Cantucci, Filippo
(2015)
Segmentazione e categorizzazione di oggetti mediante immagini depth e deep learning.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Ingegneria elettronica [LM-DM270]
Documenti full-text disponibili:
Abstract
Questo lavoro è iniziato con uno studio teorico delle principali tecniche di classificazione di immagini note in letteratura, con particolare attenzione ai più diffusi modelli di rappresentazione dell’immagine, quali il modello Bag of Visual Words, e ai principali strumenti di Apprendimento Automatico (Machine Learning). In seguito si è focalizzata l’attenzione sulla analisi di ciò che costituisce lo stato dell’arte per la classificazione delle immagini, ovvero il Deep Learning.
Per sperimentare i vantaggi dell’insieme di metodologie di Image Classification, si è fatto uso di Torch7, un framework di calcolo numerico, utilizzabile mediante il linguaggio di scripting Lua, open source, con ampio supporto alle metodologie allo stato dell’arte di Deep Learning. Tramite Torch7 è stata implementata la vera e propria classificazione di immagini poiché questo framework, grazie anche al lavoro di analisi portato avanti da alcuni miei colleghi in precedenza, è risultato essere molto efficace nel categorizzare oggetti in immagini.
Le immagini su cui si sono basati i test sperimentali, appartengono a un dataset creato ad hoc per il sistema di visione 3D con la finalità di sperimentare il sistema per individui ipovedenti e non vedenti; in esso sono presenti alcuni tra i principali ostacoli che un ipovedente può incontrare nella propria quotidianità. In particolare il dataset si compone di potenziali ostacoli relativi a una ipotetica situazione di utilizzo all’aperto.
Dopo avere stabilito dunque che Torch7 fosse il supporto da usare per la classificazione, l’attenzione si è concentrata sulla possibilità di sfruttare la Visione Stereo per aumentare l’accuratezza della classificazione stessa. Infatti, le immagini appartenenti al dataset sopra citato sono state acquisite mediante una Stereo Camera con elaborazione su FPGA sviluppata dal gruppo di ricerca presso il quale è stato svolto questo lavoro. Ciò ha permesso di utilizzare informazioni di tipo 3D, quali il livello di depth (profondità) di ogni oggetto appartenente all’immagine, per segmentare, attraverso un algoritmo realizzato in C++, gli oggetti di interesse, escludendo il resto della scena. L’ultima fase del lavoro è stata quella di testare Torch7 sul dataset di immagini, preventivamente segmentate attraverso l’algoritmo di segmentazione appena delineato, al fine di eseguire il riconoscimento della tipologia di ostacolo individuato dal sistema.
Abstract
Questo lavoro è iniziato con uno studio teorico delle principali tecniche di classificazione di immagini note in letteratura, con particolare attenzione ai più diffusi modelli di rappresentazione dell’immagine, quali il modello Bag of Visual Words, e ai principali strumenti di Apprendimento Automatico (Machine Learning). In seguito si è focalizzata l’attenzione sulla analisi di ciò che costituisce lo stato dell’arte per la classificazione delle immagini, ovvero il Deep Learning.
Per sperimentare i vantaggi dell’insieme di metodologie di Image Classification, si è fatto uso di Torch7, un framework di calcolo numerico, utilizzabile mediante il linguaggio di scripting Lua, open source, con ampio supporto alle metodologie allo stato dell’arte di Deep Learning. Tramite Torch7 è stata implementata la vera e propria classificazione di immagini poiché questo framework, grazie anche al lavoro di analisi portato avanti da alcuni miei colleghi in precedenza, è risultato essere molto efficace nel categorizzare oggetti in immagini.
Le immagini su cui si sono basati i test sperimentali, appartengono a un dataset creato ad hoc per il sistema di visione 3D con la finalità di sperimentare il sistema per individui ipovedenti e non vedenti; in esso sono presenti alcuni tra i principali ostacoli che un ipovedente può incontrare nella propria quotidianità. In particolare il dataset si compone di potenziali ostacoli relativi a una ipotetica situazione di utilizzo all’aperto.
Dopo avere stabilito dunque che Torch7 fosse il supporto da usare per la classificazione, l’attenzione si è concentrata sulla possibilità di sfruttare la Visione Stereo per aumentare l’accuratezza della classificazione stessa. Infatti, le immagini appartenenti al dataset sopra citato sono state acquisite mediante una Stereo Camera con elaborazione su FPGA sviluppata dal gruppo di ricerca presso il quale è stato svolto questo lavoro. Ciò ha permesso di utilizzare informazioni di tipo 3D, quali il livello di depth (profondità) di ogni oggetto appartenente all’immagine, per segmentare, attraverso un algoritmo realizzato in C++, gli oggetti di interesse, escludendo il resto della scena. L’ultima fase del lavoro è stata quella di testare Torch7 sul dataset di immagini, preventivamente segmentate attraverso l’algoritmo di segmentazione appena delineato, al fine di eseguire il riconoscimento della tipologia di ostacolo individuato dal sistema.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Cantucci, Filippo
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum: Sistemi elettronici per l'elaborazione dell'informazione
Ordinamento Cds
DM270
Parole chiave
Segmentazione, visione stereo, Deep Learning, Convolutional Neural Network, Torch
Data di discussione della Tesi
18 Marzo 2015
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Cantucci, Filippo
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum: Sistemi elettronici per l'elaborazione dell'informazione
Ordinamento Cds
DM270
Parole chiave
Segmentazione, visione stereo, Deep Learning, Convolutional Neural Network, Torch
Data di discussione della Tesi
18 Marzo 2015
URI
Statistica sui download
Gestione del documento: