A Semiclassical Weyl Law for Quantized Operators on the Torus Perturbed by Random Potentials

Bertoni, Nicola (2025) A Semiclassical Weyl Law for Quantized Operators on the Torus Perturbed by Random Potentials. [Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (646kB)

Abstract

In this thesis we study the Weyl quantization of periodic symbols on the torus in a semiclassical regime where the parameter $N\to \infty$. This framework is natural for describing quantum observables that are periodic both in position and momentum. Since the torus is a compact phase space, the corresponding quantizations, when restricted to the space of periodic distributions, yield finite-dimensional operators, i.e., square matrices, whose size grows with $N$. Characterizing the spectrum of these operators is challenging, since they are not necessarily self-adjoint. To regularize the spectrum, we introduce small random perturbations in the form of diagonal matrices with compactly supported probability distributions. From a physical perspective, such perturbations can model random potentials in a quantum system. The main contribution of this work is the establishment of a probabilistic Weyl law for the spectrum of the perturbed operators. Using semiclassical analysis tools, Grushin problems, and techniques from complex analysis and probability theory, we prove that with high probability the eigenvalues of the perturbed operators roughly equidistribute in the range of their principal symbols. Specifically, for relatively compact sets with uniformly Lipschitz boundary, the eigenvalue counting function admits an asymptotic estimate governed by the measure of the set's preimage under the principal symbol. Our results demonstrate that small random potential perturbations can regularize the spectrum and recover Weyl-type asymptotics in this setting.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Bertoni, Nicola
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
Semiclassical Calculus,Torus,Periodic symbols,Random Perturbation,Potentials,Weyl Law,Spectral Asymptotics,Perturbation Theory,Random Matrix,Weyl Quantization,Grushin Problem
Data di discussione della Tesi
29 Ottobre 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^