Giannone, Flavio
(2014)
Algebre di Lie eccezionali realizzate come algebre di matrici.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
Abstract
La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.
Abstract
La classificazione delle algebre di Lie semplici di dimensione finita su un campo algebricamente chiuso si divide in due parti: le algebre di Lie classiche e quelle eccezionali. La differenza principale è che le algebre di Lie classiche vengono introdotte come algebre di matrici, quelle eccezionali invece non si presentano come algebre di matrici ma un modo di introdurle è attraverso il loro diagramma di Dynkin. Lo scopo della tesi è di realizzare l' algebra di Lie eccezionale di tipo G_2 come algebra di matrici. Per raggiungere tale scopo viene introdotta un' algebra di composizione: la cosiddetta algebra degli ottonioni. Quest'ultima viene costruita in due modi diversi: come spazio vettoriale sui reali con un prodotto bilineare e come insieme delle coppie ordinate di quaternioni. Il resto della tesi è dedicato all' algebra delle derivazioni degli ottonioni. Viene dimostrato che questa è un' algebra di Lie semisemplice di dimensione 14. Infine, considerando la complessificazione dell'algebra delle derivazioni degli ottonioni, viene dimostrato che quest'ultima è semplice e quindi isomorfa a G_2.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Giannone, Flavio
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
algebra di Lie algebra di composizione algebra degli ottonioni algebra delle derivazioni degli ottonioni
Data di discussione della Tesi
18 Luglio 2014
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Giannone, Flavio
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
algebra di Lie algebra di composizione algebra degli ottonioni algebra delle derivazioni degli ottonioni
Data di discussione della Tesi
18 Luglio 2014
URI
Statistica sui download
Gestione del documento: