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Abstract

In this thesis we study the Weyl quantization of periodic symbols on the torus in a semiclassical
regime where the parameter N — oco. This framework is natural for describing quantum ob-
servables that are periodic both in position and momentum. Since the torus is a compact phase
space, the corresponding quantizations, when restricted to the space of periodic distributions,
yield finite-dimensional operators, i.e., square matrices, whose size grows with N.

Characterizing the spectrum of these operators is challenging, since they are not necessarily
self-adjoint. To regularize the spectrum, we introduce small random perturbations in the form
of diagonal matrices with compactly supported probability distributions. From a physical per-
spective, such perturbations can model random potentials in a quantum system.

The main contribution of this work is the establishment of a probabilistic Weyl law for the
spectrum of the perturbed operators. Using semiclassical analysis tools, Grushin problems,
and techniques from complex analysis and probability theory, we prove that with high prob-
ability the eigenvalues of the perturbed operators roughly equidistribute in the range of their
principal symbols. Specifically, for relatively compact sets with uniformly Lipschitz boundary,
the eigenvalue counting function admits an asymptotic estimate governed by the measure of
the set’s preimage under the principal symbol.

Our results demonstrate that small random potential perturbations can regularize the spec-

trum and recover Weyl-type asymptotics in this setting.






Abstract

In questa tesi studiamo la quantizzazione di Weyl di simboli periodici sul toro in un regime
semiclassico in cui il parametro N — co. Questo € un contesto naturale in cui descrivere osserv-
abili quantistiche periodiche sia nella posizione che nel momento. Poiché il toro & uno spazio
delle fasi compatto, le quantizzazioni corrispondenti, se ristrette allo spazio delle distribuzioni
periodiche, sono operatori finito-dimensionali, cioé matrici quadrate, la cui dimensione cresce
con N.

Caratterizzare lo spettro di questi operatori pud essere complesso, poiché non sono nec-
essariamente autoaggiunti. Al fine di regolarizzarne lo spettro, introduciamo piccole pertur-
bazioni casuali sotto forma di matrici diagonali con distribuzioni di probabilita a supporto
compatto. Da un punto di vista fisico, tali perturbazioni possono modellare potenziali casuali
in un sistema quantistico.

Il contributo principale di questo lavoro consiste in una legge di Weyl probabilistica per lo
spettro degli operatori perturbati. Utilizzando strumenti di analisi semiclassica, problemi di
tipo Grushin e tecniche di analisi complessa e teoria della probabilita, dimostriamo che con
grande probabilita gli autovalori degli operatori perturbati si equidistribuiscono approssima-
tivamente nell'immagine del loro simbolo principale. Nello specifico, per insiemi in relativa-
mente compatti con bordo uniformemente Lipschitziano, la funzione di conteggio degli auto-
valori ammette una stima asintotica determinata dalla misura della preimmagine dell’insieme
rispetto al simbolo principale.

I nostri risultati mostrano che piccole perturbazioni casuali di tipo potenziale regolarizzano

lo spettro e consentono di ottenere asintotiche di tipo Weyl in questo contesto.
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Introduction

In this thesis we work with pseudodifferential operators in a semiclassical regime where the
parameter N — co. In particular, we consider operators obtained as the Weyl quantization of
periodic symbols on the torus T?%. Since the torus is a compact phase space, using semiclassical
calculus, we show that these quantizations, when restricted to the space of periodic distribu-
tions, yield finite-dimensional operators. Thus, they are represented by square matrices whose

dimension grows with N.

These operators are not necessarily self-adjoint, and hence their spectral analysis is delicate:
the spectrum can be highly unstable. Whereas for self-adjoint operators there are asymptotic
Weyl laws describing their eigenvalue distribution, there is no general analogue in the non-
selfadjoint setting. Thus, in the framework we are studying, we aim to regularize the spectrum

by introducing small random perturbations.

This technique has been used by several authors and has proved particularly effective for
establishing probabilistic Weyl-type laws. In particular, we follow ideas from Vogel [Vo20]
and Sjostrand [Sj09]. Vogel works in the same toroidal, finite-dimensional setting considered
here and introduces full random matrix perturbations (e.g., with Gaussian entries). By con-
trast, Sjostrand studies Weyl quantization on R, leading to infinite-dimensional operators,

and considers multiplicative random perturbations modeling random potentials.

In this work we adopt Sjostrand’s multiplicative (potential-type) perturbations within the
finite-dimensional framework induced by the torus. Consequently, the perturbations are di-
agonal matrices, in contrast to the full-matrix model considered by Vogel. Although the two
cases present similarities, they cannot be approached in the same way and require different
arguments and discussions for achieving the desired results.

To set the framework, we first review the core tools of semiclassical analysis and functional
calculus, which provide the principal machinery for describing the operators under consid-
eration. We then introduce a Grushin problem: by embedding the original operator into an
augmented block system, its spectral properties are captured by a Schur complement, which is
often easier to analyze and control. Finally, standard results from complex analysis and proba-
bility theory provide the key estimates used in our main arguments.

Beyond its mathematical relevance, this framework admits a clear physical interpretation.
The operators introduced above naturally model quantum observables that are periodic in both

position and momentum; they arise via “quantization” of periodic symbols representing clas-
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sical observables. Moreover, the multiplicative perturbations we consider can model random
potentials acting on a quantum system.

Before turning to the technical developments of the subsequent chapters, we present a con-
crete example illustrating the scope and significance of this work. Fix N > 1 and consider the
two-dimensional torus T? as phase space, where the variable x stands for the position and ¢

for the momentum. We define the symbol
p(x,¢) := cos(2mx) +i cos(27¢), (x,&) € T2 1)

The Weyl quantization of p, restricted to the space of periodic distributions, yields a finite-

dimensional operator acting on CV. In particular, it can be represented by the matrix

cos(x1) f 0 0 i
5 cos(xz) i 0 0
0 A cos(x3z) % 0 21
pN: ) ‘2 .( ) .2 ) ) , xj:: W], ]:1,...,N,
0 e 0 5 cos(xn-1) L
5 0 0 5 cos(xy)

(2)

often referred to as the Scottish flag operator (a circulant tridiagonal, non-self-adjoint matrix).
Figure [1| displays the spectra obtained from two numerical simulations. The left panel
shows the spectrum of the unperturbed operator py; the right panel shows the spectrum of
the perturbed matrix py + 6V;;, where ¢ is a small N-dependent parameter and V; = diag(q) is

a diagonal potential with ¢ € CN sampled from a truncated multivariate Gaussian.
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Figure 1: Left: spectrum of py with N = 100. Right: spectrum of py + 6V, with N = 1000 and
§=N"32

These plots illustrate how a small diagonal (potential-type) random perturbation regular-



izes the spectrum of the Scottish flag operator.
The simulations are consistent with our main result (Theorem [5.5). By applying that theo-
rem to the case of the Scottish flag operator, as shown in Section we obtain the following

statement.

Theorem 1. Fix a semiclassical parameter N > 1 and consider p as in (1) and its quantization
pn asin @). Let g € CN be a random vector distributed as a Gaussian truncated to a ball B,
and set V, := diag(g). Let D be an open disc contained in the square [—1,1]?. Then there exists
0 < 6 < N~!such that the estimate
_ -1 3
He(pn +38V) D) = A(p~H(D))| < O(N7# (In(N))*)
holds with probability tending to 1 as N — +co. Here, ¢ denotes the spectrum and A the

Lebesgue measure on the torus.

In particular, in the semiclassical limit, the eigenvalues of py + 6V, become equidistributed

in the image of the symbol p(T?) with high probability.

Structure of the Thesis

The thesis is organized into five chapters. Each chapter develops tools and intermediate

results, culminating in the main probabilistic Weyl law.

Chapter 1

In the first chapter, we review the core notions of semiclassical analysis and functional cal-
culus. We begin by introducing symbols on the phase space R? and their Weyl quantization,
viewed as h—-dependent pseudodifferential operators defined via oscillatory integrals, where
0 < h < 1. After recording basic properties of this calculus, we pass to the toroidal setting
T?4. Restricting the corresponding quantized symbols to distributions that are periodic in both
position and momentum yields finite-dimensional operators on CV !, where N = (27th)~t. We
then perform a phase-space rescaling and summarize its consequences for symbols and quan-
tizations. The chapter concludes with Theorem[I.25, which provides spectral relations between

a symbol and its quantization and will be used repeatedly in the following chapters.

Chapter 2

In the second chapter we focus on the study of Grushin problems. These are very important
instruments in spectral theory, as they often simplify the analysis of spectral properties of both
finite-dimensional and infinite-dimensional operators.

The basic idea is to embed the original (possibly non-invertible) operator into an aug-

mented, invertible block system; the spectral information of the initial problem is then encoded
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in a Schur complement, which is more tractable to analyze. We then establish log-determinant
identities and estimates for both the unperturbed operator and for operators perturbed by de-
terministic potentials. These results will serve as a baseline for the probabilistic analysis in the

later chapters.

Chapter 3

In the third chapter we adapt Sjostrand’s strategy in [Sj09, Chapters 5-6] to the toroidal
setting. We consider a symbol p satisfying the symmetry assumption p(x,¢) = p(x, —¢), and
its corresponding Weyl quantization py with N > 1. Assuming a uniform lower bound on a
subset of the singular values of py, we construct a deterministic diagonal potential by applying
some linear-algebraic techniques to the singular vectors of py.

The Grushin reduction studied in Chapter [2| yields a bootstrap step that provides a new
bound for a larger portion of the singular values of the operator perturbed by this potential.
Iterating the procedure, each time updating the perturbation, we obtain a small diagonal per-
turbation 8V, for which the perturbed operator admits an explicit estimate for its smallest
singular value.

As a consequence, we derive a pointwise lower bound for the error functional

F(q) := In|det(pn + 0V, —z)| — N (/’[FZd In |po(p) —z|dp> ,

when evaluated at gg. Here py is the principal symbol of p, V; := diag(q) and z € C.
These deterministic constructions form the core original contribution of the thesis and are

the key input for the probabilistic analysis.

Chapter 4

In the fourth chapter we equip the diagonal vector g with a probability law supported on a
ball in CN* containing qo (e.g., a truncated Gaussian). After obtaining a uniform upper bound
for F over this ball, we apply Jensen’s inequality and some measure theory tools to derive a
quantitative bound on the probability of the event (|F(q)| < €), given an arbitrary ¢ > 0. This
probabilistic control of F is the bridge to the eigenvalue counting statements established in the

final chapter.

Chapter 5

In the fifth chapter we prove the asymptotic Weyl law that is the main objective of the thesis,
via two different approaches following [Vo20] and [SjVo21].

(1) Complex-analytic approach. This approach is based on Theorem 1.2 in [Sj10] concerning
zero counting for holomorphic functions of exponential growth. Using the deterministic and
probabilistic bounds developed earlier, we construct an appropriate framework where to apply

the theorem. This application yields our quantitative main result, Theorem Given I € C
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an open set with uniformly Lipschitz boundary, the theorem provides an explicit error bound

for

St vy nn) = [ ag), ©)

po (D)

which holds with probability tending to 1 as N — +co.

(ii) Measure-theoretic approach. Adapting Theorem 2.8.3 in [Tal2], we show that the empirical
spectral measures of the randomly perturbed operators py + 6V, converge weakly (in proba-
bility) to the push-forward of the Lebesgue measure on the torus under the principal symbol
po- Then, by applying Portemanteau’s theorem, we obtain the convergence in probability of
for a wider class of sets, though without providing an explicit error rate.

Finally, we return to the Scottish flag operator and present the application already shown

above, culminating in Theorem 1}






Notations

N*:= N\ {0}.

(-,-) Inner product on a complex Hilbert space (linear in the first argument, conjugate-linear

in the second). On real spaces it is the usual scalar product.

|-/l Norm induced by (-, -).

|-l Supremum (max) norm on vectors: for x = (x;);, [|x[|e := sup; |x;l.
(-y:=(1+]-[3)"? Japanese brackets.

A Lebesgue measure on the underlying space.

D(z,r) Open discin C with center z and radius r.

By(z,7) Openball in C? (with respect to || - ||2) with center z and radius r.
1. ={x € R%: ||x|]o =1} The unit sphere in R“.

D(M) :=CZP(M) Space of test functions on a smooth manifold M.
D'(M)  Space of distributions on a smooth manifold M.

S(R?)  Schwartz space of rapidly decreasing functions on IR¥.

S'(R?)  Space of tempered distributions on R%.

(-,)xx Dual pairing between a space X and its dual X".

| -]l Operator norm induced by || - [|2: [|P|| := sup,—; [|Px][2.

M,s Space of complex r X s matrices.



Notations

o(P) Spectrum of a finite-dimensional operator P.

tr(P) Trace of a finite-dimensional operator P.

D, := 19, Differential operator.

{-,-} Poisson brackets.

¢«(p) Push-forward of a measure y by a measurable map ¢.

a < b There exists a sufficiently large constant C > 0 such that Ca < b.

f=0O(N) There exists a constant C > 0 (independent of N) such that |f| < CN. When we

want to emphasize that the constant C > 0 depends on some parameter k, then we write Cy, or

with the above big-O notation O(N).

f=0O(N"%) Forevery m € N, there exists a constant C,, > 0, depending on m, such that

[fl < CuNTT.



Chapter 1

Semiclassical Calculus and Functional

Calculus

In the first chapter, we review some basic notions and results of semiclassical analysis in
RY, following the exposition in [DiSj99, Ma02, Zw12]. We then turn to the study of Toeplitz
quantization on the torus, as developed in [ChZw10] and [NoZw07]. Broadly speaking, this
framework can be interpreted as a restriction of semiclassical calculus to periodic symbols and
to function spaces consisting of tempered distributions that are periodic both in the spatial

variable and in the semiclassical frequency.

1.1 Semiclassical Quantization

We start by giving the definition of an order function.

Definition 1.1. Let m : R* —]0, +oo[ be a measurable function. We say that m is an order

function if there exist constants C, Ny > 0 such that
m(p) < Clp—n)Nom(ny), forall p, € R*,

where (p— 1) :== (1+ [l — y]3)2.

In particular, we consider smooth order functions, that is, functions m € C°°(IR2d,] 0, +-o0[).

As a simple example, we may take
m(x, &) == (O™, (x,&) e R¥,  with 0 < My < +o0,

which depends only on the frequency variable ¢ and not on x.

Definition 1.2. Let m be a smooth order function on R?. The symbol class associated with m

is defined as
S(m) :={p € C*(R*); Va € N*, 3C, > 0 such that [95p(p)| < Cam(p), ¥p € R*}. (L1)

3



1. Semiclassical Calculus and Functional Calculus

A particularly simple case is given by

S(1) = {p € C°(R*); Vo € N# sulzd [9pp(p)] < +oo}.
pER

Remark 1.3. The Schwartz space S(IR??) is contained in S(m), and moreover it is dense in S(m)

with respect to the topology of S({(x,&))¢m), for every € > 0.

From now on, we let 1 €]0, 1] denote the semiclassical parameter. A symbol p = p(p;h) €
S(m) may depend on /; in this case we assume that the symbol estimates in the definition (I.1)

hold uniformly in h. If a symbol p € S(m) is of the form

p(o;h) = pop) +hr(p;h), 1€ S(m),

then py is called the principal symbol of p. Moreover, we say that p has the asymptotic expan-
sion

p~po+hpr+...inS(m), p;j€ S(m), (1.2)

if p — Zj]\io Wpj € 'Nt1S(m), forall N € N.
We now define the h-Weyl quantization of a symbol acting on the Schwartz space S(IR?).

Definition 1.4. Given p € S(m) and u € S(R?), we set

Opi (p) (x, hDx)u(x) =p®(x, hDx)u(x)
::(271111)d //de ehvilp <x er , ffih) u(y)dydg, (1.3)

where the {—-integration is understood in the sense of oscillatory integrals (see Section in

the Appendix).

More explicitly, let the operator L be defined as in the Appendix, namely

1

L(¢,hDy) := TH@H%

(1 =1 (g, Dy))-

Let k € N with kK > d + Ny, where Nj is set in Definition Using the notion of oscillatory
integral extended to S, for p € S(m) and u € S, we have

P D) = s [ el en (p (S5 o) uw) ) dude,

where the convergence of the {-integral is guaranteed by the fact that

(v (p (3L 6) uw )| < con (L) @+ < 0@

Remark 1.5. If the symbol p belongs to the Schwartz class & (]Rz”l ), then for every u € S (IRd),



1.1 Semiclassical Quantization

p“u is is an absolutely convergent Lebesgue integral. Indeed, for a fixed x, the map

v,8) = p(5L§)uly)

is Schwartz in (y, §).

More generally, we introduce a family of quantizations depending on a parameter ¢ € [0, 1]:

Op}(p) (x, 1Dy )u(x) = (mlh)d J et (b (1= 0,8 u(v)dyide

Fort = 0 and t = 1, we obtain the left and the right quantization of p respectively, while the

choice t = % corresponds to the Weyl quantization, which is of particular interest due to its

favorable properties.

By applying integration by parts, we obtain the following theorem.
Theorem 1.6. If p € S(m), then
p¥(x,hD,) : S(R?) — S(R?)

and
p¥(x,hDy) : 8'(RY) — S'(RY)

are continuous linear transformations.

Before proving the theorem, we recall the definition of semiclassical Fourier transform:

(Far) (&) % <zmlz>d/2 e Futds, we S®RY, (1.4

In particular, 7, maps & — S continuously and can be extended to a continuous function

S" — &', mapping L? — L? unitarily.

Proof. We prove the result for h = 1. Define the auxiliary differential operators

_ 1-{(¢ Dy)

1+ (x—y,Dg)
1:= / ==
1+ 1113

L2 = .
1+ [x—yll3

A direct computation shows that
Ll (ei<x_]/'€>> — ei<X—er>, LZ (ei<x_y/§>> — ei<x_y/§>.

Let u € S(RY) and k € N with k > d + Ny, where Nj is set in Deﬁnition Using the notion
of oscillatory integral (see Section|A.1.1) extended to S, we obtain,

(e D) = s [, @O (p () utw) ) dud,
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Since p € S(m) and u € S(R?), there exists Cy > 0 such that

() (p (58wt )| < ck“x%’fkw. (15)

The decay in ¢ allows us to integrate by parts using the operator L,, providing additional decay

in the variable x — y. Iterating this procedure, for any integers n, m > 0, we obtain the following

bound for the integrand

Ep yn(tr \k XY 2, (5L 9N
Car (v (*56) 0 )| < ot e 9

Hence, by choosing the right values for k, m, n it can be shown that p(x, D, )u(x) € L®(R%).

Furthermore,
w 1 . i(x—y,&) Xty
59" (6 Da)u(x) = g [P e p (5,8 ) ulyayde.
Using integration by part and proceeding as above, we can conclude that
x*p”(x, Dx) : S(RY) — L¥(IRY), (1.7)

for each polynomial x*.

We recall the Fourier conjugation formula (Theorem[A.5/in Appendix A),
F 19" (x,Dy) F = p“(Dy, —x).
Then, for every multiindex g,
DEp*(x, Dx) = F1 (&P Fp"(x,Dx) ) = F(&Pp"(~Dg, ) F. (18)
From (1.7), we know that for any n € IN¥,
()2 xPp®(x, Dy) : S(R?) — L®(RY).
Thus, applying (I.8), we obtain that for all u € S(R?) and for alln € N,
(&) F (DEp*(x, Da)u) = (€)*"&Pp" (~Dg, &) Fu € L(RY),

and hence

Fp*(x,Dx) : S(RY) = FH({5)"L*(R")).



1.1 Semiclassical Quantization

If 2n > d + 1, it follows that F~1((&) ~2"L®(R?)) c F~1(LY(R?)) C L*(IR?), and therefore
P p®(x, Dy) : S(R?) — L=(R?).

Similarly, it can be shown that x*0fp®(x, D) : S(RY) — L*(IR¥) for all multiindices «, 3.
Moreover, the continuity follows from similar arguments using the seminorms. This proves
the first statement of the theorem.

Next, we define the modified symbol

p(x,¢) = p(x,=¢) € S(m).

Then, for all u,v € S(R?),

D o)ss = [f[p (5L e v nty)on) dydzs

S(X T+ —i{y—x ~w
Z///Wp< 2y"7>e Y u(y)o(x)dydndx = (u, p°(x, Dx)v)s:,s.

But we have already proved that 7(x, Dy)v € S(R?) for all v € S(IR¥). Hence, the dual
pairing above shows that p¥(x, D, )u is well defined in S’ (IRY) for every u € S'(IR%).

The continuity of p® on S’(IR¥) follows from the continuity on S(IR¥) and the definition of
the topology on S’(R?). O

Remark 1.7. Theorem 4.21 in [Zw12] shows that if the symbol p € S(R?), then
p¥(x,hD,) : L2(R?) — L*(RY)

is a bounded operator independently of .
Now, given two order functions my,m; on R, define the bilinear, continuous h-Moyal
product
#,: S(my) x S(myp) — S(mymy),

given by
ping = ") (p(x,E)a(y, 1)) |y =z (1.9)

where A(D) = % 0(Dy, Dg; Dy, Dyy), o denotes the standard symplectic form on R, and we
refer to [Zw12, Theorem 4.8] for the integral representation of the quantization of quadratic
exponentials.

From Theorem 4.17 of [Zw12], the #,-product admits the following asymptotic expansion

in the symbol class S(mym;):

+o0 1 .
P~ L (i AD)) p(x,8)q(y, 1),y ¢ € S(mama). (1.10)
=0

Now we present Theorem 4.11 of [Zw12], concerning the composition of Weyl quantizations of
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Schwartz functions.

Theorem 1.8. Let p,q € S(R*). Then
p¥(x,hDy)q" (x,hDy) = a“(x, hDy),

where

a(x,&) = e27PePEPuL) (p(x,8)q(y, 1)) sz = (P#10) (%, E)- (1.11)

Proof. Let p € S(IR?*). We apply the h-Fourier transform (T.4), and we get

plg 27'(h //]RZde

pxd) 27‘[h //]de ég*»ﬁ(x*,ﬁ*)dx*dg*.

Let r := (x*,&*) € R*. By Lemma 4.10 in [Zw12], the Weyl quantization of p admits the

:\*—

S D p(x, €)dxdg,

with inversion

following representation

p*(x,hDy) = (27§h) /]RM f)(r)e%%f’("'w) dr, where ¢, (x,¢) = (r,(x,&)). (1.12)

Taking also g € S(R??) and s := (y*,7*) € R*,we obtain
p*(x,hDx) 0 q(x,hDx) = 27rh o / / P (kD) pils( D) gy s, (1.13)
R

Using the identity (ii) in [Zw12}, Theorem 4.7]

el oils — p2r0(rs) e%“, (1.14)
and observing that
o(r,s) = {4, s}, (1.15)
we get, from (1.13) and (1.12),
pw(x,th) ogq (x th = 27'[]/1 YoyRCY // 4d ez;,{Z Ls }eh( r+s) (x,hD) drds
R
= it J T 8 = D),
where
o~ 1 by i~ i{[r fs}
a(t) = W/r+stp<r)fl<5)ezh .
Now set

(x,8) = 47D (p(x,8) gy, 1)) |

y=x, =%



1.1 Semiclassical Quantization

Using the Fourier representations of p and g as in (1.12)) together with (1.14), one checks that

p(r)q(s) dr ds

i) = // o(Ds,DgiDy,Dy) o (0 (28 4) p s (rs)
27Th (27th)2d ] JRaa y=x, 1=¢

27Th (2mh)2 //4d HERIELED) 50 B(r)(s) dr ds.
R

Applying the semiclassical Fourier transform, we obtain

~ 1 1 . i

a = 51N —_— 7 (x,8)+Ls(x,8) =L (x,6)) Lo (ris) (N2

A = (27th) //]R‘ld ((27rh)d //deeh dxd(j) e p(r)q(s) drds
1

= — 5(r)d(s e trts} dr,

e /m:t p(r)q(s)

where we used ([.15) and the fact that the term inside the parenthesis is J,s—; in S’(IR??). We
have shown that 2 = @. Since the Fourier transform is an isomorphism, it follows that a = 4,

which completes the proof. O

Proposition 1.9 (Theorem 4.18 of [Zw12]). Let p € S(m1), g € S(my), where my, my are order

functions. Then
p*(x,hDx) o q°(x,hDx) = (p#yq)* (x, hDx),

as operators mapping S(R?) to S(RY).

Proof. By Theorem the statement holds for all p,q € S(IR??). The general case follows by
density of S(IRY) in S(m) (see Remark , which allows to extend the identity to symbols in
S(mq) and S(my). O

Remark 1.10. The bilinear operation #, thus endows the set of symbols with an algebra struc-

ture, which is faithfully reflected at the operator level by the Weyl quantization.

Definition 1.11. A symbol p € S(m) is called elliptic if there exists a constant C > 0, indepen-
dent of &1, such that

PO > amxd), (00 €RY

Remark 1.12. If p € S(m) is elliptic, then ;] € S(1). In particular, applying the preceding

results, we obtain
1 w 1 w
p“(x,hDy) o <p) (x,hDy) = <p#hp> (x,hDy),

where p#,L € S(1). Moreover, the semiclassical expansion (I.10) yields
P#ny p y

1 o1, 1
P, ~ 1+k_Zlk!(lh)"(A(D>)k(P(x,«§)p(y,ﬂ))\

7
y=x, §=¢
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which shows in particular that

1
p#h; ~ 1+ hS(1) + Og)(H?).

1.2 Quantization of the Torus

In this section, we describe the space of tempered distributions that are simultaneously
periodic in both position and frequency variables. Our presentation follows the approach of
[Chzw10, NoZw07], where the Zd—periodicity was considered, and of [Vo20]] for the rescaled
torus.

Given a > 0, we define

T2 .= R* /(a"1/2Z). (1.16)

When a = 1, we simply write T>? = T24. Throughout this section, we let h < a < 1, and set

h="
We now introduce the space H%,ac C S'(R%), consisting of tempered distributions u €

S'(R?) which are a~1/2Z4-periodic both in position and in frequency. More explicitly, we re-

quire

u(x+a2n) =u(x), (Fu)(E+a )= (Fu)@E), VneZ' (1.17)

For a = 1 we shall simply write H¢ := Hz,l'
The following lemma characterizes precisely when this space is non-trivial, generalizing

the results from the references above.

Lemma1.13. Let h < « < 1. Then

1
d — *
H #{0} <= h= TN for some N € IN*. (1.18)

In this case ’H%a is a finite-dimensional complex vector space of dimension N and

% Yo <x—a—% <n+;\‘]>> ik e (Z/NZ)d}, (1.19)

(OC%I\])i ncz4

H%ﬂ = span {Q,"j =

where 6 denotes the Dirac distribution.
Proof. First, for u € S'(R?), we introduce the notation

il = (ZTEE)d/ZFEu.

The proof relies on the Poisson summation formula (see [H683, Section 7.2]), which states that
forp € S(RY) and a € R\ {0},

~\ d ~
Y §'(ag) = (27‘> >y (27;%) (1.20)
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Let ¢ € C*(R% R) be such that Ygezd P(x — a~1/2¢) = 1. Such a function can be built in the

{X—l/z 1/2

following way: choose an open neighborhood U O [—% ]"and ¥ € C®(U) such that

¢ > 0and ¥(x) > Oforall x € [—“721/2, “721/2]‘1

):gezd P(x — 0671/2g) and set ¢ = %

; consider the a~1/27Z%-periodic sum ¥(x) :=

Now, let u € H¢ and ¢ € S(R?). Since u is a~1/2Z-periodic in position, we obtain
h,n P p

(@ 9)ss = (M ss =, ¥ 9" +a"29)p)ss
geZd
= (27tha/?)%( u, Y (27tha'/?g)e —2rial (g, P)s s,
geZd

where in the last step we used the fact that

Fi(p@)e #) (@) = g +x),

and we applied the Poisson summation formula (1.20) to 1[J(y)e_%<y'x> with a = a~1/2. This
shows that
i = (27ha/?)? Y cgd

27thal/2g”
gezd

with coefficients

cg = <u’ €_2mal/z<g'.>¢>8’,8 — <u,e—2nia1/2<g,~>>Tg, (121)

where we see u € D'(T?) as a distribution on T¢ and 8,, denotes the Dirac measure at xo. Since
by ([.17) &" is a~'/?Z%-periodic, it follows that

uh = 5“71/zg * ﬁh, Vge Zd,

where * denotes the convolution between distributions. Hence, if we suppose u # 0, by com-

paring the supports of both the sides, we obtain the following equality
(2ha'/?) 74 = («7V2) 2% + (27ha/?) 27,

and consequently
7% = 2nha) ' 2% + 77,

Hence, necessarily h = 5 for some N € IN*.

On the other hand, suppose that h = ﬁ for N € IN*. By condition (I1.17) on i " and the

injectivity of /5, we obtain

i—1/2

u(x)=e " ¥y x), viez
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Combining this result with (1.21)) yields
Cg = Cg+Nl/ Vie Zd.

Hence, it follows that

ah = (Zﬂhﬂcl/z)d Z Cj Z 5a*1/2(l+N*1j)
je@/Nz)t 1ezd

= (27‘(%111/2)’1 Z Cj <5a—1/2N—1j * Z (51“_1/2) .
)

j€(Zz/Nz)? lezd

We observe that fora € R\ {0}, if we set u, = dezd Jag, then

~\ d
5 [ 2mh
Ug = a u27‘[ﬁ/a’

as shown in [H683| Theorem 7.2.1]. By applying this result and Fourier inversion formula, we
get

u(x) = (2mha/?)4(al/?) Y. ¢ ((271;;)‘1/2;{1(5“71/2%1],);%_1 ((tx_l/Z)duml/z))
je(z/Nz)*

=N“* Y oY exp( N~1a12(j, x)) 6(x — 2mtha/?1)
je(Z/Nz) ez

=N Y. cjexp (ZmN ) Y 6(x “2(1' + N~Y)),
jke(Z/NZ)? rezd

where, in the last equation, we used the identification I = NI’ +k, for I' € Z% and k €
(Z/NZ)“.

Thus, the condition of the lemma is also sufficient and (1.19) follows as well. O

Remark 1.14. We observe that the Fourier transform /; maps ’H% . into ’H% o and can be repre-
sented in the basis (1.19), by

217\,” (n,m)

(Fidum = —Nazz— mmE (Z/Nz)". (1.22)

1.3 Quantization of Symbols on the Torus

Throughout this section we assume & < « < 1 and work on the torus T2?. A function m €
C*®(T2%,]0, +o0) is called an order function if there exist constants Cy, Ny > 0, independent of
«, such that

m(p) < Co(1+ [lp — pllfa0) ™ ?m(p) =: Colp — w)ghum (), Vp,u €T, (1.23)
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where ||p — ‘uH%r%d = 1inf, o120 |0 — p + 7|3 Via the natural projection R*? — T2, we may
regard m as a a~'/2Z%1-periodic function in C*(IR?, |0, +co[). In particular, m is an order
function on R?%.

With this definition, we introduce the corresponding symbol class:

S(m, ) & {a € C®(T2"); VB € N¥3Cp > 0: [aha(p)| < Cam(p), Vp € Tﬁd}, (1.24)
where the constants Cg > 0 are independent of .
Identifying each symbol in S(m,a) with its a~1/2Z%—periodic extension in C®(RR*), we
have S(m,a) C S(m). This identification will be used throughout, and ensures that the quanti-
zation procedure described above applies to all p € S(m, «).

Let v, 1 € =127 and consider the unitary operators
(u)(x) == u(x—7),  (Myu)(x) = er M u(x),

Using the definition of Weyl quantization and a direct change of variables, one checks that

the following covariance relations are valid for each p € S(m, )

T p” (%, hDx) Ty = (p(x = 7,8))"(x, hDy),

Mypw(x,EDx)M,H = (p(x,& — )" (x, hDy).

Since p € S(m,a) is periodic in both x and & with respect to a~1/2Z, the right-hand sides

coincide with p®(x, hD,). Thus p® commutes with all Ty and M,,, and it follows that
w7, . yd d
p (x,th) . HE,D( — Hz,txl
where ’H% e S'(R?) is the space introduced in the previous section.
Leth = 51 with N € N* and b= % We define the restriction of the operator to ”H% L as

pra & pP(x,hD, € E(H%,,x'%%,a)- (1.25)

o,
When a = 1, we simply write py := pn,1. In particular, we note that 1y, = Ida .
hu
Recalling the definition (1.9) of the product #,, we see that if a,b € S(m) are periodic then
a#;b is also periodic. Therefore Proposition[l.9/applies to symbols (a,b) € S(imy,a) x S(ma, ),
and yields

AN © N = CNa,  Where ¢ = a#b € S(mymy, o).
The following lemma characterizes the Hilbert space structure of H% R
Lemma 1.15 (Lemma 11 of [Vo20]). There exists a unique Hilbert space structure on 7—[% v determined

up to a multiplicative constant, such that every operator fn o : 7—[%“ — ’H%a with f € C®(T2%;R)
is self-adjoint. The constant can be chosen so that the basis defined in (1.19) is orthonormal. With this
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. . d . . . .
choice, the Fourier transform on H'H,a defined in (1.22)) is unitary.

From now on, we equip 7—[% . with the inner product that defines this structure, so that the
basis (1.19) is orthonormal. Using this basis, we may identify

Hi = 2((z/Nz)') =N (1.26)

From the proof of Lemma presented in [Vo20] we can derive the following result which

was presented in the case # = 1 in [ChZw10, Lemma 2.5].

Proposition 1.16. Let f € S(m,«). Then

tr(fia) = (N&)* [ Flp)dp+1,

where for every k € IN, there exists a constant Cg 4 > 0, depending only on k and the dimension d, such
that

_ _k
| < CgNA ka2 Y 198 £1I 11 2y (1.27)
|B| <max(2d+1,k)

We conclude this section with the following proposition.

Proposition 1.17 (Proposition 13 of [Vo20]). Let N~! < a < 1and p € S(1,«). Then, there exists
a constant C > 0, independent of N and «, such that

[lpnall < C.

These results are presented as in [Vo20], where full proofs can be found.
The next sections develop the functional calculus for pseudo-differential operators. In the
first, we introduce some important preliminary results; in the second, we consider a dilation of

the phase space and establish a central estimate for a logarithmic determinant.

1.4 Preliminary Results for Functional Calculus

In this section we collect some auxiliary results that will play a central role in the following

section.

Theorem 1.18 (Helffer-Sjostrand formula). Let P be a self-adjoint operator on a Hilbert space H and
let f € C®(R). Suppose that f € C=(C) is an almost analytic extension of f satisfying

fir="f (1.28)

and

9zf(2) = O(I3(2)[%)- (1.29)
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Then, the following is true

F(P) = = [(z=P) 8cf(2) Ad2), (1.30)

where A(dz) denotes the Lebesgue measure con C. Moreover, the integral in (1.30) converges in the

sense of a Riemann integral for functions with values in L(H, H).

Proof. We begin by constructing, for f € CP(R) an almost analytic extension satisfying prop-
erties and (1.29). The existence of such extensions goes back to Hérmander [H568] and
his idea has subsequently been used by many authors. Here we follow the approach of Mather
in [Ma71] and of Jensen and Nakamura in [JeNa94].

Choose ¥ € CZ(R) with ¢ = 1 in a neighborhood of supp(f), and let x € C°(R) be equal

to 1 near 0. Define

~

Flrin) = L2 [ étesminiyn) feyag

where fis the Fourier transform of f. Property (1.28) follows from the Fourier inversion for-

mula.

Let N € IN. To verify (1.29), we compute

~

of(xiy) = 2V [ty e feyag + L Y [ ooty e fieyas

2 \ﬁ N
2 \/ﬁ // (et gx yC)f(f)dfdg‘i‘ \/Q / (x+iy (:X (y€)€N+lf( )
=:1+1I,

where xn(t) =t Nx/(t) € C(R). The second term satisfies the bound

1] < CulyMIENT F @) o wy

For the first term I, note that x — X # 0 on the support of ¥'(x) f(X). Repeated integration by

parts yields
1= 2\/127[1/1’(9() [ petetseme) X oS (Ddzig
_ v—zrine X WEY o=
B 2\/27-[ // +yC x+zyf(x)dXdC
= Dy [ et ip IV s

_ i—D _ el(xfx iy)& XNQ/C) 7
_2\/E // De)™ (e )x—f+iyf( )(C—i—z)

_ eyt N / / i (= F+i)E ??g(i/f))zy (i + D;)?DY <x S Q iy) dxdg
= O(lyl™)-

dxd¢
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We also observe that if f; and f, are two almost analytic extension of f satisfying (T.28) and

(L.29), then
fi(2) = fa(z) = OIS (2)|).

We conclude by deriving the representation (1.30) following the approach in [Di93]]. Define

Q= —% [ 2= Py a:f(z) Adz) € £, ),

and take u,v € H. We set E; = 1]_, 4(P) the family of spectral projections associated with P.

Stone’s formula gives
(z—P)! = /(z — 1) dE (1.31)

and thus
((z— P) "1, 0)y = /(z — )" {dEu, v)y,.
Consequently,
(Quo =~ [9:F(2) [(z~ 1) (dEm, o)A (d),

and, by Fubini’s theorem,

Quoh= [ (-5 [oeF@ =022 ) (e o

Since L is a fundamental solution of 9z, the inner integral is equal to
- 1 .
[ @0 (=07 ) Mdz) = 00,
Therefore,
(Qu oy = [ F()(dEm, ),
and hence Q = f(P). O

We next recall Beals” Lemma in the semiclassical setting, following [Zw12]. This result will
be crucial in the proof of the main theorem of the next section. Before considering the statement,

we need the following definition.

Definition 1.19. If A, B are operators on a Hilbert space H, we define
adg(A) := [B, A],

where |-, -] is the commutator. In particular ad is called the adjoint action.

Theorem 1.20 (Semiclassical Beals” Theorem, [Zw12, Theorem 8.3]). Let A : S(R?) — S’(R%)

be a continuous linear operator. Then, the following are equivalent:

1. A =a"(x,hDy), for a symbol a € S.



1.5 Phase Space Dilation and Logarithmic Estimates 17

2. Forevery N € N and for all linear functions I1(x,¢),...,In(x, &) on R?4, we have
| ady, () - - - iy (ohpy) All 2re) s 12(rey = O(BY).

Theorem 1.21 (Theorem 8.6 of [Zw12]]). Let m be an order function and assume for g := Inm that
|0°¢| < Co,  forall multiindices |a| > 1.

(i) Then the equation

9:B(t) = ¢“(x,hDy) B(t),
B(0) = I,
has a unique solution B(t) : S(R?) — S(R?) for t € R.

(ii) Furthermore, we have
B(t) = b{’(x, hDy)

for a symbol
by € S(mt)

1.5 Phase Space Dilation and Logarithmic Estimates

We begin by recalling the functional calculus for pseudo-differential operators, as presented
in [DiSj99] Section 8], adapted to symbols in the class S(m, a). First, we consider a result for
self-adjoint semiclassical pseudo-differential operators, which has been proven in [ChZw10),
Lemma 2.8] in the case when N~°C < a < 1, p €]0,1[. The following proposition, presented

in [Vo20] is an extension of this result, which includes also the case when « = CN~1,C > 1.

Proposition 1.22 (Proposition 14 of [Vo20]). Let N~! < a < 1 and let m > 1 be an order function
on T24 satisfying (T23). Let 0 < p € S(m, ), with asymptotic expansion p ~ Yito Efpj in S(m,«),
such that p + i elliptic. We assume p®(x,hDy;h, &) is a self-adjoint semiclassical pseudo-differential
operator. Then, for every p € CX(R), there exists f € S (%,a) such that

lp(pN,a) = fN,zx/
Moreover, f admits an asymptotic expansion
f Jioﬁff( ;u) in S lzx with f; € S loc
]:0 ] p/ m/ 4 ] ml M
In particular, its principal symbol satisfies

folp;a) = ¥(polp)),
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and

2
filpia) = ;gv(p;a) " (pop)), & € S(1,a),

forj € N.

Remark 1.23. In the statement of Proposition the functions p, p; may depend on a, even
if not explicitly indicated. However, the constants in the symbol estimates (1.24) are uniform

with respect to «.

From now on, we let h = ﬁ, NeNandN'!' < a <1 Letp € C*®(T?) admit
an asymptotic expansion p ~ pg + hp1 + ... in S(1,1). The corresponding Weyl quantization
P = p¥(x,hDy;h) defines a bounded operator from L?(R?) to L?>(R?). Setting Q = P*P, by
[Zw12|, Theorem 4.1] we have

(p“(x,hDy))" = P*(x,hDy).
Hence, by Proposition 1.9 there exists a symbol g € S(1,1) such that
Q =q“(x,hDy; h), (1.32)
where, from (1.10),
q=DP#,p~qo+hqg +... inS(1,1), withgy=|po|*. (1.33)
We next introduce the scaling operator
(Ung) (x) = a4l 27), ¢ € S(RY).

The operator U, is a continuous bijection S(R?) — S(IRY). It extends by duality to S’(R?) —
S’'(R?) and on L?(R?) is unitary with adjoint

Uy = U, ' = Uya.

Moreover, U, maps C*(T?%) continuously into C®(T2?) and acts unitarily between the spaces

Hi | and ’H% . with respect to the inner products defined in Lemmaf(1.15, In particular, recalling

(1.18), we have

uocQ]l = Q;x

Using U, we perform the phase space dilation

T > (x, g) = 0‘1/2(3?/ 5), (fr g) € Tid'
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Let v € S(RY). We compute the conjugation of g% (x, hDy) by Uy:

1/2
(Uag®U; "0) (£) = 2/ m 3 [[ et m v ( = §> o 4o(a 2y dy dE.

With the change of variables y = a!/27, & = al/?¢, so that dy d& = «? dij d&, we obtain

(uaqwu ZJ 27Th // h"‘l/zx yal/ZC 5]< 1/2x;’y 1/2€> ( )dyd‘:

(x— X+ ~N\ g~ T
v (“2 Zyamé) o(y) dy dg,

where we used the identity h = h/«. Hence,
g (x, hDy; ) = Uy (g (/2 (%,E);10))" (%, WD) U (134
Writing
4(pih) = q(a'?p; ) € S(1, ),

we conclude from the mapping properties of U, that

qy = q“(x,hDx;h) |,y = u,! (‘7w (%, hDg; h) [0 ) Uy = Uy ' GinaUs. (1.35)
, ha

Now we follow the approach of [HaSj08, Section 4] and we introduce an order function adapted
to the rescaled symbol a 1. We set
q0 ( w172

0070 5, peT. (1.36)

m(p) =1+ ——

Since go € S(1,1), it follows that m € C®(T2%).

To verify that m satisfies the order function estimates (1.23), we compute its derivatives. For

every multiindice B such that |B| = 1, using qo = |po|?, we obtain

(@)q0)(#!/%p) _ (2R{pola! %) @ppo)@!%p) _ o a*@/%p) _ (o vire

p
dpm(p) = 2172 - xl/2 = wl/2 =

For |B| =2,
dbm(p) = (3hqo) («'/%p) < C,,

where the constants C;, C; > 0 are independent of a. Applying Taylor’s theorem up to second

order gives, for all p, u € R*

m(p) < m(p) + C1(m(p))"*|lp — pll2 + Callo — plf3-
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Since m > 1, the mixed term can be absorbed as

1
(m(0))2llp = pll2 < 5m(p) + Callo — ull3,

so that

1
m(p) < m(p) + 5m(p) + Callo — 3 = m(p) < Cm(u)(p—w)>, Vp,p € R

Using the a~!/2Z?-translation invariance of m, we obtain that for all o/, € T2? and any
y€zZ¥,
m(p") = m(p +a"2y) < Cm(p')(p — ' — a7V 2y)%.

Taking the infimum over y shows that m indeed satisfies the order function condition (1.23).

Recalling the asymptotic expansion of g in (1.33), we obtain

al/2 al/2
a - p) _ qol ' o o (h) < m(p)+ O <h> — 0(1)mlp)

“1/2
o (1) = om ), 16l =1

14

Moreover, for derivatives of order grater than 2

1/2
o (1 2) —oat, g2

Thus, for every multiindex

061/2
b (‘7(’))) = Op(1)m(p), (1.37)

o

with the constants Og(1) independent of «. Hence

1/2,.

. m,u).

Introducing the notations
Gulp) =" "q,(a'%0), vEN,
we therefore have the asymptotic expansion
+oo
tx’lﬁw Z h'q,, inS(m,w).
v=0

Thus, we observe that there exists a constant Cy > 0 such that

+oo .
) 1lqu(p)| < Cohm,
v=1
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which implies,
1~ . ~ . +Oo~ ~ ~ . T
la™q(0) +i| > ||qo(0) +il = Y BIqu(0)]| > |qo(p) +i| — Comh,
v=1
Hence, since g is real, from (1.36) we have
&75(0) + 1] = = (@lp) + 1) — Come > "),

for some constant C > 0 independent of a. Therefore g + i is elliptic with respect to the order
function m, uniformly in « and ¢ “ is a self-adjoint operator as a consequence of (1.34). Thus,
by Proposition for every ¢ € C®°(RR), we have

$ Tun) = e 5 (),
f~ 2E”fu(p;a) inS (;a> , fr€S <;zx> , (1.38)

with fo(p; o) = lp(%ﬂp)) and

2v ) wl/2
flora) = Y gi(ose) V) (‘”P)) , g es(ia).

14

j=1
We now recall [HaSj08, Proposition 4.1], adapted to our setting.

Proposition 1.24. Let ) € C®(R) and i € C*(T2¢,10, 4-00[) be an order function such that

ii(p) =1 whenever a 'qo(a'/?p) < supsuppy +1/C,

for some C > 0 independent of «. Then, (I.38) holds in S(iit, &), for h, i sufficiently small.

Proof. The proof of Proposition 4.1 in [HaSj08]|] relies on the Helffer-Sjostrand formula (Theorem
1.18) and standard semiclassical calculus. It translates directly to our setting using the notions
discussed above. O

We now state the main result concerning log-determinant estimates, which will play a cru-

cial role later in this dissertation. The proof is presented in [Vo20, Proposition 17]

Theorem 1.25. Let N € IN* with N™! < a < 1, and let the symbol q be as in (1.33). Assume that
there exists k €)0, 1] such that the t-dependent volume

V()= A ({p e T, go(p) < t}> 0, 0<t<1. (1.39)

Then, for every i € CZ®(R),

try <’72"‘"> — N* (/ P (%0) dV(qo) + O(Na)%") . (1.40)
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Moreover, taking x € C ([0, +oo], [0, +-00[) with x(0) > 0, we have

In det (qn + ax (%N)) = N* (/W Ingo(p)dp + O <M In <i>>> . (1.41)

Remark 1.26. Considering the same assumptions of Theorem the equality is partic-
ularly useful for estimating the number of eigenvalues of gy in the interval [0, a]. Indeed, let
¥ € C®(R,[0,1]) such that ¥ = 1 on [0,1] and ¢ = 0 outside [—3, 3]. Thus, in the right-hand
side of we obtain

by assumption (1.39). Furthermore, the left-hand side of (1.40) is bounded from below in the

following way

(3 (55)) 2 () - (2)

=tr (]1[0,04] (LIN)) = Y, ¢

gea(py(gn))
=#{Ceo(qn): T €[0,a]},

where we used the fact that the spectrum is invariant under the unitary conjugation (1.35).

Therefore,
#{Tco(gn): T €[0,a]} = O(N9a"). (1.42)



Chapter 2

Grushin Problems and Schur

Complement Methods

In this chapter we set up a Grushin problem for the operator
P(z) :=pNna—2, z€C,

following the definition (1.25) in Chapter [l We then extend the analysis to the case where
P(z) is perturbed by a small potential, formulating a modified Grushin problem. The results

obtained here will later be applied to the analysis of random perturbations of P(z).

2.1 A General Grushin Problem and the Schur Complement Formula

We begin by giving a short overview on Grushin problems. For more general details see for

instance [SjZw(7].

In a general finite-dimensional setting, we consider an operator
P:H— H,

where H is a Hilbert space with dimH < +oc0. A priori we don’t know if P is invertible and
we would like to study and provide an estimate for det P. To address this, we introduce the

operator

P R_
P::( ):”H@’H_—>”HG9H+, 2.1)
R, 0

where H and H_ are finite-dimensional Hilbert spaces, and
Ry:H—>Hy, R_:H_—-MH,
are suitably chosen operators such that P is bijective. If dimH = dimH_ < +oo, we may

23
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write
E E
Pl=¢:= . (2.2)
E. E_4

We now turn to the question of the invertibility of P. A natural tool in this setting is the Schur
complement formula, which relates the invertibility of P to that of the finite-dimensional block
E_ . This connection plays a central role in the analysis of the Grushin problem and allows us

to extract useful information about P.

Proposition 2.1 (Schur Complement Formula). Let A € M,,, C € M,s, R € Ms,, and B € M.

Consider the block matrix
A C
A= (R B) S Mr+s,r+s-

Suppose A is invertible. We define the Schur complement of A as
S:=B—RA™'C.
Under this assumption, the following determinant factorization holds:
det(A) = det(A) det(S). (2.3)
Moreover, if both A and S are nonsingular, then A is bijective and

A 14 AICSIRAY —A-1cs!
A—1:< i ) (2.4)

—S71RA! s-1

Remark 2.2. In the same setting of Proposition if A is invertible, from (2.3) we obtain the
equivalence

A isinvertible < S is invertible .

Proof. We begin by noting that
EyAE, =1L,

A 0 I 0 I —A7IC
L:= , Ei:= , Er:= .
0 S —RAY T 0 I

Since E; and E; are block triangular with identity blocks on the diagonal, we have det(E;) =
det(Ey) = 1. Thus,

where

det A = det(L) = det(A) det(S).
Finally, the inverse formula follows from a straightforward verification. O

We now apply Proposition[2.1] to the setting introduced in 2.1) and 2.2). If P is invertible,
its Schur complement is
S=—R.,P'R_.
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We recall that R4+ were chosen so that P is invertible. Thus, Remarkimplies that S is invert-
ible and, by (2.2) and (2.4), we obtain

E,=S'=(-R,P'R )L (2.5)

Corollary 2.3. Let A € M,,, C € M,s, R € M;,, and B € M, ;. Suppose the block matrix

A C
A= (R B) € Mr+s,r+s;

to be invertible with inverse

Then the following factorization holds:
det(A) det(M_.) = det(A). (2.6)
In particular,
A is invertible < M_ is invertible .
Proof. Since A is a square matrix,
dimker A = dim coker A.
Choose a complement Y of Im A in C7, so that
C=ImAQY, dim Y = dim ker A.

Fix an isomorphism T : ker A — Y, and let ITj., 4 denote the projection of C" onto ker A. We
then define the operator
Q:=Tollgen:C" = C.

By construction, for every e > 0, the perturbed operator
A+¢€Q

is invertible. Applying Proposition 2.1|to the perturbed block matrix
A A+eQ C
R B

det(A?) = det(A + Q) det(S?), (2.7)

we obtain, from (2.3)),
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where S¢ := B — R(A + ¢Q)~!C. Moreover,

ASM:A/\/H—s(Q 0)M:Ir+s+s<QM QM+>.
0 0 0 0

For ¢ sufficiently small, we may assume that

)l
0 0

Hence, by the Neumann series, .4* M is bijective with inverse

oM oM.\
0 0

(AM) ' = Lys + f(_e)k (
k=1

g k k—1
et Y (=)t ((Qg@ (QM) : QM+>.
k=1

Consequently, .A® is bijective with inverse

e R [ M(eQM)E (eMQ) M.
(o ae)
=: , 2.8)
M M,

where to identify M¢ we used
M(QM)*1Q = (MQ)%, VY k>1,
which follows from the associativity of matrix multiplication. Consequently, we observe that
lim [|M® — M| = 0. (2.9)
e—0
Moreover, from (2.7) we know that the Schur complement S¢ is invertible, and thus by
det(A?) det(M? ) = det(A +€Q). (2.10)

Since this equality holds for all sufficiently small ¢ > 0, taking the limit as ¢ — 0 and using the

continuity of the determinant yields
det(A) det(M_) = det(A),
where we used (2.9). O

Now, we can also apply Corollary to the setting introduced in and (2.2). Thus,
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without requiring the invertibility of P, we obtain that

det(P) det(E_) = det(P). (2.11)

2.2 Grushin Problem for the Unperturbed Operator

In this section, we construct a Grushin problem for the operator obtained by restricting the
Weyl quantization of a symbol p on the torus to the space of periodic distributions, making use

of its left and right singular vectors.

We begin by fixing
h=-—, NE€ N*, and N'<a <1, (2.12)
and we consider a symbol p € C*(T??) admitting a semiclassical expansion
p~po+hp+... in S(1,1). (2.13)
We recall the identification H¢ = (2((Z/NZ)*) = CN * from (1.26), and define
P:=py:CN' =V, (2.14)
as in (1.25). We ix z € C and consider the operators
Q(z):==(P—z)"(P—-2z), Q(z):=(P—2z)(P-2z)*" (2.15)

Let
2 2 2
0<t1<t2<"'<tNd

denote the eigenvalues of Q(z) with corresponding orthonormal eigenvectors ey, . . ., exa € H.

Since P is a square matrix, we have rank(P — z) = rank(P — z)*, and consequently
dimker(P — z) = dimker(P — z)*.
Observing that ker Q(z) = ker(P — z) and ker Q'(z) = ker(P — z)*, it follows that
dim ker Q(z) = dimker Q(z) =: Np.
Let {f1,..., fn, } be an orthonormal basis of ker(P — z)* = ker Q’(z), and define

fir=t4(P—2)e;, No<i<N-. (2.16)
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These vectors are well-defined since f; > 0 for all i > Ny. For such an i, we have
Q) fi =t;'(P—2)Q(z)e; = ;' (P — z)t2e; = ;.

Hence, Q(z) and Q'(z) share the same spectrum {tZZ}INZd ,- Furthermore, we observe that

{fifi) = (P =2)"fi,t7le;) = (tiei, t7Ves) = 6y, i,j > No,
<fl,f]> = <(P — Z)*fl', tj_1€j> = <0, tj_l€j> =0, i< No,j > Np.

Thus, { fz}lN:d | form an orthonormal basis of H{ consisting of eigenvectors of Q'(z) with eigen-

values {tlz}f\f 1- Moreover, we record the relations
(P—z)*fi=tie;, (P—2z)ej=tfi, i=1,..., N (2.17)
Applying and to Q(z), we obtain
Q(z) = q“(x,hDy; h), g~ qo+hqg +... inS(1,1), with go=|po—z|* (2.18)
Let a be as in (2.12). Fix M > 0 so that
0<H<B< - <HB<a<ty, (2.19)

and let {6;}, be an orthonormal basis of CM. Assuming that the principal symbol o of Q(z)

satisfies (1.39), Theorem and Remark (1.26) yield
M = O(N%a"). (2.20)

Remark 2.4. From the proof of Theorem in [Vo20, Proposition 17] it follows that, if z varies
in a compact set K € C, and the condition (1.39) holds uniformly for z € K, then the estimate
(2.20) holds uniformly in z € K.

We now define the operators

M=

Ri: HI —CM: ur— Y (ue)0, (2.21)
i=1
and
M
Ro:CM—HI: u_— Y u_(i)f;, (2.22)

i=1

where u_ (i) := (u_, ;). The associated Grushin problem is given by

P-z R_
P(z) := ( . z . ) HioCM — Hig M (2.23)
+



2.2 Grushin Problem for the Unperturbed Operator

Our aim is to show that P(z) is bijective and derive an explicit formula for its inverse, which

we denote by £(z). Given (v,v4) € H{ & CM, we wish to solve

m)(”):(”). (2.24)
u_ U4

We write 1 and v with respect to the bases {e]'}}\’:d ,and {f; }]N:d 1, respectively:

N¢ N*
w=) we, v=73 vfj
= i

Similarly, we write u_ and v with respect to the basis {6;} M, with coefficients {u_ (i)}, and
{v4 (i) }M, respectively. Substituting into (2.24), we obtain

{ZINLH tucfi+ S u- () f; = T ocfio
Zf\i1 u;jo; = Z]I\i1 04 (])5]

By linear independence of {f;} ]N:d , and {5]'}].]\1 1, this system is equivalent to

tjuj:vj, j:M+l,...,Nd,

o . ) (2.25)
e ’ Z = ]_, ceey M
10 u_(i) v (i)
-1
L1 0 1 ,
( ) _ < ) =1, M (2.26)
1 0 1 —¢

and t; > 0, for all j > M + 1, we deduce that P(z) is bijective with inverse

Since

R _ [ E(z)  Ei(2)
P (z) =E(z) = (E(Z) E+(z)>, (2.27)
where
N¢ 1 M
E(z)= ) ?eifl-*, Ei(z) =) eé;, (2.28)
i=M+1 "t i=1

M M
E_ (Z) = 2(51 fi*/ E7+(Z) = — Z t; (5151* (2.29)
i=1 i=1
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Indeed, with these definitions, we have

£(2) v\ [ E@o+Ei(2)vr | (ZMo4(i)ei+ AR roe\ _ [ u
U4 E_(z)v+E_4(z)vs M (0 — to (i))6; u_)’
where the last equality follows from (2.25) and (2.26).

We now provide some estimates on the norms of the matrices defined above, which will be
useful later on. For the matrix E(z), take u € H{ = CN* with |Jul|, = 1. Then, by applying

Parseval’s identity with respect to the orthonormal basis { f; };, we obtain

2

N1 N 1 X 1
IEGulz=| Y. plwfa| = 3L Zlfiwml<az— 3 )l <
i=M+1 "1 o i=M+1ti M+1 i=M+1 M+1
Hence, .
IE@ < —— (2.30)
M+1
A similar argument applied to the remaining matrices yields the bounds
IEx(2) =1 [E-+(2)] < tm. (2.31)

Now, we turn to the computation of | det P(z)|. To this end, we consider P(z) expressed in the

bases

{gM+l/'"IféJNd/,é/llsfl/"'/fé/M/gM}/ {fM—‘rl/'"lde/}‘vl/gl/"'/fM/gM}/

6= (2), fii= <{;>, b; 1= (2)67—[%@(:1\4.

In this representation, P(z) takes the block-diagonal form

where

tM1

tm 1
. 1 0 -
Hence, since t%w <a< t%\/{ 411t follows that

|det(P(z))> = [ #=aM]]1(t), (2.32)

i=M+1 i=1
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where 1, (x) := max(x,«). Hence,
|det(P(2))> = aMdet(1,(Q(z2))). (2.33)

Since we don’t know if P — z is invertible, we can apply Corollary 2.1} specifically result (2.11),
and we obtain
In|det(P —z)| = In|det(P(z))| + In| det(E_4(z))|.

Nex, we estimate In | det P(z)|. Let x € CP(R) be a smooth cutoff function supported in [0, 2],
with0 < x <1and x =1on [0,1]. For every x > 0, we have the inequalities

X+ %X (%:) <Ta(x) <x+ax (g) . (2.34)

As shown in (2.18), the principal symbol of the operator Q(z) is given by |pg — z|?. By combin-
ing Theorem with the estimates (2.33), (2.34), and (2.20), we obtain

In|detP(z)|* = In|det(1,(Q(2)))| + MIn <i>

= N? </1er In|po(p) — z|*dp + O(a" In (i))) . (2.35)

In particular, the second equality follows from the fact that
e (06 o (22))

In “ <4Q(Z)
From Remark the equality (2.35) holds uniformly for all z € K, for any K € C.

7

det (Q(z) + 1 >> ’ <In|detl,(Q(z))| <In

o

together with the application of (1.41)) to both the sides.

2.3 Grushin Problem for the Perturbed Operator

We begin this section by considering a deterministic linear perturbation Q : H{ — H{ (i.e.
an N x N? matrix since H¢ ~ CN' from (T.26)). We study the properties of the operators per-
turbed by Q through the associated Grushin problem; a randomized setting will be addressed

later in the dissertation.

We fix N € IN* and we recall assumption (2.12) on / and a. Our goal is to analyze the
spectrum of
PP:=P+6Q, with0<s<1,

where P = py is defined as in (2.14). We proceed as in Section[2.2]and set up a Grushin problem

for the perturbed operator.
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Fix z € C. Let the operators R+ be as in (2.2T) and (2.22) and set

PP—z R_
Po(z) 1= : HIsCM — Hl e M,
R, 0

where M is defined by the condition (2.19). We set « as in (2.12) and we suppose that § > 0 is
such that

sa12)Q| < (2.36)

N\H

Now we aim to establish the invertibility of °(z) and to derive an explicit expression for its
inverse. The argument follows the same strategy used in the proof of Corollary 2.3 We use the

same notations adopted in the previous section.

Let £(z) = P~!(z), as defined in (2.23) and (2.27). We compute

) - QE(Z) QE+(Z)
P(Z)S(z)—1+5< 0 0 >

Hence, applying (2.30), (2.31) and (2.36), we get

s QE(z) QEi(z)
0 0

<SIQIUE@ I+ IE+(2)]1) < e "2|Q] +sllQl

(14 al/?) < 1.

N\'—‘

Therefore, by the Neumann series, we know that P°(z) £(z) is bijective with inverse

z))k z))k-1 +(z
(PO)E) —1+Z (QEé)) (QE())OQE()>’

whose norm is < O(1). Consequently, P°(z) is bijective with inverse

5(z) — 3=y [ E(QE) (GEQ)E _ (F() E)
ERU P (E—(5QE)k E_<5QE>'<—1<5Q>E+> - <E5<z> Emz))' =

Hence, by (2.30) and (2.36), we obtain the following inequality

IE°(2)|| = I+Z *(OQE)

<1+z GOE) )H < |E|
k
< L (uzu + 55 ook )

k=1

1 1 2
= < . 2.38
tv (1 - H5QEH> T tvn (2.35)
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Using also (2.31), we get these results

IES (2) || = (HZ *(JEQ) >
|E (2)|| = <I+ Y (-1)*(6QE) )
£, ‘

+o00
< [[E-| (Z ||5QEH“> I6QINE+|
k=1

< 25]|Q| < &'7?,. (2.41)

+o00
< (Z H<5EQH"> IE+[ <2 (239)
k=0

<2 (2.40)

IE® 4 (2) = E—|| = || 3 (~1)"E-(6QE)*"1(6Q)

Applying Corollary[2.3]to P°(z) and £°(z), we obtain
In | det(P’ — z)| = In|det(P°(z))| 4 In| det(E’ , (2))]. (2.42)

By Jacobi’s formula (see Proposition in the Appendix),

d

& det(Po(2)) = o (adj(P‘s(z)) ape(s )) (2.43)

where adj(P°(z)) denotes the adjugate of P°(z). Therefore, by taking the logarithms, we get

S Inldet P @) = ( gopsy = (aiP ) 5P @)) )

1 d (PP—z R_
=R <det(7>5(z)) tr <det(735(z))55(z)d ( R, 0 )))

= R(tr(E°(2)Q)). (2.44)

>

Remark 2.5. Let A, B € My n; the following inequality is true
| tr(AB)| < [|A[l[[Bl],

where the trace-norm of B is defined as || B||y, := tr((B*B)'/2).

Thus, using this result and applying (2.38) and (2.44), we obtain
In | det(£(2))| — In | det(&(z)) |] = |In | det(P?(2))] - In| det(P(z))|‘

o 4 -
_ /O - (In| det(P"(2))]) dt

< O0a2)|Q|lr)- (2.45)

— |® /O " te(E7(2)Q)dr
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Hence, using (2.35) and (2.45)), we get

In|det(P’(z))| < In|det(P(z))| + O(6a~""?[ Q)
= N4 </1r2d In |po(p) — z|dp + O <0¢K In <i>> + (’)((5N_doc_1/2||QHtr)> .

(2.46)
Moreover, under the assumption (2.36), by (2.31) and (2.41), we have
IE2 . (2)]| < a'/2 4ty = O(a!?),
which, in view of (2.20), yields the following upper bound
In|detE®_ (z)] < MIn(||E% ,(2)]]) < O(N9a")|Inal. (2.47)

2.4 Auxiliary Estimates

We conclude this chapter with a general estimate on the singular values arising in Grushin

problems.

Lemma 2.6. Let H be an N-dimensional complex Hilbert space, and let N > M > 0. Suppose that

P R_
P = " HeCM s HoCM
Ry 0

is a bijective matrix of linear operators, with inverse

5:<E E*).
E. E_.

Let 0 < t(P) < ... < tn(P) denote the eigenvalues of (P*P)Y2, and let 0 < t(E_,) < ... <
tam(E—4) denote the eigenvalues of (E* , E_1)/2. Then, form =1,..., M, we have

[El[tn(E—+) + |E-I|E+ ]| —

(P) < [IR4[IR [t (E—+.)- (2.48)

Proof. By Corollary 2.3we know that P is invertible if and only if E_, is invertible, and in that
case, by formula in Theorem 2.1} the following two are true

P'=E-E,EZ'E, El=-R.PIR. (2.49)

We adopt a decreasing notation for the singular values. In particular, we denote the singular
values of P as 0 < sy(P) < sy—1(P) < ... < s1(P) and the singular values of E_ as 0 <



2.4 Auxiliary Estimates

35

SM(E7+) < SM_l(E,Jr) <...< Sl(E,+). Thus,

SH(P):tN—n—H(P)r nzl,...,N
Sm(E_+) = therl(E——l-)/ m=1... .,M.

Assume P is invertible. Then, we have

sp(P71) = n=1,...,N, (2.50)

and similarly,
1

" tw(E—y)
Recall also that s1(A) = ||A|| for every matrix A. Since Ky Fan’s inequalities (Corollary[A.9]in

sm(EZL) m=1,...,M. (2.51)

the Appendix) apply to trace-class operators on a Hilbert space, we use them together with the
identities (2.49). Applying once (A.7) and twice (A.§), it follows that

Sm(P™Y) =su(E—E4EZYE_) < s1(E) +spu(—E+EZL)s;(E-)
<|IE|| + |E|I|E-|lsm(EZL), m=1,...,M. (2.52)

Therefore, invoking (2.50) and (2.51)) yields

1 1 b (E—4)

b (P) = > = ,
" sm(P~1) 7 IE| + | Ex || E- || IElltm(E—+) + [[E4I[[E-|

m=1,...,M,

1
b (E—+)

which is the desired lower bound. For the upper bound, from the second identity in (2.49), we
get
sm(E"}) = sm(RyPT'R-) < s1(Ry)sm(P71) s1(R-) = [[Ry || [R-[[sm(P7Y).

Taking the reciprocals and using (2.50) and (2.51),

ta(P) < R IR_ | tu(E—y), m=1,..., M.

Assume now that P is not invertible. We proceed as in the proof of Corollary 2.3 We introduce
the perturbed operator P° := P + ¢X, where || X|| < 1and 0 < € < 1, so that P* is bijective.
By the same Neumann series argument used before, the associated Grushin problem P°¢ re-
mains invertible, with inverse £¢ defined as in (2.8). Consequently, we may apply to this
perturbed problem.

Moreover, since
|P¢ — P|| — 0, €5 =& — 0, ase — 0,

from Corollary in the Appendix, the singular values of P* and of E? | depend continu-
ously on e. Thus, it follows that (2.48) also holds in the case where P fails to be invertible. This
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completes the proof.



Chapter 3
Estimates for the Perturbed Operator

In this chapter we construct a suitable perturbation for an operator P defined as in in
order to obtain quantitative lower bounds for the small singular values of the perturbed oper-
ator. Our approach adapts the method used by Sjéstrand in [Sj09]) to the toroidal phase space
T?4. Although the setting is periodic, the underlying ideas carry over with minor modifications
and yield bounds comparable to those in the Euclidean case.

We proceed in two stages. First, using an elementary linear—algebraic argument, we build
a preliminary perturbation that already furnishes effective lower bounds for a larger set of the
singular values of the perturbed operator. Second, following Sjostrand’s iterative scheme, we
propagate the estimate down to the bottom of the singular-value scale, thereby controlling even

the lowest singular value of the perturbed operator.

3.1 Construction of a Potential

In this section we construct a diagonal potential from two families of linearly independent
vectors by selecting an appropriate set of coordinate indices. We then apply this construction
to the framework of the previous chapters, obtaining a potential that will serve as the initial
perturbation for the iterative perturbation scheme developed in the following sections.

We fix N € IN* and consider the following results.

Proposition3.1. Let M € IN, 1 < M < Neandletey, ..., epm € CN be linearly independent vectors,
such that e; = (el-(n))ﬁ’il, foreachi = 1,..., M. Under these assumptions we can find M different
points ny,...,ny € {1,... ,N%Y such that the vectors &(ny), ..., e(ny) are linearly independent in
CM where

e1(n)

&(n) = 62(.”)  Vnefl,... N, (3.1)

eM(n)

Proof. We define the set E C CMas E := Span{é&(n); n = 1,..., N} and we claim that E = CM.
Indeed, if we suppose that this isn’t true, there would exist 0 # A = (Ay,...,Apm) € CM such

37
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that A € E+, ie.
M
0=(Aén)) =Y Aei(n), Vne{l.. N},
j=1

and consequently

But this implies that ey, ..., e are linearly dependent vectors, which is in contradiction with
the hypothesis. Hence, we know that E = CM, and we can find ny,..., 1y € {1,..., N} such

that &(ny),...,&(ny) form a basis in CM, and consequently they are linearly independent. [

Proposition 3.2. Let M € N, 1 < M < N9 and let {er,...,em}, {f1,-.., fm} be two linearly

independent families in CN ", For both of them, we adopt the notations introduced in Proposition We
S M

assume that we can find M pointsny, . .., ny € {1,..., N} such that both {&(n;)} ™, and {f(nl) } )
1=

are linearly independent families in CM. We define

B:CM — M

Then B is bijective.

Proof. Let u € Ker B. Since &(n1),...,&(ny) form a basis in CM, by the definition of B we have
<u,f(nj)> =0, forallj=1,...,M.

Since f(nl), .. .,f(nM) form a basis in CM, it follows that u = 0. Hence, B is bijective. d

We observe that, under the same assumptions of Proposition[3.2] the matrix associated with

B, expressed in the canonical basis, is given by:

M
(B)]',k = Zej(ny)fk(nv), ],k = 1,M (33)
v=1

Hence, if we define the matrices

E:= (&(ny),...,eny)) € CMM (3.4)
F:= (q(nl)/' ’ q(”M)) € CMXM/ (3 5)

then we have
B = EF*. (3.6)

Lemma3.3. Lete M € N, 1 < M < N%and lete, ..., ey beasin Proposition Let LC CMbea
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linear subspace of dimension S — 1, for some 1 < S < M. Then, there existsn € {1,..., Nd} such that

dist (2(n),L)? > % fr (1= 711) Exa),s

where Exa == ({ej, ex)) and 7t1, is the orthogonal projection from CM onto L.

1<j k<M
Proof. Let {v1,...,vm} be an orthonormal basis of C™ chosen so that L = span {1,
(L = {0} when S = 1). We write

V1,1
=\ : |ecM vi=1,..., M

Um,i

By definition we have, foralln € {1,..., N d},

(3.7)

...,1/5,1}

M , M |M 2
dist(#(n), LY = 3 |(En), v} 2 = Y| Y e5(n) 75
=5 1=S |j=1
M /M M M M
_3 (zexn)ﬂ) (zemmz) =3 3 e
I=s \j=1 k=1 1= jk=1
It follows that
N ) Nt M M
Zdist (é(n),L)" = Z Z Wej(n)ek(n)vkl
n=1 n=1[=Sjk=1
M M M
= Z Z @(gNd)]’,ka,l = Z (Enavy, vy) = tr((I— 7t)Ena)-
1=S jk=1 1=5$

Now, by estimating the summation, we obtain

Nd
tr((I— ) Ena) = Y dist (¢(n),L)> < N?  max dist (&(n),L)*.
n=1 ﬂzl,...,N

Thus, we can find an n € {1,..., N¢} which satisfies (3.7).

Remark 3.4. For the purposes of the upcoming application, we consider the assumption that

{ey,...,em} is an orthonormal family in CN g
Then £y« = I and simplifies to

M-S5+1
dist (8(n), L)* > —> "~
L5t 2

In the general case, we let 0 < &1 < &y < ... < &) denote the eigenvalues of Eyu.

(3.9)

Then we



40

3. Estimates for the Perturbed Operator

have

Cinf  tr ((1 — ﬂL)gNd) =e+e+...+epmsy1 = Es. (3.10)
dim L=S—-1

Indeed, the mini-max principle (Theorem [A.6) implies that fork =1,..., M

gp = inf sup (Eav,v).
dim L=k veL
[vll2=1

Thus, for a general subspace L of dimension S — 1, the eigenvalues of (1 — 711)Eya (1 — 711 ) are
g <...< s’MfSH,wheres;- >ej,forj=1,..., M—S+1.

Now let {ey,...,em} and {f1,..., fm} be two linearly independent families in CNd, and
consider the notation for &(n) and f(n). Applying Lemma 3.3 together with (3.10) to the

first family, we successively choose indices

ny,...,ny € {1,...,N} (3.11)
such that
N P 1 1 . Eq
le(m)lI” > S5z tr (I = 7o) Ene) = <77 inf (1= 7)) = 17
s S 2 1. E;
dist ((n2), Cé(n1))” > N tr (I — 7mp)Ena) = N’
dist ((s), Ce(m) @+ Ce(ns 1))> > —  inf  tr (I — 1) Exe) = 2
” > ! S7V) = Nd gimL=5-1 BIENG T Nd”
. —, - . 2 ]. . 81
dist (&(n), Cé(n1) ® - - - ® Ce(npr_1))” > Wdimirlfm_ltr((l ) Ene) = =

Let {v1,v2,...,vm} be the Gram-Schmidt orthonormalization of the basis {&(1;) }]Ai 1, so that

é(n1) = c1v1, where [c1] > Ni)
(3.12)

1
Ec\ 2
é(ng) = csvs mod (vy,...,vs—1), where |cg| > (NZ> , forS=2,....M

ie.
S-1
é(ng) =csvs+ Y Ajyvj, forS=2,...,M,
j=1
so that é(ng) — 2]5;11 Ajvj is orthogonal to the vectors vy, ...,vs 1 and |Jvs][2 = 1.
We consider the matrix E defined as in (3.4). Expressing the vectors é(ny),é(ny), ..., e(ny)

in the basis v1,...,vp does not affect its determinant. Indeed, with this change of basis the
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matrix E becomes upper triangular with diagonal entries cy, ..., c). Hence,
|detE| =|c1---cml,

and (3.12) implies that
(E1Ep - - - EM)l/Z

|detE| > (N2 (3.13)
We now consider the matrix B defined as in for the indices in (3.11)). Suppose that
fi=¢, j=1,...,M. (3.14)
Then, recalling definitions and (3.5), we have F* = E/, and from (3.6),
B =EE". (3.15)
Hence, from and (3.15), we get
| det B| > ElEIz\]WEM (3.16)

Moreover, under the assumption (3.9), this result simplifies to

M!

We are interested in estimating the singular values s;(B) > s»(B) > ... > sp(B) of the matrix

B. Writing s; := s;(B), we have, for every k = {1,..., M}

M
st > s s > T s; = | det B (3.17)
=1

We recall that s; = || B||, and combining (3.16) and (3.17), we obtain the following.

Proposition 3.5. Under the assumption (3.14), the following two inequalities are true

1
EiE;---Ey)™
S1 Z( ! sz M> 7 (318)
sk > 51 H<511\]fd> , fork=1,...,M. (3.19)
j=1

Proof. The first inequality is an immediate consequence of (3.16) and (3.17).

By using the same results we now derive the second one. Letting k € {1,..., M}, we have

k—1_M—k+1 M E
Sl Sk Z ‘detB’ Zl_‘!(]\]’i),
]:
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and hence

PR ) )

O]

Now, we would like to express the matrix B as a product involving a diagonal potential.
We consider the indices 7y, ..., 1ny € {1,..., N4} chosen in (3.11). Recalling (3.3), we obtain for
everyl,m=1,..., M,

M N4
(B)ym = Y er(n) fu(ny) = }_ er(n) fu(n)q (), (3.20)
j=1 n=1
where g € {0,1}" is defined as
1, if dj:n=mn;
g(n) := , (3.21)
0, else
for every n = 1,..., N“. In particular, § has M non-zero entries.

We now adopt the same framework of Chapter I Let {e;} N 1 and { fl}N denote the or-
thonormal eigenbases of Q(z) and Q'(z), respectively, defined previously (see (2.15) and (2.16)).
Let M be the number of eigenvalues of Q(z), Q'(z) in the interval [0, a]: We consider the ma-
trices E4 and E_ as introduced in and (2.29), and we recall their properties as stated in
(2.3T). With these choices, by (3.20), we have

B' = E_V,E,, (3.22)

where
V, := diag (q(n); n= 1,...Nd) e CN N’ (3.23)

is in the form of a potential. We note that this diagonal matrix is entirely determined by the
choice of the indices ny, ..., 1)1, which in turn depends on the eigenvectors {e;}i—1 .

over, we observe that
1Vall = llglle = 1. (3.24)

This construction will play a key role in the following sections, where we will use it to identify

a suitable perturbation for the operator under consideration.
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3.2 Improving Singular Value Bounds via Potential Perturbations

In this section we adapt the work of Sjostrand in [Sj09, Chapters 5-6] to the discrete case.

From now on, we adopt the same setting and notation as in Chapter 2} We set

1
h:m, NeN*, and N lxa <1,

Let
p € C*°(T?) admit the asymptotic expansion p ~ po+hpy +... inS(1,1),  (3.25)

and let P := py be the restriction of its Weyl quantization to H¢ as in (L.25). By the identification
(1.26), P defines a linear operator
P:cN' — V.

Fix z € C. Our goal is to construct a small perturbation 6V in the form of a potential, that
yields suitable lower bounds on the smallest singular values of the operator P + 6V, — z. We

also assume the symmetry condition

p(x,¢) = plx,=0), (3.26)
which is equivalent to requiring that

P* =TPT, (3.27)

where I'u := u denotes the antilinear operator of complex conjugation. We observe that condi-
tion (3.27) remains valid under the addition of any diagonal matrix to P.

As before, we introduce the volume
vt = A ({p € T Ipolp) 2 < t}),
and assume that, for the given value of z,
V.(H) =0(t), 0<t«k1, (3.28)

for some exponent x €]0,1].

Remark 3.6. Condition is employed throughout the literature in this framework, including
in [ChZw10, HaSj08, [Vo20]. In particular, it is important for controlling the number of small
eigenvalues of (P — z)*(P — z) for a fixed z € C.

As observed in [ChZw10], if p is real analytic, then (3.28) always holds for some x > 0.
Similarly, if p is real analytic and p(T??) C C has non-empty interior, then for z € C,

1
dpj,-1(z) 7 0 = (3.28) holds with « > 5
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Moreover, for p € C*(T?¥) and z € C, if
dp,dp are linearly independent at every point of p~'(z) = (3.28) holds with x = 1. (3.29)

In particular, we observe that dp and dp are linearly independent at a point p when

{p.P}(p) #0,

where {a,b} := 0zadyb — 0xadzb denotes the Poisson brackets on the torus T2, The two con-
ditions are equivalent when the dimension d = 1, but in dimension d > 1 this is not true in
general. Furthermore, condition does not hold when z € 8(po(T??)), but it was observed
in [HaSj08, Example 12.1] that for z € C, if

Voep (z): {pp}p) #0 or {p,{p.p}}(p) #0, then holds with x = Z-

Under the assumptions stated above, Theorem and in particular its consequence (1.42),
yields the following.

Corollary 3.7. For N! < a < 1, if (3:28) holds, the number M(a) of eigenvalues of (P —z)*(P — z)
in [0, a] satisfies
M(a) = O(a*NY).

Now, we consider a small arbitrary perturbation applied to the operator P. Let g9 € c™

and V,, := diag(qo(j); j = 1,..., N") its associated diagonal matrix. Let 5y > 0 such that
160 Vs || = d0llg0l0 < N7, (3.30)

and consider the perturbed operator Py := P + 6yV,,. We observe that thanks to the hypothesis
(3.30), Corollary still applies after replacing P with P). Indeed, applying the mini-max
theorem (see Theorem in the Appendix) to the j-th singular value of P — z, denoted t;(P —

z), we obtain the following

VoM dim V=) YEV:|yll2=1

tj(P—z):\/ min max [|(P —z)yl[3

=  min max [Py — z) + (=00 Vg ¥l
veeN dimv=j $eVipl2=1

< t]'(PQ —-z)+ (50||Vq0||. (3.31)

This result can alternatively be derived by applying Ky Fan inequalities (Corollary[A.9).

Let a be as in the assumptions of Corollary and fix an arbitrary constant C > 0. Let
M(Ca) be defined as in the corollary and set j > M(Ca) + 1. By (3.30), there exists a sufficiently
large constant C; > 0 such that

N—l
160V, || < o
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Under these conditions, we obtain:

Nfl
Ca < tj(P—z) <tj(Po—z)+ [[6oVy || < tj(Po—2z) + ——

C’
which implies
Nfl
t](PO —Z) > CDC - C71.

Furthermore, the assumption N1 < & implies

-1

N1
a — G

for another large constant C; > 0. Hence, for a suitable choice of the constants,

1 Cua
ti(Py — 1— —— —
i(Po z)>Ctx< CC1C2>> 5

for all j > M(Ca) + 1. Therefore, if we let Mo(5*) be the number of singular values of Py — z

lying in the interval [0, %], we have shown that

Mo (i‘") < M(Ca).

This establishes the validity of Corollary 3.7 for the perturbed operator P.
Now, we fix 19 €0, (CN -H/ 2] for a new constant C > 0, and denote by

Ogtl(Po—Z) Stz(Po—Z) S...StM(Po—Z) < Ty,

all the singular values of Py — z lying in the interval [0, 7p[. Following the previous notation, we
have M = My(72). Thus, if we take &« = CN ™!, we obtain

M < M(x) = O(a"*N9) = O(N—%). (3.32)
We fix 6 € ]0, 1 [ and recall that M is defined by the condition
tm(Po — z) < 10 < tpga1(Po — 2). (3.33)

We also fix a constant g > 0. Then we obtain the following.
Proposition 3.8. Under the assumptions described above, the following statements hold:

1. Suppose M is sufficiently large. Then there exists a vector g € {0, 1}Nd, and the corresponding
potential V, := diag(q(n); n =1,..., N?) with ||Vy|| = 1 such that, setting
_ T

PP=PRy+oV, 8= 2N,
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for some sufficiently large constant C > 0, the following estimates hold:

—d
WP —2) > (P —2) - 28
N—d
> (1 — C) ty(Py—z), foreveryv > M, (3.34)
t(P° —z) > uoN"M, for [M(1-0)]+1<v<M, (3.35)
where
My = 2d + e, (3.36)
and [a] := max(Z N (—oo, a]) denotes the integer part of the real number a.

2. If M = O(1), the same conclusion holds, provided that estimate (3.35)) is replaced by

tm(P° —z) > opN—M1, (3.37)

Remark 3.9. This result is particularly useful in the analysis of the operator Py — z. Indeed, if
Py — z has many singular values lying in a small interval, one can construct a suitable pertur-
bation that provides a uniform lower bound for a portion of the corresponding singular values

of the perturbed operator, a property that is not guaranteed for Py — z itself.

Proof. 1. We start by supposing M sufficiently large, i.e. M > 1, as in the hypotheses of the
proposition.

Let {ej, ..., em} be an orthonormal family of eigenvectors of the operator (Py —z)*(Py — z),
associated with its first M eigenvalues, analogously to those we introduced in Section 2.2| for

the unperturbed operator P. In particular, foreachj =1,..., M,
(Po — Z)*<P0 — Z)@j = t?(P() — Z) 6]'.

Using the symmetry assumption (3.27), we see that a corresponding orthonormal family of

eigenvectors of (Py — z)(Py — z)* associated to the same eigenvalues, is given by

fi=Tej=¢, j=1,...,M. (3.38)

If the non-zero t; are not all distinct, it is not immediately clear if we can obtain ]A‘} = f]-, where f]
are defined in the same way as we did in Section2.2|for P (see (2.16)). However, we know that
the two orthonormal families { f1, ..., fm } and {fl, ... ,]/”AV/I} generate the same vector space Fy.

If we let Ejs be the subspace generated by {ey, ..., en}, we know that the two operators
(PO — Z)\EM :Epm — Fum and (P() — Z)TFM :Fypp — Ep,

are well-defined and have the same singular values 0 < t; < ... < ty.
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We now consider a Grushin problem for Py — z, following similar steps as in Section[2.2} In
analogy with that construction, we define the operators R® and RY. as in (2.2), 2:22), but in
this case we use f] in place of f;. This leads to the same structural results.

We adopt the same notations for the associated matrices as in the unperturbed case, with
the addition of a superscript 0 to indicate their dependence on the initial perturbation éyVj,:
namely, P°, £°, E°, E9, E° ..

Since the properties stated in do not necessarily hold in this setting, we cannot assert
that E2 L = diag(t]'; j =1,...,M). However, we do know that the singular values of EO n
satisfy

HEY ) =tj(Po—z), j=1,...,M.

We also adopt the notation

SJ'(EL) = tM—j+1(E(l+)r

so that, equivalently, s;(E® ,) = ty_j1 (P —z), forj=1,..., M.
We now divide the remainder of the proof into two separate cases. Before proceeding, we
recall that:

* M s assumed to be sufficiently large,
e 6 €]0, % [ has been fixed,
e M, is defined as in (3.36).

Moreover, since z is fixed throughout, we may assume without loss of generality that z = 0.
CASE 1:
In the first case, we assume that a subset of the singular values of EY +, and thus of the

operator Py, satisfy the following lower bound:
S;(EY,) > wN"M, for 1<j<M—[(1-0)M].

Under this assumption, we can take the trivial perturbation given by g = 0 € CN’, so that
P° = P,. Then, we have

tm_jr1(P°) = s;(E2,) > pN™™ for1 <j<M—[(1-0)M],

which proves (3.35). Moreover,

Nfd

t,(P%) = t,(Py) > (1 -

) ty(Py), forv>M,

which proves (3.34).

CASE 2:
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We suppose there exists j, 1 < j < M — [(1 — 6) M] such that
s;i(EY,) < oN~M. (3.39)

We now recall the results obtained in Section 3.1|and apply them under our current assump-

tions with f] = ¢;. In particular, from (3.15), (3.21) and (3.22), we know that there exist a matrix

EecM depending on the eigenvectors {e;};—1, m and a potential V;, determined by a vector

g€ {0,1}N * with exactly M non-zero entries equal to 1, such that
EE' = E° V,EY.

The matrix V; is the perturbation we intend to apply to the operator P in order to derive the

conclusions of the theorem. Accordingly, we define the perturbed operator
P’ :=Py+ 4V,
with é > 0, whose precise value will be determined later. In particular, we observe that
[Vgll = 1. (3.40)

We now set up a new Grushin problem for the perturbed operator, following the same proce-
dure as in Section[2.3) with Q = V;. We therefore consider the matrix

5 p° RY
P = , (3.41)
RS 0

and verify that condition (2.36) holds in our framework:

11 0 T
Vil gt < s & 0< 7o =
=2 2|V, 2
Hence, for any
0<6< % (3.42)
the Grushin problem (3.41) is well-posed, and its inverse has the form
E° Ef
g = ( . ) , (3.43)
E° E°.

where the blocks are defined analogously to (2.37) and they satisfy the same norm estimates.

Our next goal is to estimate the singular values of P°. Recalling Lemma 2.6/and applying it
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to the perturbed Grushin system (3.41), we obtain forallv =1,..., M

tV(E{+) o 0 0 )
<t(P°) <|R R || t,(E .
ETaE.) e e = ) = IRHIREIE)

Using (2.38), (2.39), (2.40), (2.41), (2.31) and recalling (3.33), we infer

2
IE° ||ty (B L) + IES | IES )| € =5~ (IIE>y — E_f ||+ [|[E—4]]) +4
tav41(Po)
2
< — (20| V|| + ) + 4
2@l + )

4
<64+ ——0| V|| = 0(1),
tM—i—l(PO) H 0/” ( )

where we assumed (3.42) to be true. Moreover, it is easy to obtain
IRSINRY || < O01).

Hence, there exists a constant C > 0 such that

étV(E‘5+) <t,(P)<Ch(E’,), wv=12,...,M (3.44)

From (2.37), the lower right block of (3.43) is defined as

—+00
E° =E%, —6E°V,E) + ¥ (—1)FE® (6V,E°)F1(6V;)ES. (3.45)
k=2

Applying estimates (2.30) and (2.31) with hypothesis (3.33) to our setting yields

1 1

E%|l =1, Bl < ———— .
IS 1B < — < %

(3.46)

By Ky Fan’s inequalities (Corollary [A.9in the Appendix), we derive the following estimates for

the singular values of the sum of bounded linear operators A, B, and C:
sv(A+B) > sy4k-1(A) —sk(B), (3.47)

and
Sv(A+B+C) > syyki0-2(A) —sk(B) —s4(C), (3.48)

forv,Lk=1,2,....
We fix 1 <v < M — [(1 — 0)M] and recall that

1<j<M-[1-0)M]

where j is defined in the assumption (3.39). Thus v +j —1 < M and applying (3.48) with / =1
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and k = j to the decomposition (3.45) yields

su(E2 L) > syyj1(—0EC VLES) — s (EX ) — 51 (f(—l)kEo(équo)k1(5Vq)EO+> . (3.49)
k=2

We now estimate each term separately. For the second term, hypothesis (3.39) implies
—sj(E%,) > —pNM (3.50)

For the third term in (3.49), we recall (3.40), (3.46) and we obtain

Z DFE® (6V,EO)* 1 (6V,)EY.

51 <+f( DFEC (0V,EO 1 (6V,) E°>

k=2

<Z(5kHEO (VoE") 1 V,ES |

< Zéklqull"llEoll"‘1
k=2

+o0
=0V IPIEN Y (Sl v lHIE )

<28%7y1, (3.51)

where we used the fact that

1
SIVyllIE < 2 S IE°l < 5,

ensuring the convergence of the series.
Finally, we turn to the first term in (3.49). From (3.38)), we can invoke Proposition 3.5/and
rewrite (3.19) as

M M—k+1
E
sc(ECV,EY) > sy (EQ V,EQ )~ wem <| |N’;> , k=1,...,M.
=1

Under our orthogonality assumptions, this becomes

= 51 (EQ V,EQ )W (Ml) Wkt N=wi,  k=1,..., M. (3.52)
Moreover, inequality (3.18) becomes

s1(E2V,EY) > (M)VMN.
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Substituting it into (3.52) yields

k—1

sk(E(quEg) > ((M!)ﬁN—d>_M*"“ (M!)M%k#rl N~ w
= (M)FOEET N = (M)ANT!, k=1,..., M. (3.53)

We recall Stirling’s formula (A.4) for M > 1
M! = (14 o(1))V2rMMMe™,

and we observe that J
1 1
m(ln((ZnM) Mm)) = W(l —In(2M)).
Therefore, the function In ((27TM) ﬁ) is decreasing for all M > 1, and so is (27tM)2%. Hence,

since (ZNM)ﬁ — 1as M — +oo, we conclude that
(2nM)2a >1, forall M > 1. (3.54)

Thus, for M large enough, applying (3.53), (A.5) and (3.54) we get

S —d
(W(ZZNI)ZMNd > 57MN*11 > 51\2 , (3.55)

Sutj—1(—0E  V,EY) >

Hence, combining (3.49), (3.50), (3.51), and (3.55) yields the following inequality

SN

su(E2L) > —NM 252171, 1<v<M-—[(1-6)M]. (3.56)

We recall that 6 < % and we fix 1 <v < M — [(1 — 0) M]. We choose

T0 _d
= — 3.57
) N (3.57)

where C > 0 is a sufficiently large constant. Hence, condition (3.42) on J is respected and

substituting this value in (3.56)), we obtain

TON—Zd

1 2
sv(E2 L) > — 7pN"21—¢0 _p T N2 _ 5N~ (e — CN™® — > :

Cc2 C
Then, for N sufficiently large and C chosen large enough, there exists a new constant Cy > 0,

such that

su(E2,) > O N, (3.58)
Co

We recall that M; = 2d + €p. Thus, by possibly taking a larger N, we obtain

sV(EiJr) > CoyN~M,
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with the same constant C that appears in (3.44). Hence, from (3.44) it follows that

ty(E°
tV(P‘S) > V(GJF) >N~M for 14 [(1-6)M] <v <M,

and therefore (3.35) is proved. On the other hand, if v > M, applying (3.47) with k = 1 yields

T()N_d

ty(P°) = sna_yy1(Po+ V) > ty(Po) — 51(8Vy) = t,(Po) — c

> ) (1- 7).

where we used the fact that t,(Py) > 10 in this case.

2. Finally, we consider the case where M = O(1).
In this situation, the argument proceeds as before, except that it now reduces to two sub-

cases concerning only the M-th singular value of E? | . Carrying out the proof in this way yields
inequality (3.58) with v = 1, thereby establishing (3.37). O

Remark 3.10. From the preceding proof, we note that Proposition [3.8| remains valid provided
that M satisfies only the condition

tmy1(Po—z) > To.

Hence, it is not necessary that M coincides with the exact number of singular values of Py — z
lying in the interval [0, To[, as required in the hypothesis (3.33).

3.3 Iterative Construction of a Potential for Controlling the Smallest

Singular Value

We now adopt the same hypotheses considered at the beginning of the previous section.
We aim to iterate the construction of the potential considered in Proposition starting from

the unperturbed operator P. Our goal is to determine a new potential V,,, with g9 € CN !, and

0’

to establish a lower bound for the smallest singular value of the perturbed operator
P+6Vyy—z, z€C,

where § > 0.
Let p be defined as in (3.25). We fix z € C that satisfies (3.28) for some « €]0,1], and set
PO .= P. Let TO(O) €]0, (CN—1)1/2], for some constant C > 0, and denote by

MO = MO ({0, (3.59)

the number of singular values of P(?) — z lying in the interval [0, TO(O) [.



3.3 Iterative Construction of a Potential for Controlling the Smallest Singular Value

We assume that M() is sufficiently large and we apply Proposition [3.8|in this framework.

Consequently, there exists a vector g(1) € {0,1}N" with exactly M(%) non-zero entries, defining

the potential V) with ||V, o) [| =1, and a coefficient
(0)
T,
C

for some sufficiently large constant C > 0, such that the singular values of
pM .— pO) L 5(1)Vq<1>
satisfy and with the corresponding updated notations. In particular, setting
V= ONM, MO = [MO(1-9)],
with M; defined as in and 6 €]0, %[, we obtain
t(PU —z2) >V, for MV +1<v< MO,

Thanks to Remark we can apply Proposition 3.8| once more, replacing (P(O),M(O),Téo))
with (P(l), M), Tél)), while keeping the same value of M;. To proceed, we must ensure that
the perturbation remains sufficiently small, so that condition (3.30) holds:

(0)
T _ _
16DV || = %N 1< N°L

Thus, we iterate this procedure, applying at each step k-th the first case of Proposition 3.8, with
the initial conditions given by the outcome of the previous step. In this way, we construct a

sequence
(P(k)/M(k),Ték)), k=0,1,...,k(M),

where the final index k(M) is chosen so that M*(M)) remains of the order of a large constant,
ensuring that the first case can still be applied. Thereofore at each (k + 1)-th step of the iteration,

there exists q(kH) € {0, 1}Nd, with exactly M®) non-zero entries, such that, introducing the

notations
o = I NM (3.60)
MED = 1M®) (1 —9)], (3.61)
plt1) .— plo) 4 5(k+1)vq(k+1), (3.62)
where
)
slkt1) — %N‘d, and HVq<k+1>H =1, (3.63)
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the following bounds are true

b (PEFD — 2y > D) M) g <y < MO, (3.64)

t,(P*HD —2) > t,(P®) — z) — v > M%), (3.65)

We observe that (3.64) guarantees that, at each iteration step, the assumption required in Propo-
sition [3.8 holds in the weaker form described in Remark From the iteration, we also de-
duce that

) = O N-Mik, (3.66)
and therefore
T(O)N_Mlk
sk+1) — o c N4 = 5O N—Mik (3.67)
Hence, it follows that
k1 k ,
P = PO 4 6UFVY ) = PO 4 3 50V = P60 Y NIV ).
j=1 j=0

Taking the norm of the perturbative term, we find by (3.63)

k .
s Y NTMIV )
=0

k .
<MWY NMIV || < 260 < N7
j=0

This bound shows that the hypothesis (3.30) is satisfied for every k. Therefore, the application
of Proposition 3.8|at each step of the iteration is justified.
We observe that M(¥) decays exponentially fast in k. In particular the following inequality

is true:
M® < (1-0)kMm©O), (3.68)

We want the condition on k that (1 — 0)kM (0) > C to be valid, with a constant 1 < C < M),

which is equivalent to

n (2)
In (135)
In this way we ensure that M *) > C forall k < ko, with a slightly smaller constant C > 1.
Hence, this iterative process continues until we reach k = ko. Beyond this point, the iteration
proceeds by decreasing M¥) by one unit at each step until 1 is reached. Thus, for these steps,

we can apply (3.37).
Now, given v > MO > MO > > MK we use (3.66) and iterate (3.65) to obtain

—d
b (PR — 2) > 1,(PO —z) — TO“’)NT

—d
> 1,(PO —z2) - V0 <N> .

(14+N"M 4 N2M L N~Mi(k-T))
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Moreover, for 1 < v < M(©), let = I(M(©)) denote the unique iteration step such that
MO 11 <y <MY,
which is v = M1, whenever v < C. Then, applying or (3.37), we obtain
t,(PO —z) > V).

Hence, if k > [, from (3.64) and (3.65) we get

N*dro(l)

(PO —2) > t,(PY) — z) —
—d —d
>t,(PV —z)— o <NC> > 7! (1 ~0 <NC>> . (3.70)

In this way, we obtain the following result.

<N—M1(k—l—1) + N—Ml(k—l—z) ot N—M 4 1)

Proposition 3.11. Let P defined as in Section[3.2and fix z € C that satisfies (3.28). Let My = 2d + €,
where ¢g > 0. Fix 0 < 1p < \/W, Co > 0and let MO = O(N4=*) be the number of singular
values of P — z in [0, To[. Let 0 < 6 < 411 and let M(0) > 1 be a sufficiently large constant.

We set M(X), 1 < k < ky iteratively as follows. As long as M%) > M(0), we set M*+1) = [(1 —
0)M O], Let kg > 0 be the last k value obtained in this way. For k > ko we put M*+1) = M®) 1,
until we reach the value ky such that M) = 1. We set Ték) = ToN_le,fOT’ 1<k<k+1.

Then there exists qo € CN* with its corresponding potential matrix Vo, € CNN', such that
d—x
qollec = O(1),  lqoll2 = O(N="). (3.71)

Moreover, if we define 6 = &N —4, for C > 0 sufficiently large and P° = P + 0Vy,, then we have the

following estimates on the singular values of P° — z:

e Ifv > MO, we have
Nfd
b (P —2) > <1 - C) t(P — z). (3.72)

o IFMK) 11 <v <MD with 1 <k < ki, then
t(PP—2) > (1— O(N~*)7". (3.73)
e Finally, forv = M*) =1, we have

H(P —z) >t > (1 - o(N-) D, (3.74)
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Proof. The perturbation is obtained as a result of the iteration procedure as it follows

ky ky ki—1
6V 1= Z 5() Vq(k) - Z 5(1)N—M1(k—1)vq(k) — 51 (Z N—Mlqu(m)> ,
k=1 k=1 k=0

where we applied (3.67). Thus,

k-1
g0 = 12 N-Mikglk+1) ¢ N
k=0

and

2N,

= (1):
0:=90 C

As a consequence we have
k-1 ky—1 ky—1 k .
lqoll2 < Y- NTMEg |, = Y- NTMIEMG < VMO Y (NTMVI=E) = O(NEE),
k=0 k=0 k=0

and
k-1

I90lle < 3 N7ME||gH D1 < 2.
k=0

We have already proved the first two inequalities (3.72) and (3.73) previously. The bound (3.74)
is obtained by (3.37) as it follows

H(PP —z) = tM(k1>(p(k1+1) —z) > Tékl‘i‘l)‘

3.3.1 Log-Determinant Estimates for the Perturbed Operator

We now proceed under the same assumptions of Proposition[3.11} In particular, we consider
the perturbed operator P°(qg) := P + 6§V, arising from that result and we fix z € C. Our goal
is to establish estimates for det(P’(qg) — z) which will be crucial in the next chapters.

We let Cy > 0 and consider

M := M(CoN~1) = O(N4™), (3.76)

the number of singular values of P°(go) — z in the interval [0, (CoN~!)!/2[. In particular we are
working with « = CoN~!, so that the hypothesis of Theoremm is satisfied.

We set up the M—dimensional Grushin problem for P?(gq) — z as in Section First, we
verify that the hypothesis holds in a suitable ball. Fix R > 0 and assume

R
I90ll2 < 5
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The condition (2.36) is equivalent to

1/2
507 jqolle < 5.
Recalling that § = N a5 in Proposmon a sufficient requirement is therefore
R 1 vV CoN-1
‘S“—%E <5 = R< OT = Gy 'NT 2, (3.77)

d

where C; := /CyC. Combining this with the bound ||qo[> = O(N"Z"), and using 0 < 7 <
VCo N~Y2 we choose R > 0 and two constants Cp, C3 > 0 such that

CNT" <R < GN*' < Gy INT2, (3.78)

ensuring that ||go||> < § and the validity of (2.36).
Under this hypothesis the perturbed Grushin problem is well defined. We keep the same
notations as in Section now emphasizing the dependence on gqo. In particular, we denote

the matrices of the problem as P°(qo), R+(go0), and the inverse matrix of P°(qy) is

5y _ [ E(0) Eé(%))
&) <Ei<qo> E . (q0))

Our goal is to analyze the spectrum of the operator P°(gy). To this end, we recall formula (2.42):
In | det(P’(qo) — z)| = In|det P’ (qo)| +1In|det E°_ (q0)], (3.79)

and we study the two terms separately. For the first term, by first applying (2.45) and then
(2.35), we obtain

In|detP’(qo)| > In|detP(z)| — O(GNY?||Vy|er)

— N </71“2d In |po(p) — zldp + O (N"ln(N))> — O(N"2|[Vgy ).

Hence, by recalling that ||V, |l < N%/2||qo|2, it follows from (3.78) that

In | det P°(go)| > N* </1er In |po(p) — z|dp — O(Ng)> : (3.80)

On the other hand, for the second term we observe that

MO M
Idet(E‘i+(qo))|=[Iltv(Ei+(qo>) [T t(E (9)), (3.81)

V:M(O) +1

where M is defined in (3.76) and M(? in (3.59). Therefore we aim to obtain a good lower bound
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for this quantity.
From (3.61), we deduce that, for 1 < k < ko,

MED _ a0 — pgk=1) [(1- Q)M(k—l)]
<MED a1 —g)m*D 41
<1+(1-6)1omO). (3.82)

We recall inequalities (3.44). Then, applying Proposition we obtain for 1 < k < ko,

(k1) -1)
M 1

[T t(E . (9) > H

> 14+(1-0)1oM©
v=1+M®) v=1+M®)

~(1—O(N~ )N~ M > <é/roN_le
(3.83)

for anew constant C' > 0. On the other hand, if kg < k < ki, then M*~1) — M®) = 1. Applying

the same arguments, we obtain
1
Egen (24 (40)) > gTOkaMl- (3.84)

Hence, by putting together (3.83) and (3.84), we get

M(k*l) kl +1

MO ko
In (Ul tV(E5—+(‘70))> = Zln< I1 tv(E(s—+(q0))> + ), I (fM<k—1>(E‘i+(¢10))>

V*]-‘,—M(k) k= k0+1

1+(1-8)1oM©) ki+1 1
> Zln << TQN_kM1> ) + Y In <@TQN_kM1>

k=ko-+1

=— k:zol(l +(1-6)*1oMO) <1n(c’f/) +1In (;) +kM; In (N))

k1+1

-y <ln(C ) +1In (Tl ) + kM ln(N)>

k=ko+1

Since (1+ (1 —0)<10M©)) > 1 for kg +1 < k < k; + 1, we obtain

k1+1
In (H ty(E° ., (q0) > - Y a+@a-oflem®) <1n(c’) +In (Tl ) + kM, 1n(N)>
k=1
(3.85)
We recall from (3.32) that M(®) = O(N?"*), and we consider the constant M(6) > 1 specified
in the assumptions of Proposition[3.11] Hence, by definition (3.69), we obtain

In 3

YE. +M(0)+1=0(In(M?)) = (d—x)O (In(N)) = O(1) In(N).
N1y

k1+1:
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Hence, by applying this result in (3.85), we obtain

V

MO ki+1 N ,
In (H fv(E‘5+(qo))> > Y (1+(1-0)ftom®) <ln(C’) L In (
v=1 k=1

T

> +0(1) (ln(N))z)

> — (0(1) In(N) + O(N*™)(1 = (1 - )1
: (m(é’) +1In <T1) +0(1) (ln(N))2> . (3.86)
0
From (3.72), the remaining factor in (3.81) can be bounded in the following way
M Mo t,(P—2) T M-M®
[T t(Eli(q) > TI — =2 <~/> (3.87)
v=M©0 +1 v=MO +1 C C

Hence, applying the logarithm, we have

In ( 11 tV(E‘i+(qo))> > M (ln (1> +1n(é/)> > _O(N"*)In ((1) +1n(6')) .

v=MO 41 T R
(3.88)

Now we combine together (3.86) and (3.88) in order to find an estimate for In | det E? . (go)|.

Since In(C') is a constant, it is absorbed into the big-O. Hence, there exists a constant C; > 0
such that

In|detE° ., (qo)] > —CiN¥ (N‘d In(N) + N‘K> (m (Tlo) + (ln(N))z) , (3.89)

Finally, combining (3.79), (3.80), and (3.89), we deduce the existence of another constant C; > 0
such that

In| det(P°(qo) — z)| = In| det(P’(qo))| +In | det(E* , (4o))]

> N </W In |po(p) —ZIdp>
~ NG, (N—‘i + (N‘d In(N) + N—K) <ln <1> + (ln(N))2>> .

T
These computations lead to the following result.

Proposition 3.12. Under the assumptions of Proposition for the potential Vg, constructed therein,

we have

In | det(P5(q0) —z)|— N (/TZd In |po(p) — z[dp)

> N0 (N% + (N*d In(N) + N*") <ln (1> + (1n(N))2>> . (3.90)

0






Chapter 4
Perturbations by Random Potentials

In this chapter we first record some estimates derived from the computations in Chapter
We then introduce a probability measure for the vectors g € CV ! that generate the perturbation
potentials V;. Finally, using complex analysis and measure theory techniques, we obtain a key
probabilistic bound that will be used in the last chapter.

Throughout the chapter we work under the following standing assumptions:
e p € C®(T?) satisfies (3.25) and P := py satisfies (3.27).

e /I = ﬁwithN EN,N>land 1 € [0, (CoN_l)l/z[WithCO > 0.

z € C such that (3.28) holds for some x €]0,1].

qo € CN “and 5 = 2N ~4 (with C > 0 independent of N) from Propositionm

We retain the notation of Chapter 3|for all matrices associated with the Grushin problems
P and P?, with a = CyoN L.

4.1 Deterministic Log-Determinant Estimates for Bounded Perturba-

tions

In this section we consider a general small perturbation given by a potential matrix V,,
assuming that g lies in a fixed ball in CV " Our goal is to derive a deterministic upper bound
for In | det(P’(q) — z)| by using the results we have established previously.

First, we consider R > 0 satisfying (3.78), so that

R

I90ll2 < - (4.1)

In particular, we choose the constants in (3.78) so that condition (2.36) is still verified in the ball
BNd (O, 3R) .
Letg e CN " be an arbitrary vector such that

g2 < 3R.

61
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We observe that for its corresponding potential matrix V3, the following estimate is true

a1
IValle < N¥2|jgll2 <IN 15,

for a new constant C; > 0. Hence, by applying (2:46) with « = CoN~!, we obtain
In|detP’(q)| < N* </2d In |po(p) —z|ldp + O (N""In(N)) + O(Ng)> , (4.2)
T

where we used the fact that § = &N —4. Now, recalling results (2.42) and (2.47), we achieve the

following result

In| det(P’(q) — z)| = In| det(P°(q))| + In | det(E* , (9))|

< N (/TZ" In [po(p) — z|dp + O (N""In(N)) + O(N?))

<N ([ pote) <l
+ N0 (N—E’ + (N‘dln(N) + N"‘) <1n (j) + (ln(N))2)> . @43)

0

Thus, we let C” > 0 a sufficiently large constant, depending only on the bounds obtained in

(3.90) and (4.3)), and set

eo(N) :=C" <N—? + (N‘d In(N) + N"‘) <ln (;) + (1n(N))2>> . (4.4)
0
Then, for every g € CN ! satisfying
lqll2 < 3R,
we obtain the upper bound
in| dex(P*(g) =) = N [, In po(p) ~ =ldp ) < Nea(). @5)

Moreover, from Proposition there exists q¢ € N with

laoll2 < 5
qol2 5
such that the following lower bound holds:
In | det(P°(qo) — z)| — N* (/TZd In |po(p) — z|dp> > —N%(N). (4.6)

These two estimates will be crucial in the next section, where we combine them with tools from

complex analysis and measure theory.
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Remark 4.1. If 1y is not too small, then

K
For instance, if we consider 1y > e~ N?, then for every m > k,

N "In <1> < Nz 7™,
T

This implies that for each 0 < I < 7, the following is true

Jim N'eo(N) = 0. (4.8)

Moreover, without any further assumption on T, for every I > k, we have

NIEEOON eo(N) = +oo.

4.2 Log-Determinant Estimates under Random Perturbations

In this section we follow the same approach and the same techniques used by Sjostrand in
[Sj09| Chapter 8] and we adapt his work to our discrete framework.

In particular, we introduce a probability distribution on cN supported on a ball centered at
the origin. Within this setting, we study holomorphic functions naturally associated with our
problem, which are bounded on the ball and satisfy an additional lower bound at one point.
Using tools from complex analysis and measure theory we derive probabilistic estimates on
these functions, which will be applied to the spectral analysis of the perturbed operator in the
following chapter.

First of all, we fix z € C and 19 €]0, (CoN~1)!/2] with a constant Cy > 0 as in Chapter

Then we define the function
F:cN' —C

1 det(P(g) =2 exp (N [ Inlpule) ~zldp ) 49

where P2(q) := P + 4V, with V; = diag(q(n);n = 1,...,N%) € CN*N" and 6 = Tolgd,

defined in the same way as in the previous chapter. Since the determinant is a polynomial, F

is a holomorphic function in q. We observe that if F(q) = 0 for some g € CN’, then z is an
eigenvalue for the perturbed operator P + V. Moreover, from and (4.6), we know that
In |[F(q)] < eo(N)N? if [[q]l2 < 3R, (4.10)

In|F(qo)| > —eo(N)N¥, for some gy € Bya <0,1§> , (4.11)



64

4. Perturbations by Random Potentials

where
eo(N) := C” <N§ + (N*d In(N) + N*K) (ln (;) + (1n(N))2>) , (4.12)

for a suitable constant C"” > 0 and R > 0 satisfies (3.78).
We take g1 € CN' such that ||g1]|» = R and we define the function

f:€C—=C
w — F(qo + wqy). (4.13)

Clearly, f is well-defined and holomorphic. We observe that

f(0) = F(qo).

We would like to restrict the argument of f so that the corresponding argument of F is in the

ball By« (0, R). Hence we consider the following equivalences

190 + wq1ll2 < R < |q0ll5 + lwaa[|5 + 2R ({q0, wq1)) < R?
& [w[*R* + 2R ({q0, wq1)) < R* — |90

& w4 2R (@ <%'%>) <1- ‘ LIIQHE

ol (BB <a-[BL (BB <4 e

Thus, we are interested in restricting the domain of the function f to the disc

Dgo g := D( <(%0 %>/7’0>-

Moreover, we have the following estimates for ry:

d<i-| R+ IR H! H =R 1R @15
r0>1—H H 1—7—7, (4.16)
which imply
Y3 <t
2
From (4.15)), we also have the following estimate for the center of the disc wg := — <% ‘%>
T Y e L1 23 _1p
o (<RR>‘ 2+ ‘ 1<r-1< (4.17)
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So far, we know that

In |f(0)] > —eo(N)N*
In|f(w)| < eo(N)N?, if w € Dy y,. (4.18)

In particular, since (4.10) holds in a larger ball, we may assume that the last estimate still holds
in the disc D (wy, 319). Indeed, following the same steps as in (4.14),

\]qo+wq1\]2 < 3R & |w—w0]2 < 8—|—7’%,

and 9r0 <8+ ”0
We know that f is analytic in a neighborhood of lw| < %ro. Let the points wy, ..., wy,, € C
be its zeros in |w| < 37y counted with multiplicity, listed in non-decreasing order of their

modulus. Moreover, we set
3
m:=#{w €D wo,ErO Jf(w)=0p <my,

where the inequality is true because D (wy, 3r0) C D(0,2ro) by @17).
We observe that In |f(0)| > —eo(N)N? implies f(0) # 0. Hence all the hypotheses of
Jensen’s formula (see Theorem in the Appendix) for f in the disc D(0, 3¢) are satisfied.

From (A.12) we obtain
f (groeie) ‘ do.

57’0 1 2n
1 In 1
n|f(0) Z (2|w]|) 27.[/0 n

We notice that D (0, %ro) C D (wp,3rp). Indeed, if w € C, |w| < %ro, then by (4.17)

5 1
|w —wp| < |w| + |wo| < Sfot+5r0 = 37.

Consequently, by applying inequalities {#.18), with the second one extended to D (wy, 3rp), we

Eon(32) - "ol ()

We observe from that the following inclusions are true

obtain

d6 < 2eo(N)N*.

— 3
D(0,r) C D <wo, 2r0> C D(0,2ryp).

We suppose that m < m; and we observe that for all m +1 < j < mj, we have 7y < |w]-| < %ro,

51’0 5
O<ln<2]w]'\) <ln(2>.

which implies
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Instead, if we take 1 < j < m, we have 0 < |w;| < 2rp, and then

5 51’0
O<ln(4> <ln<2‘wj‘>.

Thus, we can write the following
5 - 5rg e’ 5rg i
mln <> < In () < In () < 2¢(N)N*,
1) <L ) = L1 gy ) = 20
which implies

m< W — O(eo(N)NY). (4.19)
4

The case m = m; yields the same result trivially.

Now, since f is holomorphic, we consider the following factorization on the disc D (wy, %ro)

flw) = ﬁ(w —wj)t(w), inD (wo, 27’0) , (4.20)

=1

with +(w) # 0 and holomorphic on D(wy, 37¢). Thus, there exists a function g(w) holomorphic

on such disc, such that

tHw) = eS8 in D (wo, ;r()) . (4.21)
We define r;-) = |w; — wo| < %ro, forj=1,...,m, and we observe that

m m O

q\w—wj\zq\]w—wd—rj\. (4.22)

j= j=

We suppose that there exists T €]3ro, 3o[ such that

m
H T — r?\ > ¢S for a constant C3 > 0. (4.23)
j=1

Under this assumption, we take w € C, |w — wy| = T, and we obtain from #.19), (¢.20) and
(4.22),

go(N)N4

) = @ e

< <e
T Jw —wj] = T, 7 =)

Now, by the maximum principle (see Theorem in the Appendix) we know that the bound
(4.24) for the function || is true on the whole closed disc D(wy, T). Thus, by {#.21), we obtain

So(N)Nd+mc3 — eO(SO(N)Nd). (4:24)

R(g(w)) = In(e®E@)Y = 1In |t(w)| < O(eo(N)N?), inD (wp, ). (4.25)

We aim to prove the same bound for the modulus of (g(w)). To this end, we introduce the
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auxiliary function

[(w) := Ca(eo(N)N') = R(g(w)),

where C4 > 0 is the constant which defines the bound (4.25). We know that [ is harmonic and

non-negative on D (wp, T) and that D (wo, 370) € D (wo, T). Hence, by applying Harnack’s

inequality (see Theorem in the Appendix), we know that there exists a constant C5 =
Cs (D (wo, 570)) > 0 depending on the smaller disc, such that

sup (w) <Cs inf I(w). (4.26)

weD(wo,%ro) WGD(WU/%W)

Since

3 1 )
|w]-]§r?+|w0|<§r0+7r0§2, j=1,...,m,

2
from (4.18) and (@.19), we also know that

R(g(0)) = In [+(0)] = In (WO)‘> > In <e_802(:)m>

H}il |wj]

= —£o(N)N? —mIn (2) > —Cseo(N)N?,
for a suitable constant C¢ > 0. Then
1(0) = Ca(eo(N)N) — R(g(0)) < (Cs + Co) (eo(N)N"). (4.27)
Thus, by and the following inequalities hold

sup l(w) < Cs inf l(w) < C5l(0) < C5(C4 -+ C6)(€0(N)Nd).

wED(wO,%rO) wED(WO'%"O)
Finally, if we define C:= Cs5(Cy+ Co) > 0, we get

— inf R(g(w))= sup —R(g(w)) < (C—Cy)(eo(N)N).
D(w0'§70) D(wg,%ro)

and then

R(g(w)) > —(C — Cy)(eo(N)NY), weD (wo, ;Lr()) .

This result, together with (4.25)), implies
d 4
R(g(w))] < Oea(N)N'), onD (w310}

To conclude, it remains to verify that assumption (4.23) holds. To this end, we observe that for
0 < a < b fixed, the function

b
G(x) := —/ In|t—x|dt, x €]0,b|
a
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has a maximum point at xg := 5. Indeed, using the fact that [ In(u)du = uln(u) — u, a direct

computation gives

—(b—x)In(b—x)+ (a—x)In(a—x)+ (b—a), x€]0,a]
G(x) =4 —(b—a)In(b—a)+ (b—a), x=a,
—(b—x)In(b—x) — (x—a)In(x—a)+ (b—a), x€lab|

In particular, G is continuous on |0, b[ and differentiable in |0, b[\ {a} with

|x — 4

G'(x) = —ln( — ), x €]0,b[\{a}.

We observe that
G'(x) >0, x€]0,x[\{a}

G'(x) <0, x€]xo,b|
Thus, from the continuity of G, xp is a maximum point for G in |0, b[. Therefore,
b by
G(x) < G (x0) = —/ In|f — xo| dt = —2/ In ¢ dt.
a 0

This implies that forallj =1,...,m

3 1
270 0 1270 7o 7o ,
— -7 < — =—(1-— — 1)) =:C
/éro In |t r]|dt 2/0 In |t| dt (1 ln(1 )) 3 >0,

Hence, if we define the function G(t) := — YitqIn|t— r})| € L! (R), we observe that

loc

[STiN)

o ~
/ ' G(t)dt < Cym.

4
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Thus, there exists T €] %ro, %ro[ such that

~ C!
G(r) < 6 3m,
"o
which is equivalent to
m
[TIr=rfI=em, (4.28)
j=1

6C, .
where C3 := 703 In conclusion, we have found that

flw) = l—ml(w - w]-)eg(w), in D <w0, gr()) ,

j=1
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with

m=0O(eo(N)N?),  |R(g(w))| < O(eo(N)N9), inD (wo, §r0> . (4.29)

Now, we fix 0 < € < 1, and we define
Q(e) :={r € [0,70(q1)[: 3w € Dy, 4, such that |w| = rand |f(w)| < €}, (4.30)

where 1y = r9(q1) is defined as in (#.14). We set 7; := |wj|, j = 1,...,m and we take r € Q(e)

with w its corresponding point in D, 4,. Then

[Tir=ril = Tlwl = lwll < [Tlw—wjl = [T(w-w)
j=1 j=1 j=1 j=1
= [f(w)]]e8®@)| < ee” M8 < eexp(O(eg(N)N?)). (4.31)

This implies that at least one of the factors from the left-hand side is bounded by the term
1
(eexp(O(go(N)N?))) ", and consequently

m

ae) c |- (eexp(@(eo(N)Nd))>

=1

1

i+ (eexp(O(so(N)Nd)))W L 432)

S|

Hence, the Lebesgue measure of the set ()(¢) is bounded in the following way

m 1 1 1
A(Q(s)) S ZA (]r] — (eeo(eo(N)Nd)) " ,r]. + (eeO(SO(N)Nd)> " [> =2m (eeo(eo(N)Nd)) " ,
=1
(4.33)

where we used the sub-additivity of the measure.

By examining the intervals described in (4.32), we see that it is desirable for the right-hand
side in to be less than or equal to 1. Under this condition, if m is large, then each interval
covering Q(e) in becomes sufficiently small. As a result, their union does not cover
the entire interval [0,709(q1)[, and the estimate in remains non-trivial and informative.
Moreover, we observe that under the same assumption that the last term in (4.31) is < 1, the
bound obtained in increases with m. Indeed, for 0 < a < land m > 0,

% (2mar) =2av <1 - h‘}?) >0,
so the function m — 2m aw is increasing in m.

By recalling the definition of f in (4.13) and the results in (4.29), from (4.33) we obtain the

following result.

Proposition 4.2. Let g1 € CN’ such that 1|l = R and assume that € > 0 is small enough so that
P q q 8
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the last member of (4.31)) is < 1. Then the following is true:

A({r €0,70(q1)] : [lg0 + rq1ll2 < R, [F(qo +rq1)| < €})

< g9(N)N? exp ((9(1) +

N
< O] ln(e)) ) (4.34)

where the symbol O(1) in a denominator indicates a bounded positive quantity.

Remark 4.3. We observe that holds because
{r€0,70(qU)[: |90 +rqull2 < R, [F(q0 + rq1)| < e} € Oe),

as a consequence of (4.14).

An interesting choice we can make for € could be € = exp (—¢go(N)N?*%), for a small con-
stant & > 0. Then the upper bound in (4.34) becomes

e0(N)N? exp ((9(1) - (91\([1)> .

We now shift to a probabilistic setting by introducing a new measure on a ball in CV ' Con-
cretely, this means that the vector defining the potential is no longer deterministic but instead
treated as a random vector. Specifically, we consider the probability space given by equipping

the ball By« (0, R) with a probability measure of the form
P(dq) = C(N)e®PA(dg), (4.35)

where A(dg) is the Lebesgue measure on CV " and @ is a C! function that depends on the semi-

classical parameter N that satisfies
IV (g)ll2 = ON™), ¥gect (436)

for a fixed constant M; > 0 and

1
fBNd (O,R) e®@A(dq)

C(N) :=

is the normalization constant. Now we consider the following change of coordinates
(wq,7) — q = qo + rRuwy, (4.37)
where w; € S2N'-1, 0 < r < ro(w1), and ? < ro(wy) < 1. We get
P(dq) = C(N)e? ") 2N Ldre (duwy), (4.38)

where ¢(r) := ®(go + rRw), o(dw;) denotes the spherical measure on $*¥'~! and C(N) :=
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R2N'C(N). We observe that for all € [0, 7o (w1 )],
[¢/(r)| = [(V@(q0 + rRwy ), Rwy)| < R|[VP(go + rRwi) [2Jwn]|l2 = O(NTINM),

and hence
¢'(r) = O(N™), (4.39)

where My := My +d — 1.
We fix a direction w; € $?N'~1 and consider the probability measure on [0, 79(w1 )] of the
form
u(dr) = C(N) et PPN gy (4.40)

where C(N) is the normalization constant. We define the function

p(r) := ¢(r) + (2N — 1) In(r),
on [0, ro(w )] and we obtain
u(dr) = C(N) exp(p(r))dr.

Furthermore, we define g := C; 1 min(1, N d*MZ), where C; > 0 is chosen large enough so that
21y < ro(w1). For any 0 < r < 2r, applying (4.39), yields a constant Cy > 0'such that

2N4 —1
r

. d .
P'(r)=¢'(r) + > —C;NM2 ;\]7 > _C,NM2 %NMZ.
0

Choosing C; > 0 large enough, the last term is non-negative. Consequently ¢ (r) is an increas-
ing function in the interval [0, 27).

Now, we introduce a new measure on [0, 7o (w1 )] given by
i(dr) := C(N)e?lrma) 2N 1y,

where rmax(7) := max(r,7p). This new measure is not normalized and it’s just a truncation of
# which will be useful for obtaining some estimates. Since rmax(*) = r, whenever r > 7y, if we
restrict the two measures to the interval [rp, ro(w; )], we have

Fligroen = Pligrow”

Moreover, since rmax(*) > r and (r) is an increasing function on [0, 27|, we deduce that

Hence, we obtain

L]

270 27y _ N _
u((70,270]) = i([75,27]) = [ C(N)etUmddr > [ E(N)e?ar = C(N)eV V7 = fi([0, 7).
T
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This implies

= 11([0,70]) + i ([ro, 270]) + pr([270, ro (w1 )])

1 ([0, ro(wr)])
and then, since y is normalized,
#([0,ro(w1)]) < O(1). (4.42)

Now we simplify the notation by defining ¢ (r) := ¥(7max), so that

p(dr) = C(N)e"dr.

It is easy to see that, unlike ¥, the function ¢ has no singularity at 0. Hence, by continuity, it is

bounded on the interval [0, 7o(w1 )] by a constant depending on N. We compute

4

() = ¢ (r)+ =L i 7 < r < ro(wy)
0, if0<r<ry

which is clearly not continuous in 7. Consequently, if 7p < r < ro(w1), we have

2N*
C, ! min(1, N4-M2)

~ 2N — 1]  ~
' (r)] < |¢'(r)|+ |——=—| < GNM +
T

< C7NM2 4 C; max(2N9, 2NM2),

and hence
¥ (r) = O(max(N4, NM2)) = O(NM3), Y r €]f, ro(w1)], (4.43)

where
M3 := My +d. (4.44)

Remark 4.4. We observe that this is reason for the truncation of the measure y: we couldn’t have

obtained the same result with i, because its derivative ¢’ (r) goes to +o0 as r — 07.

Since we know that @ < ro(w1) < 1, we can decompose the interval [0, 7o(w1)] into ~ NM3
intervals of Lebesgue measure ~ N —Ms_1f ] is one of these intervals, we observe that there

exists a constant Cg > 0 such that

A(dr) < #(dr) < CgA(dr)

A = w(n = a0 &)

To prove this, it suffices to work with closed intervals in I, as they generate the Borel o-algebra
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on I. Let [a,b] C I; we then have

illa, b)) _ Sy CNIdr _ (sup, ) [a b))
A [,C(N)e¥Mdr ~  (infue; e?))A(I)

(4.46)

Now, if I C [0,7p], then 1,5 is constant on the interval and the inequalities (4.45) are trivial.
Instead, if I C [rp, 7o(w1)], then 1;15 is differentiable on I. Thus, as a consequence of (4.43) and by

the mean value theorem we know that for all 1,7, € I,71 < ry, there exists r3 €]rq, 72| such that
[9(r1) = 9(r2)| < [¢'(r3)| A1) < O(NM)O(N~M3) = O(1), (4.47)

Lastly, if if there exists ¢; > 0 such that I N |rp — €1, 7) + €1 # @, we obtain {#.47) in the same
way, by adding and subtracting ¢ (79) in the left-hand side. Consequently,

o (r) - -
SuPrer M up 0T < 0 ) (4.48)
inf,cpe?() (r) e

where Cg > 0 is a constant. Hence, by putting together (4.46) and (4.48), we obtain

(o, b))] _ Cor([a,b])
A ST A

The inequality on the left-hand side of (4.45) is then derived in a similar way with the same

constant Cg.
Our goal is now to estimate the measure ji of the set Q(¢). To this end, we first state the

following remark.

Remark 4.5. Within the same framework established above, there exists a value

rtwn) € |28, )|,

such that
€ [0,7o(w1)], ll90 + rRw1ll2 < R < r € [0,7(w1)].

Hence, we let I be one of the intervals we defined above such that I N [0, r(wq)] # @. By
applying this remark, together with Proposition and the inequalities (4.45), if € is small
enough so that the right-hand side of (¢.31) is < 1, we get

p({relInfor(w)]: [F(qo+rRw)| <e})/u(I)

g)fé?))\({r € [0,7(w1)] = |F(go+rRw)| < €})
O(1) d N~
<X o CIN e (gt )
d

=O(1)NMs+g(N) exp <(1]\)]£0(Z\])ln(e)) . (4.49)
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Multiplying both sides of (4.49) by i(I) and summing over all such intervals I, we obtain

p({rel0r(w)]: [F(go+rRwi)| <e})

=i (U {relInor(w)]: ]F(q0+er1)|<€}>

I
<; i({reln [o,r(wl)]ﬁz(ly)F(qo trRe) <e}) oo

—d
<O(1)NMHdey(N) exp <O(1N)£0(N)ln(€)> (;gm) . (4.50)

Finally, we aim to eliminate the dependence on y in the last term. Using the same approach as

in the proof of (4.45), we obtain a similar result for the ratio ﬁ Thus, by recalling (4.42)

we obtain
- A(I) _
;y(l) <0(1) ;—A([O,ro(wl)]) =0(1). (4.51)

We recall that # < ji, and hence we have the same estimates by replacing 3 with y. Then from
the definitions of IP(dq) in (4.38) and u(dr) in (4.40), we obtain the following.

Proposition 4.6. Let € > 0 be small enough so that the right-hand side of (4.31) is < 1. Then

N—d
P(|F(q)| <€) < O(1)NMsHdg (N <lne). 4.52
(‘ (q)’ )— ( ) 0( )exp 0(1)80(1\]) ( ) ( )
Proof. We observe that this result is just a consequence of and as it follows
PUF@I <) = [[ o Virti<o D)
= /Ssz /[Or |F go+rRwy)|<e) V(dr)o.(dwl)
< [ BT € 0] [Flgo+rRen)| < €}) o)
Ms+d N
<O(1)N"3T™eg(N)exp | —————1In(e) | .
<OWN"eo(N) exp ( griye iy )
O

Remark 4.7. From definition (4.9), we have
In((F(g)]) = In|det(P*(q) ~2)| = N* [ Inpo(p) — zldp

Thus, taking € = exp (—&o(N)N?™*) for a small constant & > 0 as before, result (.52) implies
that the inequality

In| det(P*(q) —2)| = N* | _In|po(p) —zldp < —e(N)N***

is true with probability < O(1)eg(N)NM:+4 exp (%) .



Chapter 5
Eigenvalue Counting

In this final chapter, we take the last steps toward establishing a Weyl law for randomly
perturbed operators. We apply two different techniques: first, we obtain probabilistic estimates
for the number of eigenvalues of the perturbed operator lying in a given region of the complex
plane, under suitable assumptions on its boundary; then, we show that the corresponding

eigenvalue counting measures converge weakly as N — +oco.

5.1 Zero Counting Techniques for Holomorphic Functions and Ap-

plications to Spectral Estimates

We begin by deriving a quantitative result that controls the spectrum of the perturbed op-
erator in its intersection with a prescribed domain in C. The main tool is a complex-analytic
argument: we reduce the problem to counting the zeros of holomorphic functions subject to
explicit exponential growth bounds. Afterwards, we will apply this result to the determinant
of randomly perturbed operators.

The key result we rely on is Theorem 1.2 from [5j10], which we will apply without going
through its proof. Before stating it, we introduce a specific notion of Lipschitz boundary, which
is required in its formulation.

LetT' € C be an open set and let 7y := 9T be its boundary. Consider r : v —]0, oo[ a Lipschitz

function with a Lipschitz modulus < %:

1
r(x) —r)l < 5lx—yl, Vxyer. (5.1)

We assume that the boundary 7y is Lipschitz with respect to the weight r in the following precise
sense: we suppose that there exists a constant Cy > such that for every x € v, there exist new
affine coordinates ¥ = (y1,%2) of the form ¥ = U(y — x), for y € C = R?, being the old
coordinates, where U = Uy is an orthogonal matrix, such that the intersection of I' and the
rectangle

Rei={y € C:[n| <r(x),[y2| < Cor(x)},

75
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corresponds to
{y € Re: || <r(x), 92 > falyn)}- (5.2)

Here f,(11) is a Lipschitz function defined on [—r(x), r(x)] with Lipschitz modulus < Cj.
We notice that the assumption (5.2) remains valid if we decrease the weight r. Moreover, it

will be convenient to extend the function r to all the complex plane C, by defining

r(x) = inf (r(y) + %\x - y|) . (5.3)

yey

I\Jh—l

The extended function is still Lipschitz with modulus

Theorem 5.1 (Theorem 1.2 of [Sj10]). Let I' € C be a simply connected set with a Lipschitz boundary
v with an associated Lipschitz weight r as in (5.1), and (B5.3). We put %, := Uye, D(x,7(x)).
Consider M points z? € v, with j € Z/MZ, distributed along the boundary in the positively oriented
sense so that

r(2}) r(2})

0 J
1 <|z]+1—z]|< 5

Let 0 < h < 1and let ¢ be a continuous subharmonic function on 7y, with a distribution extension

(5.4)

to I' U 7, denoted by the same symbol. Then there exists a constant C; > 0 depending only on the
0
constant Co and there exist M points z; € D ( 0, 72(2 ) ) such that if u is a holomorphic function on

I' U %, which satisfies

hinju(z)| < ¢(z), on 7, (5.5)
hin|u(z;)| > ¢(2;) —€j, forj=1,..., M, (5.6)

where €; > 0, then the number of zeros of u in I satisfies the following inequality

1 1 C, ~ M
#u—(0)NT) - > hu( )’ h(V('Yr)"‘Zej) (5.7)

for a constant Co > 0 which only depends on Cy and on Cy. In particular, we have taken y := A¢p €
D'(T U %,), which is a positive measure on 7y, so that y(T') and u(%y,) are well-defined.

Remark 5.2. This theorem is a direct consequence of Theorem 1.1 in [Sj10], which states that

(0

result (5.7) is valid for every z; € D(2! Z, 5 ) ), with the addition of the term

2/ P (")t ©3)

to the right-hand side. Indeed, we observe that the average of ‘ln ( < ‘) ‘ with respect to the

Z] 4c

0
Lebesgue measure A(dz;) over the disc D(z? i %) is O(1). Thus, integrating each term of the
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r(z})

sum (5.8) on the disc D(z! z;, zc ), we obtain

[w — zj| |w — zj
" N dw) A (dz; / » / o |In dw) A (dz
/D(z? z(cjl))/D(Z/'%(Cj)) ) | M) = D@5 o, 2 | r(z) Kldw)Adz)
|w — z;]
= z r(zY ln /\dz dw
D, <§)>)/D(Z? 2(C?l)) ) (dz)) p(dw)

and then by the mean value theorem there exist M points z; as in Theorem

Now we apply Theorem [5.1| to our specific setting. Using the results of the previous chap-
ters, we verify that all the required hypotheses are satisfied. From this point on, we work under

the following standing assumptions.

e Let p € 5(1,1) satisfy the asymptotic expansion (3.25), and set

= — 1 N P :=
27TN, <K S N/ PN/

with P verifying the symmetry assumption (3.27).

e LetI' € C be a relatively compact, simply connected open set, independent of N, with
uniformly Lipschitz boundary v = oI" as defined above. We denote by ry > 0 its as-
sociated weight. Furthermore, assume that there exists x €]0,1] such that the volume
condition holds uniformly for all

z €y :=v+D(0,r), 0<r<ry.

e Fix 19 €]0, (CoN~1)1/2], with Cy > 0. Define the perturbed operator
P(q):=P+06V, b= %N_d, C>0 (5.9)

where V, = diag(q(n); n = 1,...,N%), g€ cN,

* Let IP be a probability measure on the ball By« (0, R), defined as in (4.35) and (4.36), with
radius R > 0 which satisfies (3.78).

e Finally, we recall the definition of eg(N) given in and we take a = CoN L.

We consider the definition of logarithmic potential of a measure, and some of its main proper-

ties.

Definition 5.3 (Logarithmic potential). Let y be a finite Borel measure on C with compact sup-

port. We define the logarithmic potential of y as

Uyu(z) = —/Cln|z —x|pu(dx), forz e C. (5.10)
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We observe that for every finite Borel measure y on C with compact support, we have
U, € LL (C, A(dz)), and hence

loc

U, (z) < +oo, forae. zcC. (5.11)

Indeed, let K C C be a compact set and y a measure as above. Then, there exists Ry > 0 such
that supp C D(0,R;), and for every x € supp j, by performing a change of variable, we

obtain

/ ln |z — x|| dz :/ lIn [w]| dw g/ lIn [w|| dw < R, (5.12)
K K—x K+D(O,R1)

with R, > 0 a uniform constant with respect to x. Therefore, by Fubini-Tonelli theorem, we

have:

/K\Uy(z)|dz:/K’/Cln|x—z\y(dx) dz§/1</c\ln|x—z\]y(dx)dz
:/C/KHn\x—szzy(dx) §/CR2y(dx) < Ho0. (5.13)

Hence U, € Ll

loc

(C,A(dz)) C D'(C).
Another important property of the logarithmic potential is obtained by applying the Lapla-

cian. In particular, fixing a measure y as before, we have

AU, = —27tp, inD'(C). (5.14)

Indeed, since % is a fundamental solution of A, for every ¢ € C®(C),

(AU, ¢)prp = /C <—/Cln lx — z|y(dx)> A, (z)dz
:/C (—/Cln]x—zmzqo(z)dz) u(dx) = /C —(270x, @)p p p(dx)
= [ ~2mo(x)u(dx) = (~27p,9)0,
which proves the statement (5.14).
We now consider (pg)«(A), the push-forward of the Lebsegue measure A(dp) on T2 under
the principal symbol pg of p. Since py is continuous and T?¥ is compact, the image Im(py) is
compact, and consequently (pp)«(A) is a finite Borel measure supported on Im(py). Accord-

ingly, we set
#() = Uy (@) = [ Inlpolp) —zldp, zeC.

By (5.13) and (5.14), we know that ¢ € L] (C) C D'(C) and that its Laplacian

Ap = 272(po).(A), in D'(C). (5.15)

Hence, the positivity of A implies that ¢ is subharmonic.
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We now aim to prove that ¢ is continuous in a neighborhood of «, specifically in ,. To do

so, we invoke Theorem 1 from [Ar60], without reproducing its proof.

Theorem 5.4 (Theorem 1 of [Ar60]). Let m be a finite, positive Borel measure with compact support

and let Uy, be its logarithmic potential

1

Up(2) = /ln T, zeC
Then U, is continuous at a point zo € C if and only if
r
lim {hm sup mt(z)dt} —0, (5.16)
r—0 z7 0 t

where m(z) := m(D(z,t)). Moreover, when Uy, is continuous at zo, the limit actually exists in the

bracketed expression, and in fact

lim/ mt(z)dt:/ m(z0) 4y
0 t 0 t

Z—2Z0

Now, let zp € 9, and consider z € neigh(zp) C ;. Since ¢ is the negative logarithmic

potential of (po).(A), we consider, for r > 0

[ G0N0, Mo €T le) =P < A,
0 t 0 t

Hence, if we take 0 < r < 1, by applying the bound (3.28) uniform on 7,, we obtain

[ NP0 _ [ Oy €
0 t 0 t -2k '

for a constant C > 0. Since this result is true uniformly on a neighborhood of zy, it follows that

7 (po)«(Aldp))(D(z,1)) dt} ctim S
t <

lim {lim sup P
r—

r—0 z—29 0

Therefore, by Theorem 5.4} ¢ is continuous in ;.
Now we define, for g € Bya(0,R),

u(z) :=det(P°(q) —z), z€C,

and we observe that u is a holomorphic function on C.
Since T is relatively compact and its boundary <y is locally Lipschitz with respect to the

weight rp, there exist | points x1,...,x; € 7y such that y C U§:1 ij, where

Ay = {y € Ry : 7= Us(y—x), il <ro, o= f ()}, j=T....l.
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Here the rectangles Rx]., the Lipschitz functions ij and the orthogonal matrices Ux]. are defined

as in the start of this section. We parametrize each patch with the function
@) := x; = U (4 (1), t€]—ro,m0l.

By Rademacher’s theorem fj’cj (t) exists for a.e. t €] — ry, rp[ and its modulus is bounded by the

corresponding Lipschitz constant L; of f,,. Thus, since Uy, is orthogonal,

[@4(6) 2 = 11, F (D)2 = /11 (D < /112, forae. t €] = ro,n

Let 7{‘17 denote the arc length on <. By subadditivity,

I L 1 I
() < dH () = / 19/ (8)||adt < Y 20y /1+ L2 < +oo,
]; A ]_21 o ; ]

]

and consequently, by the hypotheses of N-independence, H!(y) = O(1).
Now we take a smaller, possibly N-dependent weight 0 < r < 1 in the definition of Lips-

chitz boundary and we choose Ny points
zZey, j=12...,Np,

satisfying the conditions (5.4). By definition of arc length, we have

No
Nog < ) I} — 2]l < H'(7) = O(1),
j=1

el

and thus Nyp = O(r~!). Applying Proposition we know that for every fixed z € 7;, the
inequality
[det(P() = )| = cexp (N7 [ Inlpo(e) ~=ldp), 517)
is true with a probability > 1 — O(1)NMs+deq(N) exp (—% In (%)) , provided thate > 0
is small enough so that the right-hand side of is < L.
We define € := N~%In (%) , 50 that € = exp(—€N¥). We observe that the condition on e that
the right-hand side of is < 1 holds if

EZ Ceo(N),

for some large constant C > 0, i.e. € > &o(N). Thus, we can rephrase (5.17) as it follows.
For every z € 7,, with probability

>1— O(1)NMsHig (N) exp (‘ng(N)) ,
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we have

det(P(g) ~2))| = exp (N ([ nlpule) ~zldp —€) ),

which is equivalent to write

NInu(z)| > ¢(z) - &

Now, we apply Theorem [5.1|and we take z3,...,zN, € 7; as in its statement. We apply what

we have just found to each of these points and we obtain

’ (ﬁ (V1 Inlu(G) 2 ¢(5) 5)) =1-F (6 (N1 lu(z)| > p(2) g)C)
=1 e

>1—ZIP< N~“In |u z])|<4>(z])—e>
> 1 — NeO(1)eo(N)NMrde(~ ).

Furthermore, we recall that inequality (.5) obtained in Section [4.1]

in] det(P(g) — =)~ N [ in o) ~ zldp ) < Neo(),

is true for all ¢ € Byu(0,3R) and for every z € 7.
Hence, in the probability space (By«(0,R),IP(dg)) that we are considering, the following

inequality
€

N~In |u(z)| < ¢(z) +eo(N) < p(2) + =

is true with probability equal to 1 and for all z € 7;.
Finally, we define the function ¢(z) := ¢(z) + &, which still satisfies the same hypotheses
of ¢. Then with probability

>1— (f)il)so(N)NM#de(‘Cefw),

the following two are true

N~%n|u(z)| < ¢(z), forallz € 7,

N_dln|u(2]~)| > ¢(z)) —E(l + é) , forj=1,...,Np.
Thus we can apply Theorem [5.1]and obtain the following result.

Theorem 5.5. Under all the previous hypotheses and notations, there exists a constant Co > 0 such
that

1
#o(P)NT —Nd/ d’gcz\rd<2n/ d+0<>€>, (5.18)
(@(F)nD) T bl (4D T r
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with probability > 1 — @sO(N)NMSJFde(_ Ceo€<N>),

Proof. We recall (5.15) and we observe that the left-hand side in the inequality of Theorem

in our context, becomes

’#( 10)NT) — ’ ‘# o(P°) (T) ZZSd(po)*(Axr)‘
‘# o(P°)NT) Nd/pol(r)dp’.

On the other hand, the right-hand side is given by

No 1 1 1
CoN? | u(7,) + €<1+> =CNd<2n/ d+0(>€(1+>>.
2 <I/I( ) ]g C 2 pal (4D(0)) 1Y r C

Then, by putting together these two equalities, (5.18) is proved. O

5.2 Eigenvalue Distribution via Empirical Measure Convergence

In this section, we work within the same framework and use the same definitions as in the
previous one. Our goal remains to understand the distribution of eigenvalues of the randomly
perturbed operator P°(q), considered on the probability space (By«(0, R),P(dg)).

We now adopt a qualitative perspective based on weak convergence of empirical measures,
rather than providing explicit error estimates. We begin by defining what we mean by empiri-

cal measure.

Definition 5.6 (Empirical measure). Let P € CM*M be a linear operator, with spectrum o (P).

We define the empirical measure of its eigenvalues as the probability measure

1
]1 = — Z (Sg.
M éxtp)

Hence, the empirical measure for the perturbed operator P§; = P°(q) is given by

Y,

Cea(P‘S)

Asin Sectionwe consider the following measure

&= (po)«(A(dp)), (5.19)

which is the push-forward of the Lebesgue measure A(dp) on T?? through the principal symbol
po of p.
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By Definition[5.3} the logarithmic potentials of the measures {y, ¢ are given respectively by

Uz, (2) = —% 5 )/Cln|z—x\5g(dx)

geo(Py
1 1 5
=l | IT -2l = —Wln‘det(PN —z)‘. (5.20)
zeo(Pg)
U(z) = = [ Infz=#I((po)(1))(dx) = = [ In|po(o) - zldp. (5.21)

An additional property of the logarithmic potentials that we will need, is the following: let
{#n}nen be a sequence of finite Borel measures with compact support, and suppose that the
supports of all y,, are contained in a fixed compact set. Then, the almost sure convergence of
the associated logarithmic potentials U, (z) — Uy(z), where y is a finite Borel measure with
compact support, implies the weak convergence of the measures y,, — .

We have considered this result in the setting of random measures, as stated in [Tal2} The-
orem 2.8.3], and adapted it to our framework. Before presenting the result, we introduce the

definition of random measure.

Definition 5.7 (Random measure). Let (), F,IP) be a probability space, and let (X,X) be a

measurable space. A random measure on (X, X) is a map
W U
from Q) to the set of all possible measures on (X, X), such that for every E € ¥, the function
w > pew(E)
is measurable with respect to . Equivalently, a random measure is a function
p:QxE— 0,400

such that for each fixed w € ), the map E — pu(w, E) defines a measure on (X, X), and for each
fixed E € X, the map w +— p(w, E) is measurable.

We denote M (C) the space of all finite Borel measures on C with compact support.

Here we present the main result we are interested in.

Theorem 5.8. Let K, K' @ C be open, relatively compact sets with K C K, and let {p, }nen, p e
random measures in M(C), defined on a probability space (Q, F,IP). We assume that all the measures

Un are almost surely uniformly bounded in total mass by the same constant and that almost surely

supp p, supp un C K, for n sufficiently large. (5.22)
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Suppose that for almost every z € K', the limit

Uy, (z) = Uy(z), n— oo, (5.23)
is true almost surely (respectively in probability). Then,

Hn — WU, n — +oco, weakly (5.24)

almost surely (respectively in probability).

Proof. We begin with the proof in the case of almost sure convergence. The case of convergence
in probability will follow similarly.

First of all, we notice that the assumption that for a.e. z € K’ the limit holds almost
surely is equivalent to assume that almost surely holds for a.e. z € K'. Indeed, we define
the set

E:={(z,w) € K'x Q: U, ) (z) = Uy (2)} CK xQ,

and we observe that the first of the two assumptions is equivalent to say that for a.e. z € K’
/ 15(z, w)P(dw) = 1,
Q

and hence

/ ( / lg(z,w)l[’(dw)) AMdz) = A(K).
K \JO
Furthermore, the second assumption is equivalent to say that almost surely (for a.e. w € ()
[ 16z w0)A(dz) = A(K),
K/

and hence

/Q </K/ HE(Z"U)/\(dZ)> P(dw) = A(K').

Applying Tonelli theorem confirms the equivalence of the two formulations.
Now, we observe that In| - —x| € L?(K’) uniformly in x € K. Indeed, using the same
argument we used for showing (5.12), we have, for all x € K’

/\ln\z—tz/\(dz)g/ ]1n|wH2A(dw)§/ | In |w|[2A(dw) < C,
K K'—x K/ +K/

with a constant C > 0 that does not depend on x. Then, by Minkowski’s inequality, for almost
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every w € (Y and for all n > 1, we obtain

TR T R——

< /C </1<’ |In |z — x||2A(dz)>1/2 tn(w)(dx)

< /C C?pin(w) (dx) < C,

A —1In|z — x|pn(w)(dx)

where C > 0 is a constant that does not depend on 1, as guaranteed by the hypotheses of the
theorem. By applying a similar argument also for U, we conclude that for all # > 1 and for
almost every w € Q, Uy, (o), Uy, (w) € L*(K’) uniformly.

Now, combining this result with and with the equivalence between the statements
proved above, we obtain that there exists a measurable set O C Q) with P(€Q)') = 1, such that

for each w € (Y, the following are true
L Uy, (0)(2) = Uy (z) asn — +oo, forae. z € K,
2. there exists 19 > 1 such that supp pu(w), supp u(w) C K, forall n > ny,
3. there exists a constant Cg y > 0, depending only on K" and Y/, such that
U, o) 20k W I 21y < Crrevs (5.25)
foralln > 1.

In order to prove the statement (5.24), it is sufficient to show that for all w € ) and for any
¢ € CZ(K',R) with support in K/,

(pn(w), @) p — ((w), ¢)prp, forn — +oo. (5.26)
Fix w € (), let M > 0 and define
gﬁ/l(z) = min(|uyn(w)(z) - uy(w) (Z)|/M)/ (5.27)

for z € K" and n > ny. We know that gM(z) — Oforae z € K" and that |¢¥| < M € L}(K').
n )

Hence, by the dominated convergence theorem, we have
gt —> 0, in LY(K"), for any M > 0.
n—oo

We now use Markov’s inequality (see Theoremin the Appendix) and the uniform L?(K’)-
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bounds from (3) to estimate the truncation error.

|

g —u

() — U

- (‘uyn(w)(z) - uy(w) (Z)’ - M))‘(dz>

M(w) | Ll(K/) {ZGK’:\U},V,(w) (Z)_u}l(a})(z)‘zM}

<

1/2
Aldz U, () — Uyt
</{Z€K’:|Uun<w>(z)U;z(w)(Z)zM} ( )> H o) =)

<2 (A ({2 € Kt Uy (2) — Uy (@) = M)

L2(K")

4C%, o
g% (5.28)
Hence, for each w € () and for all M > 0, we obtain
Uy @) = Uneoy iy < 1188 = W) — Upeo ey + 1180 1 (i)
(
which implies
. 4C2/ Q
ngr_{_loo Hu;t,,(w) - uy(w) HLl(K’) < ]I\j[’ .
Thus, by taking the limit for M — o0, we obtain that for every w € Y/
Uy (w) = Upwy inLY(K'), for n— +oo.
Consequently, almost surely
Uy, - u,, inD'(K'),
and thus (5.24) holds. Indeed, by (5.14) we have
AU, = —2mtp,, AU, = —2mu, inD'(C). (5.29)

Now, we want to prove the same result but we consider the convergence in probability
instead of the almost sure convergence.
We first assume that for almost every z € K’, and for every ¢ > 0,

lim P (|U,, (z) — Uyu(z)| > ¢€) = 0.

n—oo

In this framework, we can apply the same arguments as before and obtain that there exists a
measurable set )’ C Q) with IP(Q)') = 1 such that for all w € Q' properties (2) and (3) still hold.
We define ¢M(z) on K’ as in (5.27), recalling also its dependence on w € Q. Fix M > 0. For

every ¢ > 0 and for a.e. z € K

e If M > ¢, then
P(|gy'(z)| > €) = P(|Uy, (z) — Uu(z)] >€) — 0.

n——+oo

o If M <¢, then |gM(z)| < M < ¢ and hence P(|gM(z)| > ¢) =0, forall n > 1.
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Therefore ¢¥(z) - 0 in probability for a.e. z € K’ and |gM(z)| < M € L'(Q,P). Fix ¢ > 0.
n o0

Then, for almost every z € K’, we have
QAZIPdw:/ anIl’dcu+/ ,ﬁdzIPdw
Listemao = [ - is@P@) [ s @R
< MP(|gy!(z)| > ) +€P([g) ()] <e) < MP(|g)(2)] > ¢) +e.

Thus, since ¢M(z) — 0 in probability, we obtain
gn n——4o0 p y

lim /Q 1§M(2)|P(dw) < .

n—+-o00

Because ¢ > 0 is arbitrary, we conclude that

n—r+o0 n——400

lim /Q EM(2)|Pdw) =0, ie. gM(z) — 0, in LY(Q,P),
for almost every z € K'. Moreover,

‘/Q \gﬁ’l(z)]]l’(dw)‘ <MeLY(K'), forall z€K.
Thus, by Tonelli theorem and by the dominated convergence theorem,

/Q < 1</ |gr[\lﬂ(z)\dz> P(dw) = /K </Q !gﬁ‘(z)ﬂl’(dw)) dz T 0.

Finally, by Markov’s inequality (Theorem|A.17)), for any € > 0
Yy, by q y y

P </K 1M (2)\dz >€> o Ui s G)ld) Plde)

ts n——4o00

which proves that
g — 0 inLY(K'), in probability, (5.30)

n——+o0

for any M > 0.
We observe that also in this case, inequality (5.28) for [ g3 — [Uy, — Uyl || 11k is still valid

almost surely. Hence, for every ¢ > 0 and for each M > 0, we have

P([[Uy, = Uyll iy > &) < P(lgn" = Uy, = Uplla iy + 180" iy > )

4!C2/Q/
( ]I\</I + ||g71>/IHL1(K’) > 5)

IN
tﬁ

4C12</ Qf
=P <H8;11M||L1(K') >€— M, ) .
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Cz/ / .
Thus, taking M = e from (5.30) we obtain

P 7

£
P(|ty, ~ Unlliy > €) <P (I8 sy > 5) 572, 0

n—r+o0

which proves that
— U, inL'(K'), inprobability .

" n—+4o0

Uy

Finally, we let ¢ € C®(K’); for every ¢ > 0 we have

P([{Uy, = Uy, @)pp| > €) < P(|U, = Uyl xry sup [(2)] > €) — 0,

zeK! n—o0

which means that U, -7 U, in D'(K’) in probability. Hence, from (5.29),
n )

Wn — u in probability.

n—r—+00

O

Finally, we apply Theorem [5.8| to the measures ¢y, ¢ in the semiclassical limit N — +oo.
Before, we need to show that its hypotheses hold.

We observe that since ¢ are all probability measures, the hypothesis of the uniform bound
on the total mass is satisfied. Recall that the support of ¢ = (po).(A) is the compact set Im(py).

Thus, we have
supp & = po(T*) < D (0, [[poll e xa) ) -

Moreover, for each N, the support of the empirical measure ¢y is given by

7).

By Proposition[I.17] there exists a constant C; > 0 that bounds the norm of py uniformly in N.

supp & = o(Pg) € D (0,

Hence,
P4 < 1P+ 61vy | < &1 + éllalle

Since the probability measure IP we are considering is defined on the space By.(0, R) and since

]lee < [g]l2 for all g € CN*, we obtain
supp &y C D (0,C; + 6R), (5.31)
where, from and (5.9),
SR=0O(NV2)«1, for N>1.

Fix 170 > 0 and define

R, = max{HpoHLw(Tzd), G+ (SR}, K :=D(0,R, + 10) € C.
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Then
supp ¢, suppén C K,

for all N >> 1. We consider an open relatively compact set K’ € C such that K C K'. If we show

that for a.e. z € K/, the convergence
Uey(z) —> Ue(z),

N—+o00

is true in probability, then the hypotheses of Theorem 5.8|are satisfied. Fix z € K. By (5.20) and
(5.21) we have

Us(z) — Uz (z) = N* (ln det(Pf; —2)| - N /TM In[po(p) — Z\dp) = N""In[F(q)|,

where F is defined as in and depends explicitly on the random vector 4. Hence, for every

€ > 0, we have
P (|(Ug(2) — Ug, (2)| > &) =P (N“In|F(q)] > &) + P (N~In|F(g)| < —€).  (532)

Recalling Remark [4.1, we suppose 19 is not too small. For instance, we assume

NI=

Tp > exp(—N2).
We fix € > 0. Thus, from [4.8), there exists N; = Nj(€) > 0 such that
eo(N) <F§, forall N > Nj.
Applying (£.5), for every N > N; we have
P (N_d In|F(q)| > ’é) <P (N—d In|F(q)| > so(N)> = 0. (5.33)
Moreover, let 0 < a < 5 and define
€1(N) := exp(—eo(N)N¥*),
With this definition, we observe that for N > 1,

e1exp(O(eo(N)NY)) = exp(O(eo(N)N?) — go(N)N9+¥) < 1,

and hence the hypothesis of Proposition 4.6|is satistied with €;. By applying the subsequent
Remark[4.7] we obtain

P (N—dln IE(q)| < —so(N)N“> < O(1)eg(N)NM+ exp (5?{;) . (5.34)
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Since 0 < & < 5§, we know from Remark {4.1| that g9 (N) N* N—> 0. Thus, there exists N, > 0
—r+to00
such that

e(N)N* <€, forall N > Ns.

Now, we recall the following standard asymptotic: for any p,q > 0and r > 0,
xP (In(x))Te™™ =0, as x — +oo. (5.35)

Thus, recalling the definition (4.4), the right-hand side of (5.34) converges to 0 as N — +oco.
Fixing 77 > 0, there exists N3 = N3(#) > 0 such that

o

o)

O(1)eo(N)NMs+ exp ( > <1, forevery N> Nj.

Consequently, for all N > max (N, N3), we obtain

P (N—d1n|P(q)| < —5) <P (N_dln|P(q)| < —so(N)N”‘> <. (5.36)
Finally, applying both (5.33) and (5.36), we obtain that for every € > 0

Nl_i}l}:ooll’ (|Us(z) — Ugy (z)| > €) =0.
We observe that this result is true for all z € K. Hence, we can invoke Theorem which

yields the following convergence in probability:

Z\}d Y. 6 — (po)«(A(dp)), as N — +oo. (5.37)

gea(Py)

Remark 5.9. We observe that the empirical measure ¢y “counts” the eigenvalues of P§; over

measurable subsets of C. More precisely, for any measurable set I' C C,

i (D) = 7 PACILE HE € o) T). (539)

We now consider an adapted version of the Portemanteau theorem (see Theorem [A.18]in
the Appendix) in a probabilistic setting, as presented in Corollary In particular, we apply
it to (5.37), taking as underlying metric space the compact set K, so that C,(K) = C.(K). Thus,
we obtain a quantitative formulation for the number of eigenvalues as a consequence of weak
convergence.

In particular, for every measurable set I' C C such that

Alpy'(@r)) =0,
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we obtain, forall e > 0,
1
P<‘W#{CEU(P§)OF}— y )dp‘ >£> — 0, as N — +oco. (5.39)
po (T

Remark 5.10. The result in (5.39) is not substantially different from the quantitative estimate
established earlier in (5.18). The main distinction lies in the fact that Theorem |5.5/ provides an
explicit error bound, but only for a specific class of sets I', whereas (5.39) yields convergence in

probability without an explicit rate, yet applies to a broader family of measurable sets.

5.3 Applications with Truncated Gaussian Distribution

In the final section of the thesis we consider a practical example of the results we found
previously. In particular we apply Theorem5.5to a simple framework, in order to obtain some
explicit quantitative bounds for the spectrum of the perturbed operator.

We consider a framework where the dimension 4 = 1, so that we work with symbols on
T? and with the corresponding restricted Weyl quantizations acting on CV, with N = ;L.
Additionally, we consider 9 = CoN~" for M > 0 and Cy > 0, so that, by definition (4.4), we

have
eo(N) =0 (N3 + (N"'In(N) + N7%) (O(mIn (N)) + (in (N))) ) )

—0 (N*1 (In(N))® + N~* (In (N))2> . forN>1, (5.40)

where the last equality holds because x €]0,1].
By Proposition we define § = N%H, for a sufficiently large constant C > 0. Moreover,
for the perturbation V; that we want to apply, we consider a probabilistic setting given by a

Gaussian distribution truncated to the ball By (0, R), where
C;N2" <R < GN™2,
for two constants C;, C; > 0 as in (3.78). Specifically, we define
IP(dg) := C(N)e®W,

where
1

- fBN(o,R) exp(®(q))dq’

1
(q) = —EHtiH%/ q€Bn(0,R);  C(N):

We observe that
L
[V®(q)[l2 = || —gll2 < R = O(N""2),
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and thus, by following the definitions in Chapter 4, we obtain

1 1 3
Ml.—m—f—i, Mz.—m—l—i, M3—m+§.

5.3.1 Application to the Scottish Flag Operator

We consider the symbol whose quantization yields the ”Scottish flag” operator, called in
this way for the particular geometry of its spectrum, which recalls a Scottish flag.

In particular we define
p(x, &) := cos(2mx) +icos(27¢), (x,&) € T2

We note that
P(X,Cf.) = pO(x/C) € S(l,l),

and satisfies the symmetry assumption p(x,¢) = p(x, —¢).
We recall definitions and (1.25) and, as shown in [ChZw10] we observe that the Weyl

quantizations of functions depending only on x or  restricted to H;, are given by

C®(T?) > f = f(x) = fy = diag(f(I/N); I =0,1,...,N —1)
C®(T?) > g = g(&) — gy = Fiydiag(g(I/N); 1 =0,1,...,N —1)Fy,

where Fy is the discrete Fourier transform, defined as in (1.22). Thus, we obtain

; : ;
L cos(xp) i 0 0
0 L cos(x3) 5 0 271j
pN: . i .‘. 7 x]:W/]:ll /N
0 e 0 5 cos(xn-1) 5
5 0 0 L cos(xy)

Write py = D + %T, where D := diag(cos(x;); i =1,...,N) and T is the real symmetric matrix
with ones one the super- and sub- diagonals and on the entries (1, N) and (N, 1). If (u, ) is an

eigencouple of py, with ||u||, = 1, then
u = (pnu,u) = (Du,u) + %(Tu,u}.

It follows that
N

R(u) = Z% |u;j|* cos(x;) € [-1,1],
i

and 330 = (yTwn) € | =317 307l = (-1
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The last equality holds from the fact that each column and row of T contains exactly two ones,

and thus,
1T < /TN T]e =2,
where || - ||; and || - || are the induced max—column-sum and max-row-sum norms, respec-

tively. Therefore
o(pn) C [-1,1%

We consider zp €] — 1,12 and Rg > 0 such that
I:= D(zo,Ro) C [-1,1]% (5.41)

The set I' is open, simply connected, relatively compact with uniform Lipschitz boundary, fol-
lowing the definition introduced in Section For each z € dI' = dD(zp, Rg), we consider
affine coordinates (i1, J2) translating z to the origin and rotating so that the tangent to the disc
in z is horizontal. Thus, if we denote y = (y1,y2) the old coordinates, taking 0 < ry < Ry, the
local description of T in the rectangle {y € C : (11, 2) €] — ro,r0[x]| — ro, o[} is

{yeCimel=rorlya> f2(1)},
where the function £, (i71) := Ro — \/R% — #1” is Lipschitz in [—r, ro] with modulus

sup |f/(1)] = ——2—" <1, whenever ry < —&

fl<r R2— 12 \f
Let z = R(z) +iY(z) € Cand 0 < t < 1. We compute

({(x C:-() € T : IPO(x C) - 2’2 < t} // ]1{ (cos(27x)— ))2+(cos(2n§)7%(2))2§t}dxglg

21
B (2%)2/0 0 T (cos(8) — R(z2))2+ (cos(¢) —S(z) 2 <t} A0,
(5.42)

where we used the change of variables § = 2mx, ¢ = 27¢. By making a second change of
coordinates u = cos(6), v = cos(¢), we obtain that the last term in (5.42) is equal to

4 T
?/ / Il{ (cos(8)—R(z) 2+(cos(¢)—%(z))2§t}d9d¢

1
/ / w0 so-30070) s dudo (5.43)

Now we take a smaller, possibly N-dependent weight 0 < 7 < 1 in the definition of Lipschitz

boundary. In particular, we choose r sufficiently small so that there exists # > 0 with

Yy :=0D(z0,Ro) + D(0,7) C [-1+417,1—7]% (5.44)
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Hence, taking t sufficiently small, for all z € ;,, we have

{(u,0) € [-1,1]: (u —=R(2))*>+ (v —F(2))?> <t} C [-1+5,1-]%,

for a constant § > 0 dependent on 7 and t. For example, if we consider t = (g)z, we can take

6 = 1, since the center (R(z), 3(z)) is at distance > # from the boundary of [—1,1]? and the
radius is /t = g

Under these assumptions, we get a uniform bound on the integrand function

1
V- (-

over the plane {(u — R(z))? + (v — 3(z))? < t}. Thus, from (5.42) and (5.43), there exists C; > 0
such that

A({(x,8) €T |po(x,§) — 2> < t}) < C1/ / L (0-3(2))2 <ty dudv
= CGA(D(z, \/E)) = O(t).
Therefore the volume condition (3.28) in the hypotheses of Theorem [5.5| holds with x = 1

Applying the theorem, for any € > C3¢9(N) (with C3 > 0 large enough), there exists a constant
C, > 0 such that

#(o(pn +0V,) NT) — NA (pfl(r))‘ < GN <2m (pfl(ar + D(o,r))) +O C) 5) ,

with probability at least

O 5 €
- }(ﬁl)so(N)N"’*Z exp <_C3£0€(N)> . (5.45)

By (5.40), we have
eo(N) =0 (N—l <1n(N))3) .

For instance, choosing
1> & =¢g)(N)VN > ¢(N),

(5.45) becomes

o1

( )SO(N)Nm+% exp <_\/N> ,

r Cs
which tends to 1 as N — +o0, since the exponential dominates any polynomial or logarithmic
factor.

Moreover, with the change of variables (1, v) = (cos(27x), cos(27¢)), we obtain

A (p~'(8D(z0,Ro) + D(0,7) / / 3l (1 )J(l_ui)(l_vz)dudv, (5.46)
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where we define the annulus
Cao,Ror = {(1,0) : (Ro —7)> < (u—R(20))* + (v — S(20))> < (Ro + 1)}

If r is small enough so that C;yr,r C J+ C [-1+,1— 5]2, with § > 0, then the weight is
uniformly bounded, and hence

A (P™(8D(z0,Ro) + D(0,7)) ) < O()A(Cpy) = O (7).

Thus, for a new constant Efvz > 0, we obtain

_% n 3
‘;]#(U(PN +5Vq) ﬂD(Zo,RO)) —A (Pl(D(Zo,Ro))>' < E; (r—|— N(lr(N))> ,

with probability arbitrarily close to 1 as N — +oo.

Remark 5.11. Choosing N ~1 < r < 1, makes the right-hand size tend to 0 as N — 4-co. For

1

example, if we take r = N4, the right-hand size is equal to
N~} (1 + (1n(N))3) —50, as N — +oo.
Thus, for N sufficiently large, with high probability the following is true

%#((T(pN +6Vy) N D(zo,Ro)) ~ A (p~ (Dlz0, Ro)))

which is the desired probabilistic Weyl law in this model.






Conclusions

In this work we have achieved our main objective by proving an original result: a proba-
bilistic Weyl law for the spectrum of finite-dimensional operators arising from the Weyl quanti-
zation of symbols on the torus T2, under random potential perturbations. Specifically, we have
shown how the eigenvalues asymptotically equidistribute in the semiclassical limit N — +oo.

This result extends the framework studied by M. Vogel in [Vo20], where he considered ran-
dom full-matrix perturbations applied to the same class of operators. Using similar tools and
ideas, we have established an analogous theorem for random diagonal matrix perturbations.
In our context, we have followed the approach of J. Sjostrand [Sj09], who studied multiplica-
tive random perturbations for quantizations on IR??, and we have adapted these ideas to the
finite-dimensional setting arising from the compact torus.

The final application in Section[5.3|provides a concrete example of our results. In particular,
we have considered the Scottish flag operator, whose spectrum is not regularly distributed but
concentrates along the diagonals of the square [—1,1]?> C C. By adding a small diagonal pertur-
bation given by a Gaussian distribution truncated to a ball, we have obtained a regularization
of the spectrum and an asymptotic eigenvalue law in the semiclassical limit N — +oco.

An important aspect of the framework considered is its possible physical interpretation.
In a quantum-mechanical setting, these operators can describe periodic quantum observables,
and the associated perturbations can model random potentials acting on a quantum system.
Moreover, these results highlight how random perturbations serve as an effective tool for spec-
tral regularization of non-selfadjoint pseudodifferential operators, and they naturally suggest

several directions for further research. In particular, we outline the following:

* Relaxation of Distributional Assumptions. One generalization can be obtained by re-
moving the compact-support assumptions on the distribution of the random perturba-
tions. This would allow a wider range of admissible models and avoid, for instance, the
truncation used in our application. To preserve high-probability concentration estimates,

it would be natural to assume suitable tail-decay conditions on the distribution.

* Generalization of the Phase Space. A second direction is to seek an analogous proba-
bilistic Weyl law on a more general phase space, given by a compact Kdhler manifold,
via Berezin-Toeplitz quantization. The torus is a particular compact phase space where

periodicity holds; analogous results may be attainable in other geometric frameworks.
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* Broadening of the Perturbation Class. Lastly, one further possibility is to extend the class
of random perturbations beyond diagonal and fully random matrices, and to characterize
the minimal structural or correlation assumptions under which the probabilistic Weyl law

persists.



Appendix

This appendix gathers auxiliary definitions and results used throughout the dissertation.

Given the heterogeneous material, we organize it into separate sections.

A.1 Useful Results for Semiclassical Calculus

In this section, we collect notions and statements essential for the first chapter of the thesis,
including the Schwartz kernel theorem, the definition of oscillatory integrals and the Fourier

conjugation formula.

Theorem A.1 (Schwartz Kernel Theorem). Let X C IR" and Y C IR™ be open sets. Then every

continuous linear operator
A:C2(X) = D(Y)
can be represented uniquely by a distribution Ko € D'(Y x X) such that for all test functions ¢ €

C®(X)and p € C(Y),

(Ad, Y)p(v),p(v) = (Ka, ¥ @ ) pr (v x), D(YxX)/

where @ ¢(y, x) := P(y)p(x). Ka is called the Schwartz kernel of A.

A.1.1 Oscillatory Integrals

We introduce the notion of oscillatory integral following the approach of [Ma02, Section
2.4]. In particular, we work on the vector space R¥ = R! x Ry x R% and we consider the
phase function ¢/ (*~¥%) with h €]0,1]. The following construction applies also for other phase
functions.

Leta = a(x,y,&) € S((&)™), with m € R, in the sense of Definition [1.2] We wish to give a

meaning to the possibly divergent integral

I(a) := / ) eﬁ<x—y'§>a(x, y,¢)dc.

First, we notice that if m < —n, then the integral is absolutely convergent and is therefore well-
defined. To define it when m > —n, we are going to interpret it as the distribution kernel of an

operator.
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Let u € CP(R") and assume m < —n. Then, we may define the operator

= [, et alx,y, Dyuly)dyde,
R n
which is an absolutely convergent integral. If we introduce the differential operator

1

L(g,hDy) = TH@H%

(1—=h (g, Dy)),

we have
L (e%<x—ylé>) _ phlx—ud). (A1)

It is this particular property, based on the oscillatory character of the phase function, that will
allow us to give a sense to I(a). In particular, we observe that L¥(ei (*~¥)) = ¢#{¥=¥%) for all
k € IN*. Integrating by parts k times, with 'L denoting the formal adjoint of L with respect to y,

we obtain

W = [ oL D)) ()t = L),
where

141 (Z,Dy)\"

(LMD o) = (Rt ) () = (&)™),

uniformly as ||| — +oo. As a consequence, the integral [yu is absolutely convergent when-
ever m —k < —n. Moreover, since L satisfies (A.1l), repeated integration by parts shows that
Iy ou = Lu for all £ > 0. Therefore, for any m € Rand a € S(({)™), we define, for u € CZ°(R")

(x,h) //}R% =v8) (*L(Z,hD )) (au)dydg, (A.2)

where k is a nonnegative integer such that k > n + m. The integral is absolutely convergent and
the right-hand side is independent of the particular choice of k. Thus, we obtain the following

theorem, whose proof is presented in [Ma02].

Theorem A.2 (Theorem 2.4.3 of [Ma02])). A, defines a continuous linear operator from C(R") to
C®(R").

As a consequence, by applying Theorem[A.T} it follows that the operator A, admits a unique

distribution kernel in D'(R" x R"). This motivates the following definition.

Definition A.3. Given a € S(({)"), m € R, the oscillatory integral associated to a with the

phase function eh(x~¥4) is the distribution

I(a) = / g%(x*%@a(x/y/é’)dg c D/(]Rn % an).
Rn

It is the Schwartz kernel of A,.
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Remark A.4. This construction can be extended to a broader class of symbols. In particular,
analogous results hold for the class S(m) defined in (1.1I), where m is an order function as in
Definition 111

A.1.2 Fourier Conjugation Formula

Theorem A.5 (Fourier conjugation formula). Let m be an order function as in Definition[I.1jand let
p € S(m) (defined as in (L.I). Recalling definitions and (1.4), the following equivalence holds

Fi 'p"(x, hDx) Fyy = p® (hDs, —2).
Proof. We note that the distribution kernel of 7, 'p®(x, hDy) F}, is
L (W0t y0 =), (X4 7Y gyl dx!
= ZANE 4 ’ =ty

With the change of variables x’ = x/,z = * ery , we obtain

2d i X' z,0y,x
Kod) = it oo Joo S e D) a2,

where
®D(x,z,C,y,x) =2 (<x’,§—l— Y —(z,y + C}) :
Moreover,
(27T1h)d /Rd e EH ) gyt = 2—d(s(g + ’%y) .
Hence,
Ky(x,y) = (27t1h)d /1Rd eh (t-y2) p(z,—%ﬂ) dz.
which is the distribution kernel of p“(x, hD,), where p(x,¢) := p(¢, —x). O

A.2 Stirling’s Formula

We consider a proof of Stirling’s formula that follows the approach of of Tao in [Tal2, Sec-
tion 1.2].
We start by interpreting the factorial through the Gamma function, which is defined in the

following way

I''R—R

—+o0
X — / Lot g,
0
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Repeated integration by parts yields the identity:
+00
n=Tn+1)= / the ! dt.
0

Thus, estimating n! reduces to estimating the integral above. Elementary calculus shows that
the integrand t'e! attains its maximum at ¢t = n, which suggests the substitution t = n +s.

This gives:
+00 +o0 S\ "
n! = (n+s)'e " ds=n"e" / (1 + ﬁ> e °ds,
—n

—n

where in the last equality we factored out the terms n"e™".

Combining the integrand into a single exponential, we obtain

nl=n"e™" /JFOQ exp (nln (1 + %) — s) ds.
—n

Using a Taylor expansion, we observe that

nln(l—l—i):s—i—l—...,

which suggests the heuristic approximation

exp (nln (1 + %) —s) ~ exp <—2Si> .

To make this rigorous, we first scale s by /7 to eliminate the denominator n: we make a change

of variable in the integral given by s = \/nx and we get

n!:\/ﬁn”e_”/t;exp <nln <1+\f) fx)

The Taylor expansion assures us that for fixed x, the integrand converges pointwise:

exp <n In (1 + \f) fx) — exp <_x22> (A.3)

in the limit n — +o0. More precisely, since the function 7 In (1 + %) vanishes at the origin
with first derivative y/n and has the second derivative equal to —m < 0, by applying

two times the fundamental theorem of calculus we obtain

nln<1+f> Vnx = / 1+y/f 34y

Then, it is easy to see that the following uniform bound holds when |x| < /n

nln<l+f> Vix < —cx?,
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for some ¢ > 0. Moreover, for |x| > /n, we have

nln <1 + \;ﬁ) —V/nx < —cx/n.

These bounds ensure that the integrands are dominated by an absolutely integrable function.

By the pointwise convergence (A.3) and the Lebesgue dominated convergence theorem, we

+o0 o0 2
/\/ﬁexp (nln <1+\;ﬁ> —\/ﬁx> dx 2255 Lw exp (—Z) dax.

We know that

conclude

+o0 2
/ exp (_x2> dx = V2m,

—00

leading to Stirling’s formula:
n!'=(1+4o0(1))vV2nnn'e™", (A4)

which means that
. n!
lim — =1.
n—t \/2nnne "

Furthermore, by Robbins’ refinement of Stirling’s formula [Ro55]], we have
n! =+v2mnn"e "e™, (A.5)

where

0<n71 <" <1m

A.3 Mini-max Theorem and Inequalities for Singular Values

In this section we recall a few fundamental results from spectral theory which we use exten-
sively in Chapter 3l We begin with the Courant-Fischer min—-max principle in the formulation

of [Tal2]; a proof is omitted.

Theorem A.6 (Courant-Fischer mini-max theorem, [[Tal2, Theorem 1.3.2]). Let A be an n X n
Hermitian matrix. For each 1 < i < n, the i-th eigenvalue of A, A;(A), admits the following character-
izations:

Ai(A) = sup inf  v"Av,
dim(V):iveV:Hsz:l

and
A(A) = inf su v Av.
l( ) dim(V):nfiJrlveV:HUIiz:l

Here V ranges over all subspaces of C" with the specified dimension.

We next collect some standard inequalities for singular values. Although in this thesis we
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are primarily concerned with finite-dimensional operators, we present a more general frame-
work, following the approach in Chapter 2 of [GoKr78].

Let H denote a separable Hilbert space and S, the space of all linear completely continuous
operators acting on ‘H, while B the space of all bounded linear operators on .

Let A € Sw; then H = (A*A)Y/2 € S.. We define the singular values of A as the eigenval-

ues of H, and we enumerate them in decreasing order in the following way

s1(A) > s(A) > --- > 0.

Definition A.7. Let A € B. The dimension of A is defined as

r(A) := dim(Im(A)) < +oo.

Theorem A.8 (DZz. E. Allahverdeiv, [GoKr78| Theorem 2.1]). Let A € S« a linearly continuous
operator. Then foranyn =0,1,2,...

sn+1(A) = min [[A - K], (A.6)

where R, is the set of all finite-dimensional operators of dimension < n.
Consequently, we obtain the following corollaries.

Corollary A.9 (K. Fan, [GoKr78, Corollary 2.2] ). Let A,B € S«. Then the following inequalities

are true

Sman—1(A+B) <su(A)+s,(B), for mn=12,...; (A.7)
Smin—-1(AB) < sy(A)sy(B), for myn=1,2,.... (A.8)

Proof. Let the (m — 1)-dimensional operator K; and the (n — 1)-dimensional operator K, be
such that
sm(A) = ||A—Kiq|, and s,(B)=|B—Kz|.

Then

Smin-1(A+B) < [[A+B— (Ki + K))]
< A= K|l +[|B = Kpf| = 5m(A) +su(B).

Moreover, since the dimension of the operator AK; + K (B — K3) does not exceed m +n — 2,
and (A — K;)(B — Ky) = AB — AK; — Kq(B — K3), we obtain

Smin-1(AB) < [|A = Kq[[||B = K| = s1u(A)sn(B).
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Corollary A.10 ( Corollary 2.3 of [GoKr78]). For any operators A, B € S,
[sn(A) —su(B)| < ||A =B, n=12... (A9)
Proof. Letn € N. By Theorem[A 8] we have

sn+1(A) = min [|A — K[| = min [[B - K+ A - B||

< min ||[B—-K A—B| = B A — B||.
< min [B— K|+ 4~ B = s,:1(B) + A~ B]|
Interchanging the roles of the operators A and B, we obtain
sn+1(B) < sut1(A) +[|A = BJ|,

from which (A.9) follows. O]

A.4 Classical Results in Complex and Harmonic Analysis

In this section we collect classical results from complex and harmonic analysis. These theo-
rems admit many equivalent formulations and broad generalizations; we state them in versions
that best suit our context and adapt them accordingly, without considering all the proofs. These

results play an important role in Chapter 4/ and Chapter

A.4.1 Maximum Principle and Harnack’s Inequality
We begin by presenting the Maximum Principle, as stated in [Ah79].

Theorem A.11 (The maximum principle, [Ah79, Theorem 12’]). Let E C C be a closed bounded
set. If f(z) is defined and continuous on E and holomorphic on the interior of E, then the maximum of

|f(z)| on E is assumed on the boundary of E, i.e.

max |f(2)] = max|(z)!.

z€JE

Next, we recall a version of Harnack’s inequality, adapted from [Ev10] and specialized to

the case of the Laplacian:

Theorem A.12 (Harnack’s Inequality). Let U C C be an open set, and suppose u > 0 is a C? solution

of
Au=0 1inlU.

If V. @ U is a connected set, then there exists a constant C > 0, depending only on V, such that

supu < Cinfu.
v 4
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A.4.2 Jensen’s Formula

Here, we recall Jensen’s formula for holomorphic functions of one complex variable, a fun-
damental identity that follows from Poisson’s formula. We use it in Chapter

We start by considering Poisson’s formula.

Theorem A.13 (Poisson’s Formula, [[Ah79, Theorem 22]). Let r > 0 and let u be a harmonic

function in |z| < r and continuous on |z| < r. Then for every a with |a| < r,

u(a) L /|| Mu(z)d& (A.10)

T o r|z—al?
Remark A.14. Setting a = 0 in (A.10), gives the mean-value property

u(0) = 1/ iu(z)d@ _ L /mu(reie)de. (A.11)
271 Jjzj=r |2? 27t Jo

We now state Jensen’s formula, which follows directly from Theorem

Theorem A.15 (Jensen’s formula). Let ¥ > 0 and let f be a holomorphic function on a neighborhood
of the closed disc |z| < r. Assume f(0) # 0 and let a1, ay, . ..,a, be the zeros of f in |z| < r, counted
with multiplicity. Then the following equality is true

I |f(0)] =Y In( L £ (re®) 6 A2
010 == Lin (%) + 5 [l (12

Proof. Step 1 (No zeros in D(0,7)). If f has no zeros in |z| < r, then In |f| is harmonic on |z| < r
and continuous in |z| < r. Thus, we can apply Theorem obtaining

27T .
In[£(0)] = % /0 In [£(re'®)|de. (A.13)

Step 2 (Zeros in |z| = r). Equality (A.I3) remains valid if f has zeros in the circle |z| = r. Write

where g is holomorphic and non-vanishing on |z| < rand {re®},_; _,, are the zeros of f in the
circle. Then we can apply (A.13) to g. Moreover we observe that for every i € {1,...,m}, we

have

1

27

/2” In [re® — re®|d0 = In(r) + — /27r In[e — ¢[do=In(r) + /2”9" In|e® —1|d
0 B 27 Jo N 27 J ¢ ¢

1 L 2;1 9 _1|d
=In(r) + 5 [ In|e® ~1/dg,

where we used the change of variables ¢ = 6 — 0;. By recalling the classical identity

T
/ In [sin(x)| dx = —mIn(2),
0
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and considering the change of variables x = £, we obtain

1 2”1 i _1|d 1 2nl 1
—/ nle —|<p—§/0 n(2) +In

27T Jo

sin <¢> ‘ d¢

7T
=1In(2) + 1/ In [sin(x)|dx =0,
7T Jo

implying

1 27 . .
7 / In |re® — re|do = In(r),
0

fori =1,...,m. Hence (A.13) is still valid for f.
Step 3 (General case: zeros in |z| < r). Suppose f has zeros in |z| < r as in the hypotheses of the

theorem and define
r2— a;z

r(z—a;)

F(z):=f(z)[]

i=1

Then F is holomorphic and free from zeros in |z| < r. For |z| = r we have

FI = VLT =y = VO T Homag = @)

Hence, by applying Step 2 to F, we get

In|F(0) 7/ In | (re®)|do. (A.14)
Finally, substituting the value of F(0) = f(0) [TiL; -7 in (A.14), we obtain

In[£(0)] = — ) In (r> T /02"1n I (ré)|d6.

= |a;] 27

A.5 General Tools from Analysis

In this section we collect some general analytic results used throughout the dissertation. We

record the statements without proofs.

Proposition A.16 (Jacobi’s formula). Let A : R — M, be a differentiable map, where M, denotes

the space of complex n x n matrices. Then

%det(A( t)) = tr <adj(A(f)) df;,@) ,

where adj(A) denotes the adjugate of A, i.e. the transpose of its cofactor matrix

C: (( 1)l+]Ml])1] 1’
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with M; ; the (i, j)-minor of A.

We now recall Markov’s inequality, a classical result in measure theory. In particular, we

consider an adaptation of [Tall, Lemma 1.3.15] for functions of complex vectors.

Theorem A.17 (Markov’s inequality). Let f : CP — [0, +o0] be measurable with respect to the
Lebesgue measure A and let K C CP be an arbitrary subset. Then for any 0 < M < +oo, the following

is true
Az eK: f(z) > M}) < % /I<f(z)A(dz). (A.15)

Proof. First, we consider the trivial point-wise inequality

M1 e fz)>my(2) < f(2), VzeK

Hence, by integrating over K both the sides of the inequality, we obtain

MA({z € K: f(z) = M) < | f(2)A(d2),
which proves (A.15). ]

We now state a version of the Portemanteau theorem (see [Du02]]), adapted to the setting
of finite measures. This result provides equivalent characterizations of the weak convergence

Un = i, whose definition is recalled in the statement.

Theorem A.18 (Portemanteu, [Du02, Theorem 11.1.1]). Let (M, d) be a metric space and let y and
{#n}nen be finite Borel measures on (M, d). Assume that {yy, }neN are uniformly bounded in total

mass. Then the following are equivalent

1. up =y, forn — +oo, ie.

/fd;tn Rl /fd;t for every f € C,(M),
where C,(M) denotes the space of all bounded continuous real-valued functions on M.

2. For every open set U C M,
liminf u, (U) > u(U)

n—r—+00

3. For every closed set F C M,
limsup p,(F) < u(F)

n—r+00

4. For every Borel set A C M with u(0A) = 0 (a continuity set of u),

im p,(A) = u(A).

n—-+oo
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Corollary A.19. Let (M, d) be a separable metric space. Let {p, }nen be a sequence of random finite
Borel measures on (M, d) defined on a probability space (Q), F,P) and let u be a finite Borel measure
on (M,d). Suppose that y, are almost surely uniformly bounded in total mass. If

e L probability,
then, for every Borel set A C M such that u(dA) = 0 (a continuity set of u), one has

un(A) — u(A) in probability.

n—-4oo

Proof. We view {, }neN as a sequence of random variables that take value in the space of all
finite Borel measures on (M, d), denoted by M ¢((M, d)). This space, with the topology induced
by the =--convergence is metrizable, for example using the Prohorov metric, as defined in
[K114, Chapter 13]. Hence, considering this structure, we can apply [Ka21, Lemma 5.2]. From

any subsequence {j; } of {yin} we can extract a further subsequence {y,, } such that

Py = M almost surely.

Fix a Borel set A C M with u(dA) = 0. For almost every w € (), the sequence of deterministic

measures
Vk i= ‘u”jk (w)

satisfies vy = u. Hence, by Portemanteau theorem (Theorem |A.18)),
ve(A) — p(A), te pm (w)(A) — p(A).

Therefore py; (A) — u(A) almost surely. We have shown that every subsequence of i, (A)
admits a further subsequence converging almost surely to u(A).

Consequently, applying again [Ka21, Lemma 5.2], the entire sequence j,(A) converges to
#(A) in probability. O
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