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Abstract

The development of generalizable models for Electromyography (EMG) sig-

nal analysis is a significant challenge, limited by high variability across sub-

jects, conditions, and acquisition devices and platforms, alongside a reliance

on large, task-specific labeled datasets. This thesis introduces a new paradigm

to address these limitations: a compact, pre-trained Foundation Model specif-

ically for the EMG domain. We propose an encoder-only Transformer archi-

tecture trained using a self-supervised, masked-signal modeling objective on

large-scale unlabeled data. By adapting vision-style tokenization for multi-

channel EMG and incorporating Rotary Positional Embedding to allow for

extrapolation, the model learns robust and transferable representations.

The resulting 3.6 million parameter model demonstrates a remarkable com-

bination of efficiency and high performance. It sets a new state-of-the-art on

the EPN-612 (96.60% accuracy) and UCI EMG (97.86% accuracy) gesture

recognition benchmarks, significantly outperforming prior models with over

ten times the parameters. The model’s versatility is further proven by achiev-

ing a competitive 8.53° Mean Absolute Error in cross-subject kinematic re-

gression, surpassing LSTM baselines in discrete gesture decoding, and show-

ing remarkable performance in silent speech recognition despite its unimodal,

EMG-only pre-training regime.
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This work validates that a single, self-supervised encoder can serve as a pow-

erful foundation for diverse EMG tasks. Its high accuracy, coupled with a

modest parameter count, paves the way for a new generation of robust, data-

efficient human-machine interfaces and opens the door to their deployment on

resource-constrained embedded environments.



Chapter 1

Introduction

Electromyography (EMG) is a biosensing technique that captures the electrical

activity produced by the skeletal muscles. It is widely used in various applica-

tions, including prosthetics, rehabilitation, and Human-Computer Interaction

(HCI). EMG methods are broadly classified into invasive approaches (e.g.,

needle EMG) and non-invasive techniques, with Surface Electromyography

(sEMG) being especially suitable for wearable neuromuscular interfaces due

to ease of use and comfort [2]. This makes sEMG highly relevant across di-

verse domains such as clinical diagnostics, rehabilitation, ergonomics, HCI,

and sports science.

However, despite its wide applicability, EMG signal analysis poses several

challenges. Signal characteristics can vary significantly between individu-

als due to differences in muscle physiology, electrode placement, and envi-

ronmental factors. This variability can lead to difficulties in developing ro-

bust models that generalize well across different users and conditions. Addi-

tionally, EMG signals are non-stationary, evolving over time and affected by

various noise sources, including electrical interference, motion artifacts, and
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physiological signals [3]. These challenges require advanced signal process-

ing techniques and machine learning models capable of handling the inherent

variability and noise in the EMG data.

To tackle these complexities, various signal processing techniques have been

combined with machine learning and deep learning strategies [4]. Early meth-

ods often relied on handcrafted features, but the field has steadily shifted to-

ward deep learning paradigms with automatic representation learning capa-

bilities. This transition has been driven by the need for more flexible and

powerful models that can adapt to the diverse and complex nature of EMG

signals.

Despite these advances, there remains a lack of models that can be effectively

generalized to different users, electrode placements, and other variations. Tra-

ditional machine learning approaches often struggle with this variability, and

while deep learning has shown promise, it typically requires large amounts

of labeled data for training. This is where Foundation Model (FM) [5] come

into play, offering a potential solution by leveraging Self-Supervised Learning

(SSL) techniques to pre-train on vast amounts of unlabeled data.

FMs have revolutionized the fields of Natural Language Processing (NLP) and

Computer Vision (CV) by enabling models to learn rich representations from

large unlabeled datasets just by rethinking the pre-training process. This shift

has opened up new possibilities for transfer learning, allowing models to be

fine-tuned on specific tasks with relatively small amounts of labeled data.

Beyond vision and language, emerging work explores electrophysiological

biosignals (EXG), ranging from Electrocardiography (ECG), Electroen-

cephalography (EEG), EMG, Photoplethysmography (PPG), and related

surface bioelectric recordings, using FMs [6, 7].
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Common pretraining paradigms (masked reconstruction, contrastive tempo-

ral alignment, and cross-modal distillation) have begun to produce generalist

encoders for EEG and ECG [8, 9], using large public repositories and rela-

tively standardized channel configurations (e.g., 12-lead ECG, 10–20 EEG

montages). These efforts report transferable gains in the detection of arrhyth-

mias [10], the staging of sleep [11], the mental workload or affect classifi-

cation [12], and the potential decoding related to events, indicating that self-

supervised representation training can reduce the needs of labeled data.

In contrast, no widely adopted FM exists specifically for EMG: progress

is limited by (i) higher inter-subject and session variability [13] (electrode

placement shifts, skin impedance, muscle physiology), (ii) heterogeneous sen-

sor layouts (channel count, spacing, high-density vs. sparse arrays), (iii) task

diversity [14] (gestures, force/kinematics regression, silent speech, continu-

ous neuromotor decoding), and (iv) fewer large, harmonized, openly licensed

corpora compared to ECG/EEG datasets. Current EMG models are predomi-

nantly task-specialized, trained with supervised losses from scratch or modest

transfer, limiting generalization between users and tasks.

This gap motivates the construction of an EMG-centric FM: a single pre-

trained encoder producing robust and reusable temporal representations that

retain fine-grained motor intent while being resilient to domain shifts; an ob-

jective aligned with the broader FM paradigm [5] but still unrealized for EMG.

This work aims to bridge this gap by developing a Foundation Model specif-

ically tailored for EMG signal analysis. Using self-supervised learning tech-

niques, we aim to create a model that can effectively learn from large-scale

EMG datasets, enabling it to generalize across different users, acquisition

platforms and conditions. The proposed model will be evaluated on several

downstream tasks, namely gesture recognition, regression, and silent speech

recognition, to demonstrate its effectiveness and robustness.
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State of the Art on Target Downstream Tasks

Current State-of-the-Art (SoA) systems on the downstream benchmarks that

we report later (Chapter 5) highlight both strong absolute performance and

several limitations that our approach addresses.

Gesture recognition (Ninapro DB5, EPN-612, UCI EMG). This task in-

volves classifying time-series EMG data, typically from the forearm, into a

set of discrete hand or wrist gestures. Recent Transformer or hybrid sequence

encoders (Moment [15], OTiS [16], PhysioWave [17]) span from compact

∼ 5M to very large ∼ 385M parameters. The strongest published results

in our benchmark set are obtained by the 37M parameter PhysioWave Large

model: 87.53% Top-1 / 75.42 F1 on Ninapro DB5 [18], 94.50% / 94.56 F1 on

EPN-612 [19], and 93.19% / 93.59 F1 on UCI EMG [20].

Discrete gesture sequence decoding (generic neuromotor interface). This

advanced task involves decoding continuous sequences of discrete motor

actions, such as individual finger movements for typing, from high-fidelity

EMG signals. Recurrent LSTM models (6.4M parameters) on high-fidelity

wrist/forearm interfaces (Meta / CTRL-labs, [21]) reach a Classification

Error Rate (CLER) of 0.1819 on full sequences and 0.1596 on windowed

inference.

Kinematic regression (Ninapro DB8).

In contrast to discrete classification, kinematic regression aims to predict con-

tinuous, multi-dimensional joint movements (e.g., finger and wrist angles)

from forearm EMG signals. Lightweight temporal convolutional networks

(TEMPONet TCN [22], <500K params) report per-subject mean absolute er-

ror (MAE) 6.89° across 5 DoAs. Event-driven linear regression [23] attains

8.8°±2.3° (per-subject), while older DeepNet+Kalman pipelines [24] exceed

13.5° (reported as RMSE, only 3 DoAs). Cross-subject performance is rarely
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quantified and typically degrades relative to per-subject training, indicating

limited representation transfer.

Silent speech (facial EMG to audio/text). This task focuses on decoding in-

tended speech by translating EMG signals captured from facial muscles into

either audible speech (synthesis) or written text (recognition). A 54M pa-

rameter Transformer model (Gaddy & Klein [25]) achieves 36% Word Error

Rate (WER) (EMG-to-audio) and 28.8% WER (EMG-to-text). The Stanford

MONA and MONA LISA works [26] reduce EMG-to-text WER to 22.2%

and 12.2%, respectively, through greater capacity and contrastive alignment

with audio, underscoring gains from richer multimodal pretraining but also

additional complexity due to the need of modality-specific encoders.

Across tasks, SoA trends [17, 21, 23, 26] emphasize: (i) increasing reliance

on Transformer-style architectures; (ii) substantial parameter counts or

task-specific engineering; (iii) predominantly supervised training with

limited explicit cross-user robustness analysis; and (iv) performance gaps

between per-subject and cross-subject settings. These observations motivate

a unified EMG Foundation Model: a single, moderately sized encoder

pre-trained self-supervised on heterogeneous EMG to supply reusable, robust

representations for classification, regression, and sequence decoding with

reduced labeled data dependence.

Contribution summary. We introduce a novel EMG Foundation Model

and rigorously benchmark it against state-of-the-art baselines across multiple

EMG downstream tasks, including gesture classification, discrete gesture

recognition, kinematic regression, and silent speech synthesis/recognition.

Compared to existing large-scale generic time-series models (Moment,

OTiS, PhysioWave, WaveFormer) and task-specific architectures (e.g.,

Meta-LSTM, TEMPONet), our model achieves new state-of-the-art results

on EPN-612 (96.60% accuracy, 96.69 F1), UCI EMG (97.86% accuracy),
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and Ninapro DB5 (84.53 F1) while using only a fraction of the parameters

(3.6M vs. 37–385M). In discrete gesture recognition, it slightly outper-

forms prior LSTM-based methods under comparable windowed inference

(CLER 0.1553 vs. 0.1596), and in regression tasks, it demonstrates strong

cross-subject generalization (MAE 8.53°). For silent speech, finetuning

reduces EMG-to-audio WER to 31.65% and EMG-to-text WER to 32.75%,

highlighting the model’s ability to handle both generative and discriminative

EMG tasks. Overall, this work demonstrates that a compact foundation model

can significantly advance EMG modeling, offering superior performance,

cross-task versatility, and efficient deployment potential.



Chapter 2

Background

Figure 2.1: Transformer architecture overview as proposed by Vaswani et

al [1]. The model consists of an Encoder and a Decoder, each containing

multiple layers with self-attention and feed-forward networks.
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2.1 Transformer Architecture and Attention

Mechanisms

The Transformer architecture, introduced by Vaswani et al. [1], revolutionized

sequence modeling by eliminating recurrence and convolution in favor of self-

attention mechanisms. This enabled faster, more parallelizable models that

outperform traditional RNNs and CNNs in many domains, including NLP and

time-series analysis.

2.1.1 Encoder and Decoder

The architecture comprises an Encoder and a Decoder, each consisting of mul-

tiple identical layers:

Encoder: Each encoder layer contains:

• Multi-head self-attention sub-layer

• Feed-forward network sub-layer

• Residual connections and Layer Normalization

Skip Connections The input of a transformer block is an embedding for

a token, which has dimension d. This initial embedding gets passed up (by

residual connections) and is progressively added to by the other components of

the transformer: the attention layer and the feedforward layer. Residual or skip

connections help themodel learn identity mappings, effectively preventing the

vanishing gradient problem and rank collapse [27].

Before the attention and feedforward layer, Layer Normalization is applied to

the input embedding. In this way, the input embedding is normalized before
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being passed to the attention layer, and the result is added back to the input

embedding via a residual connection.

Feedforward layer The feedforward layer is a fully-connected 2-layer net-

work with one hidden layer and two weight matrices. The weights are the

same for each token position i, but are different from layer to layer. It is com-

mon to make the dimensionality dff of the hidden layer of the feedforward

network to be larger than the dimensionality of the model d. (for example,

with an expansion factor of 4, i.e. dff = 4d).

FFN(xi) = ReLU(xiW1 + b1)W2 + b2 (2.1)

Layer Norm At two stages in the transformer block, we normalize the input

vector via a process called Layer Normalization. Layer Normalization is one

of the many forms of normalization that can be used to improve training per-

formance in Deep Neural Network (DNN) by keeping the values of a hidden

layer in a range that facilitates gradient-based training.

Layer normalization is a particular case of z-score normalization but applied

to a single vector in a hidden layer. Layer normalization is applied to the

embedding vector of a single token, thus the input to the layer norm is a single

vector of dimensionality d and the output is that vector normalized, again of

dimensionality d. The first step in layer normalization computes the mean µ

and the standard deviation σ, over the elements of the vector to be normalized.

Given an embedding vector x of dimensionality d, these values are calculated

as follows:

µ = 1
d

d∑
i=1

xi (2.2)

σ =

√√√√1
d

d∑
i=1

(xi − µ)2 (2.3)
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The normalized vector is then computed with two additional learnable pa-

rameters γ and β representing the gain and offset values, respectively. The

normalized vector is computed as follows:

LayerNorm(x) = γ
(x − µ)

σ
+ β (2.4)

The original architecture used post layer normalization, where normalization

was applied after residual addition, while more recent implementations often

adopted pre layer normalization for improved training stability [28].

According to post layer normalization, given an input X, the output is com-

puted as:

O = LayerNorm(X + MultiHeadAttention(X)) (2.5)

H = LayerNorm(O + FFN(O)) (2.6)

while for pre layer normalization, the output is computed as:

O = X + MultiHeadAttention(LayerNorm(X)) (2.7)

H = X + FFN(LayerNorm(O)) (2.8)

Decoder: Each decoder layer includes the following:

• Masked self-attention

• Cross-attention to encoder outputs

• Feed-forward network

• Residual connections and LayerNorm
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The decoder uses masking self-attention to ensure autoregressive generation,

attending only to previously generated tokens instead of future ones. In this

way, causality can be maintained, and the model can generate sequences in a

step-by-step manner.

Masked self-attention is computed as

A = Softmax
(

Mask
(

QK⊤
√

dk

))
V (2.9)

whereMask is a function that sets the elements in the upper-triangular portion

of the matrix to −∞, ensuring that the model does not take care of future

tokens.

In practice, this is done by adding a mask matrix M in which Mi,j =

−∞ ∀j > i (i.e. for the upper-triangular portion) and Mi,j = 0 otherwise.

2.1.2 Scaled Dot-Product Attention

Given inputX ∈ Rn×d, where n is the sequence length and d is the embedding

dimension; queries, keys, and values are obtained by learning linear projec-

tions.

Q = XWQ (2.10)

K = XWK (2.11)

V = XWV (2.12)

where WQ, WK ∈ Rd×dk and WV ∈ Rd×dv are weight matrices for queries,

keys, and values, respectively. The attention mechanism computes the atten-

tion scores as follows:
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The core attention mechanism is as follows:

Attention(Q, K, V) = Softmax
(

QK⊤
√

dk

)
V, (2.13)

which enables the model to compute attention weights over all pairs of input

tokens.

2.1.3 Multi-Head Attention

Multi-Head Attention allows learning multiple attention patterns in parallel:

headi = Attention(Qi, Ki, Vi) = Softmax

QiKi⊤

√
dk

Vi, (2.14)

MultiHeadAttention(X) = (head1 ⊕ head2 · · · ⊕ headh)WO, (2.15)

Each head captures distinct relationships; their outputs are concatenated and

projected back to the embedding space. Typically, dv = d/h for h attention

heads.

2.1.4 Positional Encoding

Transformers are permutation-invariant on the input token (time) dimension

unless explicit order information is injected. Let xpos ∈ Rd be the embedding

of the token at position pos ∈ {0, . . . , n−1}. A positional encodingppos ∈ Rd

is added (or sometimes concatenated) to form

x̃pos = xpos + ppos. (2.16)

Absolute Sinusoidal Encoding (Vaswani et al.). Define inverse frequen-

cies

ωi = 10000−2i/d, i = 0, . . . , d/2 − 1. (2.17)
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Then for each pair of dimensions (2i, 2i + 1)

ppos,2i = sin(pos · ωi), (2.18)

ppos,2i+1 = cos(pos · ωi). (2.19)

In matrix form, let Ω = (ω0, . . . , ωd/2−1)⊤:

ppos =
[

sin(posΩ) ∥ cos(posΩ)
]

∈ Rd. (2.20)

Key properties. 1. Deterministic / parameter-free: no learned parameters;

enables extrapolation beyond training length. 2. Multiscale: frequencies form

a geometric progression that covers short and long range. 3. Linear relative

shift signal inside dot products: Consider (single head) attention logits after

projection:

αt,s = (qt + WQpt) · (ks + WKps)√
dk

. (2.21)

Cross terms (WQpt) · (WKps) include sin(tω) sin(sω) + cos(tω) cos(sω) =

cos((t − s)ω), providing an implicit encoding of relative position t − s. Thus,

absolute encodings induce relative phase signals.

Limitations for long sequences. For very long sequences, highest frequen-

cies may become too dense (i.e. phase wrapping), and absolute addition fixes

every position to a unique pattern, less flexible when only relative timing is

important (e.g. EMG muscle activation pattern shifts). This motivates rota-

tional / relative formulations.

Learned Absolute Positional Embeddings. An alternative is to learn a ta-

ble P ∈ Rnmax×d with ppos = Ppos. The advantages are that it allows for task

adaptation, but it suffers from poor extrapolation beyond nmax and requires

interpolation or resizing for longer inputs. For biosignals where the acqui-

sition window length can vary, deterministic or relative encodings are often
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preferable.

2.1.5 Rotary Positional Embedding

Rotary Position Embedding (RoPE) introduce position by rotating query and

key subvectors in 2D planes instead of adding a position vector [29]. This

yields attention scores that depend on relative positions through phase differ-

ences, enabling clean extrapolation and better inductive bias for continuous

signals like EMG [30, 31, 32]. Given the fact that EMG windows can shift

in time (latency variation), RoPE makes attention logits depend primarily on

relative offsets, aiding pattern alignment (e.g. onset vs. peak) and generaliz-

ing across window boundaries. Multi-frequency rotations capture both short

bursts (high frequency muscular activity) and longer envelope trends.

Construction. Split a d-dimensional vector into d/2 complex (or real 2D)

components. For inverse frequencies ωi as above, define an angle

θpos,i = pos · ωi. (2.22)

Define the 2D rotation matrix

R(θ) =

cos θ − sin θ

sin θ cos θ

 . (2.23)

Given a (projected) query (or key) vector q ∈ Rd, reshape into pairs q(i) ∈ R2.

Apply:

RoPE(q, pos) =
d/2−1⊕

i=0
R(θpos,i)q(i). (2.24)

Do the same for the keys to obtain q̂pos, k̂pos.

Complex notation. Map each pair (q2i, q2i+1) to zi = q2i + jq2i+1. Then

RoPE(zi, pos) = zi · ejθpos,i . (2.25)
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Relative position emerges in dot product. Consider a single frequency

component with complex numbers for brevity. The contribution to the at-

tention logit between positions t and s:

ℜ
{
zqe

jθt · zkejθs

}
= ℜ

{
zqzkej(θt−θs)

}
, (2.26)

which depends only on the difference θt − θs = (t − s)ω. Summing over fre-

quencies yields multiscale relative encoding without explicit relative position

matrices.

Attention formula with RoPE. Let Q, K ∈ Rn×dk after linear projections.

Define rotary versions Q̂, K̂ by rotating each row according to its position

index. Scaled dot-product attention becomes

Attention = Softmax
(

Q̂K̂⊤
√

dk

)
V. (2.27)

Comparison to additive sinusoidal. For additive sinusoidal embeddings,

the encoding is absolute + implicit relative (via trigonometric identities). In

RoPE, it is directly relative in logit space (phase differences), eliminating ab-

solute bias with no extra parameters (same as sinusoidal). Additionally, ex-

trapolation is robust with angles growing linearly with position, preserving

relative differences.

Relation to other methods. Shaw et al. [33] introduce learned relative em-

beddings at−s added directly to the logits. T5 [34] employs bucketed relative

position biases, while ALiBi [35] applies linear, distance-dependent biases.

In contrast, RoPE captures relative position continuously across multiple fre-

quencies, without relying on embedding tables or additional parameters.
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Related Work

3.1 Classical Machine Learning Approaches

Early EMG research relied heavily on handcrafted features extracted from

the time-domain, the frequency-domain or time–frequency representations.

These features were typically fed into Support Vector Machine (SVM), Latent

Discriminant Analysis (LDA), or k-Nearest Neighbors (k-NN). Although such

pipelines achieved respectable accuracy in controlled settings, they suffered

from the following.

• Limited generalizability: Feature sets tuned for one gesture set or elec-

trode montage often failed when electrodes were repositioned or sub-

jects changed [36].

• Extensive manual effort: Designing and validating robust feature

extractors requires deep domain expertise and iterative experimenta-

tion [37].

• Sensitivity to noise: Motion artifacts, cross-talk, and electrode
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impedance variations could drastically degrade classification perfor-

mance without careful preprocessing [38].

