Deep Learning techniques for SAR data processing

Daga, Gabriele (2025) Deep Learning techniques for SAR data processing. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Synthetic Aperture Radar (SAR) missions are experiencing a rapid increase in data volume due to higher spatial resolution, wider swaths, polarimetric acquisition and the deployment of large satellite constellations. This growth exacerbates well-known limitations in downlink capacity, onboard storage and ground-segment processing, making the traditional raw-data-centric pipeline progressively unsustainable. At the same time, many operational applications—such as rapid disaster mapping, maritime surveillance and deformation monitoring—require low-latency products that cannot rely exclusively on ground-based processing. This thesis investigates whether deep learning can provide an effective alternative to classical SAR focusing algorithms for onboard or near-sensor deployment. Specifically, it reformulates azimuth focusing as a one-dimensional sequence-to-sequence problem and proposes a state-space-model (SSM) architecture capable of operating in a fully streaming manner, avoiding the two-dimensional buffering and corner-turning operations that hinder conventional frequency-domain processors on embedded hardware. Experiments demonstrate that the distilled model achieves focusing quality comparable to the Range–Doppler Algorithm while offering substantial reductions in memory footprint and computational cost, making it a promising candidate for future onboard SAR processing. These results represent a step towards autonomous and adaptive cognitive SAR systems capable of real-time focusing and analytics directly in orbit.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Daga, Gabriele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INGEGNERIA INFORMATICA
Ordinamento Cds
DM270
Parole chiave
SAR, Deep Learning, Remote Sensing
Data di discussione della Tesi
4 Dicembre 2025
URI

Altri metadati

Gestione del documento: Visualizza il documento

^