
2 ) if M has a

boundary.

Remark 3.8. If we make no assumption on the normalization constants m0, m2, repeating
the calculations of Theorem 3.2.6, we obtain∫
M

kαε (x, y)
dαε (x) φ(y)q(y)dy = φ(x) + ε

m2

2m0

(
φ(x)∆(q1−α)(x)

q1−α(x) − ∆(φq1−α)(x)
q1−α(x)

)
+O(ε2).

and so, uniformly onMε,

Lε,αφ(x) = m2

2m0

(
∆(φq1−α)(x)
q1−α(x) − φ(x)∆(q1−α)(x)

q1−α(x)

)
+O(ε).
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3.2.3 The case of α = 0

Setting α = 0, from Proposition 3.2.6 we can observe that

lim
ε→0

Lε,0φ(x) = ∆φq
q
− ∆q

q
φ+Rε = ∆φ+ 2〈grad q

q
, gradφ〉.

This result proves that when the density is uniform, then the operator is equal to the
Laplace-Beltrami operator onM.

Remark 3.9. If we put g = φq, then we have

Lε,0g = ∆(gq)
q
− g∆q

q

and
Lε,0

(g
q

)
= ∆g − g∆q

q
.

So, by conjugation with the density, we obtain that Lε,0 has the form Laplacian plus
potential. However, since in most application the density is not uniform, this method is
clearly inappropriate if the goal is to recover the intrinsic geometry of the manifold.

3.2.4 The case of α = 1

Let us suppose now that α = 1. We have:

k1
ε(x, y) = kε(x, y)

qε(x)qε(y) , d
1
ε(x) =

∫
M
k1
ε(x, y)q(y)dy , A1

εφ(x) =
∫
M

k1
ε(x, y)
d1
ε(x) φ(y)q(y)dy.

Applying Proposition 3.2.6 to the operator Lε,1, this leads to

lim
ε→0

Lε,1φ = lim
ε→0

∆φ+Rε = ∆φ,

and so we are able to recover the Laplace-Beltrami operator even if the density is not
uniform. Moreover, as a byproduct, it is possible to recover the Neumann heat kernel
e−t∆ on L2(M), using Aε,1.

Proposition 3.2.7. For any t > 0, the Neumann heat kernel e−t∆ can be approximated
on L2(M) by A

t
ε
ε,1:

lim
ε→0

A
t
ε
ε,1 = e−t∆.

Proof. In the Proposition 3.2.6 we showed that on EK

Lε,1 = ∆ +Rε or equivalently Aε,1 = I − ε∆− εRε.

To obtain the result on the heat kernel, we note that

•
⋃
K>0EK = L2(M)
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• (Aε,1)ε>0 is uniformly bounded in L2(M, dx) by 1

and therefore the result needs only to be proven on EK for any fixed value of K > 0. We
also remark that if B is a bounded operator with ‖B‖ < 1 and nonnegative spectrum,
then for any β > 0

‖(I +B)β − I‖ =‖
∑
l≥1

β(β − 1) · · · (β − l + 1)
l! Bl‖ ≤

∑
l≥1

β(β − 1) · · · (β − l + 1)
l! ‖B‖l

≤(1 + ‖B‖)β − 1 = (1 + ‖B‖)β − ‖B‖

≤(1 + ‖B‖)(1 + ‖B‖)β−1 − ‖B‖ ≤ β(1 + ‖B‖)β−1‖B‖.

For a fixed K > 0, if ε is small enough, then (I − ε∆) is invertible, and has norm less
than 1, in which case :

‖A
t
ε
ε,1 − (I − ε∆) tε ‖ =‖(I − ε∆− εRε)

t
ε − (I − ε∆) tε ‖

=‖(I − ε∆) tε (I − ε∆)− tε (I − ε∆− εRε)
t
ε − (I − ε∆) tε ‖

=‖(I − ε∆) tε
[
(I − ε∆)− tε (I − ε∆− εRε)

t
ε − I

]
‖

≤‖(I − ε∆− εRε)
t
ε − I‖

≤‖(I − εRε)
t
ε − I‖

≤t(1 + ‖εRε‖)
t
ε−1‖Rε‖ = O(‖Rε‖).

Now, on EK , one has (I − ε∆)t/ε = e−t∆ +O(ε). To prove this statement we need to use
the Theorem 10.33 of [9, pp 266]. In fact, if we define f(x) = (1 − εx)t/ε , and we put
f̃(∆) = (I − ε∆)t/ε we have

(I − ε∆)t/εφk = f̃(∆)φk = f(λk)φk = (1− ελk)t/εφk

with {λk} and {φk} eigenvalues and eigenfunctions of ∆. Now, since we are interested in
the limit ε→ 0, changing the variable according to ε 7→ t/n,

lim
n→∞

(1− tλk
n

)nφk = e−tλkφk.

This is actually how the heat operator act behaves on the eigenfunctions of the Laplacian,
allowing us to affirm

(I − ε∆)t/ε = e−t∆ +O(ε).

Finally, we can conclude that
lim
ε→0

A
t
ε
ε,1 = e−t∆.
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Chapter 4

Numerical experiments

This chapter is subdivided in two principal parts. The first one focuses on the dis-
cretization of the quantities involved in the diffusion process. In the second one, we will
applicate the algorithm to different sets, in order to do a geometric analysis of the data.

4.1 Discretization of the continuous case

In applications, we usually have to deal with finite dataset, so we would suppose our
set is composed by N points, X := {x1, x2, . . . , xN}. In particular:

Normalized Graph Laplacian
Continuous Discretization

Density d(x) =
∫
X
kε(x, y)q(y)dy d(xi) =

∑
xj∈X kε(xi, xj)

Diff operator Adf(x) =
∫
X
kε(x,y)
d(x) f(y)q(y)dy Adf(xi) =

∑
xj∈X

kε(xi,xj)
d(xi) f(xj)

Sym operator Asymf(x) =
∫
X

kε(x,y)√
d(x)
√
d(y)

f(y)q(y)dy Asymf(xi) =
∑
xj∈X

kε(xi,xj)√
d(xi)
√
d(xj)

f(xj)

Laplace Beltrami Normalization
Continuous Discretization

Density d(x) =
∫
X
kε(x, y)q(y)dy d(xi) =

∑
xj∈X kε(xi, xj)

1st norm k̃ε(x, y) = kε(x,y)
d(x)d(y) k̃ε(xi, xj) = kε(xi,xj)

d(xi)d(xj)

2nd norm d̃(x) =
∫
X
k̃ε(x, y)q(y)dy d̃(xi) =

∑
xj∈X k̃ε(xi, xj)

Diff operator Adf(x) =
∫
X
k̃ε(x,y)
d̃(x) f(y)q(y)dy Adf(xi) =

∑
xj∈X

k̃ε(xi,xj)
d̃(xi)

f(xj)

Sym operator Asymf(x) =
∫
X

k̃ε(x,y)√
d̃(x)
√
d̃(y)

f(y)q(y)dy Asymf(xi) =
∑
xj∈X

k̃ε(xi,xj)√
d̃(xi)
√
d̃(xj)

f(xj)

57
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4.1.1 Some details on discretization

The procedure to obtain the diffusion operator on this set is linked to the one of
recovering a weighted graph on the data. In fact, a popular way to describe the affinities
between data points is using a weighted graph, see for example [18],[26], [27], which vertices
correspond to the data points X = {x1, x2, . . . , xN}, the edges are formed between every
pair of nodes, and the weights k(xi, xj) for i, j ∈ N quantify the affinities between the
nodes. In this way the function k has the twofold interpretation of kernel and affinity
function. Since the quantities are finite, we define the pairwise affinity matrix K

Kij = k(xi, xj)

for some k(·, ·). Actually, in this thesis, we use the Gaussian kernel

k(xi, xj) = exp
(
−‖xi − xj‖

2

ε

)
.

Remark 4.1. The Gaussian kernel describes well the affinities between points, in fact the
smaller is the parameter ε, the faster the exponential decreases and hence the weight func-
tion k becomes numerically insignificant as we move away from the center. Furthermore,
it is easy to check that this kernel satisfies the admissibility conditions required from the
diffusion map’s method. So, from this kernel, we construct the diffusion matrix in relation
to the normalization we consider.

In order to recover the graph Laplacian normalization, we define D as the diagonal
matrix

Dii =
N∑
j=1

Kij ,

then Ad := D−1K is the diffusion matrix.

Remark 4.2. Thanks to the connection with the graph theory we can understand why
this normalization is called graph Laplacian. This notion is linked to the definition of the
Laplacian on a graph which complete construction can be found in [17]. We only point
out that Laplacian matrix L is defined as

L = D −K.

We can apply another normalization to recover the operator with which we are actually
working:

L = D−1L = I −D−1K.

L is commonly called random walk Laplacian on a graph.
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Concerning the Laplace-Beltrami normalization, we apply the graph Laplacian nor-
malization to a different weighted matrix:

K̃ = D−1KD−1.

From K̃ we can define

D̃ii =
N∑
j=1

K̃ij

to recover the diffusion operator Ãd := D̃−1K̃.
Our objective is to calculate the eigenvalues and eigenvectors of the diffusion operator Ad,
and in order to do so we use the symmetric operator associated to it:

Asym = D1/2AdD
−1/2 = D−1/2KD−1/2.

The matrix Asym is known in [28] as normalized affinity matrix. It is easy to recover
the eigenvalues and eigenvectors of Asym thanks to the properties of symmetric matrices.
Then we can switch to the ones of Ad thanks to the following Lemma.

Lemma 4.1.1 (Normalization Lemma). Let v be an eigenvector of Asym with eigenvalue
λ, then D−1/2v is an eigenvector of Ad with eigenvalue λ.

Proof. Consider the matrix Asym = D−1/2KD−1/2 and let {λi, vi}i≥0 be the correspond-
ing eigenvalues and eigenvectors:

Asymvi = λivi

D−1/2KD−1/2vi = λivi

D−1/2(D−1/2KD−1/2vi) = D−1/2(λivi)

D−1KΦi = λiΦi
AdΦi = λiΦi,

with Φi = D−1/2vi.

