Nervo, Alessandro
(2025)
Some integrability results for wronskians
in gravity and supersymmetric gauge
theories.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (717kB)
|
Abstract
Abstract
In this thesis we study the Confluent Heun equation (CHE) with quantum integrability methods, with
particular focus on the relevant wronskians solving it’s monodromy problem. It is known that CHE is in
correspondence with the quantization of Seiberg-Witten (SW) differential for N = 2 Super-Yang-Mills (SYM)
with number of flavours Nf = 3 in the Nekrasov-Shatashvili (NS) background. Besides, the same equation is
crucial in black hole perturbation of Schwarzschild and Kerr geometry theory. In this context, the wronskians
between the Floquet functions are computed in a new way, for both Nf = 0 and Nf = 3 theories and compared
with results in the literature. By using them, we compute the wronskians between regular solutions, as well,
which are their connection coefficients and play the role of the so called Q-functions in quantum integrability. To
reach this goal, we built a new algorithmic way to compute the quantum momentum of the Floquet and regular
solutions by means of some special polynomials that can be computed in a recursive way and enjoy interesting
properties.
Abstract
Abstract
In this thesis we study the Confluent Heun equation (CHE) with quantum integrability methods, with
particular focus on the relevant wronskians solving it’s monodromy problem. It is known that CHE is in
correspondence with the quantization of Seiberg-Witten (SW) differential for N = 2 Super-Yang-Mills (SYM)
with number of flavours Nf = 3 in the Nekrasov-Shatashvili (NS) background. Besides, the same equation is
crucial in black hole perturbation of Schwarzschild and Kerr geometry theory. In this context, the wronskians
between the Floquet functions are computed in a new way, for both Nf = 0 and Nf = 3 theories and compared
with results in the literature. By using them, we compute the wronskians between regular solutions, as well,
which are their connection coefficients and play the role of the so called Q-functions in quantum integrability. To
reach this goal, we built a new algorithmic way to compute the quantum momentum of the Floquet and regular
solutions by means of some special polynomials that can be computed in a recursive way and enjoy interesting
properties.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Nervo, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Integrability,gauge,supersymmetric,exact,black hole
Data di discussione della Tesi
19 Dicembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Nervo, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Integrability,gauge,supersymmetric,exact,black hole
Data di discussione della Tesi
19 Dicembre 2025
URI
Statistica sui download
Gestione del documento: