A multi-objective genetic algorithm optimisation using variable speed pumps in water distribution systems

Nikolaou, Christos (2014) A multi-objective genetic algorithm optimisation using variable speed pumps in water distribution systems. [Laurea magistrale], Università di Bologna, Corso di Studio in Civil engineering [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of NIKOLAOU_Christos_tesi.pdf] Documento PDF
Full-text non accessibile

Download (5MB) | Contatta l'autore

Abstract

Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Nikolaou, Christos
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Optimisation, optimization, objective, NSGA, algorithm, pump, variable speed, fixed speed, pareto front
Data di discussione della Tesi
17 Marzo 2014
URI

Altri metadati

Gestione del documento: Visualizza il documento

^