4.1.2 Algorithm and implementation

In this subsection we develop the algorithms for constructing diffusion maps on a data
set X = {x1, x2, . . . , xN}, using the Gaussian kernel. We give the codes to implement the
affinity matrix K and for recovering the diffusion maps.
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4.1.2.1 Weighted affinity matrix

Some comments need to be done in relation to the free parameters that define the
weighted affinity matrix.
First, we illustrate two different ways to chose the ε parameter of the Gaussian kernel,
suggested in [15] and [29].
Lafon suggests to use ε to be of the order of the average smallest non-zero value of ‖xi −
xj‖2, that is,

εmin = 1
N

N∑
i=1

min
xi 6=xj

‖xi−j‖2.

In [29] the author proposes ε to be the order of the mean value of the matrix K, namely,

εmean = 4 ∗mean(K)/N.

There is not a priori better choice for this parameter, and for each case we need to chose
it in relation to the feature we want to study.
Furthermore, besides the standard construction of the affinity matrix K

(Kstandard)ij = k(xi, xj),

there is another construction suggested in [29]. The advice is to take into account only
the points that are at distance smaller then ε, in a way that reduces the neighborhood of
the point. In other words, starting from the matrix K, it is possibile to define Kε as

(Kε)ij =

k(xi, xj) if k(xi, xj) ≤ ε

0 otherwise.

In the following we give Matlab code for the computation of the affinity matrix.

1 f unc t i on [K, e p s i l o n ]=WeightMatrix (X, Params )
2 %INPUT: X = n x m matrix , with n number o f po in t s and m

i s the
3 % dimension o f the po in t s ;
4 % Params = s t ru c tu r e composed by the f o l l ow i ng

parameters
5 % − . e p s i l o n = ’mean ’ or ’min ’ ;
6 % − .wm = ’ standard ’ or ’ eps_nbr ’ ;
7 %OUTPUT: K = n x n weighted matrix o f a Gaussian ke rne l

with
8 % parameter e p s i l o n ;
9 % ep s i l o n = width parameter o f the ke rne l .
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10

11 n=s i z e (X, 1 ) ;
12 sd_X=ze ro s (n , n) ;
13 f o r i = 1 : n
14 f o r j = 1 : n
15 sd_X( i , j )=norm(X( i , : )−X( j , : ) , 2 ) ^2 ;
16 end
17 end
18

19 i f strcmp (Params . ep s i l on , ’mean ’ )
20 m=4∗mean( nonzeros (sd_X) ) ;
21 ep s i l o n=m/n ;
22 e l s e i f strcmp (Params . eps i l on , ’min ’ )
23 h=0;
24 f o r i = 1 : n
25 h=h+min( nonzeros (sd_X( i , : ) ) ) ;
26 end
27 ep s i l o n=h/n ;
28 end
29

30 i f strcmp (Params .wm, ’ standard ’ )
31 K=exp((−1/ ep s i l o n ) ∗sd_X) ;
32 e l s e i f strcmp (Params .wm, ’ eps_nbr ’ )
33 K=exp((−1/ ep s i l o n ) ∗sd_X) ;
34 K(K>ep s i l o n )=0;
35 end

4.1.2.2 Diffusion Maps

We notice that the diffusion map algorithm depends a priori from a large number of
parameters, for example:

- number of eigenvalues to consider to recover the diffusion map;

- time of diffusion t;

- type of normalization used.

All these choices are incorporated in the code thanks to a structure that collects all this
parameters.
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Another remark is about the use of the Matlab computation of eigenvalues and eigenvectors
of the symmetric matrix Asym. In literature, two Matlab functions are used to achieve
this result, eig and svd. The first function is the common one to effectuate this task, the
second one exploits the Singular Value Decomposition of a matrix. Some details about the
singular value decomposition are given in Appendix B. We simply recall the decomposition
for a symmetric matrix:

Asym = USV T ,

where, S is a diagonal matrix composed by the eigenvalues, U = V in which the columns
contain the eigenvectors of A.

1 f unc t i on [ diffusion_map , Lambda , Psi , Asym, A_diff ] =
DiffusionMap (K, Params )

2 %INPUT: K = n x n a f f i n i t y matrix o f the data s e t X o f
dimension n ;

3 % Params = s t ru c tu r e composed by the f o l l ow i ng parameters
4 % − . t = time o f d i f f u s i o n ;
5 % − . maxInd = dimension o f the d i f f u s i o n maps ;
6 % − . no rma l i za t i on = ’ lb ’ or ’ gl ’ ;
7 % − . e i g = ’ svd ’ or ’ standard ’ ;
8

9 %OUTPUT: dif fusion_map = maxInd−1 x n matrix r ep r e s en t i ng the
d i f f u s i o n map ;

10 % Lambda = f i r s t maxInd e i g enva lu e s ;
11 % Psi = n x maxInd matrix o f f i r s t maxInd

e i g env e c t o r s ;
12 % Asym = n x n symmetric matrix o f d i f f u s i o n ;
13 % A_diff = n x n matrix o f d i f f u s i o n .
14

15 i f e x i s t ( ’Params ’ , ’ var ’ )&& ~ i s f i e l d (Params , ’ t ’ )
16 Params . t = 1 ; % by de f au l t the time o f d i f f u s i o n i s equal to

1 .
17 end
18

19 i f e x i s t ( ’Params ’ , ’ var ’ )&& ~ i s f i e l d (Params , ’maxInd ’ )
20 Params . maxInd = 6 ; %by de f au l t we only con s id e r the f i r s t

s i x e i g enva lu e s .
21 end
22
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23 D = sum(K, 2 ) ;
24

25 i f strcmp (Params . normal izat ion , ’ lb ’ ) % lap lace−beltrami , by
d e f au l t i s the graph l ap l a c i a n type .

26 inverse_D = spd iags ( 1 . /D, 0 , s i z e (K, 1 ) , s i z e (K, 2 ) ) ;
27 K = inverse_D∗K∗ inverse_D ;
28 D = sum(K, 2 ) ;
29 end
30

31 inverse_sqrt_D = spd iags ( sq r t ( 1 . /D) ,0 , s i z e (K, 1 ) , s i z e (K, 2 ) ) ;
32 Asym = inverse_sqrt_D ∗ K ∗ inverse_sqrt_D ;
33

34 i f e x i s t ( ’Params ’ , ’ var ’ ) && ~ i s f i e l d (Params , ’ e i g ’ )
35

36 [ v , lambda ] = e i g (Asym) ;
37 [ lambda , I ] = so r t ( diag ( lambda ) , ’ descend ’ ) ; %by de fau l t , e i g

doesn ’ t re turn the va lue s so r t ed .
38 Lambda = lambda ( 1 : Params . maxInd ) ;
39 v = v ( : , I ( 1 : Params . maxInd ) ) ;
40 e l s e
41 [U, S ,~]= svd (Asym) ;
42 lambda = diag (S) ; %by de fau l t , svd r e tu rn s the va lue s so r t ed

.
43 Lambda = lambda ( 1 : Params . maxInd ) ;
44 v = U( : , 1 : Params . maxInd ) ;
45 end
46 %normal ize the e i g env e c t o r s
47 v = v . / repmat ( sq r t (sum(v .^2 ) ) , s i z e (v , 1 ) , 1 ) ;
48 %pick the e i g env e c t o r s f o r Ad i f f
49 Psi = inverse_sqrt_D ∗ v ;
50 Psi = Psi . / repmat ( sq r t (sum( Psi . ^2 ) ) , s i z e ( Psi , 1 ) , 1 ) ;
51 ind = 2 : l ength (Lambda) ;
52

53 c l e a r inverse_sqrt_D
54

55 % d i f f u s i o n map
56 dif fusion_map = ( Psi . ∗ ( repmat (Lambda ’ . ^ Params . t , s i z e ( Psi , 1 ) , 1 ) )

) ;
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57 dif fusion_map = diffusion_map ( : , ind ) ’ ;
58

59 inverse_D = spd iags ( 1 . /D, 0 , s i z e (K, 1 ) , s i z e (K, 2 ) ) ;
60 %d i f f u s i o n operator
61 A_diff = inverse_D∗K;

4.1.3 Factors of Error

Since the diffusion map method focuses on discover the underlying manifold upon
which the data are embedded, we can suppose that our set X = {x1, . . . , xN} consists
of finitely many points on M. Then we have to concentrate on two type of errors, the
one due to the fact that the points do not lie exactly onM and the error caused by the
discretization.

About the discretization, we can consider the points as realizations of i.i.d. random
variables {X1, . . . , XN} with density q (supported on M) and than it follows from the
law of large numbers that as N goes to infinity, all of the discrete sums above converge at
least in some weak sense and modulo a renormalization by 1/N to a continuous integrals
(Monte Carlo integration):

lim
N→∞

1
N

N∑
j=1

kε(x, xj) =
∫
M
kε(x, y)q(y)dy.

For a finite value of N , the relative error is expected to be of the order of O(N− 1
2 ε−d/4)

and the same estimate should apply to the error of approximating Aε,αf(xi) by Āε,αf(xi),
where with the bar we indicate the discretization version of the continuos case. A rigor-
ous estimates for the accuracy of the approximation is shown in [22], where the error of
approximation of Aε,αf(xi) by Āε,αf(xi) verifies

|Āε,αf(xi)−Aε,αf(xi)| = O(N− 1
2 ε−d/4),

with high probability. This bound can be further refined [23] by noticing that the numera-
tor and denominator of the expression defining Āε,αf(xi) are correlated random variables
and so it is possible to derive the following estimate:

|Āε,αf(xi)−Aε,αf(xi)| = O(N− 1
2 ε−d/4+1/2),

with high probability.

Corollary 4.1.2. In order to achieve a given precision with high probability, the number
N of sample points must grow faster than ε− d4− 1

2 , where d is the dimension ofM.
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Next, we wish to explore the fact that the data points of X might not lie exactly onM.
Precisely, suppose that X is a perturbed version ofM, that is, there exists a perturbation
function η : M −→ X with a small norm (the size of the perturbation) such that every
point in X can be written as x + η(x) for some x ∈ M. The function η plays the role
of some additive noise on the data. Then, assuming that the kernel kε is smooth, we can
linearize the effect of the perturbation:

kε(x+ η(x), y + η(y)) = kε(x, y) +O(‖η‖√
ε

)

and, as a consequence, the perturbation of Aε,α is the same order

Ãε,α = Aε,α +O(‖η‖√
ε

) (4.1)

where Ãε,α is the perturbed version of Aε,α. To obtain the effect of the perturbation on
the eigenvalues and eigenfunctions, we refer to classical theorems of perturbation theory,
like Weyl’s theorem.

