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Abstract

In this thesis we study the Weyl quantization of periodic symbols on the torus in a semiclassical

regime where the parameter N → ∞. This framework is natural for describing quantum ob-

servables that are periodic both in position and momentum. Since the torus is a compact phase

space, the corresponding quantizations, when restricted to the space of periodic distributions,

yield finite-dimensional operators, i.e., square matrices, whose size grows with N.

Characterizing the spectrum of these operators is challenging, since they are not necessarily

self-adjoint. To regularize the spectrum, we introduce small random perturbations in the form

of diagonal matrices with compactly supported probability distributions. From a physical per-

spective, such perturbations can model random potentials in a quantum system.

The main contribution of this work is the establishment of a probabilistic Weyl law for the

spectrum of the perturbed operators. Using semiclassical analysis tools, Grushin problems,

and techniques from complex analysis and probability theory, we prove that with high prob-

ability the eigenvalues of the perturbed operators roughly equidistribute in the range of their

principal symbols. Specifically, for relatively compact sets with uniformly Lipschitz boundary,

the eigenvalue counting function admits an asymptotic estimate governed by the measure of

the set’s preimage under the principal symbol.

Our results demonstrate that small random potential perturbations can regularize the spec-

trum and recover Weyl-type asymptotics in this setting.





Abstract

In questa tesi studiamo la quantizzazione di Weyl di simboli periodici sul toro in un regime

semiclassico in cui il parametro N → ∞. Questo è un contesto naturale in cui descrivere osserv-

abili quantistiche periodiche sia nella posizione che nel momento. Poiché il toro è uno spazio

delle fasi compatto, le quantizzazioni corrispondenti, se ristrette allo spazio delle distribuzioni

periodiche, sono operatori finito-dimensionali, cioè matrici quadrate, la cui dimensione cresce

con N.

Caratterizzare lo spettro di questi operatori può essere complesso, poiché non sono nec-

essariamente autoaggiunti. Al fine di regolarizzarne lo spettro, introduciamo piccole pertur-

bazioni casuali sotto forma di matrici diagonali con distribuzioni di probabilità a supporto

compatto. Da un punto di vista fisico, tali perturbazioni possono modellare potenziali casuali

in un sistema quantistico.

Il contributo principale di questo lavoro consiste in una legge di Weyl probabilistica per lo

spettro degli operatori perturbati. Utilizzando strumenti di analisi semiclassica, problemi di

tipo Grushin e tecniche di analisi complessa e teoria della probabilità, dimostriamo che con

grande probabilità gli autovalori degli operatori perturbati si equidistribuiscono approssima-

tivamente nell’immagine del loro simbolo principale. Nello specifico, per insiemi in relativa-

mente compatti con bordo uniformemente Lipschitziano, la funzione di conteggio degli auto-

valori ammette una stima asintotica determinata dalla misura della preimmagine dell’insieme

rispetto al simbolo principale.

I nostri risultati mostrano che piccole perturbazioni casuali di tipo potenziale regolarizzano

lo spettro e consentono di ottenere asintotiche di tipo Weyl in questo contesto.
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Introduction

In this thesis we work with pseudodifferential operators in a semiclassical regime where the

parameter N → ∞. In particular, we consider operators obtained as the Weyl quantization of

periodic symbols on the torus T2d. Since the torus is a compact phase space, using semiclassical

calculus, we show that these quantizations, when restricted to the space of periodic distribu-

tions, yield finite-dimensional operators. Thus, they are represented by square matrices whose

dimension grows with N.

These operators are not necessarily self-adjoint, and hence their spectral analysis is delicate:

the spectrum can be highly unstable. Whereas for self-adjoint operators there are asymptotic

Weyl laws describing their eigenvalue distribution, there is no general analogue in the non-

selfadjoint setting. Thus, in the framework we are studying, we aim to regularize the spectrum

by introducing small random perturbations.

This technique has been used by several authors and has proved particularly effective for

establishing probabilistic Weyl-type laws. In particular, we follow ideas from Vogel [Vo20]

and Sjöstrand [Sj09]. Vogel works in the same toroidal, finite-dimensional setting considered

here and introduces full random matrix perturbations (e.g., with Gaussian entries). By con-

trast, Sjöstrand studies Weyl quantization on R2d, leading to infinite-dimensional operators,

and considers multiplicative random perturbations modeling random potentials.

In this work we adopt Sjöstrand’s multiplicative (potential-type) perturbations within the

finite-dimensional framework induced by the torus. Consequently, the perturbations are di-

agonal matrices, in contrast to the full-matrix model considered by Vogel. Although the two

cases present similarities, they cannot be approached in the same way and require different

arguments and discussions for achieving the desired results.

To set the framework, we first review the core tools of semiclassical analysis and functional

calculus, which provide the principal machinery for describing the operators under consid-

eration. We then introduce a Grushin problem: by embedding the original operator into an

augmented block system, its spectral properties are captured by a Schur complement, which is

often easier to analyze and control. Finally, standard results from complex analysis and proba-

bility theory provide the key estimates used in our main arguments.

Beyond its mathematical relevance, this framework admits a clear physical interpretation.

The operators introduced above naturally model quantum observables that are periodic in both

position and momentum; they arise via ”quantization” of periodic symbols representing clas-

iii



iv Introduction

sical observables. Moreover, the multiplicative perturbations we consider can model random

potentials acting on a quantum system.

Before turning to the technical developments of the subsequent chapters, we present a con-

crete example illustrating the scope and significance of this work. Fix N ≫ 1 and consider the

two-dimensional torus T2 as phase space, where the variable x stands for the position and ξ

for the momentum. We define the symbol

p(x, ξ) := cos(2πx) + i cos(2πξ), (x, ξ) ∈ T2. (1)

The Weyl quantization of p, restricted to the space of periodic distributions, yields a finite-

dimensional operator acting on CN . In particular, it can be represented by the matrix

pN =



cos(x1)
i
2 0 0 · · · i

2
i
2 cos(x2)

i
2 0 · · · 0

0 i
2 cos(x3)

i
2

. . . 0
...

. . . . . . . . . . . .
...

0 · · · 0 i
2 cos(xN−1)

i
2

i
2 0 · · · 0 i

2 cos(xN)


, xj :=

2π j
N

, j = 1, . . . , N,

(2)

often referred to as the Scottish flag operator (a circulant tridiagonal, non-self-adjoint matrix).

Figure 1 displays the spectra obtained from two numerical simulations. The left panel

shows the spectrum of the unperturbed operator pN ; the right panel shows the spectrum of

the perturbed matrix pN + δVq, where δ is a small N-dependent parameter and Vq = diag(q) is

a diagonal potential with q ∈ CN sampled from a truncated multivariate Gaussian.

Figure 1: Left: spectrum of pN with N = 100. Right: spectrum of pN + δVq with N = 1000 and
δ = N−3/2.

These plots illustrate how a small diagonal (potential-type) random perturbation regular-
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izes the spectrum of the Scottish flag operator.

The simulations are consistent with our main result (Theorem 5.5). By applying that theo-

rem to the case of the Scottish flag operator, as shown in Section 5.3, we obtain the following

statement.

Theorem 1. Fix a semiclassical parameter N ≫ 1 and consider p as in (1) and its quantization

pN as in (2). Let q ∈ CN be a random vector distributed as a Gaussian truncated to a ball B,

and set Vq := diag(q). Let D be an open disc contained in the square [−1, 1]2. Then there exists

0 < δ ≪ N−1 such that the estimate∣∣∣∣ 1
N

#(σ(pN + δVq) ∩ D)− λ (p−1(D))

∣∣∣∣ ≤ O(N− 1
4 (ln (N))3)

holds with probability tending to 1 as N → +∞. Here, σ denotes the spectrum and λ the

Lebesgue measure on the torus.

In particular, in the semiclassical limit, the eigenvalues of pN + δVq become equidistributed

in the image of the symbol p(T2) with high probability.

Structure of the Thesis

The thesis is organized into five chapters. Each chapter develops tools and intermediate

results, culminating in the main probabilistic Weyl law.

Chapter 1

In the first chapter, we review the core notions of semiclassical analysis and functional cal-

culus. We begin by introducing symbols on the phase space R2d and their Weyl quantization,

viewed as h–dependent pseudodifferential operators defined via oscillatory integrals, where

0 < h ≪ 1. After recording basic properties of this calculus, we pass to the toroidal setting

T2d. Restricting the corresponding quantized symbols to distributions that are periodic in both

position and momentum yields finite-dimensional operators on CNd
, where N = (2πh)−1. We

then perform a phase-space rescaling and summarize its consequences for symbols and quan-

tizations. The chapter concludes with Theorem 1.25, which provides spectral relations between

a symbol and its quantization and will be used repeatedly in the following chapters.

Chapter 2

In the second chapter we focus on the study of Grushin problems. These are very important

instruments in spectral theory, as they often simplify the analysis of spectral properties of both

finite-dimensional and infinite-dimensional operators.

The basic idea is to embed the original (possibly non-invertible) operator into an aug-

mented, invertible block system; the spectral information of the initial problem is then encoded
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in a Schur complement, which is more tractable to analyze. We then establish log-determinant

identities and estimates for both the unperturbed operator and for operators perturbed by de-

terministic potentials. These results will serve as a baseline for the probabilistic analysis in the

later chapters.

Chapter 3

In the third chapter we adapt Sjöstrand’s strategy in [Sj09, Chapters 5–6] to the toroidal

setting. We consider a symbol p satisfying the symmetry assumption p(x, ξ) = p(x,−ξ), and

its corresponding Weyl quantization pN with N ≫ 1. Assuming a uniform lower bound on a

subset of the singular values of pN , we construct a deterministic diagonal potential by applying

some linear-algebraic techniques to the singular vectors of pN .

The Grushin reduction studied in Chapter 2 yields a bootstrap step that provides a new

bound for a larger portion of the singular values of the operator perturbed by this potential.

Iterating the procedure, each time updating the perturbation, we obtain a small diagonal per-

turbation δ0Vq0 for which the perturbed operator admits an explicit estimate for its smallest

singular value.

As a consequence, we derive a pointwise lower bound for the error functional

F(q) := ln |det(pN + δVq − z)| − Nd
(∫

T2d
ln |p0(ρ)− z|dρ

)
,

when evaluated at q0. Here p0 is the principal symbol of p, Vq := diag(q) and z ∈ C.

These deterministic constructions form the core original contribution of the thesis and are

the key input for the probabilistic analysis.

Chapter 4

In the fourth chapter we equip the diagonal vector q with a probability law supported on a

ball in CNd
containing q0 (e.g., a truncated Gaussian). After obtaining a uniform upper bound

for F over this ball, we apply Jensen’s inequality and some measure theory tools to derive a

quantitative bound on the probability of the event (|F(q)| < ε), given an arbitrary ε > 0. This

probabilistic control of F is the bridge to the eigenvalue counting statements established in the

final chapter.

Chapter 5

In the fifth chapter we prove the asymptotic Weyl law that is the main objective of the thesis,

via two different approaches following [Vo20] and [SjVo21].

(i) Complex-analytic approach. This approach is based on Theorem 1.2 in [Sj10] concerning

zero counting for holomorphic functions of exponential growth. Using the deterministic and

probabilistic bounds developed earlier, we construct an appropriate framework where to apply

the theorem. This application yields our quantitative main result, Theorem 5.5. Given Γ ⋐ C
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an open set with uniformly Lipschitz boundary, the theorem provides an explicit error bound

for ∣∣∣∣ 1
Nd #(σ(pN + δVq) ∩ Γ)−

∫
p−1

0 (Γ)
dρ

∣∣∣∣ , (3)

which holds with probability tending to 1 as N → +∞.

(ii) Measure-theoretic approach. Adapting Theorem 2.8.3 in [Ta12], we show that the empirical

spectral measures of the randomly perturbed operators pN + δVq converge weakly (in proba-

bility) to the push-forward of the Lebesgue measure on the torus under the principal symbol

p0. Then, by applying Portemanteau’s theorem, we obtain the convergence in probability of (3)

for a wider class of sets, though without providing an explicit error rate.

Finally, we return to the Scottish flag operator and present the application already shown

above, culminating in Theorem 1.





Notations

N∗ := N \ {0}.

⟨·, ·⟩ Inner product on a complex Hilbert space (linear in the first argument, conjugate-linear

in the second). On real spaces it is the usual scalar product.

∥ · ∥2 Norm induced by ⟨·, ·⟩.

∥ · ∥∞ Supremum (max) norm on vectors: for x = (xj)j, ∥x∥∞ := supj |xj|.

⟨·⟩ := (1 + ∥ · ∥2
2)

1/2 Japanese brackets.

λ Lebesgue measure on the underlying space.

D(z, r) Open disc in C with center z and radius r.

Bd(z, r) Open ball in Cd (with respect to ∥ · ∥2) with center z and radius r.

Sd−1 := {x ∈ Rd : ∥x∥2 = 1} The unit sphere in Rd.

D(M) := C∞
c (M) Space of test functions on a smooth manifold M.

D′(M) Space of distributions on a smooth manifold M.

S(Rd) Schwartz space of rapidly decreasing functions on Rd.

S ′(Rd) Space of tempered distributions on Rd.

⟨·, ·⟩X′,X Dual pairing between a space X and its dual X′.

∥ · ∥ Operator norm induced by ∥ · ∥2: ∥P∥ := sup∥x∥2=1 ∥Px∥2.

Mr,s Space of complex r × s matrices.

1



2 Notations

σ(P) Spectrum of a finite-dimensional operator P.

tr(P) Trace of a finite-dimensional operator P.

Dx := 1
i ∂x Differential operator.

∂ := ∂z := 1
2

(
∂

∂x + i ∂
∂y

)
.

{·, ·} Poisson brackets.

φ∗(µ) Push-forward of a measure µ by a measurable map φ.

a ≪ b There exists a sufficiently large constant C > 0 such that Ca ≤ b.

f = O(N) There exists a constant C > 0 (independent of N) such that | f | ≤ CN. When we

want to emphasize that the constant C > 0 depends on some parameter k, then we write Ck, or

with the above big-O notation Ok(N).

f = O(N−∞) For every m ∈ N, there exists a constant Cm > 0, depending on m, such that

| f | ≤ CmN−m.



Chapter 1

Semiclassical Calculus and Functional

Calculus

In the first chapter, we review some basic notions and results of semiclassical analysis in

Rd, following the exposition in [DiSj99, Ma02, Zw12]. We then turn to the study of Toeplitz

quantization on the torus, as developed in [ChZw10] and [NoZw07]. Broadly speaking, this

framework can be interpreted as a restriction of semiclassical calculus to periodic symbols and

to function spaces consisting of tempered distributions that are periodic both in the spatial

variable and in the semiclassical frequency.

1.1 Semiclassical Quantization

We start by giving the definition of an order function.

Definition 1.1. Let m : R2d →]0,+∞[ be a measurable function. We say that m is an order

function if there exist constants C, N0 > 0 such that

m(ρ) ≤ C⟨ρ − η⟩N0 m(η), for all ρ, η ∈ R2d,

where ⟨ρ − η⟩ := (1 + ∥ρ − η∥2
2)

1
2 .

In particular, we consider smooth order functions, that is, functions m ∈ C∞(R2d,]0,+∞[).

As a simple example, we may take

m(x, ξ) := ⟨ξ⟩M0 , (x, ξ) ∈ R2d, with 0 < M0 < +∞,

which depends only on the frequency variable ξ and not on x.

Definition 1.2. Let m be a smooth order function on R2d. The symbol class associated with m

is defined as

S(m) := {p ∈ C∞(R2d); ∀ α ∈ N2d, ∃ Cα > 0 such that |∂α
ρ p(ρ)| ≤ Cαm(ρ), ∀ ρ ∈ R2d}. (1.1)

3



4 1. Semiclassical Calculus and Functional Calculus

A particularly simple case is given by

S(1) = {p ∈ C∞(R2d); ∀ α ∈ N2d sup
ρ∈R2d

|∂α
ρ p(ρ)| < +∞}.

Remark 1.3. The Schwartz space S(R2d) is contained in S(m), and moreover it is dense in S(m)

with respect to the topology of S(⟨(x, ξ)⟩ϵm), for every ϵ > 0.

From now on, we let h ∈]0, 1] denote the semiclassical parameter. A symbol p = p(ρ; h) ∈
S(m) may depend on h; in this case we assume that the symbol estimates in the definition (1.1)

hold uniformly in h. If a symbol p ∈ S(m) is of the form

p(ρ; h) = p0(ρ) + hr(ρ; h), r ∈ S(m),

then p0 is called the principal symbol of p. Moreover, we say that p has the asymptotic expan-

sion

p ∼ p0 + hp1 + . . . in S(m), pj ∈ S(m), (1.2)

if p − ∑N
j=0 hj pj ∈ hN+1S(m), for all N ∈ N.

We now define the h-Weyl quantization of a symbol acting on the Schwartz space S(Rd).

Definition 1.4. Given p ∈ S(m) and u ∈ S(Rd), we set

Opw
h (p)(x, hDx)u(x) =pw(x, hDx)u(x)

:=
1

(2πh)d

∫∫
R2d

e
i
h ⟨x−y,ξ⟩p

(
x + y

2
, ξ; h

)
u(y)dydξ, (1.3)

where the ξ–integration is understood in the sense of oscillatory integrals (see Section A.1.1 in

the Appendix).

More explicitly, let the operator L be defined as in the Appendix, namely

L(ξ, hDy) :=
1

1 + ∥ξ∥2
2
(1 − h ⟨ξ, Dy⟩).

Let k ∈ N with k > d + N0, where N0 is set in Definition 1.1. Using the notion of oscillatory

integral extended to S , for p ∈ S(m) and u ∈ S , we have

pw(x, hDx)u(x) =
1

(2πh)d

∫∫
R2d

e
i
h ⟨x−y,ξ⟩(tL)k

(
p
(

x + y
2

, ξ; h
)

u(y)
)

dydξ,

where the convergence of the ξ-integral is guaranteed by the fact that∣∣∣∣(tL)k
(

p
(

x + y
2

, ξ

)
u(y)

)∣∣∣∣ ≤ Ckm
(

x + y
2

, ξ

)
⟨ξ⟩−k ≤ O(⟨ξ⟩N0−k).

Remark 1.5. If the symbol p belongs to the Schwartz class S(R2d), then for every u ∈ S(Rd),
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pwu is is an absolutely convergent Lebesgue integral. Indeed, for a fixed x, the map

(y, ξ) 7→ p
( x+y

2 , ξ
)
u(y)

is Schwartz in (y, ξ).

More generally, we introduce a family of quantizations depending on a parameter t ∈ [0, 1]:

Opt
h(p)(x, hDx)u(x) :=

1
(2πh)d

∫∫
R2d

e
i
h ⟨x−y,ξ⟩p (tx + (1 − t)y, ξ) u(y)dydξ

For t = 0 and t = 1, we obtain the left and the right quantization of p respectively, while the

choice t = 1
2 corresponds to the Weyl quantization, which is of particular interest due to its

favorable properties.

By applying integration by parts, we obtain the following theorem.

Theorem 1.6. If p ∈ S(m), then

pw(x, hDx) : S(Rd) → S(Rd)

and

pw(x, hDx) : S ′(Rd) → S ′(Rd)

are continuous linear transformations.

Before proving the theorem, we recall the definition of semiclassical Fourier transform:

(Fhu)(ξ) def
=

1
(2πh)d/2

∫
Rd

e−i ⟨x,ξ⟩
h u(x)dx, u ∈ S(Rd), (1.4)

In particular, Fh maps S → S continuously and can be extended to a continuous function

S ′ → S ′, mapping L2 → L2 unitarily.

Proof. We prove the result for h = 1. Define the auxiliary differential operators

L1 :=
1 − ⟨ξ, Dy⟩

1 + ∥ξ∥2
2

, L2 :=
1 + ⟨x − y, Dξ⟩

1 + ∥x − y∥2
2

.

A direct computation shows that

L1

(
ei⟨x−y,ξ⟩

)
= ei⟨x−y,ξ⟩, L2

(
ei⟨x−y,ξ⟩

)
= ei⟨x−y,ξ⟩.

Let u ∈ S(Rd) and k ∈ N with k > d + N0, where N0 is set in Definition 1.1. Using the notion

of oscillatory integral (see Section A.1.1) extended to S , we obtain,

pw(x, Dx)u(x) =
1

(2π)d

∫∫
R2d

ei⟨x−y,ξ⟩(tL1)
k
(

p
(

x + y
2

, ξ

)
u(y)

)
dydξ,
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Since p ∈ S(m) and u ∈ S(Rd), there exists Ck > 0 such that

∣∣∣∣(tL1)
k
(

p
(

x + y
2

, ξ

)
u(y)

)∣∣∣∣ ≤ Ck
⟨( x+y

2 , ξ)⟩N0

⟨ξ⟩k . (1.5)

The decay in ξ allows us to integrate by parts using the operator L2, providing additional decay

in the variable x− y. Iterating this procedure, for any integers n, m ≥ 0, we obtain the following

bound for the integrand

∣∣∣∣(tL2)
n(tL1)

k
(

p
(

x + y
2

, ξ

)
u(y)

)∣∣∣∣ ≤ Cn,k,m
⟨( x+y

2 , ξ)⟩N0

⟨ξ⟩k⟨(x − y)⟩n⟨y⟩m . (1.6)

Hence, by choosing the right values for k, m, n it can be shown that pw(x, Dx)u(x) ∈ L∞(Rd).

Furthermore,

xj pw(x, Dx)u(x) =
1

(2π)d

∫∫
R2d

(Dξ j + yj)ei⟨x−y,ξ⟩p
(

x + y
2

, ξ

)
u(y)dydξ.

Using integration by part and proceeding as above, we can conclude that

xα pw(x, Dx) : S(Rd) → L∞(Rd), (1.7)

for each polynomial xα.

We recall the Fourier conjugation formula (Theorem A.5 in Appendix A),

F−1 pw(x, Dx)F = pw(Dx,−x).

Then, for every multiindex β,

Dβ
x pw(x, Dx) = F−1

(
ξβF pw(x, Dx)

)
= F−1(ξβ pw(−Dξ , ξ))F . (1.8)

From (1.7), we know that for any n ∈ N∗,

⟨x⟩2nxβ pw(x, Dx) : S(Rd) → L∞(Rd).

Thus, applying (1.8), we obtain that for all u ∈ S(Rd) and for all n ∈ N,

⟨ξ⟩2nF
(

Dβ
x pw(x, Dx)u

)
= ⟨ξ⟩2nξβ pw(−Dξ , ξ)Fu ∈ L∞(Rd),

and hence

∂β pw(x, Dx) : S(Rd) → F−1(⟨ξ⟩−2nL∞(Rd)).
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If 2n > d + 1, it follows that F−1(⟨ξ⟩−2nL∞(Rd)) ⊂ F−1(L1(Rd)) ⊂ L∞(Rd), and therefore

∂β pw(x, Dx) : S(Rd) → L∞(Rd).

Similarly, it can be shown that xα∂β pw(x, Dx) : S(Rd) → L∞(Rd) for all multiindices α, β.

Moreover, the continuity follows from similar arguments using the seminorms. This proves

the first statement of the theorem.

Next, we define the modified symbol

p̃(x, ξ) := p(x,−ξ) ∈ S(m).

Then, for all u, v ∈ S(Rd),

⟨pw(x, Dx)u, v⟩S ′,S =
∫∫∫

R3d
p
(

x + y
2

, ξ

)
e−i⟨x−y,ξ⟩u(y)v(x)dydξdx

=
∫∫∫

R3d
p̃
(

x + y
2

, η

)
e−i⟨y−x,η⟩u(y)v(x)dydηdx = ⟨u, p̃w(x, Dx)v⟩S ′,S .

But we have already proved that p̃w(x, Dx)v ∈ S(Rd) for all v ∈ S(Rd). Hence, the dual

pairing above shows that pw(x, Dx)u is well defined in S ′(Rd) for every u ∈ S ′(Rd).

The continuity of pw on S ′(Rd) follows from the continuity on S(Rd) and the definition of

the topology on S ′(Rd).

Remark 1.7. Theorem 4.21 in [Zw12] shows that if the symbol p ∈ S(Rd), then

pw(x, hDx) : L2(Rd) → L2(Rd)

is a bounded operator independently of h.

Now, given two order functions m1, m2 on R2d, define the bilinear, continuous h-Moyal

product

#h : S(m1)× S(m2) → S(m1m2),

given by

p#hq := eihA(D)(p(x, ξ)q(y, η))|y=x,η=ξ , (1.9)

where A(D) := 1
2 σ(Dx, Dξ ; Dy, Dη), σ denotes the standard symplectic form on R2d, and we

refer to [Zw12, Theorem 4.8] for the integral representation of the quantization of quadratic

exponentials.

From Theorem 4.17 of [Zw12], the #h-product admits the following asymptotic expansion

in the symbol class S(m1m2):

p#hq ∼
+∞

∑
k=0

1
k!

(ihA(D))k p(x, ξ)q(y, η)
∣∣
y=x,η=ξ

∈ S(m1m2). (1.10)

Now we present Theorem 4.11 of [Zw12], concerning the composition of Weyl quantizations of
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Schwartz functions.

Theorem 1.8. Let p, q ∈ S(R2d). Then

pw(x, hDx)qw(x, hDx) = aw(x, hDx),

where

a(x, ξ) = e
ih
2 σ(Dx ,Dξ ;Dy,Dη)(p(x, ξ)q(y, η))|y=x,η=ξ = (p#hq)(x, ξ). (1.11)

Proof. Let p ∈ S(R2d). We apply the h-Fourier transform (1.4), and we get

p̂(x∗, ξ∗) =
1

(2πh)d

∫∫
R2d

e−
i
h (⟨x,x∗⟩+⟨ξ,ξ∗⟩)p(x, ξ)dxdξ,

with inversion

p(x, ξ) =
1

(2πh)d

∫∫
R2d

e
i
h (⟨x,x∗⟩+⟨ξ,ξ∗⟩) p̂(x∗, ξ∗)dx∗dξ∗.

Let r := (x∗, ξ∗) ∈ R2d. By Lemma 4.10 in [Zw12], the Weyl quantization of p admits the

following representation

pw(x, hDx) =
1

(2πh)d

∫
R2d

p̂(r) e
i
h ℓr(x,hD) dr, where ℓr(x, ξ) := ⟨r, (x, ξ)⟩. (1.12)

Taking also q ∈ S(R2d) and s := (y∗, η∗) ∈ R2d,we obtain

pw(x, hDx) ◦ qw(x, hDx) =
1

(2πh)2d

∫∫
R4d

p̂(r)q̂(s) e
i
h ℓr(x,hD) e

i
h ℓs(x,hD) dr ds. (1.13)

Using the identity (ii) in [Zw12, Theorem 4.7]

e
i
h ℓr e

i
h ℓs = e

i
2h σ(r,s) e

i
h ℓr+s , (1.14)

and observing that

σ(r, s) = {ℓr, ℓs}, (1.15)

we get, from (1.13) and (1.12),

pw(x, hDx) ◦ qw(x, hDx) =
1

(2πh)2d

∫∫
R4d

p̂(r)q̂(s)e
i

2h {ℓr ,ℓs}e
i
h (ℓr+s)(x,hD) drds

=
1

(2πh)d

∫
R2d

â(t)e
i
h ℓt(x,hD) dt = aw(x, hDx),

where

â(t) =
1

(2πh)d

∫
r+s=t

p̂(r)q̂(s)e
i

2h̄ {ℓr ,ℓs} dr.

Now set

ã(x, ξ) = e
ih
2 σ(Dx ,Dξ ;Dy,Dη)

(
p(x, ξ) q(y, η)

)∣∣∣
y=x, η=ξ

.
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Using the Fourier representations of p and q as in (1.12) together with (1.14), one checks that

ã(x, ξ) =
1

(2πh)2d

∫∫
R4d

e
ih
2 σ(Dx ,Dξ ;Dy,Dη)e

i
h

(
ℓr(x,ξ)+ℓs(y,η)

)
e

i
2h σ(r,s)

∣∣∣∣
y=x, η=ξ

p̂(r)q̂(s) dr ds

=
1

(2πh)2d

∫∫
R4d

e
i
h

(
ℓr(x,ξ)+ℓs(x,ξ)

)
e

i
2h σ(r,s) p̂(r)q̂(s) dr ds.

Applying the semiclassical Fourier transform, we obtain

̂̃a(t) = 1
(2πh)2d

∫∫
R4d

(
1

(2πh)d

∫∫
R2d

e
i
h̄ (ℓr(x,ξ)+ℓs(x,ξ)−ℓt(x,ξ)) dxdξ

)
e

i
2h̄ σ(r;s) p̂(r)q̂(s) drds

=
1

(2πh)2d

∫
r+s=t

p̂(r)q̂(s)e
i

2h̄ {ℓr ,ℓs} dr,

where we used (1.15) and the fact that the term inside the parenthesis is δr+s=t in S ′(R2d). We

have shown that ̂̃a = â. Since the Fourier transform is an isomorphism, it follows that ã = a,

which completes the proof.

Proposition 1.9 (Theorem 4.18 of [Zw12]). Let p ∈ S(m1), q ∈ S(m2), where m1, m2 are order

functions. Then

pw(x, hDx) ◦ qw(x, hDx) = (p#hq)w(x, hDx),

as operators mapping S(Rd) to S(Rd).

Proof. By Theorem 1.8, the statement holds for all p, q ∈ S(R2d). The general case follows by

density of S(Rd) in S(m) (see Remark 1.3), which allows to extend the identity to symbols in

S(m1) and S(m2).

Remark 1.10. The bilinear operation #h thus endows the set of symbols with an algebra struc-

ture, which is faithfully reflected at the operator level by the Weyl quantization.

Definition 1.11. A symbol p ∈ S(m) is called elliptic if there exists a constant C > 0, indepen-

dent of h, such that

|p(x, ξ)| ≥ 1
C

m(x, ξ), (x, ξ) ∈ R2d.

Remark 1.12. If p ∈ S(m) is elliptic, then 1
p ∈ S

( 1
m

)
. In particular, applying the preceding

results, we obtain

pw(x, hDx) ◦
(

1
p

)w

(x, hDx) =

(
p #h

1
p

)w

(x, hDx),

where p #h
1
p ∈ S(1). Moreover, the semiclassical expansion (1.10) yields

p#h
1
p

∼ 1 +
+∞

∑
k=1

1
k!
(ih)k(A(D)

)k
(

p(x, ξ)
1
p
(y, η)

)∣∣∣
y=x, η=ξ

,
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which shows in particular that

p#h
1
p

∼ 1 + h S(1) +OS(1)(h
2).

1.2 Quantization of the Torus

In this section, we describe the space of tempered distributions that are simultaneously

periodic in both position and frequency variables. Our presentation follows the approach of

[ChZw10, NoZw07], where the Zd-periodicity was considered, and of [Vo20] for the rescaled

torus.

Given α > 0, we define

T2d
α := R2d/(α−1/2Z)2d. (1.16)

When α = 1, we simply write T2d = T2d
1 . Throughout this section, we let h ≪ α ≤ 1, and set

h̃ = h
α .

We now introduce the space Hd
h̃,α

⊂ S ′(Rd), consisting of tempered distributions u ∈
S ′(Rd) which are α−1/2Zd-periodic both in position and in frequency. More explicitly, we re-

quire

u(x + α−1/2n) = u(x), (Fh̃u)(ξ + α−1/2n) = (Fh̃u)(ξ), ∀ n ∈ Zd. (1.17)

For α = 1 we shall simply write Hd
h := Hd

h,1.

The following lemma characterizes precisely when this space is non-trivial, generalizing

the results from the references above.

Lemma 1.13. Let h ≪ α ≤ 1. Then

Hd
h̃,α

̸= {0} ⇐⇒ h =
1

2πN
, for some N ∈ N∗. (1.18)

In this case Hd
h̃,α

is a finite-dimensional complex vector space of dimension Nd and

Hd
h̃,α

= span

{
Qα

k :=
1

(α
1
2 N)

d
2

∑
n∈Zd

δ

(
x − α− 1

2

(
n +

k
N

))
; k ∈ (Z/NZ)d

}
, (1.19)

where δ denotes the Dirac distribution.

Proof. First, for u ∈ S ′(Rd), we introduce the notation

û h̃ = (2πh̃)d/2Fh̃u.

The proof relies on the Poisson summation formula (see [Hö83, Section 7.2]), which states that

for ψ ∈ S(Rd) and a ∈ R \ {0},

∑
g∈Zd

ψ̂ h̃(ag) =

(
2πh̃

a

)d

∑
g∈Zd

ψ

(
2πh̃

a
g

)
. (1.20)
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Let ϕ ∈ C∞
c (Rd, R) be such that ∑g∈Zd ϕ(x − α−1/2g) = 1. Such a function can be built in the

following way: choose an open neighborhood U ⊃ [− α−1/2

2 , α−1/2

2 ]d and ψ ∈ C∞
c (U) such that

ψ ≥ 0 and ψ(x) > 0 for all x ∈ [− α−1/2

2 , α−1/2

2 ]d; consider the α−1/2Zd-periodic sum Ψ(x) :=

∑g∈Zd ψ(x − α−1/2g) and set ϕ = ψ
Ψ .

Now, let u ∈ Hd
h̃,α

and ψ ∈ S(Rd). Since u is α−1/2Zd-periodic in position, we obtain

⟨û h̃, ψ⟩S ′,S = ⟨u, ψ̂ h̃⟩S ′,S = ⟨u, ∑
g∈Zd

ψ̂ h̃(·+ α−1/2g)ϕ⟩S ′,S

= (2πh̃α1/2)d⟨u, ∑
g∈Zd

ψ(2πh̃α1/2g)e−2πiα1/2⟨g,·⟩ϕ⟩S ′,S ,

where in the last step we used the fact that

Fh̃(ψ(y)e
− i

h̃
⟨y,x⟩)(ξ) = ψ̂ h̃(ξ + x),

and we applied the Poisson summation formula (1.20) to ψ(y)e−
i
h ⟨y,x⟩ with a = α−1/2. This

shows that

û h̃ = (2πh̃α1/2)d ∑
g∈Zd

cgδ2πh̃α1/2g,

with coefficients

cg := ⟨u, e−2πiα1/2⟨g,·⟩ϕ⟩S ′,S = ⟨u, e−2πiα1/2⟨g,·⟩⟩Td
α
, (1.21)

where we see u ∈ D′(Td
α) as a distribution on Td

α and δx0 denotes the Dirac measure at x0. Since

by (1.17) û h̃ is α−1/2Zd-periodic, it follows that

û h̃ = δα−1/2g ∗ û h̃, ∀ g ∈ Zd,

where ∗ denotes the convolution between distributions. Hence, if we suppose u ̸= 0, by com-

paring the supports of both the sides, we obtain the following equality

(2πh̃α1/2)Zd = (α−1/2)Zd + (2πh̃α1/2)Zd,

and consequently

Zd = (2πh̃α)−1Zd + Zd.

Hence, necessarily h = 1
2πN for some N ∈ N∗.

On the other hand, suppose that h = 1
2πN for N ∈ N∗. By condition (1.17) on û h̃ and the

injectivity of Fh̃, we obtain

u(x) = e−
i
h̃

α−1/2⟨l,x⟩u(x), ∀ l ∈ Zd.
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Combining this result with (1.21) yields

cg = cg+Nl , ∀ l ∈ Zd.

Hence, it follows that

û h̃ = (2πh̃α1/2)d ∑
j∈(Z/NZ)d

cj ∑
l∈Zd

δα−1/2(l+N−1 j)

= (2πh̃α1/2)d ∑
j∈(Z/NZ)d

cj

(
δα−1/2 N−1 j ∗ ∑

l∈Zd

δlα−1/2

)
.

We observe that for a ∈ R \ {0}, if we set ua = ∑g∈Zd δag, then

ûa
h̃ =

(
2πh̃

a

)d

u2πh̃/a,

as shown in [Hö83, Theorem 7.2.1]. By applying this result and Fourier inversion formula, we

get

u(x) = (2πh̃α1/2)d(α1/2)d ∑
j∈(Z/NZ)d

cj

(
(2πh̃)d/2F−1

h̃
(δα−1/2 N−1 j)F−1

h̃

(
(α−1/2)duα−1/2

))
= N−d ∑

j∈(Z/NZ)d

cj ∑
l∈Zd

exp
(

i
h̃

N−1α−1/2⟨j, x⟩
)

δ(x − 2πh̃α1/2l)

= N−d ∑
j,k∈(Z/NZ)d

cj exp
(

2πiN−1⟨j, k⟩
)

∑
l′∈Zd

δ(x − α−1/2(l′ + N−1k)),

where, in the last equation, we used the identification l = Nl′ + k, for l′ ∈ Zd and k ∈
(Z/NZ)d.

Thus, the condition of the lemma is also sufficient and (1.19) follows as well.

Remark 1.14. We observe that the Fourier transform Fh̃ maps Hd
h̃,α

into Hd
h̃,α

, and can be repre-

sented in the basis (1.19), by

(Fh̃)n,m =
e−

2πi
N ⟨n,m⟩

Nd/2 , n, m ∈ (Z/NZ)d. (1.22)

1.3 Quantization of Symbols on the Torus

Throughout this section we assume h ≪ α ≤ 1 and work on the torus T2d
α . A function m ∈

C∞(T2d
α , ]0,+∞[) is called an order function if there exist constants C0, N0 > 0, independent of

α, such that

m(ρ) ≤ C0(1 + ∥ρ − µ∥2
T2d

α
)N0/2m(µ) =: C0⟨ρ − µ⟩N0

T2d
α

m(µ), ∀ ρ, µ ∈ T2d
α , (1.23)
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where ∥ρ − µ∥2
T2d

α
:= infγ∈α−1/2Z2d ∥ρ − µ + γ∥2

2. Via the natural projection R2d → T2d
α , we may

regard m as a α−1/2Z2d–periodic function in C∞(R2d, ]0,+∞[). In particular, m is an order

function on R2d.

With this definition, we introduce the corresponding symbol class:

S(m, α)
def
=
{

a ∈ C∞(T2d
α ); ∀ β ∈ N2d ∃ Cβ > 0 : |∂β

ρ a(ρ)| ≤ Cβm(ρ), ∀ ρ ∈ T2d
α

}
, (1.24)

where the constants Cβ > 0 are independent of α.

Identifying each symbol in S(m, α) with its α−1/2Z2d–periodic extension in C∞(R2d), we

have S(m, α) ⊂ S(m). This identification will be used throughout, and ensures that the quanti-

zation procedure described above applies to all p ∈ S(m, α).

Let γ, µ ∈ α−1/2Zd and consider the unitary operators

(τγu)(x) := u(x − γ), (Mµu)(x) := e
i
h̃
⟨x,µ⟩u(x),

Using the definition of Weyl quantization (1.3) and a direct change of variables, one checks that

the following covariance relations are valid for each p ∈ S(m, α)

τγ pw(x, h̃Dx)τ−γ = (p(x − γ, ξ))w(x, h̃Dx),

Mµ pw(x, h̃Dx)M−µ = (p(x, ξ − µ))w(x, h̃Dx).

Since p ∈ S(m, α) is periodic in both x and ξ with respect to α−1/2Zd, the right-hand sides

coincide with pw(x, h̃Dx). Thus pw commutes with all τγ and Mµ, and it follows that

pw(x, h̃Dx) : Hd
h̃,α

−→ Hd
h̃,α

,

where Hd
h̃,α

⊂ S ′(Rd) is the space introduced in the previous section.

Let h = 1
2πN with N ∈ N∗ and h̃ := h

α . We define the restriction of the operator to Hd
h̃,α

as

pN,α
def
= pw(x, h̃Dx)

∣∣
Hd

h̃,α
∈ L(Hd

h̃,α
,Hd

h̃,α
). (1.25)

When α = 1, we simply write pN := pN,1. In particular, we note that 1N,α = IdHd
h̃,α

.

Recalling the definition (1.9) of the product #h, we see that if a, b ∈ S(m) are periodic then

a#h̃b is also periodic. Therefore Proposition 1.9 applies to symbols (a, b) ∈ S(m1, α)× S(m2, α),

and yields

aN,α ◦ bN,α = cN,α, where c = a#h̃b ∈ S(m1m2, α).

The following lemma characterizes the Hilbert space structure of Hd
h̃,α

.

Lemma 1.15 (Lemma 11 of [Vo20]). There exists a unique Hilbert space structure on Hd
h̃,α

, determined

up to a multiplicative constant, such that every operator fN,α : Hd
h̃,α

→ Hd
h̃,α

with f ∈ C∞(T2d
α ; R)

is self-adjoint. The constant can be chosen so that the basis defined in (1.19) is orthonormal. With this
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choice, the Fourier transform on Hd
h̃,α

defined in (1.22) is unitary.

From now on, we equip Hd
h̃,α

with the inner product that defines this structure, so that the

basis (1.19) is orthonormal. Using this basis, we may identify

Hd
h̃,α

∼= ℓ2((Z/NZ)d) ∼= CNd
. (1.26)

From the proof of Lemma 1.15 presented in [Vo20] we can derive the following result which

was presented in the case α = 1 in [ChZw10, Lemma 2.5].

Proposition 1.16. Let f ∈ S(m, α). Then

tr( fN,α) = (Nα)d
∫

T2d
α

f (ρ)dρ + rN ,

where for every k ∈ N, there exists a constant CK,d > 0, depending only on k and the dimension d, such

that

|rN | ≤ Ck,dNd−kαd− k
2 ∑
|β|≤max(2d+1,k)

∥∂β f ∥L1(T2d
α ). (1.27)

We conclude this section with the following proposition.

Proposition 1.17 (Proposition 13 of [Vo20]). Let N−1 ≪ α ≤ 1 and p ∈ S(1, α). Then, there exists

a constant C > 0, independent of N and α, such that

||pN,α|| ≤ C.

These results are presented as in [Vo20], where full proofs can be found.

The next sections develop the functional calculus for pseudo-differential operators. In the

first, we introduce some important preliminary results; in the second, we consider a dilation of

the phase space and establish a central estimate for a logarithmic determinant.

1.4 Preliminary Results for Functional Calculus

In this section we collect some auxiliary results that will play a central role in the following

section.

Theorem 1.18 (Helffer-Sjöstrand formula). Let P be a self-adjoint operator on a Hilbert space H and

let f ∈ C∞
c (R). Suppose that f̃ ∈ C∞

c (C) is an almost analytic extension of f satisfying

f̃|R = f , (1.28)

and

∂z f̃ (z) = O(|ℑ(z)|∞). (1.29)



1.4 Preliminary Results for Functional Calculus 15

Then, the following is true

f (P) = − 1
π

∫
(z − P)−1 ∂z f̃ (z) λ(dz), (1.30)

where λ(dz) denotes the Lebesgue measure con C. Moreover, the integral in (1.30) converges in the

sense of a Riemann integral for functions with values in L(H,H).

Proof. We begin by constructing, for f ∈ C∞
c (R) an almost analytic extension satisfying prop-

erties (1.28) and (1.29). The existence of such extensions goes back to Hörmander [Hö68] and

his idea has subsequently been used by many authors. Here we follow the approach of Mather

in [Ma71] and of Jensen and Nakamura in [JeNa94].

Choose ψ ∈ C∞
c (R) with ψ ≡ 1 in a neighborhood of supp( f ), and let χ ∈ C∞

c (R) be equal

to 1 near 0. Define

f̃ (x + iy) :=
ψ(x)√

2π

∫
ei(x+iy)ξχ(yξ) f̂ (ξ)dξ,

where f̂ is the Fourier transform of f . Property (1.28) follows from the Fourier inversion for-

mula.

Let N ∈ N. To verify (1.29), we compute

∂z f̃ (x + iy) =
1
2

ψ′(x)√
2π

∫
ei(x+iy)ξχ(yξ) f̂ (ξ)dξ +

i
2

ψ(x)√
2π

∫
ei(x+iy)ξχ′(yξ)ξ f̂ (ξ)dξ

=
1
2

ψ′(x)√
2π

∫∫
ei(x+iy−x̃)ξχ(yξ) f (x̃)dx̃dξ + yN i

2
ψ(x)√

2π

∫
ei(x+iy)ξχN(yξ)ξN+1 f̂ (ξ)dξ

=: I + I I,

where χN(t) = t−Nχ′(t) ∈ C∞
c (R). The second term satisfies the bound

|I I| ≤ CN |y|N∥ξN+1 f̂ (ξ)∥L1(R).

For the first term I, note that x − x̃ ̸= 0 on the support of ψ′(x) f (x̃). Repeated integration by

parts yields

I =
1

2
√

2π
ψ′(x)

∫∫
Dξ(ei(x−x̃+iy)ξ)

χ(yξ)

x − x̃ + iy
f (x̃)dx̃dξ

=
iψ′(x)
2
√

2π

∫∫
ei(x−x̃+iy)ξ χ′(yξ)y

x − x̃ + iy
f (x̃)dx̃dξ

=
iψ′(x)
2
√

2π
yN
∫∫

ei(x−x̃+iy)ξξN(ξ + i)2 χN(yξ)y
(x − x̃ + iy)(ξ + i)2 f (x̃)dx̃dξ

=
iψ′(x)
2
√

2π
yN
∫∫

(i − Dx̃)
2(−Dx̃)

N(ei(x−x̃+iy)ξ)
χN(yξ)y

x − x̃ + iy
f (x̃)

1
(ξ + i)2 dx̃dξ

=
iψ′(x)yN

2
√

2π

∫∫
ei(x−x̃+iy)ξ χN(yξ)y

(ξ + i)2 (i + Dx̃)
2DN

x̃

(
f (x̃)

x − x̃ + iy

)
dx̃dξ

= O(|y|N).
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We also observe that if f̃1 and f̃2 are two almost analytic extension of f satisfying (1.28) and

(1.29), then

f̃1(z)− f̃2(z) = O(|ℑ(z)|∞).

We conclude by deriving the representation (1.30) following the approach in [Di93]. Define

Q := − 1
π

∫
(z − P)−1 ∂z f̃ (z) λ(dz) ∈ L(H,H),

and take u, v ∈ H. We set Et = 1]−∞,t](P) the family of spectral projections associated with P.

Stone’s formula gives

(z − P)−1 =
∫
(z − t)−1dEt (1.31)

and thus

⟨(z − P)−1u, v⟩H =
∫
(z − t)−1⟨dEtu, v⟩H.

Consequently,

⟨Qu, v⟩H = − 1
π

∫
∂z f̃ (z)

∫
(z − t)−1⟨dEtu, v⟩Hλ(dz),

and, by Fubini’s theorem,

⟨Qu, v⟩H =
∫ (

− 1
π

∫
∂z f̃ (z)(z − t)−1λ(dz)

)
⟨dEtu, v⟩H.

Since 1
πz is a fundamental solution of ∂z, the inner integral is equal to

∫
f̃ (z) ∂z

(
− 1

π
(z − t)−1

)
λ(dz) = f (t),

Therefore,

⟨Qu, v⟩H =
∫

f (t)⟨dEtu, v⟩H,

and hence Q = f (P).

We next recall Beals’ Lemma in the semiclassical setting, following [Zw12]. This result will

be crucial in the proof of the main theorem of the next section. Before considering the statement,

we need the following definition.

Definition 1.19. If A, B are operators on a Hilbert space H, we define

adB(A) := [B, A],

where [·, ·] is the commutator. In particular ad is called the adjoint action.

Theorem 1.20 (Semiclassical Beals’ Theorem, [Zw12, Theorem 8.3]). Let A : S(Rd) → S ′(Rd)

be a continuous linear operator. Then, the following are equivalent:

1. A = aw(x, hDx), for a symbol a ∈ S.
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2. For every N ∈ N and for all linear functions l1(x, ξ), . . . , lN(x, ξ) on R2d, we have

∥ adl1(x,hDx) · · · adlN(x,hDx) A∥L2(Rd)→L2(Rd) = O(hN).

Theorem 1.21 (Theorem 8.6 of [Zw12]). Let m be an order function and assume for g := ln m that

|∂αg| ≤ Cα, for all multiindices |α| ≥ 1.

(i) Then the equation ∂tB(t) = gw(x, hDx) B(t),

B(0) = I,

has a unique solution B(t) : S(Rd) → S(Rd) for t ∈ R.

(ii) Furthermore, we have

B(t) = bw
t (x, hDx)

for a symbol

bt ∈ S(mt).

1.5 Phase Space Dilation and Logarithmic Estimates

We begin by recalling the functional calculus for pseudo-differential operators, as presented

in [DiSj99, Section 8], adapted to symbols in the class S(m, α). First, we consider a result for

self-adjoint semiclassical pseudo-differential operators, which has been proven in [ChZw10,

Lemma 2.8] in the case when N−ρC ≤ α ≪ 1, ρ ∈]0, 1[. The following proposition, presented

in [Vo20] is an extension of this result, which includes also the case when α = CN−1, C ≫ 1.

Proposition 1.22 (Proposition 14 of [Vo20]). Let N−1 ≪ α ≪ 1 and let m ≥ 1 be an order function

on T2d
α satisfying (1.23). Let 0 ≤ p ∈ S(m, α), with asymptotic expansion p ∼ ∑∞

j=0 h̃j pj in S(m, α),

such that p + i elliptic. We assume pw(x, h̃Dx; h, α) is a self-adjoint semiclassical pseudo-differential

operator. Then, for every ψ ∈ C∞
c (R), there exists f ∈ S

( 1
m , α

)
such that

ψ(pN,α) = fN,α,

Moreover, f admits an asymptotic expansion

f ∼
+∞

∑
j=0

h̃j f j(ρ; α) in S
(

1
m

, α

)
, with f j ∈ S

(
1
m

, α

)
.

In particular, its principal symbol satisfies

f0(ρ; α) = ψ(p0(ρ)),
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and

f j(ρ; α) =
2j

∑
ν=1

gν(ρ; α)ψ(ν)(p0(ρ)), gν ∈ S(1, α),

for j ∈ N.

Remark 1.23. In the statement of Proposition 1.22, the functions p, pj may depend on α, even

if not explicitly indicated. However, the constants in the symbol estimates (1.24) are uniform

with respect to α.

From now on, we let h = 1
2πN , N ∈ N∗ and N−1 ≪ α ≪ 1. Let p ∈ C∞(T2d) admit

an asymptotic expansion p ∼ p0 + hp1 + . . . in S(1, 1). The corresponding Weyl quantization

P = pw(x, hDx; h) defines a bounded operator from L2(Rd) to L2(Rd). Setting Q = P∗P, by

[Zw12, Theorem 4.1] we have

(pw(x, hDx))
∗ = pw(x, hDx).

Hence, by Proposition 1.9 there exists a symbol q ∈ S(1, 1) such that

Q = qw(x, hDx; h), (1.32)

where, from (1.10),

q = p #h p ∼ q0 + hq1 + . . . in S(1, 1), with q0 = |p0|2. (1.33)

We next introduce the scaling operator

(Uαϕ)(x) := αd/4ϕ(α1/2x), ϕ ∈ S(Rd).

The operator Uα is a continuous bijection S(Rd) → S(Rd). It extends by duality to S ′(Rd) →
S ′(Rd) and on L2(Rd) is unitary with adjoint

U∗
α = U−1

α = Uα−1 .

Moreover, Uα maps C∞(T2d) continuously into C∞(T2d
α ) and acts unitarily between the spaces

Hd
h,1 and Hd

h̃,α
with respect to the inner products defined in Lemma 1.15. In particular, recalling

(1.18), we have

UαQ1
j = Qα

j .

Using Uα we perform the phase space dilation

T2d ∋ (x, ξ) = α1/2(x̃, ξ̃), (x̃, ξ̃) ∈ T2d
α .
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Let v ∈ S(Rd). We compute the conjugation of qw(x, hDx) by Uα:

(
UαqwU−1

α v
)
(x̃) = αd/4 1

(2πh)d

∫∫
e

i
h ⟨α

1/2 x̃−y,ξ⟩ q
(

α1/2 x̃ + y
2

, ξ

)
α−d/4v(α−1/2y) dy dξ.

With the change of variables y = α1/2ỹ, ξ = α1/2ξ̃, so that dy dξ = αd dỹ dξ̃, we obtain

(
UαqwU−1

α v
)
(x̃) =

αd

(2πh)d

∫∫
e

i
h α1/2⟨x̃−ỹ,α1/2 ξ̃⟩ q

(
α1/2 x̃ + ỹ

2
, α1/2ξ̃

)
v(ỹ) dỹ dξ̃

=
1

(2πh̃)d

∫∫
e

i
h̃
⟨x̃−ỹ,ξ̃⟩ q

(
α1/2 x̃ + ỹ

2
, α1/2ξ̃

)
v(ỹ) dỹ dξ̃,

where we used the identity h̃ = h/α. Hence,

qw(x, hDx; h) = U−1
α (q (α1/2(x̃, ξ̃); h̃))w(x̃, h̃Dx̃)Uα. (1.34)

Writing

q̃(ρ̃; h) := q(α1/2ρ̃; h) ∈ S(1, α),

we conclude from the mapping properties of Uα that

qN = qw(x, hDx; h)
∣∣
Hd

h,1
= U−1

α

(
q̃ w(x̃, h̃Dx̃; h

)∣∣
Hd

h̃,α

)
Uα = U−1

α q̃N,αUα. (1.35)

Now we follow the approach of [HaSj08, Section 4] and we introduce an order function adapted

to the rescaled symbol α−1q̃. We set

m(ρ) := 1 +
q0(α1/2ρ)

α
≥ 1, ρ ∈ T2d

α . (1.36)

Since q0 ∈ S(1, 1), it follows that m ∈ C∞(T2d
α ).

To verify that m satisfies the order function estimates (1.23), we compute its derivatives. For

every multiindice β such that |β| = 1, using q0 = |p0|2, we obtain

∂
β
ρ m(ρ) =

(∂
β
ρ q0)(α1/2ρ)

α1/2 =
(2ℜ(p0(α1/2ρ)(∂

β
ρ p0)(α1/2ρ))

α1/2 ≤ C1
q1/2

0 (α1/2ρ)

α1/2 ≤ C1(m(ρ))1/2.

For |β| = 2,

∂
β
ρ m(ρ) = (∂

β
ρ q0)(α

1/2ρ) ≤ C2,

where the constants C1, C2 > 0 are independent of α. Applying Taylor’s theorem up to second

order gives, for all ρ, µ ∈ R2d

m(ρ) ≤ m(µ) + C1(m(ρ))1/2∥ρ − µ∥2 + C2∥ρ − µ∥2
2.
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Since m ≥ 1, the mixed term can be absorbed as

(m(ρ))1/2∥ρ − µ∥2 ≤ 1
2

m(ρ) + C3∥ρ − µ∥2
2,

so that

m(ρ) ≤ m(µ) +
1
2

m(ρ) + C4∥ρ − µ∥2
2 =⇒ m(ρ) ≤ Cm(µ)⟨ρ − µ⟩2, ∀ ρ, µ ∈ R2d.

Using the α−1/2Z2d-translation invariance of m, we obtain that for all ρ′, µ′ ∈ T2d
α and any

γ ∈ Z2d ,

m(ρ′) = m(ρ′ + α−1/2γ) ≤ Cm(µ′)⟨ρ′ − µ′ − α−1/2γ⟩2.

Taking the infimum over γ shows that m indeed satisfies the order function condition (1.23).

Recalling the asymptotic expansion of q in (1.33), we obtain

q(α1/2ρ)

α
=

q0(α1/2ρ)

α
+O

(
h
α

)
≤ m(ρ) +O

(
h
α

)
= O(1)m(ρ)

∂
β
ρ

(
q(α1/2ρ)

α

)
= O(1)m1/2(ρ), |β| = 1.

Moreover, for derivatives of order grater than 2

∂
β
ρ

(
q(α1/2ρ)

α

)
= O(1)α

|β|
2 −1, |β| ≥ 2.

Thus, for every multiindex β

∂
β
ρ

(
q(α1/2ρ)

α

)
= Oβ(1)m(ρ), (1.37)

with the constants Oβ(1) independent of α. Hence

q(α1/2ρ; h)
α

∈ S(m, α).

Introducing the notations

q̃ν(ρ) := αν−1qν(α
1/2ρ), ν ∈ N,

we therefore have the asymptotic expansion

α−1q̃ ∼
+∞

∑
ν=0

h̃νq̃ν, in S(m, α).

Thus, we observe that there exists a constant C0 > 0 such that

+∞

∑
ν=1

h̃ν|q̃ν(ρ)| ≤ C0h̃m,
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which implies,

|α−1q̃(ρ) + i| ≥
∣∣∣∣∣|q̃0(ρ) + i| −

+∞

∑
ν=1

h̃ν|q̃ν(ρ)|
∣∣∣∣∣ ≥ |q̃0(ρ) + i| − C0mh̃,

Hence, since q̃0 is real, from (1.36) we have

|α−1q̃(ρ) + i| ≥ 1√
2
(q̃0(ρ) + 1)− C0mh̃ ≥ m(ρ)

C
.

for some constant C > 0 independent of α. Therefore q̃ + i is elliptic with respect to the order

function m, uniformly in α and q̃ w is a self-adjoint operator as a consequence of (1.34). Thus,

by Proposition 1.22, for every ψ ∈ C∞
c (R), we have

ψ(α−1q̃N,α) = fN,α, f ∈ S
(

1
m

, α

)
,

f ∼
+∞

∑
ν=0

h̃ν fν(ρ; α) in S
(

1
m

, α

)
, fν ∈ S

(
1
m

, α

)
, (1.38)

with f0(ρ; α) = ψ( q0(α
1/2ρ)
α ) and

fν(ρ; α) =
2ν

∑
j=1

gj(ρ; α)ψ(j)
(

q0(α1/2ρ)

α

)
, gj ∈ S(1, α).

We now recall [HaSj08, Proposition 4.1], adapted to our setting.

Proposition 1.24. Let ψ ∈ C∞
c (R) and m̃ ∈ C∞(T2d

α , ]0,+∞[) be an order function such that

m̃(ρ) = 1 whenever α−1q0(α
1/2ρ) ≤ sup supp ψ + 1/C,

for some C > 0 independent of α. Then, (1.38) holds in S(m̃, α), for h, h̃ sufficiently small.

Proof. The proof of Proposition 4.1 in [HaSj08] relies on the Helffer-Sjöstrand formula (Theorem

1.18) and standard semiclassical calculus. It translates directly to our setting using the notions

discussed above.

We now state the main result concerning log-determinant estimates, which will play a cru-

cial role later in this dissertation. The proof is presented in [Vo20, Proposition 17]

Theorem 1.25. Let N ∈ N∗ with N−1 ≪ α ≪ 1, and let the symbol q be as in (1.33). Assume that

there exists κ ∈]0, 1] such that the t-dependent volume

V(t) := λ
(
{ρ ∈ T2d; q0(ρ) ≤ t}

)
= O(tκ), 0 ≤ t ≪ 1. (1.39)

Then, for every ψ ∈ C∞
c (R),

tr ψ

(
q̃N,α

α

)
= Nd

(∫
ψ
(q0

α

)
dV(q0) +O(Nα)−1ακ

)
. (1.40)
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Moreover, taking χ ∈ C∞
c ([0,+∞[, [0,+∞[) with χ(0) > 0, we have

ln det
(

qN + αχ
(qN

α

))
= Nd

(∫
T2d

ln q0(ρ)dρ +O
(

ακ ln
(

1
α

)))
. (1.41)

Remark 1.26. Considering the same assumptions of Theorem 1.25, the equality (1.40) is partic-

ularly useful for estimating the number of eigenvalues of qN in the interval [0, α]. Indeed, let

ψ ∈ C∞
c (R, [0, 1]) such that ψ ≡ 1 on [0, 1] and ψ ≡ 0 outside [− 1

2 , 3
2 ]. Thus, in the right-hand

side of (1.40) we obtain

Nd
(∫

ψ
(q0

α

)
dV(q0) +O(Nα)−1ακ

)
≤ Nd

(∫
1[− 1

2 , 3
2 ]

(q0

α

)
dV(q0) +O(Nα)−1ακ

)
= Nd

(∫ 3
2 α

0
dV(q0) +O(Nα)−1ακ

)

= Nd
(

V
(

3
2

α

)
+O(Nα)−1ακ

)
= O(Ndακ),

by assumption (1.39). Furthermore, the left-hand side of (1.40) is bounded from below in the

following way

tr
(

ψ

(
q̃N,α

α

))
≥ tr

(
1[0,1]

(
q̃N,α

α

))
= tr

(
1[0,1]

(qN

α

))
= tr

(
1[0,α] (qN)

)
= ∑

ζ∈σ(1[0,α](qN))

ζ

= #{ζ ∈ σ(qN) : ζ ∈ [0, α]},

where we used the fact that the spectrum is invariant under the unitary conjugation (1.35).

Therefore,

#{ζ ∈ σ(qN) : ζ ∈ [0, α]} = O(Ndακ). (1.42)



Chapter 2

Grushin Problems and Schur

Complement Methods

In this chapter we set up a Grushin problem for the operator

P(z) := pN,α − z, z ∈ C,

following the definition (1.25) in Chapter 1. We then extend the analysis to the case where

P(z) is perturbed by a small potential, formulating a modified Grushin problem. The results

obtained here will later be applied to the analysis of random perturbations of P(z).

2.1 A General Grushin Problem and the Schur Complement Formula

We begin by giving a short overview on Grushin problems. For more general details see for

instance [SjZw07].

In a general finite-dimensional setting, we consider an operator

P : H −→ H,

where H is a Hilbert space with dimH < +∞. A priori we don’t know if P is invertible and

we would like to study and provide an estimate for det P. To address this, we introduce the

operator

P :=

(
P R−

R+ 0

)
: H⊕H− −→ H⊕H+, (2.1)

where H+ and H− are finite-dimensional Hilbert spaces, and

R+ : H → H+, R− : H− → H,

are suitably chosen operators such that P is bijective. If dimH+ = dimH− < +∞, we may

23
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write

P−1 = E :=

(
E E+

E− E−+

)
. (2.2)

We now turn to the question of the invertibility of P. A natural tool in this setting is the Schur

complement formula, which relates the invertibility of P to that of the finite-dimensional block

E−+. This connection plays a central role in the analysis of the Grushin problem and allows us

to extract useful information about P.

Proposition 2.1 (Schur Complement Formula). Let A ∈ Mr,r, C ∈ Mr,s, R ∈ Ms,r, and B ∈ Ms,s.

Consider the block matrix

A :=

(
A C

R B

)
∈ Mr+s,r+s.

Suppose A is invertible. We define the Schur complement of A as

S := B − RA−1C.

Under this assumption, the following determinant factorization holds:

det(A) = det(A)det(S). (2.3)

Moreover, if both A and S are nonsingular, then A is bijective and

A−1 =

(
A−1 + A−1CS−1RA−1 −A−1CS−1

−S−1RA−1 S−1

)
. (2.4)

Remark 2.2. In the same setting of Proposition 2.1, if A is invertible, from (2.3) we obtain the

equivalence

A is invertible ⇔ S is invertible .

Proof. We begin by noting that

E1AE2 = L,

where

L :=

(
A 0

0 S

)
, E1 :=

(
I 0

−RA−1 I

)
, E2 :=

(
I −A−1C

0 I

)
.

Since E1 and E2 are block triangular with identity blocks on the diagonal, we have det(E1) =

det(E2) = 1. Thus,

detA = det(L) = det(A)det(S).

Finally, the inverse formula (2.4) follows from a straightforward verification.

We now apply Proposition 2.1 to the setting introduced in (2.1) and (2.2). If P is invertible,

its Schur complement is

S = −R+P−1R−.
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We recall that R± were chosen so that P is invertible. Thus, Remark 2.2 implies that S is invert-

ible and, by (2.2) and (2.4), we obtain

E−+ = S−1 = (−R+P−1R−)
−1. (2.5)

Corollary 2.3. Let A ∈ Mr,r, C ∈ Mr,s, R ∈ Ms,r, and B ∈ Ms,s. Suppose the block matrix

A :=

(
A C

R B

)
∈ Mr+s,r+s,

to be invertible with inverse

M =

(
M M+

M− M−+

)
∈ Mr+s,r+s.

Then the following factorization holds:

det(A)det(M−+) = det(A). (2.6)

In particular,

A is invertible ⇔ M−+ is invertible .

Proof. Since A is a square matrix,

dim ker A = dim coker A.

Choose a complement Y of Im A in Cr, so that

Cr = Im A ⊕ Y, dim Y = dim ker A.

Fix an isomorphism T : ker A → Y, and let Πker A denote the projection of Cr onto ker A. We

then define the operator

Q := T ◦ Πker A : Cr → Cr.

By construction, for every ε > 0, the perturbed operator

A + εQ

is invertible. Applying Proposition 2.1 to the perturbed block matrix

Aε :=

(
A + εQ C

R B

)
,

we obtain, from (2.3),

det(Aε) = det(A + εQ)det(Sε), (2.7)
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where Sε := B − R(A + εQ)−1C. Moreover,

Aε M = AM+ ε

(
Q 0

0 0

)
M = Ir+s + ε

(
QM QM+

0 0

)
.

For ε sufficiently small, we may assume that∥∥∥∥∥ε

(
QM QM+

0 0

)∥∥∥∥∥ < 1.

Hence, by the Neumann series, Aε M is bijective with inverse

(AεM)−1 = Ir+s +
+∞

∑
k=1

(−ε)k

(
QM QM+

0 0

)k

= Ir+s +
+∞

∑
k=1

(−ε)k

(
(QM)k (QM)k−1QM+

0 0

)
.

Consequently, Aε is bijective with inverse

Mε := M(AεM)−1 = M+
+∞

∑
k=1

(−1)k

(
M(εQM)k (εMQ)k M+

M−(εQM)k M−(εQM)k−1(εQ)M+

)

=:

(
Mε Mε

+

Mε
− Mε

−+

)
, (2.8)

where to identify Mε
+ we used

M(QM)k−1Q = (MQ)k, ∀ k ≥ 1,

which follows from the associativity of matrix multiplication. Consequently, we observe that

lim
ε→0

∥Mε −M∥ = 0. (2.9)

Moreover, from (2.7) we know that the Schur complement Sε is invertible, and thus by (2.4)

det(Aε)det(Mε
−+) = det(A + εQ). (2.10)

Since this equality holds for all sufficiently small ε > 0, taking the limit as ε → 0 and using the

continuity of the determinant yields

det(A)det(M−+) = det(A),

where we used (2.9).

Now, we can also apply Corollary 2.3 to the setting introduced in (2.1) and (2.2). Thus,
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without requiring the invertibility of P, we obtain that

det(P)det(E−+) = det(P). (2.11)

2.2 Grushin Problem for the Unperturbed Operator

In this section, we construct a Grushin problem for the operator obtained by restricting the

Weyl quantization of a symbol p on the torus to the space of periodic distributions, making use

of its left and right singular vectors.

We begin by fixing

h =
1

2πN
, N ∈ N∗, and N−1 ≪ α ≪ 1, (2.12)

and we consider a symbol p ∈ C∞(T2d) admitting a semiclassical expansion

p ∼ p0 + hp1 + . . . in S(1, 1). (2.13)

We recall the identification Hd
h
∼= ℓ2((Z/NZ)d) ∼= CNd

from (1.26), and define

P := pN : CNd → CNd
, (2.14)

as in (1.25). We ix z ∈ C and consider the operators

Q(z) := (P − z)∗(P − z), Q′(z) := (P − z)(P − z)∗. (2.15)

Let

0 ≤ t2
1 ≤ t2

2 ≤ · · · ≤ t2
Nd

denote the eigenvalues of Q(z) with corresponding orthonormal eigenvectors e1, . . . , eNd ∈ Hd
h.

Since P is a square matrix, we have rank(P − z) = rank(P − z)∗, and consequently

dim ker(P − z) = dim ker(P − z)∗.

Observing that ker Q(z) = ker(P − z) and ker Q′(z) = ker(P − z)∗, it follows that

dim ker Q(z) = dim ker Q′(z) =: N0.

Let { f1, . . . , fN0} be an orthonormal basis of ker(P − z)∗ = ker Q′(z), and define

fi := t−1
i (P − z)ei, N0 < i ≤ Nd. (2.16)
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These vectors are well-defined since ti > 0 for all i > N0. For such an i, we have

Q′(z) fi = t−1
i (P − z)Q(z)ei = t−1

i (P − z)t2
i ei = t2

i fi.

Hence, Q(z) and Q′(z) share the same spectrum {t2
i }Nd

i=1. Furthermore, we observe that

⟨ fi, f j⟩ = ⟨(P − z)∗ fi, t−1
j ej⟩ = ⟨tiei, t−1

j ej⟩ = δij, i, j > N0,

⟨ fi, f j⟩ = ⟨(P − z)∗ fi, t−1
j ej⟩ = ⟨0, t−1

j ej⟩ = 0, i ≤ N0, j > N0.

Thus, { fi}Nd

i=1 form an orthonormal basis of Hd
h consisting of eigenvectors of Q′(z) with eigen-

values {t2
i }Nd

i=1. Moreover, we record the relations

(P − z)∗ fi = tiei, (P − z)ei = ti fi, i = 1, . . . , Nd. (2.17)

Applying (1.32) and (1.33) to Q(z), we obtain

Q(z) = qw(x, hDx; h), q ∼ q0 + hq1 + . . . in S(1, 1), with q0 = |p0 − z|2. (2.18)

Let α be as in (2.12). Fix M > 0 so that

0 ≤ t2
1 ≤ t2

2 ≤ · · · ≤ t2
M ≤ α < t2

M+1, (2.19)

and let {δi}M
i=1 be an orthonormal basis of CM. Assuming that the principal symbol q0 of Q(z)

satisfies (1.39), Theorem 1.25 and Remark (1.26) yield

M = O(Ndακ). (2.20)

Remark 2.4. From the proof of Theorem 1.25 in [Vo20, Proposition 17] it follows that, if z varies

in a compact set K ⋐ C, and the condition (1.39) holds uniformly for z ∈ K, then the estimate

(2.20) holds uniformly in z ∈ K.

We now define the operators

R+ : Hd
h −→ CM : u 7−→

M

∑
i=1

⟨u, ei⟩ δi, (2.21)

and

R− : CM −→ Hd
h : u− 7−→

M

∑
i=1

u−(i) fi, (2.22)

where u−(i) := ⟨u−, δi⟩. The associated Grushin problem is given by

P(z) :=

(
P − z R−

R+ 0

)
: Hd

h ⊕ CM −→ Hd
h ⊕ CM. (2.23)
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Our aim is to show that P(z) is bijective and derive an explicit formula for its inverse, which

we denote by E(z). Given (v, v+) ∈ Hd
h ⊕ CM, we wish to solve

P(z)

(
u

u−

)
=

(
v

v+

)
. (2.24)

We write u and v with respect to the bases {ej}Nd

j=1 and { f j}Nd

j=1, respectively:

u =
Nd

∑
j=1

ujej, v =
Nd

∑
j=1

vj f j.

Similarly, we write u− and v+ with respect to the basis {δi}M
i=1, with coefficients {u−(i)}M

i=1 and

{v+(i)}M
i=1 respectively. Substituting into (2.24), we obtain

∑Nd

i=1 tiui fi + ∑M
j=1 u−(j) f j = ∑Nd

k=1 vk fk,

∑M
i=1 uiδi = ∑M

j=1 v+(j)δj.

By linear independence of { f j}Nd

j=1 and {δj}M
j=1, this system is equivalent to


tjuj = vj, j = M + 1, . . . , Nd,ti 1

1 0

 ui

u−(i)

 =

 vi

v+(i)

 , i = 1, . . . , M.
(2.25)

Since (
ti 1

1 0

)−1

=

(
0 1

1 −ti

)
, i = 1, . . . , M, (2.26)

and tj > 0, for all j ≥ M + 1, we deduce that P(z) is bijective with inverse

P−1(z) = E(z) :=

(
E(z) E+(z)

E−(z) E−+(z)

)
, (2.27)

where

E(z) =
Nd

∑
i=M+1

1
ti

ei f ∗i , E+(z) =
M

∑
i=1

ei δ∗i , (2.28)

E−(z) =
M

∑
i=1

δi f ∗i , E−+(z) = −
M

∑
i=1

ti δiδ
∗
i . (2.29)
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Indeed, with these definitions, we have

E(z)
(

v

v+

)
=

(
E(z)v + E+(z)v+

E−(z)v + E−+(z)v+

)
=

(
∑M

i=1 v+(i)ei + ∑Nd

i=M+1
1
ti

viei

∑M
i=1(vi − tiv+(i))δi

)
=

(
u

u−

)
,

where the last equality follows from (2.25) and (2.26).

We now provide some estimates on the norms of the matrices defined above, which will be

useful later on. For the matrix E(z), take u ∈ Hd
h
∼= CNd

with ∥u∥2 = 1. Then, by applying

Parseval’s identity with respect to the orthonormal basis { fi}i, we obtain

∥E(z)u∥2
2 =

∥∥∥∥∥ Nd

∑
i=M+1

1
ti
⟨u, fi⟩ei

∥∥∥∥∥
2

2

=
Nd

∑
i=M+1

1
t2
i
|⟨ fi, u⟩|2 ≤ 1

t2
M+1

Nd

∑
i=M+1

|⟨ fi, u⟩|2 ≤ 1
t2

M+1
.

Hence,

∥E(z)∥ ≤ 1
tM+1

. (2.30)

A similar argument applied to the remaining matrices yields the bounds

∥E±(z)∥ = 1, ∥E−+(z)∥ ≤ tM. (2.31)

Now, we turn to the computation of |detP(z)|. To this end, we consider P(z) expressed in the

bases

{ẽM+1, . . . , ẽNd , ẽ1, δ̃1, . . . , ẽM, δ̃M}, { f̃M+1, . . . , f̃Nd , f̃1, δ̃1, . . . , f̃M, δ̃M},

where

ẽi :=

(
ei

0

)
, f̃i :=

(
fi

0

)
, δ̃i :=

(
0

δi

)
∈ Hd

h ⊕ CM.

In this representation, P(z) takes the block-diagonal form

tM+1
. . .

tNd [
t1 1

1 0

]
. . . [

tM 1

1 0

]


.

Hence, since t2
M ≤ α < t2

M+1, it follows that

|det(P(z))|2 =
Nd

∏
i=M+1

t2
i = α−M

Nd

∏
i=1

1α(t2
i ), (2.32)
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where 1α(x) := max(x, α). Hence,

|det(P(z))|2 = α−M det(1α(Q(z))). (2.33)

Since we don’t know if P − z is invertible, we can apply Corollary 2.1, specifically result (2.11),

and we obtain

ln |det(P − z)| = ln |det(P(z))|+ ln |det(E−+(z))|.

Nex, we estimate ln |detP(z)|. Let χ ∈ C∞
c (R) be a smooth cutoff function supported in [0, 2],

with 0 ≤ χ ≤ 1 and χ ≡ 1 on [0, 1]. For every x ≥ 0, we have the inequalities

x +
α

4
χ

(
4x
α

)
≤ 1α(x) ≤ x + αχ

( x
α

)
. (2.34)

As shown in (2.18), the principal symbol of the operator Q(z) is given by |p0 − z|2. By combin-

ing Theorem 1.25 with the estimates (2.33), (2.34), and (2.20), we obtain

ln |detP(z)|2 = ln
∣∣det(1α(Q(z)))

∣∣+ M ln
(

1
α

)
= Nd

(∫
T2d

ln |p0(ρ)− z|2 dρ +O
(

ακ ln
(

1
α

)))
. (2.35)

In particular, the second equality follows from the fact that

ln
∣∣∣∣det

(
Q(z) +

α

4
χ

(
4Q(z)

α

))∣∣∣∣ ≤ ln |det 1α(Q(z))| ≤ ln
∣∣∣∣det

(
Q(z) + αχ

(
Q(z)

α

))∣∣∣∣ ,

together with the application of (1.41) to both the sides.

From Remark 2.4, the equality (2.35) holds uniformly for all z ∈ K, for any K ⋐ C.

2.3 Grushin Problem for the Perturbed Operator

We begin this section by considering a deterministic linear perturbation Q : Hd
h → Hd

h (i.e.

an Nd × Nd matrix since Hd
h ≃ CNd

from (1.26)). We study the properties of the operators per-

turbed by Q through the associated Grushin problem; a randomized setting will be addressed

later in the dissertation.

We fix N ∈ N∗ and we recall assumption (2.12) on h and α. Our goal is to analyze the

spectrum of

Pδ := P + δQ, with 0 ≤ δ ≪ 1,

where P = pN is defined as in (2.14). We proceed as in Section 2.2 and set up a Grushin problem

for the perturbed operator.
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Fix z ∈ C. Let the operators R± be as in (2.21) and (2.22) and set

P δ(z) :=

(
Pδ − z R−

R+ 0

)
: Hd

h ⊕ CM −→ Hd
h ⊕ CM,

where M is defined by the condition (2.19). We set α as in (2.12) and we suppose that δ ≥ 0 is

such that

δ α−1/2 ∥Q∥ ≤ 1
2

. (2.36)

Now we aim to establish the invertibility of P δ(z) and to derive an explicit expression for its

inverse. The argument follows the same strategy used in the proof of Corollary 2.3. We use the

same notations adopted in the previous section.

Let E(z) = P−1(z), as defined in (2.23) and (2.27). We compute

P δ(z) E(z) = I + δ

(
QE(z) QE+(z)

0 0

)
.

Hence, applying (2.30), (2.31) and (2.36), we get∥∥∥∥∥−δ

(
QE(z) QE+(z)

0 0

)∥∥∥∥∥ ≤ δ∥Q∥(∥E(z)∥+ ∥E+(z)∥) ≤ δα−1/2∥Q∥+ δ∥Q∥

≤ 1
2
(1 + α1/2) < 1.

Therefore, by the Neumann series, we know that P δ(z) E(z) is bijective with inverse

(P δ(z)E(z))−1 = I +
+∞

∑
k=1

(−δ)k

(
(QE(z))k (QE(z))k−1QE+(z)

0 0

)
,

whose norm is ≤ O(1). Consequently, P δ(z) is bijective with inverse

E δ(z) = E(z) +
+∞

∑
k=1

(−1)k

(
E(δQE)k (δEQ)kE+

E−(δQE)k E−(δQE)k−1(δQ)E+

)
=:

(
Eδ(z) Eδ

+(z)

Eδ
−(z) Eδ

−+(z)

)
. (2.37)

Hence, by (2.30) and (2.36), we obtain the following inequality

∥Eδ(z)∥ =

∥∥∥∥∥E

(
I +

+∞

∑
k=1

(−1)k(δQE)k

)∥∥∥∥∥ ≤ ∥E∥
∥∥∥∥∥I +

+∞

∑
k=1

(−1)k(δQE)k

∥∥∥∥∥
≤ 1

tM+1

(
∥I∥+

+∞

∑
k=1

∥δQE∥k

)

=
1

tM+1

(
1

1 − ∥δQE∥

)
≤ 2

tM+1
. (2.38)
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Using also (2.31), we get these results

∥Eδ
+(z)∥ =

∥∥∥∥∥
(

I +
+∞

∑
k=1

(−1)k(δEQ)k

)
E+

∥∥∥∥∥ ≤
(

+∞

∑
k=0

∥δEQ∥k

)
∥E+∥ ≤ 2; (2.39)

∥Eδ
−(z)∥ =

∥∥∥∥∥E−

(
I +

+∞

∑
k=1

(−1)k(δQE)k

)∥∥∥∥∥ ≤ 2; (2.40)

∥Eδ
−+(z)− E−+∥ =

∥∥∥∥∥+∞

∑
k=1

(−1)kE−(δQE)k−1(δQ)E+

∥∥∥∥∥
≤ ∥E−∥

(
+∞

∑
k=1

∥δQE∥k−1

)
∥δQ∥∥E+∥

≤ 2δ∥Q∥ ≤ α1/2, . (2.41)

Applying Corollary 2.3 to P δ(z) and E δ(z), we obtain

ln |det(Pδ − z)| = ln |det(P δ(z))|+ ln |det(Eδ
−+(z))|. (2.42)

By Jacobi’s formula (see Proposition A.16 in the Appendix),

d
dδ

det(P δ(z)) = tr
(

adj(P δ(z))
d
dδ

P δ(z)
)

, (2.43)

where adj(P δ(z)) denotes the adjugate of P δ(z). Therefore, by taking the logarithms, we get

d
dδ

(ln |det(P δ(z))|) = ℜ
(

1
det(P δ(z))

tr
(

adj(P δ(z))
d
dδ

P δ(z)
))

= ℜ
(

1
det(P δ(z))

tr

(
det(P δ(z))E δ(z)

d
dδ

(
Pδ − z R−

R+ 0

)))
= ℜ(tr(Eδ(z)Q)). (2.44)

Remark 2.5. Let A, B ∈ MN,N ; the following inequality is true

| tr(AB)| ≤ ∥A∥∥B∥tr,

where the trace-norm of B is defined as ∥B∥tr := tr((B∗B)1/2).

Thus, using this result and applying (2.38) and (2.44), we obtain∣∣∣ln |det(E δ(z))| − ln |det(E(z))|
∣∣∣ = ∣∣∣ln |det(P δ(z))| − ln |det(P(z))|

∣∣∣
=

∣∣∣∣∫ δ

0

d
dτ

(ln |det(Pτ(z))|) dτ

∣∣∣∣
=

∣∣∣∣ℜ ∫ δ

0
tr(Eτ(z)Q)dτ

∣∣∣∣ ≤ O(δα−1/2∥Q∥tr). (2.45)
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Hence, using (2.35) and (2.45), we get

ln |det(P δ(z))| ≤ ln |det(P(z))|+O(δα−1/2∥Q∥tr)

= Nd
(∫

T2d
ln |p0(ρ)− z|dρ +O

(
ακ ln

(
1
α

))
+O(δN−dα−1/2∥Q∥tr)

)
.

(2.46)

Moreover, under the assumption (2.36), by (2.31) and (2.41), we have

∥Eδ
−+(z)∥ ≤ α1/2 + tM = O(α1/2),

which, in view of (2.20), yields the following upper bound

ln |det Eδ
−+(z)| ≤ M ln(∥Eδ

−+(z)∥) ≤ O(Ndακ)| ln α|. (2.47)

2.4 Auxiliary Estimates

We conclude this chapter with a general estimate on the singular values arising in Grushin

problems.

Lemma 2.6. Let H be an N-dimensional complex Hilbert space, and let N ≥ M > 0. Suppose that

P =

(
P R−

R+ 0

)
: H⊕ CM → H⊕ CM

is a bijective matrix of linear operators, with inverse

E =

(
E E+

E− E−+

)
.

Let 0 ≤ t1(P) ≤ . . . ≤ tN(P) denote the eigenvalues of (P∗P)1/2, and let 0 ≤ t1(E−+) ≤ . . . ≤
tM(E−+) denote the eigenvalues of (E∗

−+E−+)1/2. Then, for m = 1, . . . , M, we have

tm(E−+)

∥E∥tm(E−+) + ∥E−∥∥E+∥
≤ tm(P) ≤ ∥R+∥∥R−∥tm(E−+). (2.48)

Proof. By Corollary 2.3 we know that P is invertible if and only if E−+ is invertible, and in that

case, by formula (2.4) in Theorem 2.1, the following two are true

P−1 = E − E+E−1
−+E−, E−1

−+ = −R+P−1R−. (2.49)

We adopt a decreasing notation for the singular values. In particular, we denote the singular

values of P as 0 ≤ sN(P) ≤ sN−1(P) ≤ . . . ≤ s1(P) and the singular values of E−+ as 0 ≤
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sM(E−+) ≤ sM−1(E−+) ≤ . . . ≤ s1(E−+). Thus,

sn(P) = tN−n+1(P), n = 1, . . . , N

sm(E−+) = tM−m+1(E−+), m = 1. . . . , M.

Assume P is invertible. Then, we have

sn(P−1) =
1

tn(P)
, n = 1, . . . , N, (2.50)

and similarly,

sm(E−1
−+) =

1
tm(E−+)

, m = 1, . . . , M. (2.51)

Recall also that s1(A) = ∥A∥ for every matrix A. Since Ky Fan’s inequalities (Corollary A.9 in

the Appendix) apply to trace-class operators on a Hilbert space, we use them together with the

identities (2.49). Applying once (A.7) and twice (A.8), it follows that

sm(P−1) = sm(E − E+E−1
−+E−) ≤ s1(E) + sm(−E+E−1

−+)s1(E−)

≤ ∥E∥+ ∥E+∥∥E−∥sm(E−1
−+), m = 1, . . . , M. (2.52)

Therefore, invoking (2.50) and (2.51) yields

tm(P) =
1

sm(P−1)
≥ 1

∥E∥+ ∥E+∥∥E−∥ 1
tm(E−+)

=
tm(E−+)

∥E∥tm(E−+) + ∥E+∥∥E−∥
, m = 1, . . . , M,

which is the desired lower bound. For the upper bound, from the second identity in (2.49), we

get

sm(E−1
−+) = sm(R+P−1R−) ≤ s1(R+) sm(P−1) s1(R−) = ∥R+∥ ∥R−∥ sm(P−1).

Taking the reciprocals and using (2.50) and (2.51),

tm(P) ≤ ∥R+∥ ∥R−∥ tm(E−+), m = 1, . . . , M.

Assume now that P is not invertible. We proceed as in the proof of Corollary 2.3. We introduce

the perturbed operator Pε := P + εX, where ∥X∥ ≤ 1 and 0 < ε ≪ 1, so that Pε is bijective.

By the same Neumann series argument used before, the associated Grushin problem P ε re-

mains invertible, with inverse E ε defined as in (2.8). Consequently, we may apply (2.48) to this

perturbed problem.

Moreover, since

∥Pε − P∥ → 0, ∥E ε − E∥ → 0, as ε → 0,

from Corollary A.10 in the Appendix, the singular values of Pε and of Eε
−+ depend continu-

ously on ε. Thus, it follows that (2.48) also holds in the case where P fails to be invertible. This
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completes the proof.



Chapter 3

Estimates for the Perturbed Operator

In this chapter we construct a suitable perturbation for an operator P defined as in (2.14) in

order to obtain quantitative lower bounds for the small singular values of the perturbed oper-

ator. Our approach adapts the method used by Sjöstrand in [Sj09]) to the toroidal phase space

T2d. Although the setting is periodic, the underlying ideas carry over with minor modifications

and yield bounds comparable to those in the Euclidean case.

We proceed in two stages. First, using an elementary linear–algebraic argument, we build

a preliminary perturbation that already furnishes effective lower bounds for a larger set of the

singular values of the perturbed operator. Second, following Sjöstrand’s iterative scheme, we

propagate the estimate down to the bottom of the singular-value scale, thereby controlling even

the lowest singular value of the perturbed operator.

3.1 Construction of a Potential

In this section we construct a diagonal potential from two families of linearly independent

vectors by selecting an appropriate set of coordinate indices. We then apply this construction

to the framework of the previous chapters, obtaining a potential that will serve as the initial

perturbation for the iterative perturbation scheme developed in the following sections.

We fix N ∈ N∗ and consider the following results.

Proposition 3.1. Let M ∈ N, 1 ≤ M ≤ Nd and let e1, . . . , eM ∈ CNd
be linearly independent vectors,

such that ei = (ei(n))Nd

n=1, for each i = 1, . . . , M. Under these assumptions we can find M different

points n1, . . . , nM ∈ {1, . . . , Nd} such that the vectors e⃗(n1), . . . , e⃗(nM) are linearly independent in

CM, where

e⃗(n) :=


e1(n)

e2(n)
...

eM(n)

 , ∀ n ∈ {1, . . . , Nd}. (3.1)

Proof. We define the set E ⊂ CM as E := Span{⃗e(n); n = 1, . . . , Nd} and we claim that E = CM.

Indeed, if we suppose that this isn’t true, there would exist 0 ̸= λ = (λ1, . . . , λM) ∈ CM such

37
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that λ ∈ E⊥, i.e.

0 = ⟨λ, e⃗(n)⟩ =
M

∑
j=1

λjej(n), ∀ n ∈ {1, . . . , Nd},

and consequently

0 =
M

∑
j=1

λjej.

But this implies that e1, . . . , eM are linearly dependent vectors, which is in contradiction with

the hypothesis. Hence, we know that E = CM, and we can find n1, . . . , nM ∈ {1, . . . , Nd} such

that e⃗(n1), . . . , e⃗(nM) form a basis in CM, and consequently they are linearly independent.

Proposition 3.2. Let M ∈ N, 1 ≤ M ≤ Nd and let {e1, . . . , eM}, { f1, . . . , fM} be two linearly

independent families in CNd
. For both of them, we adopt the notations introduced in Proposition 3.1. We

assume that we can find M points n1, . . . , nM ∈ {1, . . . , Nd} such that both {⃗e(ni)}M
i=1 and

{
f⃗ (ni)

}M

i=1
are linearly independent families in CM. We define

B : CM −→ CM

u 7−→
M

∑
j=1

〈
u, f⃗ (nj)

〉
e⃗(nj). (3.2)

Then B is bijective.

Proof. Let u ∈ Ker B. Since e⃗(n1), . . . , e⃗(nM) form a basis in CM, by the definition of B we have〈
u, f⃗ (nj)

〉
= 0, for all j = 1, . . . , M.

Since f⃗ (n1), . . . , f⃗ (nM) form a basis in CM, it follows that u = 0. Hence, B is bijective.

We observe that, under the same assumptions of Proposition 3.2, the matrix associated with

B, expressed in the canonical basis, is given by:

(B)j,k =
M

∑
ν=1

ej(nν) fk(nν), j, k = 1. . . . , M. (3.3)

Hence, if we define the matrices

E := (⃗e(n1), . . . , e⃗(nM)) ∈ CM×M (3.4)

F := ( f⃗ (n1), . . . , f⃗ (nM)) ∈ CM×M, (3.5)

then we have

B = EF∗. (3.6)

Lemma 3.3. Let M ∈ N, 1 ≤ M ≤ Nd and let e1, . . . , eM be as in Proposition 3.1. Let L ⊂ CM be a
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linear subspace of dimension S − 1, for some 1 ≤ S ≤ M. Then, there exists n ∈ {1, . . . , Nd} such that

dist (⃗e(n), L)2 ≥ 1
Nd tr ((I − πL) ENd), (3.7)

where ENd :=
(
⟨ej, ek⟩

)
1≤j,k≤M and πL is the orthogonal projection from CM onto L.

Proof. Let {ν1, . . . , νM} be an orthonormal basis of CM chosen so that L = span {ν1, . . . , νS−1}
(L = {0} when S = 1). We write

νl =


ν1,l

...

νM,l

 ∈ CM ∀ l = 1, . . . , M.

By definition we have, for all n ∈ {1, . . . , Nd},

dist(⃗e(n), L)2 =
M

∑
l=S

|⟨⃗e(n), νl⟩|2 =
M

∑
l=S

∣∣∣∣∣ M

∑
j=1

ej(n) νj,l

∣∣∣∣∣
2

=
M

∑
l=S

(
M

∑
j=1

ej(n)νj,l

)(
M

∑
k=1

ek(n)νk,l

)
=

M

∑
l=S

M

∑
j,k=1

νj,lej(n)ek(n)νk,l .

It follows that

Nd

∑
n=1

dist (⃗e(n), L)2 =
Nd

∑
n=1

M

∑
l=S

M

∑
j,k=1

νj,lej(n)ek(n)νk,l

=
M

∑
l=S

M

∑
j,k=1

νj,l(ENd)j,kνk,l =
M

∑
l=S

⟨ENd νl , νl⟩ = tr((I − πL)ENd).

Now, by estimating the summation, we obtain

tr((I − πL)ENd) =
Nd

∑
n=1

dist (⃗e(n), L)2 ≤ Nd max
n=1,...,Nd

dist (⃗e(n), L)2 . (3.8)

Thus, we can find an n ∈ {1, . . . , Nd} which satisfies (3.7).

Remark 3.4. For the purposes of the upcoming application, we consider the assumption that

{e1, . . . , eM} is an orthonormal family in CNd
. (3.9)

Then ENd = I and (3.8) simplifies to

max
n=1,...Nd

dist (⃗e(n), L)2 ≥ M − S + 1
Nd .

In the general case, we let 0 ≤ ε1 ≤ ε2 ≤ . . . ≤ εM denote the eigenvalues of ENd . Then we
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have

inf
dim L=S−1

tr ((1 − πL)ENd) = ε1 + ε2 + . . . + εM−S+1 =: ES. (3.10)

Indeed, the mini-max principle (Theorem A.6) implies that for k = 1, . . . , M

εk = inf
dim L=k

sup
ν∈L

∥ν∥2=1

⟨ENd ν, ν⟩ .

Thus, for a general subspace L of dimension S − 1, the eigenvalues of (1 − πL)ENd(1 − πL) are

ε′1 ≤ . . . ≤ ε′M−S+1, where ε′j ≥ ε j, for j = 1, . . . , M − S + 1.

Now let {e1, . . . , eM} and { f1, . . . , fM} be two linearly independent families in CNd
, and

consider the notation (3.1) for e⃗(n) and f⃗ (n). Applying Lemma 3.3 together with (3.10) to the

first family, we successively choose indices

n1, . . . , nM ∈ {1, . . . , Nd} (3.11)

such that

∥⃗e(n1)∥2 ≥ 1
Nd tr ((I − π{0})ENd) ≥

1
Nd inf

dim L=0
tr ((I − πL)ENd) =

E1

Nd ,

dist (⃗e(n2), C⃗e(n1))
2 ≥ 1

Nd inf
dim L=1

tr ((I − πL)ENd) =
E2

Nd ,

...

dist (⃗e(nS), C⃗e(n1)⊕ · · · ⊕ C⃗e(nS−1))
2 ≥ 1

Nd inf
dim L=S−1

tr ((I − πL)ENd) =
ES

Nd ,

...

dist (⃗e(nM), C⃗e(n1)⊕ · · · ⊕ C⃗e(nM−1))
2 ≥ 1

Nd inf
dim L=M−1

tr ((I − πL)ENd) =
ε1

Nd .

Let {ν1, ν2, . . . , νM} be the Gram-Schmidt orthonormalization of the basis {⃗e(nj)}M
j=1, so that

e⃗(n1) = c1ν1, where |c1| ≥
(

E1

Nd

) 1
2

,

e⃗(nS) ≡ cSνS mod (ν1, . . . , νS−1), where |cS| ≥
(

ES

Nd

) 1
2

, for S = 2, . . . , M

(3.12)

i.e.

e⃗(nS) = cSνS +
S−1

∑
j=1

λjνj, for S = 2, . . . , M,

so that e⃗(nS)− ∑S−1
j=1 λjνj is orthogonal to the vectors ν1, . . . , νS−1 and ∥νS∥2 = 1.

We consider the matrix E defined as in (3.4). Expressing the vectors e⃗(n1), e⃗(n2), . . . , e⃗(nM)

in the basis ν1, . . . , νM does not affect its determinant. Indeed, with this change of basis the
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matrix E becomes upper triangular with diagonal entries c1, . . . , cM. Hence,

|det E| = |c1 · · · cM|,

and (3.12) implies that

|det E| ≥ (E1E2 · · · EM)1/2

(Nd)M/2 . (3.13)

We now consider the matrix B defined as in (3.2) for the indices in (3.11). Suppose that

f j := ej, j = 1, . . . , M. (3.14)

Then, recalling definitions (3.4) and (3.5), we have F∗ = Et, and from (3.6),

B = EEt. (3.15)

Hence, from (3.13) and (3.15), we get

|det B| ≥ E1E2 · · · EM

NMd . (3.16)

Moreover, under the assumption (3.9), this result simplifies to

|det B| ≥ M!
NMd .

We are interested in estimating the singular values s1(B) ≥ s2(B) ≥ . . . ≥ sM(B) of the matrix

B. Writing sj := sj(B), we have, for every k = {1, . . . , M}

sM
1 ≥ sk−1

1 sM−k+1
k ≥

M

∏
j=1

sj = |det B|. (3.17)

We recall that s1 = ∥B∥, and combining (3.16) and (3.17), we obtain the following.

Proposition 3.5. Under the assumption (3.14), the following two inequalities are true

s1 ≥ (E1E2 · · · EM)
1
M

Nd , (3.18)

sk ≥ s1

(
M

∏
j=1

(
Ej

s1Nd

)) 1
M−k+1

, for k = 1, . . . , M. (3.19)

Proof. The first inequality is an immediate consequence of (3.16) and (3.17).

By using the same results we now derive the second one. Letting k ∈ {1, . . . , M}, we have

sk−1
1 sM−k+1

k ≥ |det B| ≥
M

∏
j=1

(
Ej

Nd

)
,
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and hence

sk ≥
((

1
s1

)k−1 M

∏
j=1

(
Ej

Nd

)) 1
M−k+1

=

(
(s1)

M−k+1
M

∏
j=1

(
Ej

s1Nd

)) 1
M−k+1

= s1

(
M

∏
j=1

(
Ej

s1Nd

)) 1
M−k+1

.

Now, we would like to express the matrix B as a product involving a diagonal potential.

We consider the indices n1, . . . , nM ∈ {1, . . . , Nd} chosen in (3.11). Recalling (3.3), we obtain for

every l, m = 1, . . . , M,

(B)l,m =
M

∑
j=1

el(nj) fm(nj) =
Nd

∑
n=1

el(n) fm(n)q(n), (3.20)

where q ∈ {0, 1}Nd
is defined as

q(n) :=

1, if ∃ j : n = nj

0, else
, (3.21)

for every n = 1, . . . , Nd. In particular, q has M non-zero entries.

We now adopt the same framework of Chapter 2. Let {ei}Nd

i=1 and { fi}Nd

i=1 denote the or-

thonormal eigenbases of Q(z) and Q′(z), respectively, defined previously (see (2.15) and (2.16)).

Let M be the number of eigenvalues of Q(z), Q′(z) in the interval [0, α]: We consider the ma-

trices E+ and E− as introduced in (2.28) and (2.29), and we recall their properties as stated in

(2.31). With these choices, by (3.20), we have

Bt = E−VqE+, (3.22)

where

Vq := diag
(

q(n); n = 1, . . . Nd
)
∈ CNd×Nd

(3.23)

is in the form of a potential. We note that this diagonal matrix is entirely determined by the

choice of the indices n1, . . . , nM, which in turn depends on the eigenvectors {ei}i=1,...,M. More-

over, we observe that

∥Vq∥ = ∥q∥∞ = 1. (3.24)

This construction will play a key role in the following sections, where we will use it to identify

a suitable perturbation for the operator under consideration.
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3.2 Improving Singular Value Bounds via Potential Perturbations

In this section we adapt the work of Sjöstrand in [Sj09, Chapters 5–6] to the discrete case.

From now on, we adopt the same setting and notation as in Chapter 2. We set

h =
1

2πN
, N ∈ N∗, and N−1 ≪ α ≪ 1,

Let

p ∈ C∞(T2d) admit the asymptotic expansion p ∼ p0 + hp1 + . . . in S(1, 1), (3.25)

and let P := pN be the restriction of its Weyl quantization to Hd
h as in (1.25). By the identification

(1.26), P defines a linear operator

P : CNd → CNd
.

Fix z ∈ C. Our goal is to construct a small perturbation δVq in the form of a potential, that

yields suitable lower bounds on the smallest singular values of the operator P + δVq − z. We

also assume the symmetry condition

p(x, ξ) = p(x,−ξ), (3.26)

which is equivalent to requiring that

P∗ = ΓPΓ, (3.27)

where Γu := u denotes the antilinear operator of complex conjugation. We observe that condi-

tion (3.27) remains valid under the addition of any diagonal matrix to P.

As before, we introduce the volume

Vz(t) := λ
({

ρ ∈ T2d ; |p0(ρ)− z|2 ≤ t
})

,

and assume that, for the given value of z,

Vz(t) = O(tκ), 0 ≤ t ≪ 1, (3.28)

for some exponent κ ∈]0, 1].

Remark 3.6. Condition (3.28) is employed throughout the literature in this framework, including

in [ChZw10, HaSj08, Vo20]. In particular, it is important for controlling the number of small

eigenvalues of (P − z)∗(P − z) for a fixed z ∈ C.

As observed in [ChZw10], if p is real analytic, then (3.28) always holds for some κ > 0.

Similarly, if p is real analytic and p(T2d) ⊂ C has non-empty interior, then for z ∈ C,

dp|p−1(z) ̸= 0 ⇒ (3.28) holds with κ >
1
2

.
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Moreover, for p ∈ C∞(T2d) and z ∈ C, if

dp, dp are linearly independent at every point of p−1(z) ⇒ (3.28) holds with κ = 1. (3.29)

In particular, we observe that dp and dp are linearly independent at a point ρ when

{p, p}(ρ) ̸= 0,

where {a, b} := ∂ξ a∂xb − ∂xa∂ξb denotes the Poisson brackets on the torus T2d. The two con-

ditions are equivalent when the dimension d = 1, but in dimension d > 1 this is not true in

general. Furthermore, condition (3.29) does not hold when z ∈ ∂(p0(T2d)), but it was observed

in [HaSj08, Example 12.1] that for z ∈ C, if

∀ ρ ∈ p−1(z) : {p, p}(ρ) ̸= 0 or {p, {p, p}}(ρ) ̸= 0, then (3.28) holds with κ =
3
4

.

Under the assumptions stated above, Theorem 1.25, and in particular its consequence (1.42),

yields the following.

Corollary 3.7. For N−1 ≪ α ≪ 1, if (3.28) holds, the number M(α) of eigenvalues of (P− z)∗(P− z)

in [0, α] satisfies

M(α) = O(ακ Nd).

Now, we consider a small arbitrary perturbation applied to the operator P. Let q0 ∈ CNd

and Vq0 := diag(q0(j); j = 1, . . . , Nd) its associated diagonal matrix. Let δ0 ≥ 0 such that

∥δ0Vq0∥ = δ0∥q0∥∞ ≪ N−1, (3.30)

and consider the perturbed operator P0 := P + δ0Vq0 . We observe that thanks to the hypothesis

(3.30), Corollary 3.7 still applies after replacing P with P0. Indeed, applying the mini-max

theorem (see Theorem A.6 in the Appendix) to the j-th singular value of P − z, denoted tj(P −
z), we obtain the following

tj(P − z) =
√

min
V⊂CNd ,dim V=j

max
ψ∈V:∥ψ∥2=1

∥(P − z)ψ∥2
2

= min
V⊂CNd ,dim V=j

max
ψ∈V:∥ψ∥2=1

∥(P0 − z)ψ + (−δ0Vq0)ψ∥2

≤ tj(P0 − z) + δ0∥Vq0∥. (3.31)

This result can alternatively be derived by applying Ky Fan inequalities (Corollary A.9).

Let α be as in the assumptions of Corollary 3.7, and fix an arbitrary constant C > 0. Let

M(Cα) be defined as in the corollary and set j ≥ M(Cα) + 1. By (3.30), there exists a sufficiently

large constant C1 > 0 such that

∥δ0Vq0∥ ≤ N−1

C1
.
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Under these conditions, we obtain:

Cα < tj(P − z) ≤ tj(P0 − z) + ∥δ0Vq0∥ ≤ tj(P0 − z) +
N−1

C1
,

which implies

tj(P0 − z) > Cα − N−1

C1
.

Furthermore, the assumption N−1 ≪ α implies

N−1

α
≤ 1

C2
,

for another large constant C2 > 0. Hence, for a suitable choice of the constants,

tj(P0 − z) > Cα

(
1 − 1

CC1C2

)
>

Cα

2
,

for all j ≥ M(Cα) + 1. Therefore, if we let M0(
Cα
2 ) be the number of singular values of P0 − z

lying in the interval [0, Cα
2 ], we have shown that

M0

(
Cα

2

)
≤ M(Cα).

This establishes the validity of Corollary 3.7 for the perturbed operator P0.

Now, we fix τ0 ∈]0, (CN−1)1/2] for a new constant C > 0, and denote by

0 ≤ t1(P0 − z) ≤ t2(P0 − z) ≤ . . . ≤ tM(P0 − z) < τ0,

all the singular values of P0 − z lying in the interval [0, τ0[. Following the previous notation, we

have M = M0(τ2
0 ). Thus, if we take α = CN−1, we obtain

M ≤ M(α) = O(ακ Nd) = O(Nd−κ). (3.32)

We fix θ ∈
]
0, 1

4

[
and recall that M is defined by the condition

tM(P0 − z) < τ0 ≤ tM+1(P0 − z). (3.33)

We also fix a constant ϵ0 > 0. Then we obtain the following.

Proposition 3.8. Under the assumptions described above, the following statements hold:

1. Suppose M is sufficiently large. Then there exists a vector q ∈ {0, 1}Nd
, and the corresponding

potential Vq := diag(q(n); n = 1, . . . , Nd) with ∥Vq∥ = 1 such that, setting

Pδ := P0 + δVq, δ :=
τ0

C
N−d,
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for some sufficiently large constant C > 0, the following estimates hold:

tν(Pδ − z) ≥ tν(P0 − z)− τ0N−d

C

≥
(

1 − N−d

C

)
tν(P0 − z), for every ν > M, (3.34)

tν(Pδ − z) ≥ τ0N−M1 , for [M(1 − θ)] + 1 ≤ ν ≤ M, (3.35)

where

M1 := 2d + ϵ0, (3.36)

and [a] := max(Z ∩ (−∞, a]) denotes the integer part of the real number a.

2. If M = O(1), the same conclusion holds, provided that estimate (3.35) is replaced by

tM(Pδ − z) ≥ τ0N−M1 . (3.37)

Remark 3.9. This result is particularly useful in the analysis of the operator P0 − z. Indeed, if

P0 − z has many singular values lying in a small interval, one can construct a suitable pertur-

bation that provides a uniform lower bound for a portion of the corresponding singular values

of the perturbed operator, a property that is not guaranteed for P0 − z itself.

Proof. 1. We start by supposing M sufficiently large, i.e. M ≫ 1, as in the hypotheses of the

proposition.

Let {e1, . . . , eM} be an orthonormal family of eigenvectors of the operator (P0 − z)∗(P0 − z),

associated with its first M eigenvalues, analogously to those we introduced in Section 2.2 for

the unperturbed operator P. In particular, for each j = 1, . . . , M,

(P0 − z)∗(P0 − z)ej = t2
j (P0 − z) ej.

Using the symmetry assumption (3.27), we see that a corresponding orthonormal family of

eigenvectors of (P0 − z)(P0 − z)∗ associated to the same eigenvalues, is given by

f̃ j := Γej = ej, j = 1, . . . , M. (3.38)

If the non-zero tj are not all distinct, it is not immediately clear if we can obtain f̃ j = f j, where f j

are defined in the same way as we did in Section 2.2 for P (see (2.16)). However, we know that

the two orthonormal families { f1, . . . , fM} and { f̃1, . . . , f̃M} generate the same vector space FM.

If we let EM be the subspace generated by {e1, . . . , eM}, we know that the two operators

(P0 − z)|EM
: EM → FM and (P0 − z)∗|FM

: FM → EM,

are well-defined and have the same singular values 0 ≤ t1 ≤ . . . ≤ tM.
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We now consider a Grushin problem for P0 − z, following similar steps as in Section 2.2. In

analogy with that construction, we define the operators R0
− and R0

+ as in (2.21), (2.22), but in

this case we use f̃ j in place of f j. This leads to the same structural results.

We adopt the same notations for the associated matrices as in the unperturbed case, with

the addition of a superscript 0 to indicate their dependence on the initial perturbation δ0Vq0 :

namely, P0, E0, E0, E0
±, E0

−+.

Since the properties stated in (2.17) do not necessarily hold in this setting, we cannot assert

that E0
−+ = diag(tj; j = 1, . . . , M). However, we do know that the singular values of E0

−+

satisfy

tj(E0
−+) = tj(P0 − z), j = 1, . . . , M.

We also adopt the notation

sj(E0
−+) := tM−j+1(E0

−+),

so that, equivalently, sj(E0
−+) = tM−j+1(P0 − z), for j = 1, . . . , M.

We now divide the remainder of the proof into two separate cases. Before proceeding, we

recall that:

• M is assumed to be sufficiently large,

• θ ∈]0, 1
4 [ has been fixed,

• M1 is defined as in (3.36).

Moreover, since z is fixed throughout, we may assume without loss of generality that z = 0.

CASE 1:

In the first case, we assume that a subset of the singular values of E0
−+, and thus of the

operator P0, satisfy the following lower bound:

sj(E0
−+) ≥ τ0N−M1 , for 1 ≤ j ≤ M − [(1 − θ)M].

Under this assumption, we can take the trivial perturbation given by q = 0 ∈ CNd
, so that

Pδ = P0. Then, we have

tM−j+1(Pδ) = sj(E0
−+) ≥ τ0N−M1 for 1 ≤ j ≤ M − [(1 − θ)M],

which proves (3.35). Moreover,

tν(Pδ) = tν(P0) ≥
(

1 − N−d

C

)
tν(P0), for ν > M,

which proves (3.34).

CASE 2:
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We suppose there exists j, 1 ≤ j ≤ M − [(1 − θ)M] such that

sj(E0
−+) < τ0N−M1 . (3.39)

We now recall the results obtained in Section 3.1 and apply them under our current assump-

tions with f̃ j = ej. In particular, from (3.15), (3.21) and (3.22), we know that there exist a matrix

E ∈ CM depending on the eigenvectors {ei}i=1,...,M and a potential Vq, determined by a vector

q ∈ {0, 1}Nd
with exactly M non-zero entries equal to 1, such that

EEt = E0
−VqE0

+.

The matrix Vq is the perturbation we intend to apply to the operator P0 in order to derive the

conclusions of the theorem. Accordingly, we define the perturbed operator

Pδ := P0 + δVq,

with δ ≥ 0, whose precise value will be determined later. In particular, we observe that

∥Vq∥ = 1. (3.40)

We now set up a new Grushin problem for the perturbed operator, following the same proce-

dure as in Section 2.3, with Q = Vq. We therefore consider the matrix

P δ :=

(
Pδ R0

−

R0
+ 0

)
, (3.41)

and verify that condition (2.36) holds in our framework:

δ∥Vq∥ τ−1
0 ≤ 1

2
⇔ δ ≤ τ0

2∥Vq∥
=

τ0

2
.

Hence, for any

0 ≤ δ ≤ τ0

2
, (3.42)

the Grushin problem (3.41) is well-posed, and its inverse has the form

E δ =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
, (3.43)

where the blocks are defined analogously to (2.37) and they satisfy the same norm estimates.

Our next goal is to estimate the singular values of Pδ. Recalling Lemma 2.6 and applying it
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to the perturbed Grushin system (3.41), we obtain for all ν = 1, . . . , M

tν

(
Eδ
−+

)
∥Eδ∥ tν

(
Eδ
−+

)
+ ∥Eδ

−∥ ∥Eδ
+∥

≤ tν

(
Pδ
)
≤ ∥R0

+∥ ∥R0
−∥ tν

(
Eδ
−+

)
.

Using (2.38), (2.39), (2.40), (2.41), (2.31) and recalling (3.33), we infer

∥Eδ∥ tν

(
Eδ
−+

)
+ ∥Eδ

−∥ ∥Eδ
+∥ ≤ 2

tM+1(P0)
(∥Eδ

−+ − E−+∥+ ∥E−+∥) + 4

≤ 2
tM+1(P0)

(2δ∥Vq∥+ tM) + 4

≤ 6 +
4

tM+1(P0)
δ∥Vq∥ = O(1),

where we assumed (3.42) to be true. Moreover, it is easy to obtain

∥R0
+∥∥R0

−∥ ≤ O(1).

Hence, there exists a constant C̃ > 0 such that

1
C̃

tν(Eδ
−+) ≤ tν(Pδ) ≤ C̃tν(Eδ

−+), ν = 1, 2, . . . , M. (3.44)

From (2.37), the lower right block of (3.43) is defined as

Eδ
−+ = E0

−+ − δE0
−VqE0

+ +
+∞

∑
k=2

(−1)kE0
−(δVqE0)k−1(δVq)E0

+. (3.45)

Applying estimates (2.30) and (2.31) with hypothesis (3.33) to our setting yields

∥E0
±∥ = 1, ∥E0∥ ≤ 1

tM+1(P0)
≤ 1

τ0
. (3.46)

By Ky Fan’s inequalities (Corollary A.9 in the Appendix), we derive the following estimates for

the singular values of the sum of bounded linear operators A, B, and C:

sν(A + B) ≥ sν+k−1(A)− sk(B), (3.47)

and

sν(A + B + C) ≥ sν+k+ℓ−2(A)− sk(B)− sℓ(C), (3.48)

for ν, l, k = 1, 2, . . . .

We fix 1 ≤ ν ≤ M − [(1 − θ)M] and recall that

1 ≤ j ≤ M − [(1 − θ)M]

where j is defined in the assumption (3.39). Thus ν + j − 1 ≤ M and applying (3.48) with ℓ = 1
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and k = j to the decomposition (3.45) yields

sν(Eδ
−+) ≥ sν+j−1(−δE0

−VqE0
+)− sj(E0

−+)− s1

(
+∞

∑
k=2

(−1)kE0
−(δVqE0)k−1(δVq)E0

+

)
. (3.49)

We now estimate each term separately. For the second term, hypothesis (3.39) implies

−sj(E0
−+) > −τ0N−M1 . (3.50)

For the third term in (3.49), we recall (3.40), (3.46) and we obtain

s1

(
+∞

∑
k=2

(−1)kE0
−(δVqE0)k−1(δVq)E0

+

)
=

∥∥∥∥∥+∞

∑
k=2

(−1)kE0
−(δVqE0)k−1(δVq)E0

+

∥∥∥∥∥
≤

+∞

∑
k=2

δk
∥∥∥E0

−(VqE0)k−1VqE0
+

∥∥∥
≤

+∞

∑
k=2

δk∥Vq∥k∥E0∥k−1

=δ2∥Vq∥2∥E0∥
+∞

∑
k=0

(δ∥Vq∥∥E0∥)k

≤2δ2τ−1
0 , (3.51)

where we used the fact that

δ∥Vq∥∥E0∥ ≤ τ0

2
∥E0∥ ≤ 1

2
,

ensuring the convergence of the series.

Finally, we turn to the first term in (3.49). From (3.38), we can invoke Proposition 3.5 and

rewrite (3.19) as

sk(E0
−VqE0

+) ≥ s1(E0
−VqE0

+)
− k−1

M−k+1

(
M

∏
ν=1

Eν

Nd

) 1
M−k+1

, k = 1, . . . , M.

Under our orthogonality assumptions, this becomes

sk(E0
−VqE0

+) ≥ s1(E0
−VqE0

+)
− k−1

M−k+1

(
M!

NMd

) 1
M−k+1

= s1(E0
−VqE0

+)
− k−1

M−k+1 (M!)
1

M−k+1 N− Md
M−k+1 , k = 1, . . . , M. (3.52)

Moreover, inequality (3.18) becomes

s1(E0
−VqE0

+) ≥ (M!)1/MN−d.
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Substituting it into (3.52) yields

sk(E0
−VqE0

+) ≥
(
(M!)

1
M N−d

)− k−1
M−k+1

(M!)
1

M−k+1 N− Md
M−k+1

= (M!)
1−k+M

M(M−k+1) N−d M−k+1
M−k+1 = (M!)

1
M N−d, k = 1, . . . , M. (3.53)

We recall Stirling’s formula (A.4) for M ≫ 1

M! = (1 + o(1))
√

2πMMMe−M,

and we observe that
d

dM
(ln((2πM)

1
2M )) =

1
2M2 (1 − ln(2πM)).

Therefore, the function ln
(
(2πM)

1
2M

)
is decreasing for all M ≥ 1, and so is (2πM)

1
2M . Hence,

since (2πM)
1

2M → 1 as M → +∞, we conclude that

(2πM)
1

2M ≥ 1, for all M ≥ 1. (3.54)

Thus, for M large enough, applying (3.53), (A.5) and (3.54) we get

sν+j−1(−δE0
−VqE0

+) >
δM(2πM)

1
2M

e
N−d ≥ δM

e
N−d ≥ δN−d

e
, (3.55)

Hence, combining (3.49), (3.50), (3.51), and (3.55) yields the following inequality

sν(Eδ
−+) ≥

δN−d

e
− τ0N−M1 − 2δ2τ−1

0 , 1 ≤ ν ≤ M − [(1 − θ)M] . (3.56)

We recall that θ < 1
4 and we fix 1 ≤ ν ≤ M − [(1 − θ)M]. We choose

δ =
τ0

C
N−d, (3.57)

where C > 0 is a sufficiently large constant. Hence, condition (3.42) on δ is respected and

substituting this value in (3.56), we obtain

sν(Eδ
−+) ≥

τ0N−2d

eC
− τ0N−2d−ϵ0 − 2

τ0

C2 N−2d = δN−d
(

1
e
− CN−ϵ0 − 2

C

)
.

Then, for N sufficiently large and C chosen large enough, there exists a new constant C0 > 0,

such that

sν(Eδ
−+) ≥

δ

C0
N−d. (3.58)

We recall that M1 = 2d + ϵ0. Thus, by possibly taking a larger N, we obtain

sν(Eδ
−+) ≥ C̃τ0N−M1 ,
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with the same constant C̃ that appears in (3.44). Hence, from (3.44) it follows that

tν(Pδ) ≥ tν(Eδ
−+)

C̃
≥ τ0N−M1 , for 1 + [(1 − θ)M] ≤ ν ≤ M,

and therefore (3.35) is proved. On the other hand, if ν > M, applying (3.47) with k = 1 yields

tν(Pδ) = sNd−ν+1(P0 + δVq) ≥ tν(P0)− s1(δVq) = tν(P0)−
τ0N−d

C

≥ tν(P0)

(
1 − N−d

C

)
,

where we used the fact that tν(P0) ≥ τ0 in this case.

2. Finally, we consider the case where M = O(1).

In this situation, the argument proceeds as before, except that it now reduces to two sub-

cases concerning only the M-th singular value of E0
−+. Carrying out the proof in this way yields

inequality (3.58) with ν = 1, thereby establishing (3.37).

Remark 3.10. From the preceding proof, we note that Proposition 3.8 remains valid provided

that M satisfies only the condition

tM+1(P0 − z) ≥ τ0.

Hence, it is not necessary that M coincides with the exact number of singular values of P0 − z

lying in the interval [0, τ0[, as required in the hypothesis (3.33).

3.3 Iterative Construction of a Potential for Controlling the Smallest

Singular Value

We now adopt the same hypotheses considered at the beginning of the previous section.

We aim to iterate the construction of the potential considered in Proposition 3.8, starting from

the unperturbed operator P. Our goal is to determine a new potential Vq0 , with q0 ∈ CNd
, and

to establish a lower bound for the smallest singular value of the perturbed operator

P + δVq0 − z, z ∈ C,

where δ ≥ 0.

Let p be defined as in (3.25). We fix z ∈ C that satisfies (3.28) for some κ ∈]0, 1], and set

P(0) := P. Let τ
(0)
0 ∈]0, (CN−1)1/2], for some constant C > 0, and denote by

M(0) = M(0)(τ
(0)
0 ), (3.59)

the number of singular values of P(0) − z lying in the interval [0, τ
(0)
0 [.



3.3 Iterative Construction of a Potential for Controlling the Smallest Singular Value 53

We assume that M(0) is sufficiently large and we apply Proposition 3.8 in this framework.

Consequently, there exists a vector q(1) ∈ {0, 1}Nd
with exactly M(0) non-zero entries, defining

the potential Vq(1) with ∥Vq(1)∥ = 1, and a coefficient

δ(1) :=
τ
(0)
0
C

N−d

for some sufficiently large constant C > 0, such that the singular values of

P(1) := P(0) + δ(1)Vq(1)

satisfy (3.34) and (3.35) with the corresponding updated notations. In particular, setting

τ
(1)
0 := τ

(0)
0 N−M1 , M(1) := [M(0)(1 − θ)],

with M1 defined as in (3.36) and θ ∈]0, 1
4 [, we obtain

tν(P(1) − z) ≥ τ
(1)
0 , for M(1) + 1 ≤ ν ≤ M(0).

Thanks to Remark 3.10, we can apply Proposition 3.8 once more, replacing (P(0), M(0), τ
(0)
0 )

with (P(1), M(1), τ
(1)
0 ), while keeping the same value of M1. To proceed, we must ensure that

the perturbation remains sufficiently small, so that condition (3.30) holds:

∥δ(1)Vq(1)∥ =
τ
(0)
0
C

N−d ≪ N−1.

Thus, we iterate this procedure, applying at each step k-th the first case of Proposition 3.8, with

the initial conditions given by the outcome of the previous step. In this way, we construct a

sequence

(P(k), M(k), τ
(k)
0 ), k = 0, 1, . . . , k(M),

where the final index k(M) is chosen so that M(k(M)) remains of the order of a large constant,

ensuring that the first case can still be applied. Thereofore at each (k+ 1)-th step of the iteration,

there exists q(k+1) ∈ {0, 1}Nd
, with exactly M(k) non-zero entries, such that, introducing the

notations

τ
(k+1)
0 := τ

(k)
0 N−M1 , (3.60)

M(k+1) := [M(k)(1 − θ)], (3.61)

P(k+1) := P(k) + δ(k+1)Vq(k+1) , (3.62)

where

δ(k+1) =
τ
(k)
0
C

N−d, and ∥Vq(k+1)∥ = 1, (3.63)
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the following bounds are true

tν(P(k+1) − z) ≥ τ
(k+1)
0 , M(k+1) + 1 ≤ ν ≤ M(k), (3.64)

tν(P(k+1) − z) ≥ tν(P(k) − z)−
τ
(k)
0 N−d

C
, ν > M(k). (3.65)

We observe that (3.64) guarantees that, at each iteration step, the assumption required in Propo-

sition 3.8 holds in the weaker form described in Remark 3.10. From the iteration, we also de-

duce that

τ
(k)
0 = τ

(0)
0 N−M1k, (3.66)

and therefore

δ(k+1) =
τ
(0)
0 N−M1k

C
N−d = δ(1)N−M1k. (3.67)

Hence, it follows that

P(k+1) = P(k) + δ(k+1)Vq(k+1) = P(0) +
k+1

∑
j=1

δ(j)Vq(j) = P + δ(1)
k

∑
j=0

N−M1 jVq(j+1) .

Taking the norm of the perturbative term, we find by (3.63)∥∥∥∥∥δ(1)
k

∑
j=0

N−M1 jVq(j+1)

∥∥∥∥∥ ≤ δ(1)
k

∑
j=0

N−M1 j∥Vq(j+1)∥ < 2δ(1) ≪ N−1.

This bound shows that the hypothesis (3.30) is satisfied for every k. Therefore, the application

of Proposition 3.8 at each step of the iteration is justified.

We observe that M(k) decays exponentially fast in k. In particular the following inequality

is true:

M(k) ≤ (1 − θ)k M(0). (3.68)

We want the condition on k that (1 − θ)k M(0) ≥ C to be valid, with a constant 1 ≪ C < M(0),

which is equivalent to

k ≤
ln
(

M(0)

C

)
ln
( 1

1−θ

) =: k0. (3.69)

In this way we ensure that M(k) ≥ C̃ for all k ≤ k0, with a slightly smaller constant C̃ ≫ 1.

Hence, this iterative process continues until we reach k = k0. Beyond this point, the iteration

proceeds by decreasing M(k) by one unit at each step until 1 is reached. Thus, for these steps,

we can apply (3.37).

Now, given ν > M(0) > M(1) > . . . > M(k), we use (3.66) and iterate (3.65) to obtain

tν(P(k) − z) ≥ tν(P(0) − z)− τ
(0)
0

N−d

C
(1 + N−M1 + N−2M1 + · · ·+ N−M1(k−1))

≥ tν(P(0) − z)− τ
(0)
0 O

(
N−d

C

)
.
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Moreover, for 1 ≤ ν ≤ M(0), let l = l(M(0)) denote the unique iteration step such that

M(l) + 1 ≤ ν ≤ M(l−1),

which is ν = M(l−1), whenever ν ≤ C̃. Then, applying (3.64) or (3.37), we obtain

tν(P(l) − z) ≥ τ
(l)
0 .

Hence, if k > l, from (3.64) and (3.65) we get

tν(P(k) − z) ≥ tν(P(l) − z)−
N−dτ

(l)
0

C

(
N−M1(k−l−1) + N−M1(k−l−2) + · · ·+ N−M1 + 1

)
≥ tν(P(l) − z)− τ

(l)
0 O

(
N−d

C

)
≥ τ

(l)
0

(
1 −O

(
N−d

C

))
. (3.70)

In this way, we obtain the following result.

Proposition 3.11. Let P defined as in Section 3.2 and fix z ∈ C that satisfies (3.28). Let M1 = 2d+ ϵ0,

where ϵ0 > 0. Fix 0 < τ0 ≤
√

C0N−1, C0 > 0 and let M(0) = O(Nd−κ) be the number of singular

values of P − z in [0, τ0[. Let 0 < θ < 1
4 and let M(θ) ≫ 1 be a sufficiently large constant.

We set M(k), 1 ≤ k ≤ k1 iteratively as follows. As long as M(k) ≥ M(θ), we set M(k+1) = [(1 −
θ)M(k)]. Let k0 ≥ 0 be the last k value obtained in this way. For k > k0 we put M(k+1) = M(k) − 1,

until we reach the value k1 such that M(k1) = 1. We set τ
(k)
0 = τ0N−kM1 , for 1 ≤ k ≤ k1 + 1.

Then there exists q0 ∈ CNd
with its corresponding potential matrix Vq0 ∈ CNd×Nd

, such that

∥q0∥∞ = O(1), ∥q0∥2 = O(N
d−κ

2 ). (3.71)

Moreover, if we define δ = τ0
C N−d, for C > 0 sufficiently large and Pδ = P + δVq0 , then we have the

following estimates on the singular values of Pδ − z:

• If ν > M(0) , we have

tν(Pδ − z) ≥
(

1 − N−d

C

)
tν(P − z). (3.72)

• If M(k) + 1 ≤ ν ≤ M(k−1), with 1 ≤ k ≤ k1, then

tν(Pδ − z) ≥ (1 −O(N−d))τ
(k)
0 . (3.73)

• Finally, for ν = M(k1) = 1, we have

t1(Pδ − z) ≥ τ
(k1+1)
0 ≥ (1 −O(N−d))τ

(k1+1)
0 . (3.74)
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Proof. The perturbation is obtained as a result of the iteration procedure as it follows

δVq0 :=
k1

∑
k=1

δ(k)Vq(k) =
k1

∑
k=1

δ(1)N−M1(k−1)Vq(k) = δ(1)

(
k1−1

∑
k=0

N−M1kVq(k+1)

)
,

where we applied (3.67). Thus,

q0 :=
k1−1

∑
k=0

N−M1kq(k+1) ∈ CNd
,

and

δ := δ(1) =
τ0

C
N−d.

As a consequence we have

∥q0∥2 ≤
k1−1

∑
k=0

N−M1k∥q(k+1)∥2 =
k1−1

∑
k=0

N−M1k
√

M(k) ≤
√

M(0)
k1−1

∑
k=0

(
N−M1

√
1 − θ

)k
= O(N

d
2−

κ
2 ),

(3.75)

and

∥q0∥∞ ≤
k1−1

∑
k=0

N−M1k∥q(k+1)∥∞ < 2.

We have already proved the first two inequalities (3.72) and (3.73) previously. The bound (3.74)

is obtained by (3.37) as it follows

t1(Pδ − z) = tM(k1)(P(k1+1) − z) ≥ τ
(k1+1)
0 .

3.3.1 Log-Determinant Estimates for the Perturbed Operator

We now proceed under the same assumptions of Proposition 3.11. In particular, we consider

the perturbed operator Pδ(q0) := P + δVq0 arising from that result and we fix z ∈ C. Our goal

is to establish estimates for det(Pδ(q0)− z) which will be crucial in the next chapters.

We let C0 > 0 and consider

M := M(C0N−1) = O(Nd−κ), (3.76)

the number of singular values of Pδ(q0)− z in the interval [0, (C0N−1)1/2[. In particular we are

working with α = C0N−1, so that the hypothesis of Theorem 1.25 is satisfied.

We set up the M–dimensional Grushin problem for Pδ(q0)− z as in Section 2.3. First, we

verify that the hypothesis (2.36) holds in a suitable ball. Fix R > 0 and assume

∥q0∥2 <
R
2

.
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The condition (2.36) is equivalent to

δ α−1/2∥q0∥∞ ≤ 1
2

.

Recalling that δ = τ0 N−d

C as in Proposition 3.11, a sufficient requirement is therefore

δα− 1
2

R
2
≤ 1

2
⇐⇒ R ≤

√
C0N−1

δ
= C1τ−1

0 Nd− 1
2 , (3.77)

where C1 :=
√

C0C. Combining this with the bound ∥q0∥2 = O
(

N
d−κ

2
)
, and using 0 < τ0 ≤

√
C0 N−1/2, we choose R > 0 and two constants C2, C3 > 0 such that

C2N
d−κ

2 ≤ R ≤ C3Nd−1 ≤ C1τ−1
0 Nd− 1

2 , (3.78)

ensuring that ∥q0∥2 < R
2 and the validity of (2.36).

Under this hypothesis the perturbed Grushin problem is well defined. We keep the same

notations as in Section 2.3, now emphasizing the dependence on q0. In particular, we denote

the matrices of the problem as P δ(q0), R±(q0), and the inverse matrix of P δ(q0) is

E δ(q0) =

(
Eδ(q0) Eδ

−(q0)

Eδ
+(q0) Eδ

−+(q0)

)
.

Our goal is to analyze the spectrum of the operator Pδ(q0). To this end, we recall formula (2.42):

ln |det(Pδ(q0)− z)| = ln |detP δ(q0)|+ ln |det Eδ
−+(q0)|, (3.79)

and we study the two terms separately. For the first term, by first applying (2.45) and then

(2.35), we obtain

ln |detP δ(q0)| ≥ ln |detP(z)| − O(δN1/2∥Vq0∥tr)

= Nd
(∫

T2d
ln |p0(ρ)− z|dρ +O

(
N−κ ln(N)

))
−O(δN1/2∥Vq0∥tr).

Hence, by recalling that ∥Vq0∥tr ≤ Nd/2∥q0∥2, it follows from (3.78) that

ln |detP δ(q0)| ≥ Nd
(∫

T2d
ln |p0(ρ)− z|dρ −O(N− d

2 )

)
. (3.80)

On the other hand, for the second term we observe that

|det(Eδ
−+(q0))| =

M(0)

∏
ν=1

tν(Eδ
−+(q0))

M

∏
ν=M(0)+1

tν(Eδ
−+(q0)), (3.81)

where M is defined in (3.76) and M(0) in (3.59). Therefore we aim to obtain a good lower bound
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for this quantity.

From (3.61), we deduce that, for 1 ≤ k ≤ k0,

M(k−1) − M(k) = M(k−1) −
[
(1 − θ)M(k−1)]

≤ M(k−1) − (1 − θ)M(k−1) + 1

≤ 1 + (1 − θ)k−1θM(0). (3.82)

We recall inequalities (3.44). Then, applying Proposition 3.11, we obtain for 1 ≤ k ≤ k0,

M(k−1)

∏
ν=1+M(k)

tν(Eδ
−+(q0)) ≥

M(k−1)

∏
ν=1+M(k)

1
C̃
(1 −O(N−d))τ0N−kM1 ≥

(
1
C̃′

τ0N−kM1

)1+(1−θ)k−1θM(0)

.

(3.83)

for a new constant C̃′ > 0. On the other hand, if k0 < k ≤ k1, then M(k−1) − M(k) = 1. Applying

the same arguments, we obtain

tM(k−1)(Eδ
−+(q0)) ≥

1
C̃′

τ0N−kM1 . (3.84)

Hence, by putting together (3.83) and (3.84), we get

ln

(
M(0)

∏
ν=1

tν(Eδ
−+(q0))

)
=

k0

∑
k=1

ln

(
M(k−1)

∏
ν=1+M(k)

tν(Eδ
−+(q0))

)
+

k1+1

∑
k=k0+1

ln
(

tM(k−1)(Eδ
−+(q0))

)

≥
k0

∑
k=1

ln

((
1
C̃′

τ0N−kM1

)1+(1−θ)k−1θM(0))
+

k1+1

∑
k=k0+1

ln
(

1
C̃′

τ0N−kM1

)

=−
k0

∑
k=1

(1 + (1 − θ)k−1θM(0))

(
ln(C̃′) + ln

(
1
τ0

)
+ kM1 ln (N)

)

−
k1+1

∑
k=k0+1

(
ln(C̃′) + ln

(
1
τ0

)
+ kM1 ln (N)

)
.

Since (1 + (1 − θ)k−1θM(0)) ≥ 1 for k0 + 1 ≤ k ≤ k1 + 1, we obtain

ln

(
M(0)

∏
ν=1

tν(Eδ
−+(q0))

)
≥ −

k1+1

∑
k=1

(1 + (1 − θ)k−1θM(0))

(
ln(C̃′) + ln

(
1
τ0

)
+ kM1 ln(N)

)
.

(3.85)

We recall from (3.32) that M(0) = O(Nd−κ), and we consider the constant M(θ) ≫ 1 specified

in the assumptions of Proposition 3.11. Hence, by definition (3.69), we obtain

k1 + 1 =
ln
(

M(0)

M(θ)

)
ln
( 1

1−θ

) + M(θ) + 1 = O(ln(M(0))) = (d − κ)O (ln(N)) = O(1) ln(N).
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Hence, by applying this result in (3.85), we obtain

ln

(
M(0)

∏
ν=1

tν(Eδ
−+(q0))

)
≥ −

k1+1

∑
k=1

(1 + (1 − θ)k−1θM(0))

(
ln(C̃′) + ln

(
1
τ0

)
+O(1) (ln(N))2

)
≥ −

(
O(1) ln(N) +O(Nd−κ)(1 − (1 − θ)k1+1)

)
·
(

ln(C̃′) + ln
(

1
τ0

)
+O(1) (ln(N))2

)
. (3.86)

From (3.72), the remaining factor in (3.81) can be bounded in the following way

M

∏
ν=M(0)+1

tν(Eδ
−+(q0)) ≥

M

∏
ν=M(0)+1

tν(P − z)
C̃′

≥
(

τ0

C̃′

)M−M(0)

(3.87)

Hence, applying the logarithm, we have

ln

(
M

∏
ν=M(0)+1

tν(Eδ
−+(q0))

)
≥ −M

(
ln
(

1
τ0

)
+ ln(C̃′)

)
≥ −O(Nd−κ) ln

((
1
τ0

)
+ ln(C̃′)

)
.

(3.88)

Now we combine together (3.86) and (3.88) in order to find an estimate for ln |det Eδ
−+(q0)|.

Since ln(C̃′) is a constant, it is absorbed into the big-O. Hence, there exists a constant C1 > 0

such that

ln |det Eδ
−+(q0)| ≥ −C1Nd

(
N−d ln(N) + N−κ

)(
ln
(

1
τ0

)
+ (ln(N))2

)
, (3.89)

Finally, combining (3.79), (3.80), and (3.89), we deduce the existence of another constant C2 > 0

such that

ln |det(Pδ(q0)− z)| = ln |det(P δ(q0))|+ ln |det(Eδ
−+(q0))|

≥ Nd
(∫

T2d
ln |p0(ρ)− z|dρ

)
− NdC2

(
N− d

2 +
(

N−d ln(N) + N−κ
)(

ln
(

1
τ0

)
+ (ln(N))2

))
.

These computations lead to the following result.

Proposition 3.12. Under the assumptions of Proposition 3.11, for the potential Vq0 constructed therein,

we have

ln |det(Pδ(q0)− z)| − Nd
(∫

T2d
ln |p0(ρ)− z|dρ

)
≥ −NdO

(
N− d

2 +
(

N−d ln(N) + N−κ
)(

ln
(

1
τ0

)
+ (ln(N))2

))
. (3.90)





Chapter 4

Perturbations by Random Potentials

In this chapter we first record some estimates derived from the computations in Chapter 3.

We then introduce a probability measure for the vectors q ∈ CNd
that generate the perturbation

potentials Vq. Finally, using complex analysis and measure theory techniques, we obtain a key

probabilistic bound that will be used in the last chapter.

Throughout the chapter we work under the following standing assumptions:

• p ∈ C∞(T2d) satisfies (3.25) and P := pN satisfies (3.27).

• h = 1
2πN with N ∈ N, N ≫ 1 and τ0 ∈ [0, (C0N−1)1/2[ with C0 > 0.

• z ∈ C such that (3.28) holds for some κ ∈]0, 1].

• q0 ∈ CNd
and δ = τ0

C N−d (with C > 0 independent of N) from Proposition 3.11.

• We retain the notation of Chapter 3 for all matrices associated with the Grushin problems

P and P δ, with α = C0N−1.

4.1 Deterministic Log-Determinant Estimates for Bounded Perturba-

tions

In this section we consider a general small perturbation given by a potential matrix Vq,

assuming that q lies in a fixed ball in CNd
. Our goal is to derive a deterministic upper bound

for ln |det(Pδ(q)− z)| by using the results we have established previously.

First, we consider R > 0 satisfying (3.78), so that

∥q0∥2 <
R
2

. (4.1)

In particular, we choose the constants in (3.78) so that condition (2.36) is still verified in the ball

BNd(0, 3R).

Let q ∈ CNd
be an arbitrary vector such that

∥q∥2 < 3R.

61
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We observe that for its corresponding potential matrix Vq, the following estimate is true

∥Vq∥tr ≤ Nd/2∥q∥2 < C̃1N
3d−1

2 τ−1
0 ,

for a new constant C̃1 > 0. Hence, by applying (2.46) with α = C0N−1, we obtain

ln |detP δ(q)| ≤ Nd
(∫

T2d
ln |p0(ρ)− z|dρ +O

(
N−κ ln(N)

)
+O(N− d

2 )

)
, (4.2)

where we used the fact that δ = τ0
C N−d. Now, recalling results (2.42) and (2.47), we achieve the

following result

ln |det(Pδ(q)− z)| = ln |det(P δ(q))|+ ln |det(Eδ
−+(q))|

≤ Nd
(∫

T2d
ln |p0(ρ)− z|dρ +O

(
N−κ ln(N)

)
+O(N− d

2 )

)
≤ Nd

(∫
T2d

ln |p0(ρ)− z|dρ

)
+ NdO

(
N− d

2 +
(

N−d ln(N) + N−κ
)(

ln
(

1
τ0

)
+ (ln(N))2

))
. (4.3)

Thus, we let C′′ > 0 a sufficiently large constant, depending only on the bounds obtained in

(3.90) and (4.3), and set

ε0(N) := C′′
(

N− d
2 +

(
N−d ln(N) + N−κ

)(
ln
(

1
τ0

)
+ (ln(N))2

))
. (4.4)

Then, for every q ∈ CNd
satisfying

∥q∥2 < 3R,

we obtain the upper bound

ln |det(Pδ(q)− z)| − Nd
(∫

T2d
ln |p0(ρ)− z|dρ

)
≤ Ndε0(N). (4.5)

Moreover, from Proposition 3.12, there exists q0 ∈ CNd
with

∥q0∥2 <
R
2

,

such that the following lower bound holds:

ln |det(Pδ(q0)− z)| − Nd
(∫

T2d
ln |p0(ρ)− z|dρ

)
≥ −Ndε0(N). (4.6)

These two estimates will be crucial in the next section, where we combine them with tools from

complex analysis and measure theory.
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Remark 4.1. If τ0 is not too small, then

ε0(N) −−−−→
N→+∞

0. (4.7)

For instance, if we consider τ0 ≥ e−N
κ
2 , then for every m ≥ κ,

N−m ln
(

1
τ0

)
≤ N

κ
2−m.

This implies that for each 0 ≤ l < κ
2 , the following is true

lim
N→+∞

Nlε0(N) = 0. (4.8)

Moreover, without any further assumption on τ0, for every l ≥ κ, we have

lim
N→+∞

Nlε0(N) = +∞.

4.2 Log-Determinant Estimates under Random Perturbations

In this section we follow the same approach and the same techniques used by Sjöstrand in

[Sj09, Chapter 8] and we adapt his work to our discrete framework.

In particular, we introduce a probability distribution on CNd
supported on a ball centered at

the origin. Within this setting, we study holomorphic functions naturally associated with our

problem, which are bounded on the ball and satisfy an additional lower bound at one point.

Using tools from complex analysis and measure theory we derive probabilistic estimates on

these functions, which will be applied to the spectral analysis of the perturbed operator in the

following chapter.

First of all, we fix z ∈ C and τ0 ∈]0, (C0N−1)1/2] with a constant C0 > 0 as in Chapter 3.

Then we define the function

F : CNd −→ C

q 7−→ det(Pδ(q)− z) exp
(
−Nd

∫
T2d

ln |p0(ρ)− z|dρ

)
, (4.9)

where Pδ(q) := P + δVq, with Vq = diag(q(n); n = 1, . . . , Nd) ∈ CNd×Nd
and δ = τ0 N−d

C ,

defined in the same way as in the previous chapter. Since the determinant is a polynomial, F

is a holomorphic function in q. We observe that if F(q) = 0 for some q ∈ CNd
, then z is an

eigenvalue for the perturbed operator P + δVq. Moreover, from (4.5) and (4.6), we know that

ln |F(q)| ≤ ε0(N)Nd if ∥q∥2 < 3R, (4.10)

ln |F(q0)| ≥ −ε0(N)Nd, for some q0 ∈ BNd

(
0,

R
2

)
, (4.11)
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where

ε0(N) := C′′
(

N− d
2 +

(
N−d ln(N) + N−κ

)(
ln
(

1
τ0

)
+ (ln(N))2

))
, (4.12)

for a suitable constant C′′ > 0 and R > 0 satisfies (3.78).

We take q1 ∈ CNd
such that ∥q1∥2 = R and we define the function

f : C −→ C

w 7−→ F(q0 + wq1). (4.13)

Clearly, f is well-defined and holomorphic. We observe that

f (0) = F(q0).

We would like to restrict the argument of f so that the corresponding argument of F is in the

ball BNd(0, R). Hence we consider the following equivalences

∥q0 + wq1∥2 < R ⇔ ∥q0∥2
2 + ∥wq1∥2

2 + 2ℜ(⟨q0, wq1⟩) < R2

⇔ |w|2R2 + 2ℜ(⟨q0, wq1⟩) < R2 − ∥q0∥2
2

⇔ |w|2 + 2ℜ
(

w
〈q0

R
,

q1

R

〉)
< 1 −

∥∥∥q0

R

∥∥∥2

2

⇔
∣∣∣w +

〈q0

R
,

q1

R

〉∣∣∣2 < 1 −
∥∥∥q0

R

∥∥∥2

2
+
∣∣∣〈q0

R
,

q1

R

〉∣∣∣2 =: r2
0. (4.14)

Thus, we are interested in restricting the domain of the function f to the disc

Dq0,q1 := D
(
−
〈q0

R
,

q1

R

〉
, r0

)
.

Moreover, we have the following estimates for r0:

r2
0 ≤ 1 −

∥∥∥q0

R

∥∥∥2

2
+
∥∥∥q0

R

∥∥∥2

2

∥∥∥q1

R

∥∥∥2

2
= 1 −

∥∥∥q0

R

∥∥∥2

2
+
∥∥∥q0

R

∥∥∥2

2
= 1 (4.15)

r2
0 ≥ 1 −

∥∥∥q0

R

∥∥∥2

2
> 1 − 1

4
=

3
4

, (4.16)

which imply √
3

2
≤ r0 ≤ 1.

From (4.15), we also have the following estimate for the center of the disc w0 := −
〈 q0

R , q1
R

〉
,

|w0|2 =
∣∣∣〈q0

R
,

q1

R

〉∣∣∣2 = r2
0 +

∥∥∥q0

R

∥∥∥2

2
− 1 < r2

0 −
3
4
≤ 1

4
r2

0. (4.17)
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So far, we know that

ln | f (0)| ≥ −ε0(N)Nd

ln | f (w)| ≤ ε0(N)Nd, if w ∈ Dq0,q1 . (4.18)

In particular, since (4.10) holds in a larger ball, we may assume that the last estimate still holds

in the disc D (w0, 3r0). Indeed, following the same steps as in (4.14),

∥q0 + wq1∥2 < 3R ⇔ |w − w0|2 < 8 + r2
0,

and 9r2
0 ≤ 8 + r2

0.

We know that f is analytic in a neighborhood of |w| ≤ 5
2 r0. Let the points w1, . . . , wm1 ∈ C

be its zeros in |w| < 5
2 r0 counted with multiplicity, listed in non-decreasing order of their

modulus. Moreover, we set

m := #
{

w ∈ D
(

w0 ,
3
2

r0

)
; f (w) = 0

}
≤ m1,

where the inequality is true because D
(
w0 , 3

2 r0
)
⊂ D(0, 2r0) by (4.17).

We observe that ln | f (0)| ≥ −ε0(N)Nd implies f (0) ̸= 0. Hence all the hypotheses of

Jensen’s formula (see Theorem A.15 in the Appendix) for f in the disc D(0, 5
2 r0) are satisfied.

From (A.12) we obtain

ln | f (0)| = −
m1

∑
j=1

ln
(

5r0

2|wj|

)
+

1
2π

∫ 2π

0
ln
∣∣∣∣ f (5

2
r0eiθ

)∣∣∣∣ dθ.

We notice that D
(
0, 5

2 r0
)
⊂ D (w0, 3r0). Indeed, if w ∈ C, |w| ≤ 5

2 r0, then by (4.17)

|w − w0| ≤ |w|+ |w0| <
5
2

r0 +
1
2

r0 = 3r0.

Consequently, by applying inequalities (4.18), with the second one extended to D(w0, 3r0), we

obtain

m1

∑
j=1

ln
(

5r0

2|wj|

)
= − ln | f (0)|+ 1

2π

∫ 2π

0
ln
∣∣∣∣ f (5

2
r0eiθ

)∣∣∣∣ dθ ≤ 2ε0(N)Nd.

We observe from (4.17) that the following inclusions are true

D(0, r0) ⊂ D
(

w0,
3
2

r0

)
⊂ D(0, 2r0).

We suppose that m < m1 and we observe that for all m + 1 ≤ j ≤ m1, we have r0 < |wj| < 5
2 r0,

which implies

0 < ln
(

5r0

2|wj|

)
< ln

(
5
2

)
.
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Instead, if we take 1 ≤ j ≤ m, we have 0 < |wj| < 2r0, and then

0 < ln
(

5
4

)
< ln

(
5r0

2|wj|

)
.

Thus, we can write the following

m ln
(

5
4

)
<

m

∑
j=1

ln
(

5r0

2|wj|

)
≤

m1

∑
j=1

ln
(

5r0

2|wj|

)
≤ 2ε0(N)Nd,

which implies

m ≤ 2ε0(N)Nd

ln
( 5

4

) = O(ε0(N)Nd). (4.19)

The case m = m1 yields the same result trivially.

Now, since f is holomorphic, we consider the following factorization on the disc D(w0, 3
2 r0)

f (w) =
m

∏
j=1

(w − wj)t(w), in D
(

w0,
3
2

r0

)
, (4.20)

with t(w) ̸= 0 and holomorphic on D(w0, 3
2 r0). Thus, there exists a function g(w) holomorphic

on such disc, such that

t(w) = eg(w), in D
(

w0,
3
2

r0

)
. (4.21)

We define r0
j := |wj − w0| < 3

2 r0, for j = 1, . . . , m, and we observe that

m

∏
j=1

|w − wj| ≥
m

∏
j=1

||w − w0| − r0
j |. (4.22)

We suppose that there exists τ ∈] 4
3 r0, 3

2 r0[ such that

m

∏
j=1

|τ − r0
j | ≥ e−mC3 , for a constant C3 > 0. (4.23)

Under this assumption, we take w ∈ C, |w − w0| = τ, and we obtain from (4.19), (4.20) and

(4.22),

|t(w)| = | f (w)|
∏m

j=1 |w − wj|
≤ e ε0(N)Nd

∏m
j=1 |τ − r0

j |
≤ e ε0(N)Nd+mC3 = eO(ε0(N)Nd). (4.24)

Now, by the maximum principle (see Theorem A.11 in the Appendix) we know that the bound

(4.24) for the function |t| is true on the whole closed disc D(w0, τ). Thus, by (4.21), we obtain

ℜ(g(w)) = ln(eℜ(g(w))) = ln |t(w)| ≤ O(ε0(N)Nd), in D (w0, τ) . (4.25)

We aim to prove the same bound for the modulus of ℜ(g(w)). To this end, we introduce the
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auxiliary function

l(w) := C4(ε0(N)Nd)−ℜ(g(w)),

where C4 > 0 is the constant which defines the bound (4.25). We know that l is harmonic and

non-negative on D (w0, τ) and that D
(
w0, 4

3 r0
)
⋐ D (w0, τ). Hence, by applying Harnack’s

inequality (see Theorem A.12 in the Appendix), we know that there exists a constant C5 =

C5
(

D
(
w0, 4

3 r0
))

> 0 depending on the smaller disc, such that

sup
w∈D(w0, 4

3 r0)
l(w) ≤ C5 inf

w∈D(w0, 4
3 r0)

l(w). (4.26)

Since

|wj| ≤ r0
j + |w0| <

3
2

r0 +
1
2

r0 ≤ 2, j = 1, . . . , m,

from (4.18) and (4.19), we also know that

ℜ(g(0)) = ln |t(0)| = ln

(
| f (0)|

∏m
j=1 |wj|

)
> ln

(
e−ε0(N)Nd

2m

)
= −ε0(N)Nd − m ln (2) ≥ −C6ε0(N)Nd,

for a suitable constant C6 > 0. Then

l(0) = C4(ε0(N)Nd)−ℜ(g(0)) ≤ (C4 + C6)(ε0(N)Nd). (4.27)

Thus, by (4.26) and (4.27) the following inequalities hold

sup
w∈D(w0, 4

3 r0)
l(w) ≤ C5 inf

w∈D(w0, 4
3 r0)

l(w) ≤ C5l(0) ≤ C5(C4 + C6)(ε0(N)Nd).

Finally, if we define C̃ := C5(C4 + C6) > 0, we get

− inf
D(w0, 4

3 r0)
ℜ(g(w)) = sup

D(w0, 4
3 r0)

−ℜ(g(w)) ≤ (C̃ − C4)(ε0(N)Nd).

and then

ℜ(g(w)) ≥ −(C̃ − C4)(ε0(N)Nd), w ∈ D
(

w0,
4
3

r0

)
.

This result, together with (4.25), implies

|ℜ(g(w))| ≤ O(ε0(N)Nd), on D
(

w0,
4
3

r0

)
.

To conclude, it remains to verify that assumption (4.23) holds. To this end, we observe that for

0 < a < b fixed, the function

G(x) := −
∫ b

a
ln |t − x|dt, x ∈]0, b[
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has a maximum point at x0 := a+b
2 . Indeed, using the fact that

∫
ln(u)du = u ln(u)− u, a direct

computation gives

G(x) =


−(b − x) ln(b − x) + (a − x) ln(a − x) + (b − a), x ∈]0, a[

−(b − a) ln(b − a) + (b − a), x = a,

−(b − x) ln(b − x)− (x − a) ln(x − a) + (b − a), x ∈]a, b[

In particular, G is continuous on ]0, b[ and differentiable in ]0, b[\ {a} with

G′(x) = − ln
(
|x − a|
b − x

)
, x ∈]0, b[\{a}.

We observe that 
G′(x) > 0, x ∈]0, x0[\{a}

G′(x0) = 0

G′(x) < 0, x ∈]x0, b[

Thus, from the continuity of G, x0 is a maximum point for G in ]0, b[. Therefore,

G(x) ≤ G (x0) = −
∫ b

a
ln |t − x0| dt = −2

∫ b−a
2

0
ln |t| dt.

This implies that for all j = 1, . . . , m

−
∫ 3

2 r0

4
3 r0

ln |t − r0
j |dt ≤ −2

∫ 1
12 r0

0
ln |t| dt =

r0

6

(
1 − ln

( r0

12

))
=: C′

3 > 0,

Hence, if we define the function G̃(t) := −∑m
j=1 ln |t − r0

j | ∈ L1
loc(R), we observe that

∫ 3
2 r0

4
3 r0

G̃(t)dt ≤ C′
3m.

Thus, there exists τ ∈] 4
3 r0, 3

2 r0[ such that

G̃(τ) ≤ 6C′
3m

r0
,

which is equivalent to
m

∏
j=1

|τ − r0
j | ≥ e−C3m, (4.28)

where C3 := 6C′
3

r0
. In conclusion, we have found that

f (w) =
m

∏
j=1

(w − wj)eg(w), in D
(

w0,
4
3

r0

)
,
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with

m = O(ε0(N)Nd), |ℜ(g(w))| ≤ O(ε0(N)Nd), in D
(

w0,
4
3

r0

)
. (4.29)

Now, we fix 0 < ϵ ≪ 1, and we define

Ω(ϵ) := {r ∈ [0, r0(q1)[ : ∃ w ∈ Dq0,q1 such that |w| = r and | f (w)| < ϵ}, (4.30)

where r0 = r0(q1) is defined as in (4.14). We set rj := |wj|, j = 1, . . . , m and we take r ∈ Ω(ϵ)

with w its corresponding point in Dq0,q1 . Then

m

∏
j=1

|r − rj| =
m

∏
j=1

||w| − |wj|| ≤
m

∏
j=1

|w − wj| =
∣∣∣∣∣ m

∏
j=1

(w − wj)

∣∣∣∣∣
= | f (w)||e−g(w)| < ϵe−ℜ(g(w)) ≤ ϵ exp(O(ε0(N)Nd)). (4.31)

This implies that at least one of the factors from the left-hand side is bounded by the term(
ϵ exp(O(ε0(N)Nd))

) 1
m , and consequently

Ω(ϵ) ⊂
m⋃

j=1

]rj −
(

ϵ exp(O(ε0(N)Nd))
) 1

m
, rj +

(
ϵ exp(O(ε0(N)Nd))

) 1
m
[. (4.32)

Hence, the Lebesgue measure of the set Ω(ε) is bounded in the following way

λ(Ω(ε)) ≤
m

∑
j=1

λ

(
]rj −

(
ϵeO(ε0(N)Nd)

) 1
m

, rj +
(

ϵeO(ε0(N)Nd)
) 1

m
[

)
= 2m

(
ϵeO(ε0(N)Nd)

) 1
m

,

(4.33)

where we used the sub-additivity of the measure.

By examining the intervals described in (4.32), we see that it is desirable for the right-hand

side in (4.31) to be less than or equal to 1. Under this condition, if m is large, then each interval

covering Ω(ϵ) in (4.32) becomes sufficiently small. As a result, their union does not cover

the entire interval [0, r0(q1)[, and the estimate in (4.33) remains non-trivial and informative.

Moreover, we observe that under the same assumption that the last term in (4.31) is ≤ 1, the

bound obtained in (4.33) increases with m. Indeed, for 0 < a ≤ 1 and m > 0,

d
dm

(
2m a

1
m

)
= 2a

1
m

(
1 − ln(a)

m

)
> 0,

so the function m 7→ 2m a
1
m is increasing in m.

By recalling the definition of f in (4.13) and the results in (4.29), from (4.33) we obtain the

following result.

Proposition 4.2. Let q1 ∈ CNd
such that ∥q1∥2 = R and assume that ϵ > 0 is small enough so that
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the last member of (4.31) is ≤ 1. Then the following is true:

λ ({r ∈ [0, r0(q1)] : ∥q0 + rq1∥2 < R, |F(q0 + rq1)| < ϵ})

≤ ε0(N)Nd exp
(
O(1) +

N−d

O(1)ε0(N)
ln(ϵ)

)
, (4.34)

where the symbol O(1) in a denominator indicates a bounded positive quantity.

Remark 4.3. We observe that (4.34) holds because

{r ∈ [0, r0(q1)[ : ∥q0 + rq1∥2 < R, |F(q0 + rq1)| < ϵ} ⊂ Ω(ϵ),

as a consequence of (4.14).

An interesting choice we can make for ϵ could be ϵ = exp
(
−ε0(N)Nd+α

)
, for a small con-

stant α > 0. Then the upper bound in (4.34) becomes

ε0(N)Nd exp
(
O(1)− Nα

O(1)

)
.

We now shift to a probabilistic setting by introducing a new measure on a ball in CNd
. Con-

cretely, this means that the vector defining the potential is no longer deterministic but instead

treated as a random vector. Specifically, we consider the probability space given by equipping

the ball BNd(0, R) with a probability measure of the form

P(dq) = C(N)eΦ(q)λ(dq), (4.35)

where λ(dq) is the Lebesgue measure on CNd
and Φ is a C1 function that depends on the semi-

classical parameter N that satisfies

∥∇Φ(q)∥2 = O(NM1), ∀ q ∈ CNd
(4.36)

for a fixed constant M1 > 0 and

C(N) :=
1∫

BNd (0,R) eΦ(q)λ(dq)

is the normalization constant. Now we consider the following change of coordinates

(w1, r) 7−→ q = q0 + rRw1, (4.37)

where w1 ∈ S2Nd−1, 0 ≤ r < r0(w1), and
√

3
2 ≤ r0(w1) ≤ 1. We get

P(dq) = C̃(N)eϕ(r)r2Nd−1drσ(dw1), (4.38)

where ϕ(r) := Φ(q0 + rRw1), σ(dw1) denotes the spherical measure on S2Nd−1 and C̃(N) :=
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R2Nd
C(N). We observe that for all r ∈ [0, r0(w1)[,

|ϕ′(r)| = |⟨∇Φ(q0 + rRw1), Rw1⟩| ≤ R∥∇Φ(q0 + rRw1)∥2∥w1∥2 = O(Nd−1NM1),

and hence

ϕ′(r) = O(NM2), (4.39)

where M2 := M1 + d − 1.

We fix a direction w1 ∈ S2Nd−1 and consider the probability measure on [0, r0(w1)] of the

form

µ(dr) = Ĉ(N) eϕ(r) r2Nd−1 dr, (4.40)

where Ĉ(N) is the normalization constant. We define the function

ψ(r) := ϕ(r) + (2Nd − 1) ln(r),

on [0, r0(w1)] and we obtain

µ(dr) = Ĉ(N) exp(ψ(r))dr.

Furthermore, we define r̃0 := C−1
7 min(1, Nd−M2), where C7 > 0 is chosen large enough so that

2r̃0 ≤ r0(w1). For any 0 ≤ r ≤ 2r̃0, applying (4.39), yields a constant C̃7 > 0 such that

ψ′(r) = ϕ′(r) +
2Nd − 1

r
≥ −C̃7NM2 +

Nd

2r̃0
≥ −C̃7NM2 +

C7

2
NM2 .

Choosing C7 > 0 large enough, the last term is non-negative. Consequently ψ(r) is an increas-

ing function in the interval [0, 2r̃0].

Now, we introduce a new measure on [0, r0(w1)] given by

µ̃(dr) := Ĉ(N)eϕ(rmax)r2Nd−1
max dr,

where rmax(r) := max(r, r̃0). This new measure is not normalized and it’s just a truncation of

µ which will be useful for obtaining some estimates. Since rmax(r) = r, whenever r ≥ r̃0, if we

restrict the two measures to the interval [r̃0, r0(w1)], we have

µ|[r̃0,r0(w1)]
= µ̃|[r̃0,r0(w1)]

.

Moreover, since rmax(r) ≥ r and ψ(r) is an increasing function on [0, 2r̃0], we deduce that

µ̃ ≥ µ.

Hence, we obtain

µ([r̃0, 2r̃0]) = µ̃([r̃0, 2r̃0]) =
∫ 2r̃0

r̃0

Ĉ(N)eψ(rmax)dr ≥
∫ 2r̃0

r̃0

Ĉ(N)eψ(r̃0)dr= Ĉ(N)eψ(r̃0)r̃0 = µ̃([0, r̃0]).
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This implies

µ̃([0, r0(w1)]) = µ̃([0, r̃0]) + µ̃([r̃0, 2r̃0]) + µ̃([2r̃0, r0(w1)])

≤ 2µ([r̃0, 2r̃0]) + µ([2r̃0, r0(w1)]), (4.41)

and then, since µ is normalized,

µ̃([0, r0(w1)]) ≤ O(1). (4.42)

Now we simplify the notation by defining ψ̃(r) := ψ(rmax), so that

µ̃(dr) = Ĉ(N)eψ̃(r)dr.

It is easy to see that, unlike ψ, the function ψ̃ has no singularity at 0. Hence, by continuity, it is

bounded on the interval [0, r0(w1)] by a constant depending on N. We compute

ψ̃′(r) =

ϕ′(r) + 2Nd−1
r , if r̃0 < r ≤ r0(w1)

0, if 0 ≤ r < r̃0

,

which is clearly not continuous in r̃0. Consequently, if r̃0 < r ≤ r0(w1), we have

|ψ̃′(r)| ≤ |ϕ′(r)|+
∣∣∣∣2Nd − 1

r̃0

∣∣∣∣ ≤ C̃7NM2 +
2Nd

C−1
7 min(1, Nd−M2)

≤ C̃7NM2 + C7 max(2Nd, 2NM2),

and hence

ψ̃′(r) = O(max(Nd, NM2)) = O(NM3), ∀ r ∈]r̃0, r0(w1)], (4.43)

where

M3 := M2 + d. (4.44)

Remark 4.4. We observe that this is reason for the truncation of the measure µ: we couldn’t have

obtained the same result with ψ, because its derivative ψ′(r) goes to +∞ as r −→ 0+.

Since we know that
√

3
2 ≤ r0(w1) ≤ 1, we can decompose the interval [0, r0(w1)] into ∼ NM3

intervals of Lebesgue measure ∼ N−M3 . If I is one of these intervals, we observe that there

exists a constant C8 > 0 such that

λ(dr)
C8λ(I)

≤ µ̃(dr)
µ̃(I)

≤ C8λ(dr)
λ(I)

, on I. (4.45)

To prove this, it suffices to work with closed intervals in I, as they generate the Borel σ-algebra
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on I. Let [a, b] ⊂ I; we then have

µ̃([a, b])
µ̃(I)

=

∫
[a,b] Ĉ(N)eψ̃(r)dr∫

I Ĉ(N)eψ̃(r)dr
≤

(supr∈I eψ̃(r))λ([a, b])

(infr′∈I eψ̃(r′))λ(I)
. (4.46)

Now, if I ⊂ [0, r̃0], then ψ̃ is constant on the interval and the inequalities (4.45) are trivial.

Instead, if I ⊂ [r̃0, r0(w1)], then ψ̃ is differentiable on I. Thus, as a consequence of (4.43) and by

the mean value theorem we know that for all r1, r2 ∈ I, r1 < r2, there exists r3 ∈]r1, r2[ such that

|ψ̃(r1)− ψ̃(r2)| ≤ |ψ̃′(r3)| λ(I) ≤ O(NM3)O(N−M3) = O(1), (4.47)

Lastly, if if there exists ε1 > 0 such that I ∩ ]r̃0 − ε1, r̃0 + ε1[ ̸= ∅, we obtain (4.47) in the same

way, by adding and subtracting ψ̃(r̃0) in the left-hand side. Consequently,

supr∈I eψ̃(r)

infr′∈I eψ̃(r′)
= sup

(r,r′)∈I2
eψ̃(r)−ψ̃(r′) ≤ eO(1) =: C8, (4.48)

where C8 > 0 is a constant. Hence, by putting together (4.46) and (4.48), we obtain

µ̃([a, b])]
µ̃(I)

≤ C8λ([a, b])
λ(I)

.

The inequality on the left-hand side of (4.45) is then derived in a similar way with the same

constant C8.

Our goal is now to estimate the measure µ̃ of the set Ω(ϵ). To this end, we first state the

following remark.

Remark 4.5. Within the same framework established above, there exists a value

r(w1) ∈
]

r0(w1)

2
, r0(w1)

]
,

such that

r ∈ [0, r0(w1)], ∥q0 + rRw1∥2 < R ⇔ r ∈ [0, r(w1)].

Hence, we let I be one of the intervals we defined above such that I ∩ [0, r(w1)] ̸= ∅. By

applying this remark, together with Proposition 4.2 and the inequalities (4.45), if ϵ is small

enough so that the right-hand side of (4.31) is ≤ 1, we get

µ̃ ({r ∈ I ∩ [0, r(w1)] : |F(q0 + rRw1)| < ϵ}) /µ̃(I)

≤ C8

λ(I)
λ ({r ∈ [0, r(w1)] : |F(q0 + rRw1)| < ϵ})

≤O(1)
λ(I)

ε0(N)Nd exp
(

N−d

O(1)ε0(N)
ln(ϵ)

)
=O(1)NM3+dε0(N) exp

(
N−d

O(1)ε0(N)
ln(ϵ)

)
. (4.49)
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Multiplying both sides of (4.49) by µ̃(I) and summing over all such intervals I, we obtain

µ̃ ({r ∈ [0, r(w1)] : |F(q0 + rRw1)| < ϵ})

=µ̃

(⋃
I

{r ∈ I ∩ [0, r(w1)] : |F(q0 + rRw1)| < ϵ}
)

≤∑
I

µ̃ ( {r ∈ I ∩ [0, r(w1)] : |F(q0 + rRw1)| < ϵ})
µ̃(I)

µ̃(I)

≤O(1)NM3+dε0(N) exp
(

N−d

O(1)ε0(N)
ln(ϵ)

)(
∑

I
µ̃(I)

)
. (4.50)

Finally, we aim to eliminate the dependence on µ̃ in the last term. Using the same approach as

in the proof of (4.45), we obtain a similar result for the ratio µ̃(I)
µ̃([0,r0(w1)])

. Thus, by recalling (4.42)

we obtain

∑
I

µ̃(I) ≤ O(1)∑
I

λ(I)
λ([0, r0(w1)])

= O(1). (4.51)

We recall that µ ≤ µ̃, and hence we have the same estimates by replacing µ̃ with µ. Then from

the definitions of P(dq) in (4.38) and µ(dr) in (4.40), we obtain the following.

Proposition 4.6. Let ϵ > 0 be small enough so that the right-hand side of (4.31) is ≤ 1. Then

P(|F(q)| < ϵ) ≤ O(1)NM3+dε0(N) exp
(

N−d

O(1)ε0(N)
ln(ϵ)

)
. (4.52)

Proof. We observe that this result is just a consequence of (4.50) and (4.51) as it follows

P(|F(q)| < ϵ) =
∫∫

BNd (0,R)
1(|F(q)|<ϵ) P(dq)

=
∫

S2Nd−1

∫
[0,r(w1)]

1(|F(q0+rRw1)|<ϵ) µ(dr)σ(dw1)

≤
∫

S2Nd−1
µ̃ ({r ∈ [0, r(w1)] : |F(q0 + rRw1)| < ϵ}) σ(dw1)

≤O(1)NM3+dε0(N) exp
(

N−d

O(1)ε0(N)
ln(ϵ)

)
.

Remark 4.7. From definition (4.9), we have

ln(|F(q)|) = ln |det(Pδ(q)− z)| − Nd
∫

T2d
ln |p0(ρ)− z|dρ.

Thus, taking ϵ = exp
(
−ε0(N)Nd+α

)
for a small constant α > 0 as before, result (4.52) implies

that the inequality

ln |det(Pδ(q)− z)| − Nd
∫

T2d
ln |p0(ρ)− z|dρ < −ε0(N)Nd+α

is true with probability ≤ O(1)ε0(N)NM3+d exp
(
−Nα

O(1)

)
.



Chapter 5

Eigenvalue Counting

In this final chapter, we take the last steps toward establishing a Weyl law for randomly

perturbed operators. We apply two different techniques: first, we obtain probabilistic estimates

for the number of eigenvalues of the perturbed operator lying in a given region of the complex

plane, under suitable assumptions on its boundary; then, we show that the corresponding

eigenvalue counting measures converge weakly as N → +∞.

5.1 Zero Counting Techniques for Holomorphic Functions and Ap-

plications to Spectral Estimates

We begin by deriving a quantitative result that controls the spectrum of the perturbed op-

erator in its intersection with a prescribed domain in C. The main tool is a complex-analytic

argument: we reduce the problem to counting the zeros of holomorphic functions subject to

explicit exponential growth bounds. Afterwards, we will apply this result to the determinant

of randomly perturbed operators.

The key result we rely on is Theorem 1.2 from [Sj10], which we will apply without going

through its proof. Before stating it, we introduce a specific notion of Lipschitz boundary, which

is required in its formulation.

Let Γ ⋐ C be an open set and let γ := ∂Γ be its boundary. Consider r : γ →]0, ∞[ a Lipschitz

function with a Lipschitz modulus ≤ 1
2 :

|r(x)− r(y)| ≤ 1
2
|x − y|, ∀ x, y ∈ γ. (5.1)

We assume that the boundary γ is Lipschitz with respect to the weight r in the following precise

sense: we suppose that there exists a constant C0 > such that for every x ∈ γ, there exist new

affine coordinates ỹ = (ỹ1, ỹ2) of the form ỹ = U(y − x), for y ∈ C ∼= R2, being the old

coordinates, where U = Ux is an orthogonal matrix, such that the intersection of Γ and the

rectangle

Rx := {y ∈ C : |ỹ1| < r(x), |ỹ2| < C0r(x)},

75
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corresponds to

{y ∈ Rx : |ỹ1| < r(x), ỹ2 > fx(ỹ1)}. (5.2)

Here fx(ỹ1) is a Lipschitz function defined on [−r(x), r(x)] with Lipschitz modulus ≤ C0.

We notice that the assumption (5.2) remains valid if we decrease the weight r. Moreover, it

will be convenient to extend the function r to all the complex plane C, by defining

r(x) = inf
y∈γ

(
r(y) +

1
2
|x − y|

)
. (5.3)

The extended function is still Lipschitz with modulus ≤ 1
2 .

Theorem 5.1 (Theorem 1.2 of [Sj10]). Let Γ ⋐ C be a simply connected set with a Lipschitz boundary

γ with an associated Lipschitz weight r as in (5.1), (5.2) and (5.3). We put γ̃r :=
⋃

x∈γ D(x, r(x)).

Consider M points z0
j ∈ γ, with j ∈ Z/MZ, distributed along the boundary in the positively oriented

sense so that
r(z0

j )

4
≤ |z0

j+1 − z0
j | ≤

r(z0
j )

2
. (5.4)

Let 0 < h ≤ 1 and let ϕ be a continuous subharmonic function on γ̃r with a distribution extension

to Γ ∪ γ̃r, denoted by the same symbol. Then there exists a constant C1 > 0 depending only on the

constant C0 and there exist M points z̃j ∈ D
(

z0
j ,

r(z0
j )

2C1

)
, such that if u is a holomorphic function on

Γ ∪ γ̃r, which satisfies

h ln |u(z)| ≤ ϕ(z), on γ̃r, (5.5)

h ln |u(z̃j)| ≥ ϕ(z̃j)− ϵj, for j = 1, . . . , M, (5.6)

where ϵj ≥ 0, then the number of zeros of u in Γ satisfies the following inequality

∣∣∣∣#(u−1(0) ∩ Γ)− 1
2πh

µ(Γ)
∣∣∣∣ ≤ C2

h

(
µ(γ̃r) +

M

∑
j=1

ϵj

)
(5.7)

for a constant C2 > 0 which only depends on C0 and on C1. In particular, we have taken µ := ∆ϕ ∈
D′(Γ ∪ γ̃r), which is a positive measure on γ̃r so that µ(Γ) and µ(γ̃r) are well-defined.

Remark 5.2. This theorem is a direct consequence of Theorem 1.1 in [Sj10], which states that

result (5.7) is valid for every zj ∈ D(z0
j ,

r(z0
j )

2C1
), with the addition of the term

M

∑
j=1

∫
D(zj,

r(zj)
4C1

)

∣∣∣∣ln( |w − zj|
r(zj)

)∣∣∣∣ µ(dw), (5.8)

to the right-hand side. Indeed, we observe that the average of
∣∣∣ln( |w−zj|

r(zj)

)∣∣∣ with respect to the

Lebesgue measure λ(dzj) over the disc D(z0
j ,

r(z0
j )

2C1
) is O(1). Thus, integrating each term of the
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sum (5.8) on the disc D(z0
j ,

r(z0
j )

2C1
), we obtain

∫
D(z0

j ,
r(z0

j )

2C1
)

∫
D(zj,

r(zj)
4C1

)

∣∣∣∣ln |w − zj|
r(zj)

∣∣∣∣ µ(dw)λ(dzj) ≤
∫

D(z0
j ,

r(z0
j )

2C1
)

∫
D(z0

j ,
r(z0

j )

C1
)

∣∣∣∣ln |w − zj|
r(zj)

∣∣∣∣ µ(dw)λ(dzj)

=
∫

D(z0
j ,

r(z0
j )

C1
)

∫
D(z0

j ,
r(z0

j )

2C1
)

∣∣∣∣ln |w − zj|
r(zj)

∣∣∣∣ λ(dzj)µ(dw)

=
∫

D(z0
j ,

r(z0
j )

C1
)
O(1)µ(dw) = O(1)

and then by the mean value theorem there exist M points z̃j as in Theorem 5.1.

Now we apply Theorem 5.1 to our specific setting. Using the results of the previous chap-

ters, we verify that all the required hypotheses are satisfied. From this point on, we work under

the following standing assumptions.

• Let p ∈ S(1, 1) satisfy the asymptotic expansion (3.25), and set

h =
1

2πN
, 1 ≪ N ∈ N, P := pN ,

with P verifying the symmetry assumption (3.27).

• Let Γ ⋐ C be a relatively compact, simply connected open set, independent of N, with

uniformly Lipschitz boundary γ = ∂Γ as defined above. We denote by r0 > 0 its as-

sociated weight. Furthermore, assume that there exists κ ∈]0, 1] such that the volume

condition (3.28) holds uniformly for all

z ∈ γ̃r := γ + D(0, r), 0 ≤ r ≤ r0.

• Fix τ0 ∈]0, (C0N−1)1/2], with C0 > 0. Define the perturbed operator

Pδ(q) := P + δVq, δ =
τ0

C
N−d, C > 0 (5.9)

where Vq = diag(q(n); n = 1, . . . , Nd), q ∈ CNd
.

• Let P be a probability measure on the ball BNd(0, R), defined as in (4.35) and (4.36), with

radius R > 0 which satisfies (3.78).

• Finally, we recall the definition of ε0(N) given in (4.4) and we take α = C0N−1.

We consider the definition of logarithmic potential of a measure, and some of its main proper-

ties.

Definition 5.3 (Logarithmic potential). Let µ be a finite Borel measure on C with compact sup-

port. We define the logarithmic potential of µ as

Uµ(z) := −
∫

C
ln |z − x|µ(dx), for z ∈ C. (5.10)
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We observe that for every finite Borel measure µ on C with compact support, we have

Uµ ∈ L1
loc(C, λ(dz)), and hence

Uµ(z) < +∞, for a.e. z ∈ C. (5.11)

Indeed, let K ⊂ C be a compact set and µ a measure as above. Then, there exists R1 > 0 such

that supp µ ⊂ D(0, R1), and for every x ∈ supp µ, by performing a change of variable, we

obtain ∫
K
|ln |z − x|| dz =

∫
K−x

|ln |w|| dw ≤
∫

K+D(0,R1)
|ln |w|| dw ≤ R2, (5.12)

with R2 > 0 a uniform constant with respect to x. Therefore, by Fubini-Tonelli theorem, we

have: ∫
K
|Uµ(z)|dz =

∫
K

∣∣∣∣∫
C

ln |x − z|µ(dx)
∣∣∣∣ dz ≤

∫
K

∫
C
|ln |x − z|| µ(dx)dz

=
∫

C

∫
K
|ln |x − z|| dzµ(dx) ≤

∫
C

R2µ(dx) < +∞. (5.13)

Hence Uµ ∈ L1
loc(C, λ(dz)) ⊂ D′(C).

Another important property of the logarithmic potential is obtained by applying the Lapla-

cian. In particular, fixing a measure µ as before, we have

∆Uµ = −2πµ, in D′(C). (5.14)

Indeed, since ln |z|
2π is a fundamental solution of ∆z, for every φ ∈ C∞

c (C),

⟨∆Uµ, φ⟩D′,D =
∫

C

(
−
∫

C
ln |x − z|µ(dx)

)
∆z φ(z)dz

=
∫

C

(
−
∫

C
ln |x − z|∆z φ(z)dz

)
µ(dx) =

∫
C
−⟨2πδx, φ⟩D′,D µ(dx)

=
∫

C
−2πφ(x)µ(dx) = ⟨−2πµ, φ⟩D′,D,

which proves the statement (5.14).

We now consider (p0)∗(λ), the push-forward of the Lebsegue measure λ(dρ) on T2d under

the principal symbol p0 of p. Since p0 is continuous and T2d is compact, the image Im(p0) is

compact, and consequently (p0)∗(λ) is a finite Borel measure supported on Im(p0). Accord-

ingly, we set

ϕ(z) := −U(p0)∗(λ)(z) =
∫

T2d
ln |p0(ρ)− z|dρ, z ∈ C.

By (5.13) and (5.14), we know that ϕ ∈ L1
loc(C) ⊂ D′(C) and that its Laplacian

∆ϕ = 2π(p0)∗(λ), in D′(C). (5.15)

Hence, the positivity of λ implies that ϕ is subharmonic.
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We now aim to prove that ϕ is continuous in a neighborhood of γ, specifically in γ̃r. To do

so, we invoke Theorem 1 from [Ar60], without reproducing its proof.

Theorem 5.4 (Theorem 1 of [Ar60]). Let m be a finite, positive Borel measure with compact support

and let Um be its logarithmic potential

Um(z) =
∫

ln
1

|z − ζ|m(dζ), z ∈ C.

Then Um is continuous at a point z0 ∈ C if and only if

lim
r→0

{
lim sup

z→z0

∫ r

0

mt(z)
t

dt

}
= 0, (5.16)

where mt(z) := m(D(z, t)). Moreover, when Um is continuous at z0, the limit actually exists in the

bracketed expression, and in fact

lim
z→z0

∫ r

0

mt(z)
t

dt =
∫ r

0

mt(z0)

t
dt.

Now, let z0 ∈ γ̃r and consider z ∈ neigh(z0) ⊂ γ̃r. Since ϕ is the negative logarithmic

potential of (p0)∗(λ), we consider, for r ≥ 0

∫ r

0

(p0)∗(λ(dρ))(D(z, t))
t

dt =
∫ r

0

λ({ρ ∈ T2d : |p0(ρ)− z|2 < t2})
t

dt

Hence, if we take 0 ≤ r ≪ 1, by applying the bound (3.28) uniform on γ̃r, we obtain

∫ r

0

(p0)∗(λ(dρ))(D(z, t))
t

dt =
∫ r

0

O(t2κ)

t
dt ≤ C

2κ
r2κ,

for a constant C > 0. Since this result is true uniformly on a neighborhood of z0, it follows that

lim
r→0

{
lim sup

z→z0

∫ r

0

(p0)∗(λ(dρ))(D(z, t))
t

dt

}
≤ lim

r→0

C
2κ

r2κ = 0.

Therefore, by Theorem 5.4, ϕ is continuous in γ̃r.

Now we define, for q ∈ BNd(0, R),

u(z) := det(Pδ(q)− z), z ∈ C,

and we observe that u is a holomorphic function on C.

Since Γ is relatively compact and its boundary γ is locally Lipschitz with respect to the

weight r0, there exist l points x1, . . . , xl ∈ γ such that γ ⊂ ⋃l
j=1 Axj , where

Axj := {y ∈ Rxj : ỹ = Uxj(y − xj), |ỹ1| < r0, ỹ2 = fxj(ỹ1)}, j = 1, . . . , l.
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Here the rectangles Rxj , the Lipschitz functions fxj and the orthogonal matrices Uxj are defined

as in the start of this section. We parametrize each patch with the function

Φj(t) := xj − U−1
xj

((t, fxj(t))), t ∈]− r0, r0[.

By Rademacher’s theorem f ′xj
(t) exists for a.e. t ∈]− r0, r0[ and its modulus is bounded by the

corresponding Lipschitz constant Lj of fxj . Thus, since Uxj is orthogonal,

∥Φ′
j(t)∥2 = ∥(1, f ′xj

(t))∥2 =
√

1 + | f ′xj
(t)|2 ≤

√
1 + L2

j , for a.e. t ∈]− r0, r0[.

Let H1
|γ denote the arc length on γ. By subadditivity,

H1(γ) ≤
l

∑
j=1

∫
Axj

dH1(y) =
l

∑
j=1

∫ r0

−r0

∥Φ′
j(t)∥2dt ≤

l

∑
j=1

2r0

√
1 + L2

j < +∞,

and consequently, by the hypotheses of N-independence, H1(γ) = O(1).

Now we take a smaller, possibly N-dependent weight 0 < r ≪ 1 in the definition of Lips-

chitz boundary and we choose N0 points

z0
j ∈ γ, j = 1, 2, . . . , N0,

satisfying the conditions (5.4). By definition of arc length, we have

N0
r
4
≤

N0

∑
j=1

|z0
j+1 − z0

j | ≤ H1(γ) = O(1),

and thus N0 = O(r−1). Applying Proposition 4.6, we know that for every fixed z ∈ γ̃r, the

inequality

|det(Pδ(q)− z))| ≥ ϵ exp
(

Nd
∫

T2d
ln |p0(ρ)− z|dρ

)
, (5.17)

is true with a probability ≥ 1 −O(1)NM3+dε0(N) exp
(
− N−d

O(1)ε0(N)
ln
( 1

ϵ

))
, provided that ϵ > 0

is small enough so that the right-hand side of (4.31) is ≤ 1.

We define ϵ̃ := N−d ln
( 1

ϵ

)
, so that ϵ = exp(−ϵ̃Nd). We observe that the condition on ϵ that

the right-hand side of (4.31) is ≤ 1 holds if

ϵ̃ ≥ Cε0(N),

for some large constant C > 0, i.e. ϵ̃ ≫ ε0(N). Thus, we can rephrase (5.17) as it follows.

For every z ∈ γ̃r, with probability

≥ 1 −O(1)NM3+dε0(N) exp
(
− ϵ̃

Cε0(N)

)
,
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we have

|det(Pδ(q)− z))| ≥ exp
(

Nd
(∫

T2d
ln |p0(ρ)− z|dρ − ϵ̃

))
,

which is equivalent to write

N−d ln |u(z)| ≥ ϕ(z)− ϵ̃.

Now, we apply Theorem 5.1 and we take z̃1, . . . , z̃N0 ∈ γ̃r as in its statement. We apply what

we have just found to each of these points and we obtain

P

 N0⋂
j=1

(
N−d ln |u(z̃j)| ≥ ϕ(z̃j)− ϵ̃

) = 1 − P

 N0⋃
j=1

(
N−d ln |u(z̃j)| ≥ ϕ(z̃j)− ϵ̃

)c


≥ 1 −

N0

∑
j=1

P
(

N−d ln |u(z̃j)| < ϕ(z̃j)− ϵ̃
)

≥ 1 − N0O(1)ε0(N)NM3+de
(
− ϵ̃

Cε0(N)

)
.

Furthermore, we recall that inequality (4.5) obtained in Section 4.1

ln |det(Pδ(q)− z)| − Nd
(∫

T2d
ln |p0(ρ)− z|dρ

)
≤ Ndε0(N),

is true for all q ∈ BNd(0, 3R) and for every z ∈ γ̃r.

Hence, in the probability space (BNd(0, R), P(dq)) that we are considering, the following

inequality

N−d ln |u(z)| ≤ ϕ(z) + ε0(N) ≤ ϕ(z) +
ϵ̃

C
,

is true with probability equal to 1 and for all z ∈ γ̃r.

Finally, we define the function ϕ̃(z) := ϕ(z) + ϵ̃
C , which still satisfies the same hypotheses

of ϕ. Then with probability

≥ 1 − O(1)
r

ε0(N)NM3+de
(
− ϵ̃

Cε0(N)

)
,

the following two are true

N−d ln |u(z)| ≤ ϕ̃(z), for all z ∈ γ̃r

N−d ln |u(z̃j)| ≥ ϕ̃(z̃j)− ϵ̃

(
1 +

1
C

)
, for j = 1, . . . , N0.

Thus we can apply Theorem 5.1 and obtain the following result.

Theorem 5.5. Under all the previous hypotheses and notations, there exists a constant C2 > 0 such

that ∣∣∣∣#(σ(Pδ) ∩ Γ)− Nd
∫

p−1
0 (Γ)

dρ

∣∣∣∣ ≤ C2Nd
(

2π
∫

p−1
0 (γ+D(0,r))

dρ +O
(

1
r

)
ϵ̃

)
, (5.18)
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with probability ≥ 1 − O(1)
r ε0(N)NM3+de

(
− ϵ̃

Cε0(N)

)
.

Proof. We recall (5.15) and we observe that the left-hand side in the inequality (5.7) of Theorem

5.1, in our context, becomes∣∣∣∣#(u−1(0) ∩ Γ)− Nd

2π
µ(Γ)

∣∣∣∣ = ∣∣∣∣#(σ(Pδ) ∩ Γ)− 2πNd

2π
(p0)∗(λ)(Γ)

∣∣∣∣
=

∣∣∣∣#(σ(Pδ) ∩ Γ)− Nd
∫

p−1
0 (Γ)

dρ

∣∣∣∣ .

On the other hand, the right-hand side is given by

C2Nd

(
µ(γ̃r) +

N0

∑
j=1

ϵ̃

(
1 +

1
C

))
= C2Nd

(
2π
∫

p−1
0 (γ+D(0,r))

dρ +O
(

1
r

)
ϵ̃

(
1 +

1
C

))
.

Then, by putting together these two equalities, (5.18) is proved.

5.2 Eigenvalue Distribution via Empirical Measure Convergence

In this section, we work within the same framework and use the same definitions as in the

previous one. Our goal remains to understand the distribution of eigenvalues of the randomly

perturbed operator Pδ(q), considered on the probability space (BNd(0, R), P(dq)).

We now adopt a qualitative perspective based on weak convergence of empirical measures,

rather than providing explicit error estimates. We begin by defining what we mean by empiri-

cal measure.

Definition 5.6 (Empirical measure). Let P ∈ CM×M be a linear operator, with spectrum σ(P).

We define the empirical measure of its eigenvalues as the probability measure

µ :=
1
M ∑

ζ∈σ(P)
δζ .

Hence, the empirical measure for the perturbed operator Pδ
N = Pδ(q) is given by

ξN =
1

Nd ∑
ζ∈σ(Pδ

N)

δζ .

As in Section 5.1 we consider the following measure

ξ := (p0)∗(λ(dρ)), (5.19)

which is the push-forward of the Lebesgue measure λ(dρ) on T2d through the principal symbol

p0 of p.
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By Definition 5.3, the logarithmic potentials of the measures ξN , ξ are given respectively by

UξN (z) = − 1
Nd ∑

ζ∈σ(Pδ
N)

∫
C

ln |z − x|δζ(dx)

= − 1
Nd ln

 ∏
ζ∈σ(Pδ

N)

|z − ζ|

 = − 1
Nd ln

∣∣∣det(Pδ
N − z)

∣∣∣ . (5.20)

Uξ(z) = −
∫

C
ln |z − x|((p0)∗(λ))(dx) = −

∫
T2d

ln |p0(ρ)− z|dρ. (5.21)

An additional property of the logarithmic potentials that we will need, is the following: let

{µn}n∈N be a sequence of finite Borel measures with compact support, and suppose that the

supports of all µn are contained in a fixed compact set. Then, the almost sure convergence of

the associated logarithmic potentials Uµn(z) → Uµ(z), where µ is a finite Borel measure with

compact support, implies the weak convergence of the measures µn ⇀ µ.

We have considered this result in the setting of random measures, as stated in [Ta12, The-

orem 2.8.3], and adapted it to our framework. Before presenting the result, we introduce the

definition of random measure.

Definition 5.7 (Random measure). Let (Ω,F , P) be a probability space, and let (X, Σ) be a

measurable space. A random measure on (X, Σ) is a map

ω 7→ µω

from Ω to the set of all possible measures on (X, Σ), such that for every E ∈ Σ, the function

ω 7→ µω(E)

is measurable with respect to F . Equivalently, a random measure is a function

µ : Ω × Σ → [0,+∞]

such that for each fixed ω ∈ Ω, the map E 7→ µ(ω, E) defines a measure on (X, Σ), and for each

fixed E ∈ Σ, the map ω 7→ µ(ω, E) is measurable.

We denote M(C) the space of all finite Borel measures on C with compact support.

Here we present the main result we are interested in.

Theorem 5.8. Let K, K′ ⋐ C be open, relatively compact sets with K ⊂ K′, and let {µn}n∈N, µ be

random measures in M(C), defined on a probability space (Ω,F , P). We assume that all the measures

µn are almost surely uniformly bounded in total mass by the same constant and that almost surely

supp µ, supp µn ⊂ K, for n sufficiently large. (5.22)



84 5. Eigenvalue Counting

Suppose that for almost every z ∈ K′, the limit

Uµn(z) → Uµ(z), n → +∞, (5.23)

is true almost surely (respectively in probability). Then,

µn ⇀ µ, n → +∞, weakly (5.24)

almost surely (respectively in probability).

Proof. We begin with the proof in the case of almost sure convergence. The case of convergence

in probability will follow similarly.

First of all, we notice that the assumption that for a.e. z ∈ K′ the limit (5.23) holds almost

surely is equivalent to assume that almost surely (5.23) holds for a.e. z ∈ K′. Indeed, we define

the set

E := {(z, ω) ∈ K′ × Ω : Uµn(ω)(z) → Uµ(ω)(z)} ⊂ K′ × Ω,

and we observe that the first of the two assumptions is equivalent to say that for a.e. z ∈ K′

∫
Ω

1E(z, ω)P(dω) = 1,

and hence ∫
K′

(∫
Ω

1E(z, ω)P(dω)

)
λ(dz) = λ(K′).

Furthermore, the second assumption is equivalent to say that almost surely (for a.e. ω ∈ Ω)∫
K′

1E(z, ω)λ(dz) = λ(K′),

and hence ∫
Ω

(∫
K′

1E(z, ω)λ(dz)
)

P(dω) = λ(K′).

Applying Tonelli theorem confirms the equivalence of the two formulations.

Now, we observe that ln | · −x| ∈ L2(K′) uniformly in x ∈ K′. Indeed, using the same

argument we used for showing (5.12), we have, for all x ∈ K′

∫
K′
| ln |z − x||2λ(dz) ≤

∫
K′−x

| ln |w||2λ(dw) ≤
∫

K′+K′
| ln |w||2λ(dw) ≤ C,

with a constant C > 0 that does not depend on x. Then, by Minkowski’s inequality, for almost
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every ω ∈ Ω and for all n ≥ 1, we obtain

(∫
K′

∣∣∣Uµn(ω)(z)
∣∣∣2 λ(dz)

)1/2

=

(∫
K′

∣∣∣∣∫
C
− ln |z − x|µn(ω)(dx)

∣∣∣∣2 λ(dz)

)1/2

≤
∫

C

(∫
K′
| ln |z − x||2λ(dz)

)1/2

µn(ω)(dx)

≤
∫

C
C

1
2 µn(ω)(dx) ≤ C̃,

where C̃ > 0 is a constant that does not depend on n, as guaranteed by the hypotheses of the

theorem. By applying a similar argument also for Uµ, we conclude that for all n ≥ 1 and for

almost every ω ∈ Ω, Uµ(ω), Uµn(ω) ∈ L2(K′) uniformly.

Now, combining this result with (5.22) and with the equivalence between the statements

proved above, we obtain that there exists a measurable set Ω′ ⊂ Ω with P(Ω′) = 1, such that

for each ω ∈ Ω′, the following are true

1. Uµn(ω)(z) → Uµ(ω)(z) as n → +∞, for a.e. z ∈ K′,

2. there exists n0 ≥ 1 such that supp µn(ω), supp µ(ω) ⊂ K, for all n ≥ n0,

3. there exists a constant CK′,Ω′ > 0, depending only on K′ and Ω′, such that

∥Uµn(ω)∥L2(K′), ∥Uµ(ω)∥L2(K′) ≤ CK′,Ω′ , (5.25)

for all n ≥ 1.

In order to prove the statement (5.24), it is sufficient to show that for all ω ∈ Ω′ and for any

φ ∈ C∞
c (K′, R) with support in K′,

⟨µn(ω), φ⟩D′,D → ⟨µ(ω), φ⟩D′,D, for n → +∞. (5.26)

Fix ω ∈ Ω′, let M > 0 and define

gM
n (z) := min(|Uµn(ω)(z)− Uµ(ω)(z)|, M), (5.27)

for z ∈ K′ and n ≥ n0. We know that gM
n (z) −→

n→+∞
0 for a.e. z ∈ K′ and that |gM

n | ≤ M ∈ L1(K′).

Hence, by the dominated convergence theorem, we have

gM
n −→

n→∞
0, in L1(K′), for any M > 0.

We now use Markov’s inequality (see Theorem A.17 in the Appendix) and the uniform L2(K′)-
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bounds from (3) to estimate the truncation error.∥∥∥gM
n − |Uµn(ω) − Uµ(ω)|

∥∥∥
L1(K′)

=
∫
{z∈K′ :|Uµn(ω)(z)−Uµ(ω)(z)|≥M}

(|Uµn(ω)(z)− Uµ(ω)(z)| − M)λ(dz)

≤
(∫

{z∈K′ :|Uµn(ω)(z)−Uµ(ω)(z)|≥M}
λ(dz)

)1/2 ∥∥∥Uµn(ω) − Uµ(ω)

∥∥∥
L2(K′)

≤2CK′,Ω′

(
λ
(
{z ∈ K′ : |Uµn(ω)(z)− Uµ(ω)(z)|2 ≥ M2}

))1/2

≤
4C2

K′,Ω′

M
. (5.28)

Hence, for each ω ∈ Ω′ and for all M > 0, we obtain

∥Uµn(ω) − Uµ(ω)∥L1(K′) ≤ ∥gM
n − |Uµn(ω) − Uµ(ω)|∥L1(K′) + ∥gM

n ∥L1(K′),

which implies

lim
n→+∞

∥Uµn(ω) − Uµ(ω)∥L1(K′) ≤
4C2

K′,Ω′

M
.

Thus, by taking the limit for M → +∞, we obtain that for every ω ∈ Ω′

Uµn(ω) → Uµ(ω) in L1(K′), for n → +∞.

Consequently, almost surely

Uµn −→
n→∞

Uµ, in D′(K′),

and thus (5.24) holds. Indeed, by (5.14) we have

∆zUµn = −2πµn, ∆zUµ = −2πµ, in D′(C). (5.29)

Now, we want to prove the same result but we consider the convergence in probability

instead of the almost sure convergence.

We first assume that for almost every z ∈ K′, and for every ε > 0,

lim
n→∞

P
(
|Uµn(z)− Uµ(z)| > ε

)
= 0.

In this framework, we can apply the same arguments as before and obtain that there exists a

measurable set Ω′ ⊂ Ω with P(Ω′) = 1 such that for all ω ∈ Ω′ properties (2) and (3) still hold.

We define gM
n (z) on K′ as in (5.27), recalling also its dependence on ω ∈ Ω. Fix M > 0. For

every ε > 0 and for a.e. z ∈ K′:

• If M > ε, then

P(|gM
n (z)| > ε) = P(|Uµn(z)− Uµ(z)| > ε) −→

n→+∞
0.

• If M ≤ ε, then |gM
n (z)| ≤ M ≤ ε, and hence P(|gM

n (z)| > ε) = 0, for all n ≥ 1.
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Therefore gM
n (z) −→

n→+∞
0 in probability for a.e. z ∈ K′ and |gM

n (z)| ≤ M ∈ L1(Ω, P). Fix ε > 0.

Then, for almost every z ∈ K′, we have∫
Ω
|gM

n (z)|P(dω) =
∫
{|gM

n (z)|>ε}
|gM

n (z)|P(dω) +
∫
{|gM

n (z)|≤ε}
|gM

n (z)|P(dω)

≤ MP(|gM
n (z)| > ε) + εP(|gM

n (z)| ≤ ε) ≤ MP(|gM
n (z)| > ε) + ε.

Thus, since gM
n (z) −→

n→+∞
0 in probability, we obtain

lim
n→+∞

∫
Ω
|gM

n (z)|P(dω) ≤ ε.

Because ε > 0 is arbitrary, we conclude that

lim
n→+∞

∫
Ω
|gM

n (z)|P(dω) = 0, i.e. gM
n (z) −→

n→+∞
0, in L1(Ω, P),

for almost every z ∈ K′. Moreover,∣∣∣∣∫Ω
|gM

n (z)|P(dω)

∣∣∣∣ ≤ M ∈ L1(K′), for all z ∈ K′.

Thus, by Tonelli theorem and by the dominated convergence theorem,

∫
Ω

(∫
K′
|gM

n (z)|dz
)

P(dω) =
∫

K′

(∫
Ω
|gM

n (z)|P(dω)

)
dz −→

n→+∞
0.

Finally, by Markov’s inequality (Theorem A.17), for any ε > 0

P

(∫
K′
|gM

n (z)|dz > ε

)
≤
∫

Ω

(∫
K′ |gM

n (z)|dz
)

P(dω)

ε
−→

n→+∞
0,

which proves that

gM
n −→

n→+∞
0 in L1(K′), in probability, (5.30)

for any M > 0.

We observe that also in this case, inequality (5.28) for ∥gM
n − |Uµn − Uµ|∥L1(K′) is still valid

almost surely. Hence, for every ε > 0 and for each M > 0, we have

P(∥Uµn − Uµ∥L1(K′) > ε) ≤ P(∥gM
n − |Uµn − Uµ|∥L1(K′) + ∥gM

n ∥L1(K′) > ε)

≤ P

(
4C2

K′,Ω′

M
+ ∥gM

n ∥L1(K′) > ε

)

= P

(
∥gM

n ∥L1(K′) > ε −
4C2

K′,Ω′

M

)
.
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Thus, taking M =
8C2

K′ ,Ω′
ε , from (5.30) we obtain

P(∥Uµn − Uµ∥L1(K′) > ε) ≤ P
(
∥gM

n ∥L1(K′) >
ε

2

)
−→

n→+∞
0,

which proves that

Uµn −→
n→+∞

Uµ in L1(K′), in probability .

Finally, we let φ ∈ C∞
c (K′); for every ε > 0 we have

P(|⟨Uµn − Uµ, φ⟩D′,D | > ε) ≤ P(∥Uµn − Uµ∥L1(K′) sup
z∈K′

|φ(z)| > ε) −→
n→∞

0,

which means that Uµn −→
n→+∞

Uµ in D′(K′) in probability. Hence, from (5.29),

µn ⇀
n→+∞

µ in probability.

Finally, we apply Theorem 5.8 to the measures ξN , ξ in the semiclassical limit N → +∞.

Before, we need to show that its hypotheses hold.

We observe that since ξN are all probability measures, the hypothesis of the uniform bound

on the total mass is satisfied. Recall that the support of ξ = (p0)∗(λ) is the compact set Im(p0).

Thus, we have

supp ξ = p0(T
2d) ⊂ D

(
0, ∥p0∥L∞(T2d)

)
.

Moreover, for each N, the support of the empirical measure ξN is given by

supp ξN = σ(Pδ
N) ⊂ D

(
0,
∥∥∥Pδ

N

∥∥∥) .

By Proposition 1.17, there exists a constant C1 > 0 that bounds the norm of pN uniformly in N.

Hence, ∥∥∥Pδ
N

∥∥∥ ≤ ∥P∥+ δ∥Vq∥ ≤ C1 + δ∥q∥∞.

Since the probability measure P we are considering is defined on the space BNd(0, R) and since

∥q∥∞ ≤ ∥q∥2 for all q ∈ CNd
, we obtain

supp ξN ⊂ D (0, C1 + δR) , (5.31)

where, from (3.78) and (5.9),

δR = O(N−1/2) ≪ 1, for N ≫ 1.

Fix η0 > 0 and define

R∗ := max
{
∥p0∥L∞(T2d), C1 + δR

}
, K := D(0, R∗ + η0) ⋐ C.
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Then

supp ξ, supp ξN ⊂ K,

for all N ≫ 1. We consider an open relatively compact set K′ ⋐ C such that K ⊂ K′. If we show

that for a.e. z ∈ K′, the convergence

UξN (z) −→
N→+∞

Uξ(z),

is true in probability, then the hypotheses of Theorem 5.8 are satisfied. Fix z ∈ K′. By (5.20) and

(5.21) we have

Uξ(z)− UξN (z) = N−d
(

ln
∣∣∣det(Pδ

N − z)
∣∣∣− Nd

∫
T2d

ln |p0(ρ)− z|dρ

)
= N−d ln |F(q)|,

where F is defined as in (4.9) and depends explicitly on the random vector q. Hence, for every

ϵ̃ > 0, we have

P
(∣∣(Uξ(z)− UξN (z)

∣∣ > ϵ̃
)
= P

(
N−d ln |F(q)| > ϵ̃

)
+ P

(
N−d ln |F(q)| < −ϵ̃

)
. (5.32)

Recalling Remark 4.1, we suppose τ0 is not too small. For instance, we assume

τ0 ≥ exp(−N
κ
2 ).

We fix ϵ̃ > 0. Thus, from (4.8), there exists N1 = N1(ϵ̃) ≥ 0 such that

ε0(N) ≤ ϵ̃, for all N ≥ N1.

Applying (4.5), for every N ≥ N1 we have

P
(

N−d ln |F(q)| > ϵ̃
)
≤ P

(
N−d ln |F(q)| > ε0(N)

)
= 0. (5.33)

Moreover, let 0 < α < κ
2 and define

ϵ1(N) := exp(−ε0(N)Nd+α).

With this definition, we observe that for N ≫ 1,

ϵ1 exp(O(ε0(N)Nd)) = exp(O(ε0(N)Nd)− ε0(N)Nd+α) ≤ 1,

and hence the hypothesis of Proposition 4.6 is satisfied with ϵ1. By applying the subsequent

Remark 4.7, we obtain

P
(

N−d ln |F(q)| < −ε0(N)Nα
)
≤ O(1)ε0(N)NM3+d exp

(
−Nα

O(1)

)
. (5.34)
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Since 0 < α < κ
2 , we know from Remark 4.1 that ε0(N)Nα −→

N→+∞
0. Thus, there exists N2 ≥ 0

such that

ε0(N)Nα ≤ ϵ̃, for all N ≥ N2.

Now, we recall the following standard asymptotic: for any p, q ≥ 0 and r > 0,

xp (ln (x))q e−xr → 0, as x → +∞. (5.35)

Thus, recalling the definition (4.4), the right-hand side of (5.34) converges to 0 as N → +∞.

Fixing η > 0, there exists N3 = N3(η) ≥ 0 such that

O(1)ε0(N)NM3+d exp
(
−Nα

O(1)

)
≤ η, for every N ≥ N3.

Consequently, for all N ≥ max(N2, N3), we obtain

P
(

N−d ln |F(q)| < −ϵ̃
)
≤ P

(
N−d ln |F(q)| < −ε0(N)Nα

)
≤ η. (5.36)

Finally, applying both (5.33) and (5.36), we obtain that for every ϵ̃ > 0

lim
N→+∞

P
(
|Uξ(z)− UξN (z)| > ϵ̃

)
= 0.

We observe that this result is true for all z ∈ K′. Hence, we can invoke Theorem 5.8, which

yields the following convergence in probability:

1
Nd ∑

ζ∈σ(Pδ
N)

δζ ⇀ (p0)∗(λ(dρ)), as N → +∞. (5.37)

Remark 5.9. We observe that the empirical measure ξN ”counts” the eigenvalues of Pδ
N over

measurable subsets of C. More precisely, for any measurable set Γ ⊂ C,

ξN(Γ) =
1

Nd ∑
ζ∈σ(Pδ

N)

δζ(Γ) =
1

Nd #{ζ ∈ σ(Pδ
N) ∩ Γ}. (5.38)

We now consider an adapted version of the Portemanteau theorem (see Theorem A.18 in

the Appendix) in a probabilistic setting, as presented in Corollary A.19. In particular, we apply

it to (5.37), taking as underlying metric space the compact set K, so that Cb(K) = Cc(K). Thus,

we obtain a quantitative formulation for the number of eigenvalues as a consequence of weak

convergence.

In particular, for every measurable set Γ ⊂ C such that

λ(p−1
0 (∂Γ)) = 0,
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we obtain, for all ε > 0,

P

(∣∣∣∣ 1
Nd #{ζ ∈ σ(Pδ

N) ∩ Γ} −
∫

p−1
0 (Γ)

dρ

∣∣∣∣ > ε

)
−→ 0, as N → +∞. (5.39)

Remark 5.10. The result in (5.39) is not substantially different from the quantitative estimate

established earlier in (5.18). The main distinction lies in the fact that Theorem 5.5 provides an

explicit error bound, but only for a specific class of sets Γ, whereas (5.39) yields convergence in

probability without an explicit rate, yet applies to a broader family of measurable sets.

5.3 Applications with Truncated Gaussian Distribution

In the final section of the thesis we consider a practical example of the results we found

previously. In particular we apply Theorem 5.5 to a simple framework, in order to obtain some

explicit quantitative bounds for the spectrum of the perturbed operator.

We consider a framework where the dimension d = 1, so that we work with symbols on

T2 and with the corresponding restricted Weyl quantizations acting on CN , with N = 1
2πh .

Additionally, we consider τ0 = C0N−m for M > 0 and C0 > 0, so that, by definition (4.4), we

have

ε0(N) :=O
((

N− 1
2 +

(
N−1 ln (N) + N−κ

) (
O(m ln (N)) + (ln (N))2

)))
=O

(
N−1 (ln (N))3 + N−κ (ln (N))2

)
, for N ≫ 1, (5.40)

where the last equality holds because κ ∈]0, 1].

By Proposition 3.11 we define δ = N−m−1

C , for a sufficiently large constant C > 0. Moreover,

for the perturbation Vq that we want to apply, we consider a probabilistic setting given by a

Gaussian distribution truncated to the ball BN(0, R), where

C1N
1−κ

2 ≤ R ≤ C2Nm+ 1
2 ,

for two constants C1, C2 > 0 as in (3.78). Specifically, we define

P(dq) := C(N)eΦ(q),

where

Φ(q) := −1
2
∥q∥2

2, q ∈ BN(0, R); C(N) :=
1∫

BN(0,R) exp(Φ(q))dq
.

We observe that

∥∇Φ(q)∥2 = ∥ − q∥2 < R = O(Nm+ 1
2 ),
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and thus, by following the definitions in Chapter 4, we obtain

M1 := m +
1
2

, M2 := m +
1
2

, M3 := m +
3
2

.

5.3.1 Application to the Scottish Flag Operator

We consider the symbol whose quantization yields the ”Scottish flag” operator, called in

this way for the particular geometry of its spectrum, which recalls a Scottish flag.

In particular we define

p(x, ξ) := cos(2πx) + i cos(2πξ), (x, ξ) ∈ T2.

We note that

p(x, ξ) = p0(x, ξ) ∈ S(1, 1),

and satisfies the symmetry assumption p(x, ξ) = p(x,−ξ).

We recall definitions (1.3) and (1.25) and, as shown in [ChZw10] we observe that the Weyl

quantizations of functions depending only on x or ξ restricted to H1
h are given by

C∞(T2) ∋ f = f (x) 7→ fN = diag( f (l/N); l = 0, 1, . . . , N − 1)

C∞(T2) ∋ g = g(ξ) 7→ gN = F ∗
N diag(g(l/N); l = 0, 1, . . . , N − 1)FN ,

where FN is the discrete Fourier transform, defined as in (1.22). Thus, we obtain

pN =



cos(x1)
i
2 0 0 · · · i

2
i
2 cos(x2)

i
2 0 · · · 0

0 i
2 cos(x3)

i
2

. . . 0
...

. . . . . . . . . . . .
...

0 · · · 0 i
2 cos(xN−1)

i
2

i
2 0 · · · 0 i

2 cos(xN)


, xj :=

2π j
N

, j = 1, . . . , N.

Write pN = D + i
2 T, where D := diag(cos(xi); i = 1, . . . , N) and T is the real symmetric matrix

with ones one the super- and sub- diagonals and on the entries (1, N) and (N, 1). If (u, µ) is an

eigencouple of pN , with ∥u∥2 = 1, then

µ = ⟨pNu, u⟩ = ⟨Du, u⟩+ i
2
⟨Tu, u⟩.

It follows that

ℜ(µ) =
N

∑
j=1

|uj|2 cos(xj) ∈ [−1, 1],

and

ℑ(µ) =
〈

1
2

Tu, u
〉

∈
[
−1

2
∥T∥,

1
2
∥T∥

]
= [−1, 1].
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The last equality holds from the fact that each column and row of T contains exactly two ones,

and thus,

∥T∥ ≤
√
∥T∥1∥T∥∞ = 2,

where ∥ · ∥1 and ∥ · ∥∞ are the induced max–column-sum and max–row-sum norms, respec-

tively. Therefore

σ(pN) ⊂ [−1, 1]2.

We consider z0 ∈]− 1, 1[2 and R0 > 0 such that

Γ := D(z0, R0) ⊊ [−1, 1]2. (5.41)

The set Γ is open, simply connected, relatively compact with uniform Lipschitz boundary, fol-

lowing the definition introduced in Section 5.1. For each z ∈ ∂Γ = ∂D(z0, R0), we consider

affine coordinates (ỹ1, ỹ2) translating z to the origin and rotating so that the tangent to the disc

in z is horizontal. Thus, if we denote y = (y1, y2) the old coordinates, taking 0 < r0 < R0, the

local description of Γ in the rectangle {y ∈ C : (ỹ1, ỹ2) ∈]− r0, r0[×]− r0, r0[} is

{y ∈ C : ỹ1 ∈]− r0, r0[, ỹ2 > fz(ỹ1)} ,

where the function fz(ỹ1) := R0 −
√

R2
0 − ỹ1

2 is Lipschitz in [−r0, r0] with modulus

sup
|ỹ1|≤r0

| f ′z(ỹ1)| =
r0√

R2
0 − r2

0

≤ 1, whenever r0 ≤ R0√
2

.

Let z = ℜ(z) + iℑ(z) ∈ C and 0 ≤ t ≪ 1. We compute

λ
(
{(x, ξ) ∈ T2 : |p0(x, ξ)− z|2 ≤ t}

)
=
∫∫

T2
1{(cos(2πx)−ℜ(z))2+(cos(2πξ)−ℑ(z))2≤t}dxdξ

=
1

(2π)2

∫ 2π

0

∫ 2π

0
1{(cos(θ)−ℜ(z))2+(cos(ϕ)−ℑ(z))2≤t}dθdϕ,

(5.42)

where we used the change of variables θ = 2πx, ϕ = 2πξ. By making a second change of

coordinates u = cos(θ), v = cos(ϕ), we obtain that the last term in (5.42) is equal to

4
(2π)2

∫ π

0

∫ π

0
1{(cos(θ)−ℜ(z))2+(cos(ϕ)−ℑ(z))2≤t}dθdϕ

=
1

π2

∫ 1

−1

∫ 1

−1
1{(u−ℜ(z))2+(v−ℑ(z))2≤t}

1√
(1 − u2)(1 − v2)

dudv. (5.43)

Now we take a smaller, possibly N-dependent weight 0 < r ≪ 1 in the definition of Lipschitz

boundary. In particular, we choose r sufficiently small so that there exists η > 0 with

γ̃r := ∂D(z0, R0) + D(0, r) ⊂ [−1 + η, 1 − η]2. (5.44)
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Hence, taking t sufficiently small, for all z ∈ γ̃r, we have

{(u, v) ∈ [−1, 1] : (u −ℜ(z))2 + (v −ℑ(z))2 ≤ t} ⊂ [−1 + δ, 1 − δ]2,

for a constant δ > 0 dependent on η and t. For example, if we consider t =
( η

2

)2, we can take

δ = η
2 , since the center (ℜ(z),ℑ(z)) is at distance ≥ η from the boundary of [−1, 1]2 and the

radius is
√

t = η
2 .

Under these assumptions, we get a uniform bound on the integrand function

1√
(1 − u2)(1 − v2)

,

over the plane {(u−ℜ(z))2 +(v−ℑ(z))2 ≤ t}. Thus, from (5.42) and (5.43), there exists C1 > 0

such that

λ
(
{(x, ξ) ∈ T2 : |p0(x, ξ)− z|2 ≤ t}

)
≤ C1

∫ 1

−1

∫ 1

−1
1{(u−ℜ(z))2+(v−ℑ(z))2≤t}dudv

= C1λ(D(z,
√

t)) = O(t).

Therefore the volume condition (3.28) in the hypotheses of Theorem 5.5 holds with κ = 1.

Applying the theorem, for any ϵ̃ ≥ C3 ε0(N) (with C3 > 0 large enough), there exists a constant

C2 > 0 such that∣∣∣#(σ(pN + δVq) ∩ Γ)− Nλ
(

p−1(Γ)
)∣∣∣ ≤ C2N

(
2πλ

(
p−1(∂Γ + D(0, r))

)
+O

(
1
r

)
ϵ̃

)
,

with probability at least

1 − O(1)
r

ε0(N)Nm+ 5
2 exp

(
− ϵ̃

C3ε0(N)

)
. (5.45)

By (5.40), we have

ε0(N) = O
(

N−1 (ln (N))3
)

.

For instance, choosing

1 ≫ ϵ̃ = ε0(N)
√

N ≫ ε0(N),

(5.45) becomes

1 − O(1)
r

ε0(N)Nm+ 5
2 exp

(
−
√

N
C3

)
,

which tends to 1 as N → +∞, since the exponential dominates any polynomial or logarithmic

factor.

Moreover, with the change of variables (u, v) = (cos(2πx), cos(2πξ)), we obtain

λ
(

p−1(∂D(z0, R0) + D(0, r))
)
=
∫ 1

−1

∫ 1

−1

1
π2 1Cz0,R0,r(u, v)

1√
(1 − u2)(1 − v2)

dudv, (5.46)
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where we define the annulus

Cz0,R0,r = {(u, v) : (R0 − r)2 < (u −ℜ(z0))
2 + (v −ℑ(z0))

2 < (R0 + r)2}.

If r is small enough so that Cz0,R0,r ⊂ γ̃r ⊂ [−1 + δ, 1 − δ]2, with δ > 0, then the weight is

uniformly bounded, and hence

λ
(

p−1(∂D(z0, R0) + D(0, r))
)
≤ O(1)λ(Cz0,R0,r) = O (r) .

Thus, for a new constant C̃2 > 0, we obtain∣∣∣∣ 1
N

#(σ(pN + δVq) ∩ D(z0, R0))− λ
(

p−1(D(z0, R0))
)∣∣∣∣ ≤ C̃2

(
r +

N− 1
2 (ln (N))3

r

)
,

with probability arbitrarily close to 1 as N → +∞.

Remark 5.11. Choosing N− 1
2 ≪ r ≪ 1, makes the right-hand size tend to 0 as N → +∞. For

example, if we take r = N− 1
4 , the right-hand size is equal to

C̃2N− 1
4

(
1 + (ln (N))3

)
−→ 0, as N → +∞.

Thus, for N sufficiently large, with high probability the following is true

1
N

#(σ(pN + δVq) ∩ D(z0, R0)) ∼ λ
(

p−1(D(z0, R0))
)

,

which is the desired probabilistic Weyl law in this model.





Conclusions

In this work we have achieved our main objective by proving an original result: a proba-

bilistic Weyl law for the spectrum of finite-dimensional operators arising from the Weyl quanti-

zation of symbols on the torus T2d, under random potential perturbations. Specifically, we have

shown how the eigenvalues asymptotically equidistribute in the semiclassical limit N → +∞.

This result extends the framework studied by M. Vogel in [Vo20], where he considered ran-

dom full-matrix perturbations applied to the same class of operators. Using similar tools and

ideas, we have established an analogous theorem for random diagonal matrix perturbations.

In our context, we have followed the approach of J. Sjöstrand [Sj09], who studied multiplica-

tive random perturbations for quantizations on R2d, and we have adapted these ideas to the

finite-dimensional setting arising from the compact torus.

The final application in Section 5.3 provides a concrete example of our results. In particular,

we have considered the Scottish flag operator, whose spectrum is not regularly distributed but

concentrates along the diagonals of the square [−1, 1]2 ⊂ C. By adding a small diagonal pertur-

bation given by a Gaussian distribution truncated to a ball, we have obtained a regularization

of the spectrum and an asymptotic eigenvalue law in the semiclassical limit N → +∞.

An important aspect of the framework considered is its possible physical interpretation.

In a quantum-mechanical setting, these operators can describe periodic quantum observables,

and the associated perturbations can model random potentials acting on a quantum system.

Moreover, these results highlight how random perturbations serve as an effective tool for spec-

tral regularization of non-selfadjoint pseudodifferential operators, and they naturally suggest

several directions for further research. In particular, we outline the following:

• Relaxation of Distributional Assumptions. One generalization can be obtained by re-

moving the compact-support assumptions on the distribution of the random perturba-

tions. This would allow a wider range of admissible models and avoid, for instance, the

truncation used in our application. To preserve high-probability concentration estimates,

it would be natural to assume suitable tail-decay conditions on the distribution.

• Generalization of the Phase Space. A second direction is to seek an analogous proba-

bilistic Weyl law on a more general phase space, given by a compact Kähler manifold,

via Berezin-Toeplitz quantization. The torus is a particular compact phase space where

periodicity holds; analogous results may be attainable in other geometric frameworks.

97



98 Conclusions

• Broadening of the Perturbation Class. Lastly, one further possibility is to extend the class

of random perturbations beyond diagonal and fully random matrices, and to characterize

the minimal structural or correlation assumptions under which the probabilistic Weyl law

persists.



Appendix

This appendix gathers auxiliary definitions and results used throughout the dissertation.

Given the heterogeneous material, we organize it into separate sections.

A.1 Useful Results for Semiclassical Calculus

In this section, we collect notions and statements essential for the first chapter of the thesis,

including the Schwartz kernel theorem, the definition of oscillatory integrals and the Fourier

conjugation formula.

Theorem A.1 (Schwartz Kernel Theorem). Let X ⊂ Rn and Y ⊂ Rm be open sets. Then every

continuous linear operator

A : C∞
c (X) → D′(Y)

can be represented uniquely by a distribution KA ∈ D′(Y × X) such that for all test functions ϕ ∈
C∞

c (X) and ψ ∈ C∞
c (Y),

⟨Aϕ, ψ⟩D′(Y),D(Y) = ⟨KA, ψ ⊗ ϕ⟩D′(Y×X),D(Y×X),

where ψ ⊗ ϕ(y, x) := ψ(y)ϕ(x). KA is called the Schwartz kernel of A.

A.1.1 Oscillatory Integrals

We introduce the notion of oscillatory integral following the approach of [Ma02, Section

2.4]. In particular, we work on the vector space R3n = Rn
x × Rn

y × Rn
ξ and we consider the

phase function e
i
h ⟨x−y,ξ⟩, with h ∈]0, 1]. The following construction applies also for other phase

functions.

Let a = a(x, y, ξ) ∈ S(⟨ξ⟩m), with m ∈ R, in the sense of Definition 1.2. We wish to give a

meaning to the possibly divergent integral

I(a) :=
∫

Rn
e

i
h ⟨x−y,ξ⟩a(x, y, ξ)dξ.

First, we notice that if m < −n, then the integral is absolutely convergent and is therefore well-

defined. To define it when m ≥ −n, we are going to interpret it as the distribution kernel of an

operator.
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Let u ∈ C∞
c (Rn) and assume m < −n. Then, we may define the operator

Aau(x; h) :=
∫∫

R2n
e

i
h ⟨x−y,ξ⟩a(x, y, ξ)u(y)dydξ,

which is an absolutely convergent integral. If we introduce the differential operator

L(ξ, hDy) :=
1

1 + ∥ξ∥2
2
(1 − h ⟨ξ, Dy⟩),

we have

L
(

e
i
h ⟨x−y,ξ⟩

)
= e

i
h ⟨x−y,ξ⟩. (A.1)

It is this particular property, based on the oscillatory character of the phase function, that will

allow us to give a sense to I(a). In particular, we observe that Lk(e
i
h ⟨x−y,ξ⟩) = e

i
h ⟨x−y,ξ⟩, for all

k ∈ N∗. Integrating by parts k times, with tL denoting the formal adjoint of L with respect to y,

we obtain

Aau(x; h) =
∫∫

R2n
e

i
h ⟨x−y,ξ⟩(tL(ξ, hDy))

k(au)dydξ =: Iku(x),

where

(tL(ξ, hDy))
k(au) =

(
1 + h ⟨ξ, Dy⟩

1 + ∥ξ∥2
2

)k

(au) = O(⟨ξ⟩m−k),

uniformly as ∥ξ∥2 → +∞. As a consequence, the integral Iku is absolutely convergent when-

ever m − k < −n. Moreover, since L satisfies (A.1), repeated integration by parts shows that

Ik+ℓu = Iku for all ℓ ≥ 0. Therefore, for any m ∈ R and a ∈ S(⟨ξ⟩m), we define, for u ∈ C∞
c (Rn)

Aau(x, h) =
∫∫

R2n
e

i
h ⟨x−y,ξ⟩(tL(ξ, hDy))

k(au)dydξ, (A.2)

where k is a nonnegative integer such that k > n+m. The integral is absolutely convergent and

the right-hand side is independent of the particular choice of k. Thus, we obtain the following

theorem, whose proof is presented in [Ma02].

Theorem A.2 (Theorem 2.4.3 of [Ma02]). Aa defines a continuous linear operator from C∞
c (Rn) to

C∞(Rn).

As a consequence, by applying Theorem A.1, it follows that the operator Aa admits a unique

distribution kernel in D′(Rn × Rn). This motivates the following definition.

Definition A.3. Given a ∈ S(⟨ξ⟩m), m ∈ R, the oscillatory integral associated to a with the

phase function e
i
h ⟨x−y,ξ⟩ is the distribution

I(a) =
∫

Rn
e

i
h ⟨x−y,ξ⟩a(x, y, ξ)dξ ∈ D′(Rn × Rn).

It is the Schwartz kernel of Aa.
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Remark A.4. This construction can be extended to a broader class of symbols. In particular,

analogous results hold for the class S(m) defined in (1.1), where m is an order function as in

Definition 1.1.

A.1.2 Fourier Conjugation Formula

Theorem A.5 (Fourier conjugation formula). Let m be an order function as in Definition 1.1 and let

p ∈ S(m) (defined as in (1.1). Recalling definitions (1.3) and (1.4), the following equivalence holds

F−1
h pw(x, hDx)Fh = pw(hDx,−x).

Proof. We note that the distribution kernel of F−1
h pw(x, hDx)Fh is

Kh(x, y) =
1

(2πh)2d

∫
Rd

∫
Rd

∫
Rd

e
i
h

(
⟨x′,x⟩+⟨x′−y′,ζ⟩−⟨y′,y⟩

)
p
(

x′+y′
2 , ζ

)
dy′dx′dζ.

With the change of variables x′ = x′, z = x′+y′
2 , we obtain

Kh(x, y) =
2d

(2πh)2d

∫
Rd

∫
Rd

∫
Rd

e
i
h Φ(x′,z,ζ,y,x) p(z, ζ) dx′ dz dζ,

where

Φ(x′, z, ζ, y, x) := 2
(〈

x′, ζ + x+y
2

〉
− ⟨z, y + ζ⟩

)
.

Moreover,
1

(2πh)d

∫
Rd

e
2i
h ⟨x′,ζ+ x+y

2 ⟩ dx′ = 2−d δ
(

ζ + x+y
2

)
.

Hence,

Kh(x, y) =
1

(2πh)d

∫
Rd

e
i
h ⟨x−y,z⟩ p

(
z,− x+y

2

)
dz.

which is the distribution kernel of p̃ w(x, hDx), where p̃(x, ξ) := p(ξ,−x).

A.2 Stirling’s Formula

We consider a proof of Stirling’s formula that follows the approach of of Tao in [Ta12, Sec-

tion 1.2].

We start by interpreting the factorial through the Gamma function, which is defined in the

following way

Γ : R → R

x 7→
∫ +∞

0
tx−1e−tdt.
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Repeated integration by parts yields the identity:

n! = Γ(n + 1) =
∫ +∞

0
tne−t dt.

Thus, estimating n! reduces to estimating the integral above. Elementary calculus shows that

the integrand tne−t attains its maximum at t = n, which suggests the substitution t = n + s.

This gives:

n! =
∫ +∞

−n
(n + s)ne−n−s ds = nne−n

∫ +∞

−n

(
1 +

s
n

)n
e−s ds,

where in the last equality we factored out the terms nne−n.

Combining the integrand into a single exponential, we obtain

n! = nne−n
∫ +∞

−n
exp

(
n ln

(
1 +

s
n

)
− s
)

ds.

Using a Taylor expansion, we observe that

n ln
(

1 +
s
n

)
= s − s2

2n
+ . . . ,

which suggests the heuristic approximation

exp
(

n ln
(

1 +
s
n

)
− s
)
≈ exp

(
− s2

2n

)
.

To make this rigorous, we first scale s by
√

n to eliminate the denominator n: we make a change

of variable in the integral given by s =
√

nx and we get

n! =
√

n nne−n
∫ +∞

−
√

n
exp

(
n ln

(
1 +

x√
n

)
−
√

nx
)

dx.

The Taylor expansion assures us that for fixed x, the integrand converges pointwise:

exp
(

n ln
(

1 +
x√
n

)
−
√

nx
)
→ exp

(
− x2

2

)
(A.3)

in the limit n → +∞. More precisely, since the function n ln
(

1 + x√
n

)
vanishes at the origin

with first derivative
√

n and has the second derivative equal to − 1
(1+x/

√
n)2 < 0, by applying

two times the fundamental theorem of calculus we obtain

n ln
(

1 +
x√
n

)
−
√

nx = −
∫ x

0

(x − y)
(1 + y/

√
n)2 dy.

Then, it is easy to see that the following uniform bound holds when |x| ≤
√

n

n ln
(

1 +
x√
n

)
−
√

nx ≤ −cx2,



A.3 Mini-max Theorem and Inequalities for Singular Values 103

for some c > 0. Moreover, for |x| >
√

n, we have

n ln
(

1 +
x√
n

)
−
√

nx ≤ −cx
√

n.

These bounds ensure that the integrands are dominated by an absolutely integrable function.

By the pointwise convergence (A.3) and the Lebesgue dominated convergence theorem, we

conclude ∫ +∞

−
√

n
exp

(
n ln

(
1 +

x√
n

)
−
√

nx
)

dx n→+∞−−−−→
∫ +∞

−∞
exp

(
− x2

2

)
dx.

We know that ∫ +∞

−∞
exp

(
− x2

2

)
dx =

√
2π,

leading to Stirling’s formula:

n! = (1 + o(1))
√

2πn nne−n, (A.4)

which means that

lim
n→+∞

n!√
2πn nne−n

= 1.

Furthermore, by Robbins’ refinement of Stirling’s formula [Ro55], we have

n! =
√

2πn nne−nern , (A.5)

where

0 <
1

12n + 1
< rn <

1
12n

.

A.3 Mini-max Theorem and Inequalities for Singular Values

In this section we recall a few fundamental results from spectral theory which we use exten-

sively in Chapter 3. We begin with the Courant–Fischer min–max principle in the formulation

of [Ta12]; a proof is omitted.

Theorem A.6 (Courant-Fischer mini-max theorem, [Ta12, Theorem 1.3.2]). Let A be an n × n

Hermitian matrix. For each 1 ≤ i ≤ n, the i-th eigenvalue of A, λi(A), admits the following character-

izations:

λi(A) = sup
dim(V)=i

inf
v∈V:∥v∥2=1

v∗Av,

and

λi(A) = inf
dim(V)=n−i+1

sup
v∈V:∥v∥2=1

v∗Av.

Here V ranges over all subspaces of Cn with the specified dimension.

We next collect some standard inequalities for singular values. Although in this thesis we
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are primarily concerned with finite-dimensional operators, we present a more general frame-

work, following the approach in Chapter 2 of [GoKr78].

Let H denote a separable Hilbert space and S∞ the space of all linear completely continuous

operators acting on H, while B the space of all bounded linear operators on H.

Let A ∈ S∞; then H = (A∗A)1/2 ∈ S∞. We define the singular values of A as the eigenval-

ues of H, and we enumerate them in decreasing order in the following way

s1(A) ≥ s2(A) ≥ · · · ≥ 0.

Definition A.7. Let A ∈ B. The dimension of A is defined as

r(A) := dim(Im(A)) ≤ +∞.

Theorem A.8 (Dž. E. Allahverdeiv, [GoKr78, Theorem 2.1]). Let A ∈ S∞ a linearly continuous

operator. Then for any n = 0, 1, 2, . . .

sn+1(A) = min
K∈Rn

∥A − K∥, (A.6)

where Rn is the set of all finite-dimensional operators of dimension ≤ n.

Consequently, we obtain the following corollaries.

Corollary A.9 (K. Fan, [GoKr78, Corollary 2.2] ). Let A, B ∈ S∞. Then the following inequalities

are true

sm+n−1(A + B) ≤ sm(A) + sn(B), for m, n = 1, 2, . . . ; (A.7)

sm+n−1(AB) ≤ sm(A)sn(B), for m, n = 1, 2, . . . . (A.8)

Proof. Let the (m − 1)-dimensional operator K1 and the (n − 1)-dimensional operator K2 be

such that

sm(A) = ∥A − K1∥, and sn(B) = ∥B − K2∥.

Then

sm+n−1(A + B) ≤ ∥A + B − (K1 + K2))∥

≤ ∥A − K1∥+ ∥B − K2∥ = sm(A) + sn(B).

Moreover, since the dimension of the operator AK2 + K1(B − K2) does not exceed m + n − 2,

and (A − K1)(B − K2) = AB − AK2 − K1(B − K2), we obtain

sm+n−1(AB) ≤ ∥A − K1∥∥B − K2∥ = sm(A)sn(B).



A.4 Classical Results in Complex and Harmonic Analysis 105

Corollary A.10 ( Corollary 2.3 of [GoKr78]). For any operators A, B ∈ S∞,

|sn(A)− sn(B)| ≤ ∥A − B∥, n = 1, 2, . . . . (A.9)

Proof. Let n ∈ N. By Theorem A.8, we have

sn+1(A) = min
K∈Rn

∥A − K∥ = min
K∈Rn

∥B − K + A − B∥

≤ min
K∈Rn

∥B − K∥+ ∥A − B∥ = sn+1(B) + ∥A − B∥.

Interchanging the roles of the operators A and B, we obtain

sn+1(B) ≤ sn+1(A) + ∥A − B∥,

from which (A.9) follows.

A.4 Classical Results in Complex and Harmonic Analysis

In this section we collect classical results from complex and harmonic analysis. These theo-

rems admit many equivalent formulations and broad generalizations; we state them in versions

that best suit our context and adapt them accordingly, without considering all the proofs. These

results play an important role in Chapter 4 and Chapter 5.

A.4.1 Maximum Principle and Harnack’s Inequality

We begin by presenting the Maximum Principle, as stated in [Ah79].

Theorem A.11 (The maximum principle, [Ah79, Theorem 12’]). Let E ⊂ C be a closed bounded

set. If f (z) is defined and continuous on E and holomorphic on the interior of E, then the maximum of

| f (z)| on E is assumed on the boundary of E, i.e.

max
z∈E

| f (z)| = max
z∈∂E

| f (z)|.

Next, we recall a version of Harnack’s inequality, adapted from [Ev10] and specialized to

the case of the Laplacian:

Theorem A.12 (Harnack’s Inequality). Let U ⊂ C be an open set, and suppose u ≥ 0 is a C2 solution

of

∆u = 0 in U.

If V ⋐ U is a connected set, then there exists a constant C > 0, depending only on V, such that

sup
V

u ≤ C inf
V

u.
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A.4.2 Jensen’s Formula

Here, we recall Jensen’s formula for holomorphic functions of one complex variable, a fun-

damental identity that follows from Poisson’s formula. We use it in Chapter 5.

We start by considering Poisson’s formula.

Theorem A.13 (Poisson’s Formula, [Ah79, Theorem 22]). Let r > 0 and let u be a harmonic

function in |z| < r and continuous on |z| ≤ r. Then for every a with |a| < r,

u(a) =
1

2π

∫
|z|=r

r2 − |a|2
|z − a|2 u(z)dθ. (A.10)

Remark A.14. Setting a = 0 in (A.10), gives the mean-value property

u(0) =
1

2π

∫
|z|=r

r2

|z|2 u(z)dθ =
1

2π

∫ 2π

0
u(reiθ)dθ. (A.11)

We now state Jensen’s formula, which follows directly from Theorem A.13.

Theorem A.15 (Jensen’s formula). Let r > 0 and let f be a holomorphic function on a neighborhood

of the closed disc |z| ≤ r. Assume f (0) ̸= 0 and let a1, a2, . . . , an be the zeros of f in |z| < r, counted

with multiplicity. Then the following equality is true

ln | f (0)| = −
n

∑
i=1

ln
(

r
|ai|

)
+

1
2π

∫ 2π

0
ln | f (reiθ)|dθ. (A.12)

Proof. Step 1 (No zeros in D(0, r)). If f has no zeros in |z| ≤ r, then ln | f | is harmonic on |z| < r

and continuous in |z| ≤ r. Thus, we can apply Theorem A.13 obtaining

ln | f (0)| = 1
2π

∫ 2π

0
ln | f (reiθ)|dθ. (A.13)

Step 2 (Zeros in |z| = r). Equality (A.13) remains valid if f has zeros in the circle |z| = r. Write

f (z) =
m

∏
i=1

(z − reiθi) g(z),

where g is holomorphic and non-vanishing on |z| ≤ r and {reiθi}i=1,...,m are the zeros of f in the

circle. Then we can apply (A.13) to g. Moreover we observe that for every i ∈ {1, . . . , m}, we

have

1
2π

∫ 2π

0
ln |reiθ − reiθi |dθ = ln(r) +

1
2π

∫ 2π

0
ln |eiθ − eiθi |dθ= ln(r) +

1
2π

∫ 2π−θi

−θi

ln |eiϕ − 1|dϕ

= ln(r) +
1

2π

∫ 2π

0
ln |eiϕ − 1|dϕ,

where we used the change of variables ϕ = θ − θi. By recalling the classical identity∫ π

0
ln |sin(x)| dx = −π ln(2),
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and considering the change of variables x = ϕ
2 , we obtain

1
2π

∫ 2π

0
ln |eiϕ − 1|dϕ =

1
2π

∫ 2π

0
ln(2) + ln

∣∣∣∣sin
(

ϕ

2

)∣∣∣∣ dϕ

= ln(2) +
1
π

∫ π

0
ln |sin(x)| dx = 0,

implying
1

2π

∫ 2π

0
ln |reiθ − reiθi |dθ = ln(r),

for i = 1, . . . , m. Hence (A.13) is still valid for f .

Step 3 (General case: zeros in |z| < r). Suppose f has zeros in |z| < r as in the hypotheses of the

theorem and define

F(z) := f (z)
n

∏
i=1

r2 − aiz
r(z − ai)

.

Then F is holomorphic and free from zeros in |z| < r. For |z| = r we have

|F(z)| = | f (z)|
n

∏
i=1

|zz̄ − āiz|
|r(z − ai)|

= | f (z)|
n

∏
i=1

r|z̄ − āi|
r|z − ai|

= | f (z)|.

Hence, by applying Step 2 to F, we get

ln |F(0)| = 1
2π

∫ 2π

0
ln | f (reiθ)|dθ. (A.14)

Finally, substituting the value of F(0) = f (0)∏n
i=1

r2

−rai
in (A.14), we obtain

ln | f (0)| = −
n

∑
i=1

ln
(

r
|ai|

)
+

1
2π

∫ 2π

0
ln | f (reiθ)|dθ.

A.5 General Tools from Analysis

In this section we collect some general analytic results used throughout the dissertation. We

record the statements without proofs.

Proposition A.16 (Jacobi’s formula). Let A : R → Mn be a differentiable map, where Mn denotes

the space of complex n × n matrices. Then

d
dt

det(A(t)) = tr
(

adj(A(t))
dA(t)

dt

)
,

where adj(A) denotes the adjugate of A, i.e. the transpose of its cofactor matrix

C =
(
(−1)i+j Mi,j

)n
i,j=1,
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with Mi,j the (i, j)-minor of A.

We now recall Markov’s inequality, a classical result in measure theory. In particular, we

consider an adaptation of [Ta11, Lemma 1.3.15] for functions of complex vectors.

Theorem A.17 (Markov’s inequality). Let f : CD → [0,+∞] be measurable with respect to the

Lebesgue measure λ and let K ⊂ CD be an arbitrary subset. Then for any 0 < M < +∞, the following

is true

λ({z ∈ K : f (z) ≥ M}) ≤ 1
M

∫
K

f (z)λ(dz). (A.15)

Proof. First, we consider the trivial point-wise inequality

M 1{z∈K: f (z)≥M}(z) ≤ f (z), ∀ z ∈ K.

Hence, by integrating over K both the sides of the inequality, we obtain

Mλ({z ∈ K : f (z) ≥ M}) ≤
∫

K
f (z)λ(dz),

which proves (A.15).

We now state a version of the Portemanteau theorem (see [Du02]), adapted to the setting

of finite measures. This result provides equivalent characterizations of the weak convergence

µn ⇒ µ, whose definition is recalled in the statement.

Theorem A.18 (Portemanteu, [Du02, Theorem 11.1.1]). Let (M, d) be a metric space and let µ and

{µn}n∈N be finite Borel measures on (M, d). Assume that {µn}n∈N are uniformly bounded in total

mass. Then the following are equivalent

1. µn ⇒ µ, for n → +∞, i.e.∫
f dµn −→

n→+∞

∫
f dµ for every f ∈ Cb(M),

where Cb(M) denotes the space of all bounded continuous real-valued functions on M.

2. For every open set U ⊂ M,

lim inf
n→+∞

µn(U) ≥ µ(U)

3. For every closed set F ⊂ M,

lim sup
n→+∞

µn(F) ≤ µ(F)

4. For every Borel set A ⊂ M with µ(∂A) = 0 (a continuity set of µ),

lim
n→+∞

µn(A) = µ(A).
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Corollary A.19. Let (M, d) be a separable metric space. Let {µn}n∈N be a sequence of random finite

Borel measures on (M, d) defined on a probability space (Ω,F , P) and let µ be a finite Borel measure

on (M, d). Suppose that µn are almost surely uniformly bounded in total mass. If

µn =⇒
n→+∞

µ, in probability,

then, for every Borel set A ⊂ M such that µ(∂A) = 0 (a continuity set of µ), one has

µn(A) −→
n→+∞

µ(A) in probability.

Proof. We view {µn}n∈N as a sequence of random variables that take value in the space of all

finite Borel measures on (M, d), denoted by M f ((M, d)). This space, with the topology induced

by the ⇒-convergence is metrizable, for example using the Prohorov metric, as defined in

[Kl14, Chapter 13]. Hence, considering this structure, we can apply [Ka21, Lemma 5.2]. From

any subsequence {µnj} of {µn} we can extract a further subsequence {µnjk
} such that

µnjk
=⇒

n→+∞
µ almost surely.

Fix a Borel set A ⊂ M with µ(∂A) = 0. For almost every ω ∈ Ω, the sequence of deterministic

measures

νk := µnjk
(ω)

satisfies νk ⇒ µ. Hence, by Portemanteau theorem (Theorem A.18),

νk(A) −→ µ(A), i.e. µnjk
(ω)(A) −→ µ(A).

Therefore µnjk
(A) → µ(A) almost surely. We have shown that every subsequence of µn(A)

admits a further subsequence converging almost surely to µ(A).

Consequently, applying again [Ka21, Lemma 5.2], the entire sequence µn(A) converges to

µ(A) in probability.
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