Foundation Models for EMG Human-Machine Interfaces

Fasulo, Matteo (2025) Foundation Models for EMG Human-Machine Interfaces. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (3MB)

Abstract

The development of generalizable models for Electromyography (EMG) signal analysis is a significant challenge, limited by high variability across subjects, conditions, and acquisition devices and platforms, alongside a reliance on large, task-specific labeled datasets. This thesis introduces a new paradigm to address these limitations: a compact, pre-trained Foundation Model specifically for the EMG domain. We propose an encoder-only Transformer architecture trained using a self-supervised, masked-signal modeling objective on large-scale unlabeled data. By adapting vision-style tokenization for multi-channel EMG and incorporating Rotary Positional Embedding to allow for extrapolation, the model learns robust and transferable representations. The resulting 3.6 million parameter model demonstrates a remarkable combination of efficiency and high performance. It sets a new state-of-the-art on the EPN-612 (96.60% accuracy) and UCI EMG (97.86% accuracy) gesture recognition benchmarks, significantly outperforming prior models with over ten times the parameters. The model's versatility is further proven by achieving a competitive 8.53° Mean Absolute Error in cross-subject kinematic regression, surpassing LSTM baselines in discrete gesture decoding, and showing remarkable performance in silent speech recognition despite its unimodal, EMG-only pre-training regime. This work validates that a single, self-supervised encoder can serve as a powerful foundation for diverse EMG tasks. Its high accuracy, coupled with a modest parameter count, paves the way for a new generation of robust, data-efficient human-machine interfaces and opens the door to their deployment on resource-constrained embedded environments.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Fasulo, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Electromyography, Foundation Models, Self-Supervised Learning, Transformer Encoder, Masked Signal Modeling, Gesture Recognition, Human-Machine Interfaces, Silent Speech Recognition, Kinematic Regression, Domain Adaptation, Multi-Channel Signal Processing, Biomedical Signal Analysis, Representation Learning
Data di discussione della Tesi
7 Ottobre 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^