Theorem 4.1.3 (Weyl’s Theorem). Let A and E be a N × N symmetric matrices. Let
λ1 ≥ . . . ≥ λN be the eigenvalues of A and λ̃1 ≥ . . . ≥ λ̃N be the eigenvalues of Ã = A+E.
Then |λi − λ̃i| ≤ ‖E‖2.

In this way we can use Weyl’s theorem to get error bounds for the eigenvalues computed.
For a complete proof of this theorem, see [20, pp 198]. We then can clearly say that, in
our case

sup
l
|λ̃l − λl| ≤ ‖Ãε,α −Aε,α‖.

So, the bound on the error in equation (4.1) shows that

Corollary 4.1.4. The approximation is valid as long as the scale parameter
√
ε remains

larger than the size of the perturbation.

4.1.4 Information carried by the first eigenvector

In literature, [26][27][28], it is known that the dominant eigenvectors of diffusion matrix,
i.e. the ones corresponding to largest eigenvalues, are supposed to extract some important
information on the dataset. In this subsection we would try to understand how the first
non trivial eigenvector of the diffusion matrix is able to extract important features, thanks
to the connection with graph theory.

In [26], the justification follows from discussing the task of finding clusters in a weighted
graph G of N nodes. The author represents a cluster using a column vector x whose ith

entry captures the participation of node i in that cluster. If a node does not participate
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in a cluster, the corresponding entry is zero, furthermore the restriction that the norm of
x is one is imposed. Then, based on the link weights of the graph kij the quantity∑

i,j

kijxixj = xTKx

is defined as the measure for the cohesiveness of the cluster in G. A maximally cohesive
cluster x can be found by maximizing the above expression. The Rayleigh-Ritz theorem
[25, pp 176] states that the maximum value of the above expression will be λmax , the
maximum eigenvalue of K, and the corresponding eigenvector will be the optimal x.

Another interesting approach follows from [27]. Here the authors try to give a correct
segmentation of an image I, turned into a weighted graph G, searching the optimal par-
tition of the graph by defining the normalized cut disassociation measure. This leads to
consider the second eigenvectors of the generalized eigenvalues system

(D −W )y = λDy

with opportunity constraint, to solve, theoretically, our problem by a continuous point of
view. With this method, a reiteration is recommended for further extraction.

4.2 Analysis of datasets

In this section we would like to develop the ideas illustrated so far by numerical ex-
amples: we generate sets X and we compute the eigenfunctions and eigenvalues of the
diffusion operator. Then, we plot the embedding that is obtained.

4.2.1 Closed curve

We recall that, on a closed curve of length l parametrized by arc lenght, the Laplacian
is merely the second derivative. In fact, let us suppose our curve Γ ⊂ Rn is parametrized
by s : [0, 2π] −→ Γ, then

∆Γf(s) = − ∂2

∂s2 f(s) = −f
′′
(s).

Since the curve is closed, we can consider the following eigenvalue problem
f ′′(x) = −λf(x), x ∈ Γ, λ > 0

f(0) = f(2π)

f ′(0) = f ′(2π)

to find an orthonormal basis of eigenfunctions given by

{1, cos(2πmx
l

), sin(2πmx
l

)}∞m=1.
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Embedding the curve Γ using the first two non trivial eigenfunctions results in a circle in
the plane:

Γ(s) 7→ {cos(2πs
l

), sin(2πs
l

)}. (4.2)

We applied the diffusion maps algorithm to a toroidal spiral, a trefoil knot, an epitrochoid.
The results are shown in Figure (4.1). We obtain the points reorganized on a closed curve
in a coherent ways with the organization of the points following the curve. Moreover, when
we use the Laplace-Beltrami normalization, we recover a circle in the plane, accordingly to
4.2. These examples also show that the weighted graph Laplacian embedding is sensitive
to the density of the points. In particular, when the density has a peek, this embedding
tends to map all points around this peak to a single point, creating a corner.

Figure 4.1: 900 randomly sampled from a toroidal spiral, a trefoil knot and an epitrochoid; their
embedding using the graph Laplacian (2nd column); their embedding using the Laplace-Beltrami
normalization (3rd column).
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4.2.2 Curves with endpoints

Similarly, for a curve with two endpoints and of length l, i. e. Γ ⊂ Rn parametrized
by s : [0, 1] −→ Γ such that Γ(0) = a and Γ(1) = b, the Neumann eigenfunctions recover
from the eigenvalue problem∆f(x) = −λf(x), x ∈ Γ , λ > 0

f ′(a) = f ′(b)

are {1, cos(j sl )}
∞
j=1 .

Figure (4.2) shows us the embedding of a spiral helix obtained by the two normalizations
and the eigenvalues and eigenvectors corresponding to the different operators. Even in this
case, we can notice the ability of the algorithm to recover the organization of the points
following the curve.

4.2.3 Surfaces

We now consider the spectral embedding of the Swiss Roll dataset. The Swiss Roll is
a 2-D manifold embedded in R3, described by the following equation:

x = 1
2 t cos t t ∈ [0, 3π];

y = 1
2 t sin t t ∈ [0, 3π];

z = 20πs s ∈ [0, 1].

One of the characteristics of the diffusion map method is the one to recover the underlying
manifold on which the data lie. So, we expect to recover a rectangle in the diffusion space.
Figure (4.3) presents the results obtained by the diffusion map algorithm. We can observe
that both normalizations try to recover the underlying manifold, but the result obtained
by graph Laplacian normalization is affected by the density of the points.

4.2.4 Image dataset

In this context we can observe that the diffusion map can have a twofold interpretation:
each column of the diffusion map present the coordinates of the embedding, each row
represents a feature function on the data. Some examples illustrate this idea.

4.2.4.1 Images parameterized by one real number

We study a sequence of face images from the UMIST Face Database 1-a 1-e. Each
picture is a pre-cropped 112×92 pixels gray image. The diffusion map method of Laplace-
Beltrami type is applied as follows:
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Figure 4.2: From top to bottom, from left to right: 900 randomly sampled points from a spiral
helix, first eigenvalues of the diffusion operator corresponding to different normalization, embed-
ding via graph Laplacian, embedding via Laplace Beltrami normalization, first two eigenvectors
for the diffusion operator via graph Laplacian, first two eigenvectors for the diffusion operators
via Laplace Beltrami type.

Figure 4.3: 3000 randomly sampled points from a swiss roll manifold. From left to right: original
data set in R3, embedding via graph Laplacian, embedding via Laplace Beltrami normalization.



70 CHAPTER 4. NUMERICAL EXPERIMENTS

- Initially, the pictures are indexed by the time parameter, or equivalently, by the
angle. To illustrate the capability of reorganization of the method, the pictures are
randomly arranged so that they appear unordered.

- The Euclidean distances between the images in the set are measured. The eigen-
functions of the Laplace Beltrami operator in this structure are computed. Finally,
the pictures are ordered according to their values.

To begin, we chose a set of 24 faces of the same person turning his head. The result about
the organization is illustrated in Figure (4.4), where we can see that reparameterizing our
dataset according to the reordered values of the first eigenvector, let us recover the more
important parameter of our set. In fact, we can say that it is the angle of rotation of the
head.

Figure 4.4: Results about images of the same person turning his head and spectral analysis.

Regarding the spectral analysis of this diffusion process, we can observe the last two
pictures in Figure (4.4). The first non trivial eigenfunction associates a real number to
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each image, this graph looks like that of half a period of cosine, which is the first non-trivial
Neumann eigenfunction of the Laplace Beltrami on a non closed curve, as we have seen
previously. Therefore, the data seem to be approximately lying along a curve in R112×92,
and the eigenfunction allows to recover the organization of the data with respect to the
angle of rotation of the face. So, the method allows us to recover the fundamental feature
of the set and moreover, to achieve dimensionality reduction.
Repeating the same process to a different dataset, composed by twelve images, we obtain
coherent results with the previous experiment, illustrate in Figure (4.5).

Figure 4.5: Results about images of the same person turning his head and spectral analysis.

4.2.4.2 Images parameterized by two real numbers

We study a database of images parameterized by two real numbers. More precisely,
the set is composed of a sequence of 420 images (75 × 81 pixel) of the word "3D" viewed
under different angles. The images are generated using Blender 2.79, a tridimensional
computer graphics software. In particular, we create a three dimensional model of the
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two characters 3 and D. Then, the object is rotated along the vertical axis (angle θ) and
horizontal axis (angle ϕ), like shown on Figure (4.6). The data are sampled considering θ
and ϕ, uniformly distributed from −20 to 20 degrees with a step of 2 degrees.

Figure 4.6: Sample of original set. The angle θ, x-axis, is discretized 20 times between -20 and
20 degrees. The angle ϕ, y-axis, is discretized 20 times between -20 and 20 degrees.

We apply to the data the diffusion maps algorithm, using the Laplace-Beltrami normal-
ization with Gaussian kernel, εmin and the standard construction of the matrix. We plot
the image of the set by the mapping (φ1, φ2), as we can see in Figure (4.7).

Figure 4.7: The set is mapped into R2 via (φ1, φ2).
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The result is that, the orientation of the object can be controlled by the two coordinates
φ1 and φ2, so the natural parameters of the dataset has been recovered by the algorithm.
Clearly, even in this case we achieve dimensionality reduction.

Figure 4.8: Right: some images are plotted in (φ1, φ2). The natural parameters θ and ϕ are
recovered.

4.2.5 Variation of parameters

4.2.5.1 Epsilon parameter

When we implement the function to obtain the weight affinity matrix, we add the choice
for the ε parameter. Let us see how this parameter is going to affect the performance of
the algorithm. We consider two cases:

- εmin = 1
N

∑N
i=1 minxi 6=xj‖xi−j‖

2

- εmean = 4 ∗mean(K)/N

in the case of the epitrochoid, the trefoil knot, the toroidal spiral respectively. In Figure
(4.9) we can recover the embedding of the curves with these different values. We can
remark that there is not a priori best choice, in fact, while for the embedding via graph
Laplacian normalization the choice of the parameter change mostly the sign, even if in the
toroidal spiral is the same, in the embedding of the Laplace Beltrami type we see that for
the trefoil knot the choice of εmin recover the perfect embedding, while for the toroidal
spiral the choice of εmean recover it.



74 CHAPTER 4. NUMERICAL EXPERIMENTS

Figure 4.9: Embedding comparison between εmin and εmean. Epitrochoid (1st row), trefoil knot
(2nd row), toroidal spiral (3rd row). Embedding via graph Laplacian normalization (1st column),
embedding via Laplace Beltrami normalization (2nd column).
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Figure (4.10), shows the eigenvalues that are recovered from the different type of nor-
malization. In general, we can remark that the eigenvalues recovered from the diffusion
operator obtained by the use of the parameter εmin decrease rapidly towards zero, while
the others have a law rate of convergence.

Figure 4.10: Eigenvalues comparison between εmin and εmean. Epitrochoid (1st row), trefoil knot
(2nd row), toroidal spiral (3rd row). Eigenvalues of graph Laplacian normalization (1st column),
eigenvalues of Laplace Beltrami normalization (2nd column).
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4.2.5.2 Construction of affinity matrix

Here we point out the main difference of the construction ofK, consideringKstandard,εmean ,
Kstandard,εmin , Kmin and Kmean.
Figure (4.11) illustrates the various embeddings. The first thing we notice is that the
worst case to recover the geometry is the one via Kmean. The others methods can be
compared.

Figure 4.11: Embedding with different affinity matrix. Epitrochoid (1st row), trefoil knot (2nd

row), toroidal spiral (3rd row). Embedding via graph Laplacian normalization (1st column),
embedding via Laplace Beltrami normalization (2nd column).

Figure (4.12) allows us to make an analysis of the eigenvalues recovered from different con-



4.2. ANALYSIS OF DATASETS 77

structions. The standard construction with εmean decrease rapidly towards zero and this
can make us think that it is the most useful method to achieve dimensionality reduction.
The worst case is the one with the Kmean as confirmed by the embedding. (4.12).

Figure 4.12: Eigenvalues of different constructions of affinity matrix. Epitrochoid (1st row),
trefoil knot (2nd row), toroidal spiral (3rd row). Eigenvalues of graph Laplacian normalization
(1st column), eigenvalues of Laplace Beltrami normalization (2nd column).
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4.2.6 Powers of Ad and multiscale geometric analysis of dataset

We have mentioned that, the kernel represents the probability of transition in one time
step from node x to node y. So, for t ≥ 0, the probability transition from x to y in t

time steps is given by the kernel of the tth power Atd of Ad. Here, the idea is that taking
different powers of Ad, will reveal relevant geometric structure of the set at different scales.
This will allow us to underline the fact that t plays the role of a scale parameter.
In order to illustrate this idea, we generate a set X of 900 points in the plane that is
actually a union of three clusters, as shown in Figure (4.13). From this set, we build a

Figure 4.13: Set containing 3 clusters.

graph with Gaussian weights e−
‖x−y‖2

ε with ε = 0.7. On Figure (4.14) we plot several
powers of the matrix Ad, namely for t = 6, t = 30 and t = 1000. The block structure
of this powers reveals the multiscale structure of the data: at t = 6 the set appear to be
made of 3 distinct clusters. For t = 30 the two closest clusters have merged. Last, at
t = 1000, all clusters have merged. Clearly, the block structure does not depend on the
specific ordering of the points, since this problem is overcome by the introduction of the
diffusion coordinates that reorganize the data regardless the given ordering of the set.
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Figure 4.14: Powers of diffusion matrix. Diffusion matrix via Graph Laplacian (1st column),
diffusion matrix via Laplace-Beltrami (2nd column). Powers t = 6 (1st row), t = 30 (2nd row),
t = 1000 (3rd row).
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Actually, if we compare the powers of the diffusion operators obtained by the two
different normalization, we can see that the Laplace-Beltrami type is faster than the graph
Laplacian’s. In fact, while for t = 500 the graph Laplacian diffusion presents a subdivision
of the set, the Laplace-Beltrami type presents the set as if the three clusters have already
merged.

Figure 4.15: Comparison between graph Laplacian and Laplace-Beltrami normalization. Diffusion
matrix via Graph Laplacian (1st column), diffusion matrix via Laplace-Beltrami (2nd column).
Powers t = 500 (1st row), t = 1000 (2nd row).
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4.2.7 Robustness to noise

We now illustrate the robustness of the method affected by perturbations. In Figure
(4.16) we consider a perturbed version of the epitrochoid used in Figure (4.1). We represent
the embedding obtained by (φ1, φ2) and, compared to the organization of data points that
we would have obtained from a perfect epitrochoid, the results obtained are not affected
by the noise, being actually unalterated.

Figure 4.16: Left: the perturbed epitrochoid of Figure (4.1). Right: embedding of the curve using
the firs two non trivial eigenfunctions.
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Appendix A

Conditional expectation

Consider (Ω,F , P ) a probability space and a random variable X : Ω −→ Rn.

Definition A.1. Suppose G ⊂ F is a sub σ-algebra of F . Then E[X|G] is the unique
random variable Y : Ω −→ Rn such that:

• E[X|G] is G-measurable;

•
∫
G
E[X|G]dP =

∫
G
XdP for all G ∈ G.

We list now some of the basic properties of conditional expectation:

Proposition A.0.1. Suppose that Z : Ω −→ Rn is another random variable such that
E[|Z|] <∞, a, b ∈ Rn. Then the following states hold:

1) E[aX + bZ|G] = aE[X|G] + bE[Z|G];

2) E[E[X|G]] = E[X];

3) E[X|G] = X if X is G-measurable;

4) E[X|G] = E[X] if X is independent of G;

5) E[Z ·X|G] = Z · E[X|G] if Z is G-measurable, · inner product in Rn.

Proof. 1)
∫
G
E[aX + bZ|G]dP =

∫
G
aX + bZdP = a

∫
G
XdP + b

∫
G
ZdP = aE[X|G] +

bE[Z|G].

2) E[E[X|G]] =
∫

ΩE[X|G]dP =
∫

ΩXdP = E[X].

3) Suppose B ∈ Rn be a Borel set, let G = X−1(B) ∈ G, then

P (X ∈ B) =
∫
G

XdP =
∫
G

E[X|G]dP = P (E[X|G] ∈ B).
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4) Let G ∈ G, then∫
G

XdP =
∫

Ω
1GXdP =

∫
Ω
XdP

∫
Ω

1GdP = E[X]P (G) = E[X]
∫

Ω
1GdP =

∫
G

E[X]dP ;

furthermore E[X] is G−measurable, then E[X|G] = E[X] by uniqueness.

5) We need to prove the statement only for indicatrice functions and then extend the
result for all measurable functions. Let Y = 1H , H ∈ G and G ∈ G. Then,∫

G

E[1HX|G]dP =
∫
G

1HXdP =
∫
G∩H

XdP =
∫
G

1HXdP =
∫
G

1HE[X|G]dP.

Theorem A.0.2. Suppose G,H σ-algebras such that H ⊂ G, then E[X|G] = E[E[X|G]|H].

Proof. Let H ∈ H, since H ⊂ G, we have H ∈ G. Then,∫
H

E[E[X|G]|H]dP =
∫
H

E[X|G]dP =
∫
H

XdP.

It follows from unicity that E[X|G] = E[E[X|G]|H].

Theorem A.0.3 (The Jensen Inequality). Let be φ : R −→ R s.t. E[|φ(X)|] < ∞, then
φ(E[X|G]) = E[φ(X)|G].

Corollary A.0.4. The following states hold:

- |E[X|G]| ≤ E[|X||G];

- |E[X|G]|2 ≤ E[|X|2|G];

- if Xn −→ X in L2, then E[Xn|G] −→ E[X|G] in L2.



Appendix B

Singular Value Decomposition

The SVD is a very important decomposition which is used for many purposes. In this
section K can be either R or C, furthermore suppose that m ≥ n.

Theorem B.0.1 (Singular values decomposition). For any A ∈ Km×n, there exist two
orthonormal (or unitary) matrices U ∈ Km×m and V ∈ Kn×n , such that

A = UΣV T (or A = UΣV H), (B.1)

where,

Σ =
(

Σ1 0
0 0

)
and Σ1 = diag(σ1, σ2, . . . , σr), its diagonal elements are arranged in the order:

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0, r = rank(A).

The elements σ1, σ2, . . . , σr together with σr+1 = . . . = σn = 0 are called the singular
values of matrix A. The column vector ui of matrix U is called the left singular vector of
A, and the matrix U is called the left singular matrix. The column vector vi of matrix V is
called the right singular vector of A, and the matrix V is called the right singular matrix.

The proof of the Theorem (B.0.1) can be seen in [19, 20].
The SVD of matrix A can also be written as:

A =
r∑
i=1

σiuiv
H
i . (B.2)

Recall that if A is a square n×n matrix with n linearly independent eigenvectors xi , i =
1, . . . , n, then A can be factorized as

A = XΛX−1 (B.3)
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where X is the square n × n matrix whose ith column is the eigenvector xi of A and
Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e.
Λ = diag(λ1, . . . , λn). Note that only diagonalizable matrices can be factorized in this
way.
For symmetric and Hermitian matrices, the eigenvalues and singular values are obviously
closely related. A nonnegative eigenvalue, λ ≥ 0, is also a singular value, σ = λ. The
corresponding vectors are equal to each other, u = v = x. A negative eigenvalue, λ < 0,
must reverse its sign to become a singular value, σ = |λ|. One of the corresponding
singular vectors is the negative of the other, u = −v = x. This follows from the fact that
all the eigenvectors of an Hermitian matrix are linearly independent, and they are mutual
orthogonal, namely the eigen-matrix X = [x1, . . . , xn] is a unitary matrix and X−1 = XH .
So, it holds that XHAX = Λ = diag(λ1, . . . , λn), or A = XΛXH , which can be rewritten
as

A =
n∑
i=1

λixix
H
i (B.4)

In other words, we prove the following theorem.

Theorem B.0.2. Let A = UΣV T be the SVD of the m × n matrix A. Suppose A is
symmetric, with eigenvalues λi and orthonormal eigenvectors xi. In other words A =
XΛX−1 is an eigendecomposition of A with Λ = diag(λ1, . . . , λn), X = [x1, . . . , xn] and
XXT = Id. Then an SVD of A is A = XΣV T , where σi = |λi| and vi = sgn(λi)xi, with
sgn(0) = 1.
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