3.2 Deep Learning for EMG

3.2.1 Convolutional and Recurrent Models

The advent of deep learning enabled automatic feature extraction directly

from raw or minimally preprocessed EMG waveforms. Convolutional

Neural Network (CNN) treat the EMG as a 1D time-series or a 2D time-

frequency ”image,” capturing local temporal patterns and inter-channel

correlations [39, 40]. Recurrent Neural Network (RNN), especially Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have

been applied to model temporal dependencies and the dynamics of muscle

activation, e.g. across amputees, force levels, and non-stationary muscle

activations [41, 42, 43]. Hybrid CNN–RNNmodels combined both strengths,

but still encountered:

• Limited receptive field: Vanilla CNNs capture only local context un-

less made very deep or widened, increasing the parameter count [40].

• Sequential bottlenecks: RNNs process timesteps one at a time, con-

straining parallelism, and slowing training [42]

3.2.2 Transformer-Based Models

Early adaptations of the vanilla Transformer to generic time-series tokenize

each timestep independently (sequence length n equals raw sample count or

frame count). Self-attention then offers a global receptive field since any

timestep can be accommodated by any other in one layer, capturing long-range

muscle co-activation or temporal context (e.g. preparation–execution phases).

The inherent parallelism removes the typical sequential dependency of RNNs.



3.2 Deep Learning for EMG 21

However, naive per-timestep tokenization exhibits several drawbacks: (i) the

quadratic cost of memory and FLOPs with respect to the sequence length n,

which for high-density EMG can quickly become prohibitive [44, 45]; (ii) the

low signal-to-token ratio, where each sample carries little semantic informa-

tion, leading to noisy attention weights [46]; (iii) the inductive bias of treating

each timestep as an independent token, which is not well suited for continu-

ous signals like EMG [44, 45]; and (iv) the over-sensitivity to misalignment,

where minor latency jitters can shift many tokens, reducing robustness [46].

Time-Series Transformers. Time Series Transformers [47] mitigate

sequence length or emphasize temporal priors via: (i) sparse or probabilistic

attention variants with reduced pairwise interactions [48]; (ii) low-rank

approximations like linearized attention [49]; (iii) hierarchical pooling or

pyramidal structures that progressively shorten the sequence length [50].

These reduce cost but still treat the elementary token as (near) a raw timestep.

Patch (ViT-Like) Embedding for Time-Series. Inspired by Vision

Transformers (ViT) [51], a 1D patch embedder slices the signal into non-

overlapping (or mildly overlapping) windows of length L; each patch is

linearly projected onto a d-dimensional token:

zi = Proj
(
XiL:(i+1)L,:

)
, i = 0, . . . ,

n

L
− 1. (3.1)

with several benefits, namely the reduction in the length of the sequence from

n to n
L
, the higher semantic density given that each token aggregates local

temporal patterns, and implicit local smoothing/denoising, thus reducing high-

frequency noise before attention. This approach is particularly effective for

EMG, where muscle activation patterns often span several samples and the

signal can be noisy due to motion artifacts or variations in the impedance of

the electrode. The drawbacks of patch-based tokenization lie in the loss of

fine-grained temporal resolution, as the model can only attend to patterns on
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the scale of L samples, hence the need to pick a L aligned with the temporal

task granularity.

Channel Awareness and ChannelViTMotivation. The surface EMG (and

the wider EXG) recordings are multichannel; each electrode captures spa-

tially localized physiology (muscle belly, proximity to the innervation zone,

crosstalk). Simple patching that first concatenates channels along time and

collapses them into a single vector could inadvertently blur inter-channel spa-

tial structure by underrepresenting weaker but discriminative channels and

losing electrode identity [52]. This is especially problematic for EMG, where

electrode placement can vary significantly between subjects and tasks, leading

to different spatial patterns of muscle activation.

ChannelViT [53] addresses this by constructing patch tokens independently

from each input channel. This simple modification to the original ViT ar-

chitecture enables the model to reason across both locations and channels.

However, while ChannelViT can leverage existing efficient implementations

of ViT with minimal modifications, increasing the sequence length introduces

additional computational requirements, thus the choice of L becomes even

more critical than before.

When each patch token is derived from a single channel, the sequence length

becomes n
L

·C, whereC is the number of channels. This means that the overall

computational cost scales with the number of channels, making it essential to

balance the patch sizeLwith the number of channelsC to maintain efficiency.

Applications to Biosignals (EXG). Recent work has explored Transformer-

based architectures for various biosignals, including but not limited to EEG,

ECG, and PPG.

FM for wearable biosignals [54] proposes a foundation model approach to

leverage large-scale pre-training for wearable biosignal data (PPG and ECG).
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BrainBERT [55] uses an Intracranial Electroencephalograph (iEEG) spectro-

gram as tokens to a Transformer encoder, pre-trained via Masked Autoencod-

ing (MAE) [56].

LaBraM [57] introduces a learnable neural tokenizer thatmaps EEGwaveform

patches to embeddings and then processes them via the MAE framework.

Neuro-GPT [58] adopts causal auto-regressiveMAE for EEGwaveformmod-

eling similar to Large Language Model (LLM) pre-training, but with a focus

on EEG data.

CEReBrO [8] draws inspiration from ChannelViT, proposing a compact en-

coder for EEG using a ViTMAE [56] pre-training approach with an encoder-

decoder architecture which processes only visible tokens in the encoder and

then reconstructs the full sequence in the decoder.



Chapter 4

Implementation

4.1 Methodology

4.1.1 Overview

Figure 4.1: Overview of the proposed EMG transformer-pretraining frame-

work.

The model adapts vision-style tokenization and masked image modeling to

multi-channel EMG by: (i) converting raw waveforms into a sequence of

temporally local, channel-aware patch tokens; (ii) applying an encoder-only
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Transformer with RoPE for relative temporal inductive bias and length extrap-

olation; (iii) reconstructing masked patches from a lightweight linear head so

that representational burden is almost entirely in the encoder.

4.1.2 Model description

Tokenization

Following current literature [59], EMG waveforms are sliced into equally-

sized non-overlapping patches to: (i) reduce sequence length thus computation

andmemory usage; (ii) extract semantic information and improve locality; (iii)

attend to long-range dependencies.

Figure 4.2: Example raw multi-channel EMG (5 channels). Notation used in

the text: X ∈ RT ×C , with T timesteps and C channels.

Let the EMGwaveform be X ∈ RT ×C (timesteps T , channels C). For a patch

length ofL and a stride S, the set of results of patches isP ∈ RNp×C×L where:

Np =
⌊

T − L

S

⌋
+ 1. (4.1)

is the number of patches per-channel.
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Each patch Pc,i ∈ RL from channel c and patch index i is projected onto an

embedding space of dimension de using a learnable linear projection Wproj ∈

Rde×L. The final embedding patches are given by Ec,i = WprojP⊤
c,i. No

learnable positional embedding is added as RoPE already incorporates such

information.

This per-channel patch granularity allows the model to capture both tempo-

ral dynamics within each channel and spatial relationships across channels,

which is crucial for EMG data, where different muscles may exhibit distinct

activation patterns.

Encoder architecture

LayerNorm

Multi Head
Attention

+

LayerNorm

MLP

Input

+

Figure 4.3: Pre-LayerNorm Transformer encoder block (3 heads, d = 192).

The model architecture is based on a pre-LayerNorm Transformer encoder

with RoPE composed by 8 layers, each with 3 attention heads and embedding
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dimension 192 as visible in figure 4.3.

Reconstruction head and forward pass
Reconstruction Loss

Input Data Patching & Masking Encoder Decoder

+

Tokenizer

x8

Transformer

Transformer

Linear Projection

Reconstruction

Figure 4.4: General Encoder-Decoder architecture. The encoder processes

the masked input EMG data, while the decoder reconstructs the original sig-

nal. The encoder uses multi head attention to capture temporal and spatial

relationships, while the decoder employs only a linear projection to generate

the output.
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Table 4.1: Hyperparameters for masked EMG pre-training with EMG Trans-

former.
Hyperparameter EMG Transformer

Transformer Encoder

Timesteps 1000

Patch size (H × W ) {1, 20}

Number of channels 16

Embed dimension 192

Encoder layers 8

Attention heads 3

QKV bias Yes

QK norm No

MLP ratio 4.0

MLP size 768

Attn drop 0.1

Proj drop 0.1

Drop-path 0.1

Decoder

Decoder embed dim 192

Pre-training Setup

Batch size 512

Peak / minimal LR 1 × 10−4 / 1 × 10−6

Optimizer (β1, β2) AdamW (0.9, 0.98)

LR scheduler Cosine

Weight decay 0.01

Total / warm-up epochs 50 / 10

Accumulated grad batches 8

Gradient clipping 3

Mask ratio 0.5

Max sequence length 1000
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The encoder output is then passed to a linear layer that outputs a sequence P̂,

which is a reconstruction of the original patch sequence P.

The choice of avoiding a deep decoder is in contrast to the asymmetric MAE

design but motivated by the fact that, in this way, all the burden of the re-

construction is onto the encoder, without relying on a complex decoder. This

design choice emphasizes the encoder’s ability to learn rich representations

that can generalize across different tasks and conditions.

The complete pre-training framework is illustrated in Figure 4.4.

Parameter budget and deployability

The full model has approximately 3.6 × 106 parameters. To relate this budget

to embedded targets, we convert parameter counts to memory footprints under

common numeric formats. A single parameter requires 4B in FP32, 1 B in

INT8, and 0.5 B when packed in INT4; therefore the model weights occupy

approximately:

FP32: 3.6 × 106 × 4 B = 14,400,000 B ≈ 13.73 MiB,

INT8: 3.6 × 106 × 1 B = 3,600,000 B ≈ 3.43 MiB,

INT4 (packed): 3.6 × 106 × 0.5 B = 1,800,000 B ≈ 1.72 MiB.

By comparison, GreenWaves GAP9 devices expose an on-chip L2 SRAM on

the order of ∼ 1.5 MiB and cluster L1/TCDM slices of ∼ 128 KiB, with an

additional on-package nonvolatile/eMRAM region (≈ 2 MiB) and the possi-

bility to attach external PSRAM.
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4.1.3 Pretraining objective and strategy

Masking strategy

During pre-training a random subset M of tokens is replaced by a learnable

[MASK] token. We sample independently per sample, each iteration without

a fixed schedule, promoting reconstruction robustness across diverse occlu-

sion patterns. Masking at the patch granularity enforces contextual inference

over tens of milliseconds (physiologically meaningful burst segments), rather

than trivial gap filling. Extremely low ratios (BERT-style 15%) underutilized

reconstruction capacity, while very high ratios (>70%) destabilized early opti-

mization. The adopted mid ratio of 50% balances the removal of information

and the gradient signal and is supported by prior works [8, 60].

Loss and targets

The chosen loss function is the Smooth L1 loss, defined as:

SmoothL1(x, y) =


0.5(x − y)2/β if |x − y| < β

|x − y| − 0.5 · β otherwise
(4.2)

where β is a hyperparameter that controls the transition point between the loss

L2 when the absolute difference is small, and the loss L1 when it is large.

Generally, it is less sensitive to outliers than L2 loss and in some cases pre-

vents exploding gradients. This follows recent work such as PhysioWave [17],

which uses Smooth-L1 as the reconstruction objective between masked and

original patches in physiologic signal pretraining.

We define the following loss components:

Lmasked = 1
|M|

∑
(c,i)∈M

SmoothL1(Pc,i, P̂c,i) (4.3)
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Lvisible = 1
|M̄|

∑
(c,i)∈M̄

SmoothL1(Pc,i, P̂c,i) (4.4)

where M and M̄ are the sets of masked and visible patches, respectively.

The total loss function during pre-training is:

L = Lmasked + α · Lvisible (4.5)

Reconstruction target / decoder details

C channel patch embeddings
per p: Channel Fusing

Temporal pooling over p:

Linear Projection

Mean
Concat

Figure 4.5: Overview of the finetuning pipeline with the proposed concat
channel fusing approach.

The pre-trained encoder outputs C ·Np patch tokens. We omit a [CLS] token

and instead fuse channel information per patch, then pool over time.

Channel fusion. For each temporal patch index p we have {zc,p ∈ Rde}C
c=1.

Mean: z̄p = 1
C

C∑
c=1

zc,p ∈ Rde Concat: z̃p = [z1,p∥ · · · ∥zC,p] ∈ RCde .

(4.6)

Mean gives channel invariance (robust, lower dimensional) but discards dif-

ferential activation patterns given by selective muscle recruitment, which can

be important for distinguishing between different gestures.

Concat preserves per-electrode structure, allowing the linear head to weight

the channels independently (useful under placement shifts or heterogeneous
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SNR), at the cost of higher dimensionality and higher overfitting risk (later

mitigated with weight decay and label smoothing). Empirically concat im-

proved significantly over mean in most tasks. Figure 4.5 shows the proposed

finetuning pipeline with the two aforementioned channel fusing approaches.

After fusion, we perform temporal average pooling:

h = 1
Np

Np∑
p=1

zp, zp ∈


Rde (mean)

RCde (concat)
(4.7)

and apply a linear layer to obtain logits.

This two-stage, channel then temporal pooling, avoids premature mixing that

a single global average over all CNp tokens would induce while retaining

discriminative electrode structure prior to temporal aggregation.

4.1.4 Pretraining setup and reproducibility

Compute, runtime and reproducibility

All experiments were implemented in Python 3.10 using PyTorch Lightning

and Hydra for modularity, configurability, and reproducibility. The proposed

foundation model was trained on the CSCS Alps HPC infrastructure using

NVIDIA GH200 GPUs, employing a single node with 4x NVIDIA GH200

GPUs in Distributed Data Parallel (DDP) mode for both pre-training and fine-

tuning.

Pre-training took approximately 8 hours using around 500 GB of EMG data.

In order to keep a modest parameter count, a single parameter configuration

of 3.6M has been adopted. Fine-tuning each downstream task ranged from 30

minutes to 2 hours, depending on dataset size and DDP configuration.

Silent speech experiments used the original codebase of Gaddy & Klein [25]
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without DDP, while the discrete gesture task used the original codebase with

PyTorch Lightning framework [21].

4.2 Experiments

Table 4.2: Hyperparameters for downstream fine-tuning with EMG Trans-
former.

Hyperparameter Value
Batch size 32
Peak / minimal learning rate 5 × 10−4 / 1 × 10−5

Learning rate scheduler Cosine
Optimizer (β1, β2) AdamW (0.9, 0.98)
Weight decay 0.01
Total epochs Early stopping (max 50)
Warm-up epochs 5
Drop-path 0.10
Layer-wise learning rate decay 0.90
Label smoothing (multi-class classification) 0.10

Each recording undergoes a denoising step with a specific band-pass filter

followed by a 50 Hz notch. EMG signals with less than 16 channels are zero-

padded and then resampled at 2 kHz. MinMax Channel-wise normalization

followed by a shifting operation is applied to keep the signals in the range

[−1, 1]. Each recording is then segmented into fixed-length windows of 1000

samples with 50% overlap, providing sufficient temporal context while con-

trolling computational load. Prior work [61, 62] indicates that windows in the

150-500 ms range are a common sweet spot.

4.2.1 Datasets and tasks

Table 4.3: sEMG corpora used for pretraining

Dataset Subjects Records Dur.(s) fs (Hz) Channels Size

Ninapro DB6 10 ∼ 8.4 k 4 2000 14 20.3 GB

Ninapro DB7 22 ∼ 5.4 k 5 2000 12 30.9 GB

EMG2Pose 192 25253 60 2000 16 431 GB
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The previously described architecture is pre-trained for an FM specific for

EMG signals using themost extensive open-access corpora currently available

(see table 4.3).

4.2.2 Evaluation protocols

Table 4.4: Public datasets used for downstream evaluation.

Dataset Subjects fs (Hz) Channels Task

Ninapro DB5 10 200 16 Hand gestures

EPN-612 612 200 8 Hand gestures

UCI EMG 36 200 8 Hand gestures

Discrete Gestures 100 2000 16 Hand gestures

Ninapro DB8 12 2000 16 Kinematic regression

Silent Speech 1 800 8 Silent speech recognition

The pretrained encoder is evaluated on the datasets listed in Table 4.4. All

downstream experiments are performed with the same hyperparameters, as

shown in Table 4.2. Each benchmark is then split by subject into training,

validation, and test sets with a 60/20/20 partition, preventing subject leakage.

Three different settings are used for downstream tasks: (i) Supervised

(scratch), where the model is trained from scratch on the task-specific

dataset without relying on pre-trained weights; (ii) Linear Probing, where

the encoder is frozen and only the task-specific head is trained; (iii) Full

Finetuning, where the entire model is fine-tuned using layer-wise learning

rate decay to avoid catastrophic forgetting [63].

A. Classification Classification tasks used CrossEntropy Loss, with Top1

Accuracy and F1 score as evaluation metrics to assess model performance

and compare with state-of-the-art methods.
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B. Discrete Gesture Meta - Discrete Gestures task uses Binary CrossEn-

tropy Loss with Classification Error Rate (CLER) as evaluation metric. CLER

is computed as the proportion of events detected by the model that were as-

signed the incorrect gesture, in a balanced average across all gestures.

C. Regression Regression task on Ninapro DB8 used L1 loss, with Mean

Absolute Error reported in degrees across all Degrees of Articulation (DoAs)

as evaluation metric. Additional regression metrics are available in Table B.1.

D. Silent Speech Silent speech tasks used Word Error Rate as evaluation

metric, with two distinct tasks: voicing silent speech (audio, referred as D1)

and silent speech recognition (text, referred as D2). The voicing task uses

Dynamic TimeWarping (DTW)Losswith weighted phoneme loss for aligning

mel spectrograms, HiFi-GAN vocoder, and Wav2Vec2 ASR for transcription

into text. The recognition task uses CTC-loss with a Language Model Beam

Search decoding. The WER metric is used to evaluate the performance of the

model on both tasks.
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Results

5.1 Pretraining Reconstruction

Figure 5.1: Reconstruction of a windowed EMG recording by the proposed
EMG Foundation Model.

Figure 5.1 illustrates the reconstruction of a single windowed EMG recording

produced by the proposed EMGFoundationModel. Themodel reliably recov-

ers masked segments of the signal, although reconstruction quality degrades

as the size of contiguous occlusions increases. Given the relatively compact

parameter budget of 3.6M, the observed reconstruction fidelity is notable and

supports themodel’s capacity to learn useful signal structure despite its modest

size.
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5.2 A. Gesture classification

Table 5.1: EMG gesture recognition. Accuracy and F1 scores.

Method Params Ninapro DB5 EPN-612 UCI EMG

Acc. F1 Acc. F1 Acc. F1

Moment 385 M 86.41 74.42 90.87 90.16 90.45 91.75

OTiS 45 M 85.31 72.61 87.55 88.03 90.62 89.28

PhysioWave Small 5 M 84.78 72.54 93.12 93.40 90.35 89.51

PhysioWave Base 15 M 86.02 73.78 93.68 93.91 91.92 92.77

PhysioWave Large 37 M 87.53 75.42 94.50 94.56 93.19 93.59

WaveFormer 3.1 M 87.53 74.66 95.21 95.22 93.10 93.20

Supervised 3.6 M 78.59 78.06 95.84 95.85 97.50 97.85

Linear Probing 3.6 M 76.79 75.13 79.94 79.96 97.14 97.14

Finetuning 3.6 M 85.30 84.53 96.60 96.69 97.86 97.50

Table 5.1 summarizes the performance of the proposedmodel against the publ-

icy available large-scale generic time-series models, namelyMoment (385M)

and OTiS (45 M), as well as the more recent PhysioWave family of models (5

M, 15 M, and 37 M) and WaveFormer (3.1 M).

The proposed Foundation Model for EMG signals even with a modest

parameter count of 3.6 M outperforms the larger models on the EPN-612

and UCI EMG datasets while achieving competitive results on the Ninapro

DB5 dataset. On EPN-612, the model achieves new state-of-the-art results of

96.60% accuracy and 96.69% F1 score, surpassing both PhysioWave Large

and WaveFormer. On UCI EMG, the model achieves 97.86% accuracy and

97.50% F1 score, outperforming all other models with a +4% improvement

over PhysioWave Large. On Ninapro DB5, the model achieves 85.30%

accuracy, which is slightly lower than PhysioWave Large, but a 84.53% F1

score, achieving new state-of-the-art results using 1/10 of the parameters.
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5.3 B. Discrete Gesture
Table 5.2: EMG Discrete Gesture. Classification Error Rate (CLER) for full
sequence and windowed inference.

Method Params CLER Inference Method

Meta - LSTM 6.4 M 0.1819 Full sequence
Meta - LSTM 6.4 M 0.1596 Windowed
Supervised 3.6 M 0.1594 Windowed
Finetuning 3.6 M 0.1553 Windowed

Table 5.2 summarizes the performance of the proposed model on the discrete

gesture recognition task, specifically focusing on Classification Error Rate

(CLER) for both full sequence and windowed inference methods.

The original work by Meta adopts a stacked LSTM architecture with 3 lay-

ers, trained on non-overlapping windows of 8 seconds. The proposed model

is trained under the same conditions, allowing for a fair comparison between

the two approaches. However, at inference time, the LSTM was tested on

the full sequence of EMG data, while the proposed Transformer model can-

not process the entire sequence due to quadratic complexity, thus requiring

windowed inference.

The windowed inference approach involves sliding a window of 8 seconds

over the EMG data, with a stride of 2 seconds, to ensure that the model can

process the data in manageable chunks. This method allows the Transformer

model to maintain performance while being coherent to its architectural con-

straints. In order to compare the original LSTM architecture with the proposed

Transformer model, the same windowed inference strategy is applied to the

LSTM during evaluation, and both the results are reported.

The results indicate that the Transformer model achieves comparable perfor-

mance to the original LSTM architecture (tested under windowed inference)

with a CLER of 0.1553, which is slightly better than the LSTM’s CLER of
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0.1596. This demonstrates that the proposed Transformer model, although

with modest parameter count, can effectively handle the discrete gesture

recognition task while adhering to its architectural constraints and even

outperforming the original LSTM while leveraging pre-trained weights.

5.4 C. Regression

Table 5.3: EMG regression on Ninapro DB8. Mean Absolute Error in Degrees

across DoAs.

Method Params MAE° Notes

TEMPONet TCN <500 K 6.89 All 5 DoAs, per-subject

Event-based Linear Regr. — 8.8 ± 2.3 All 5 DoAs, per-subject

DeepNet+Kalman — 13.5 (RMSE) 3 DoAs only, per-subject

Supervised 3.6 M 8.87 All 5 DoAs, across-subject

Linear Probing 3.6 M 9.48 All 5 DoAs, across-subject

Finetuning 3.6 M 8.53 All 5 DoAs, across-subject

Table 5.3 summarizes the performance of the proposed model on the Ninapro

DB8 dataset for kinematic regression, which involves predicting joint angles

across five degrees of freedom (DoAs). The results are reported in terms of

Mean Absolute Error (MAE) in degrees.

The proposed model demonstrates competitive performance compared to ex-

isting methods, achieving a MAE of 8.87° across all five DoAs in a cross-

subject setting. Notably, the finetuning approach yields the best performance

with a MAE of 8.53°, showcasing the effectiveness of the proposed model

in capturing the underlying patterns in the EMG signals for regression tasks.

Compared to TEMPONet TCN, which is a per-subject setting with a MAE of

6.89°, the proposed model achieves an higher MAE of 8.53° but in a cross-

subject setting, indicating the model’s ability to generalize across different
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subjects with remarkable performance.

5.5 D. Silent Speech

5.5.1 D1. Silent Speech Synthesis

Silent speech synthesis is the process of converting EMG signals into audible

speech. This involves a model that interprets the muscle activity and gener-

ates corresponding audio. Table 5.4 presents the Word Error Rate for various

methods in the EMG-to-audio domain, indicating how accurately the synthe-

sized speech can be transcribed back into text.

Table 5.4: EMG Silent Speech Synthesis. Word Error Rate (WER) reported

for the EMG–audio modality.

Method Params EMG–audio (WER)

Gaddy & Klein 54 M 36.00%

Ren et al., 2024 — 32.00%

Scheck & Schultz, 2023 — 40.00%

EMGVox-GAN 12 M 36.00%

Supervised 4.5 M 34.14%

Finetuning 4.5 M 31.65%

As the table 5.4 illustrates, different models and techniques yield varying lev-

els of accuracy. For instance, the Finetuning method with 4.5 million param-

eters achieves a relatively low WER of 31.65%, suggesting a higher accuracy

in synthesizing intelligible speech from EMG signals.
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5.5.2 D2. Silent Speech Recognition

Silent speech recognition, on the other hand, focuses on directly converting

EMG signals into written text, bypassing the audio generation step. This

modality is particularly useful for silent dictation or for individuals who have

lost their voice but retain control over their facial muscles. Table 5.5 shows

the WER for different EMG-to-text methods.

Table 5.5: EMG Silent Speech Recognition. Word Error Rate (WER) reported

for the EMG–text modality.

Method Params EMG–text (WER)

Gaddy & Klein 54 M 28.8%

Stanford MONA — 22.2%

Stanford MONA LISA — 12.2%

Supervised 4.5 M 33.90%

Finetuning 4.5 M 32.75%

The Stanford MONA LISA model achieves a remarkable Word Error Rate

(WER) of just 12.2% in this domain. This high accuracy in directly transcrib-

ing silent speech frommuscle signals to text is achieved through a multimodal

approach that learns from joint EMG-audio pairs. This result underscores the

potential of EMG-based interfaces as a robust communication alternative and

highlights the significant advantages of multimodal learning.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we addressed the critical challenge of generalization in

Electromyography-based Human-Machine Interfaces. Traditional models

often require extensive, task-specific labeled data and struggle to adapt across

different users, sessions, and tasks. We successfully demonstrated that the

Foundation Model paradigm, powered by SSL, offers a potent solution. We

introduced and validated a compact, EMG-centric FoundationModel, proving

that a single, pre-trained encoder can learn rich, transferable representations

of neuromuscular activity from large-scale unlabeled data.

The effectiveness of our approach is reflected in the robust empirical per-

formance of the 3.6 M parameter model across multiple downstream tasks

(see Chapter 5): it achieves superior gesture-classification results relative to

much larger baselines (e.g., PhysioWave Large, 37M params; Moment, 385M

params), posts a competitive Mean Absolute Error of 8.53° on Ninapro DB8
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for cross-subject kinematic regression, outperforms traditional LSTM archi-

tectures on discrete gesture decoding, and attains strong silent-speech recog-

nition from purely unimodal EMG pretraining. For additional context, recent

work on WaveFormer (a lightweight sEMG transformer of ≈ 3.1M parame-

ters) reports ≈ 95% classification accuracy on EPN612; our model delivers

broader downstream transfer performance while maintaining a similar com-

pact footprint.

Crucially, the significance of these results is twofold. First, they validate that

a single, unified model can effectively replace task-specific engineering for

a wide array of EMG applications. Second, the modest parameter count

is not merely an academic footnote but a central feature of our contribution:

it directly enables deployment on resource-constrained embedded platforms.

Concretely, our transformer has 3.6 million parameters, which corresponds to

≈ 13.73 MiB in FP32, ≈ 3.43 MiB in INT8, and ≈ 1.72 MiB when packed

as INT4.

By comparison, GreenWaves GAP9 provides on the order of≈ 1.5MiB of L2

SRAM and 128 KiB of L1/TCDM per cluster (plus ≈ 2 MiB of on-package

nonvolatile memory/eMRAM and the option to attach external PSRAM).

These numbers imply that, without further compression or system-level

strategies, the 3.6M-parameter model cannot fit entirely in GAP9’s L2 in

FP32 or INT8 form; even INT4 quantization is only marginally above the

L2 budget. Therefore, practical deployment on GAP9 will require as first

a quantization step, pruning or other compression techniques and possibly

tiling or streaming so weights are loaded into L1/L2 on demand; each of these

steps trades implementation complexity, latency, and energy for reduced

on-chip memory pressure.
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6.2 Future Work

This thesis establishes a strong foundation for future research in EMG-based

interfaces. Several promising avenues can be explored to build upon this

work:

• Architectural Enhancements: While our Transformer-based encoder

is highly effective, future work could explore even more computation-

ally efficient architectures. Investigating hybrid models that combine

the global receptive field of Transformers with the efficiency ofMamba-

based State Space Models or incorporating Mixture-of-Experts (MoE)

layers could further scale up performance.

• Expanding the Pre-training Corpus: The strength of a Foundation

Model is directly tied to the scale and diversity of its pre-training data.

Future iterations should aim to incorporate even larger and more hetero-

geneous EMG datasets, covering a wider range of subjects, pathologies,

and acquisition hardware to further bolster the model’s robustness and

zero-shot capabilities.

• Quantization and On-Device Optimization: To fully realize the po-

tential for embedded deployment, a systematic study on model quanti-

zation is necessary. Exploring the trade-offs of 8-bit and 4-bit quanti-

zation on performance would be a critical next step for deploying this

model on low-power microcontrollers and edge AI accelerators, such as

GreenWaves GAP processors.

• Multi-Modal Foundation Models: While our unimodal approach

was highly successful, future research could explore pre-training

multi-modal Foundation Models that learn to fuse EMG signals with

other biosignals, such as EEG or inertial measurement unit (IMU) data,

to decode user intent with even greater accuracy and reliability.



Appendix A

Datasets

A.1 Pretraining Datasets

For the pre-training of the FM, the raw EMG data are processed with sev-

eral critical preprocessing steps, including band-pass filtering, notch filtering,

normalization, and segmentation into overlapping windows.

First, a bandpass filter is applied to remove unwanted noise and artifacts, typ-

ically in the range of 20-450 Hz, which is suitable for capturing the relevant

frequency components of EMG signals. A notch filter at 50 Hz is also ap-

plied to eliminate power line interference. Normalization is then applied via

min-max scaling to ensure that the range of the EMG signals falls within [-1 ,

1].

Segmentation into overlapping windows is performed to create a dataset suit-

able for training. Each window is typically 1000 samples long with a step size

of 500. If the sampling rate of the raw EMG signal is below 2000 Hz, the

data is up-sampled to 2000 Hz to ensure consistency across the dataset. Fur-

thermore, if the number of channels is less than 16, zero-padding is applied to
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ensure that all samples have the same number of channels. Such pre-processed

data is then stored in HDF5 format, for efficient storage and retrieval during

training.

Ninapro DB6 Ninapro DB6 contains sEMG from 10 subjects performing 7

hand grasp types, each repeated 12 times over 5 separate recording days. Sig-

nals were acquired with 14 wireless Trigno electrodes with a sampling rate of

2 kHz and time�aligned with inertial measurements capturing forearm mo-

tion. The dataset targets robust grasp recognition under temporal and session

variability, supporting evaluation of prosthetic control algorithms [64].

Ninapro DB7 Ninapro DB7 provides simultaneous myoelectric and inertial

data from 20 intact subjects and 2 transradial amputees. Recordings employ 12

wireless Trigno EMG sensors plus co�located 9�axis IMUs (2 kHz) along-

side an 18�DOF CyberGlove on the contralateral hand for kinematic ground

truth. Subjects executed 40 movements spanning isolated finger/wrist actions

and grasp patterns, enabling multimodal fusion studies for prosthetic intent

decoding [65].

EMG2Pose EMG2Pose pairs 16 sEMG channels acquired at 2 kHz with

synchronized joint angle trajectories for hand motion across 29 staged activ-

ities. It comprises 25,253 HDF5 sessions from 193 participants (some held

out for generalization splits), up to a total of 370 hours. Rich metadata (sub-

ject ID, session, laterality, split flags) facilitates standardized benchmarking of

EMG�driven pose estimation, gesture recognition, and cross�subject trans-

fer [66].
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A.2 Downstream Datasets

Ninapro DB5 Ninapro DB5 comprises 10 intact subjects with 16 forearm

electrodes at 200 Hz of repeated executions of a set of 52 wrist/hand ges-

tures. Each movement is performed in multiple repetitions under controlled

timing, providing a medium�scale benchmark for gesture classification and

cross�subject generalization with moderate channel count and relatively low

sampling rate [18].

EPN-612 EPN-612 contains 8�channel, 200 Hz Myo armband recordings

from 612 subjects performing five active gestures (wave�in, wave�out,

pinch, open, fist) plus rest, typically 50 trials per class. Its large subject pool

emphasizes inter�person variability and supports evaluation of robustness,

calibration reduction, and domain adaptation methods [19].

UCI EMG The UCI EMG Gesture dataset (36 subjects, 8 channels at 200

Hz) captures multiple hand/wrist gesture classes (commonly 8–10 plus rest in

derived splits) with labeled repetitions. Its compact size and consistent sensor

layout make it a lightweight benchmark for rapid prototyping and ablation of

preprocessing or model components [20].

Discrete Gestures (Meta’s Generic Neuromotor Interface) Meta (Real-

ity Labs) presents a high-fidelity, non-invasive neuromotor interface in their

2025 Nature article, “A generic non-invasive neuromotor interface for human-

computer interaction”, introducing the discrete gestures dataset. This dataset

comprises segmented forearm and wrist gestures collected from 100 partic-

ipants, recorded via surface electromyography (sEMG) using 16 high-rate

channels sampled at 2 kHz, designed for low-latency interaction studies [21].

Ninapro DB8 Ninapro DB8 (12 subjects, 16 channels at 2 kHz) pairs sEMG

with synchronized multi�DoF finger and wrist kinematics (glove / motion
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capture) over continuous movement protocols. It serves kinematic (angle)

regression and proportional control tasks, stressing fine temporal alignment,

amplitude scaling, and inter�joint coordination modeling [67].

Silent Speech In their EMNLP 2020 paper “Digital Voicing of Silent

Speech,” Gaddy and Klein introduce a silent speech dataset comprising

nearly 20 hours of facial sEMG signals from a single speaker, recorded

via eight channels at a 800 Hz sampling rate. The dataset includes parallel

silent and vocalized utterances with time-aligned transcriptions, enabling

the transfer of audio targets to silent EMG via dynamic time warping and

feature alignment [25]. This facilitates the evaluation of EMG-to-text and

EMG-to-speech models, supporting tasks such as mapping muscle activity

to phoneme sequences and acoustics under limited subject diversity but rich

sentence-level variability. Follow-up improvements using convolutional plus

Transformer models further integrated phoneme prediction as an auxiliary

task to enhance intelligibility in open-vocabulary settings [68].



Appendix B

More Evaluation Results

B.1 Kinematic Regression

Table B.1: Complete EMGKinematic Regression Results across-subject. Ad-
ditional metrics are reported: Pearson correlation, R2, RMSE, and Explained
Variance.
Method MAE° Pearson R2 RMSE Explained Variance

Supervised 8.87 0.7731 0.5958 13.81 0.596
Linear Probing 9.48 0.7463 0.5589 14.49 0.5598
Finetuning 8.53 0.7918 0.627 13.31 0.6281

B.2 Silent Speech

The Silent Speech task is also evaluated comparing the frequency of errors

between two phonemes to the frequency of correct predictions on those

phonemes.

Confusion is defined as follows:

(ep1,p2 + ep2,p1)/(fp1 + fp2) (B.1)
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Figure B.1: Phoneme confusability (darker lines indicate more confusion -
maximum darkness is 13% confusion)

while Accuracy is defined as:

(ep1,p1 + ep2,p2)/(fp1 + fp2) (B.2)

where ep1,p2 is the number of times p2 was predicted when the label was p1,

and fp1 is the number of times phoneme p1 appears as a target label.

B.3 Discrete Gesture

Table B.3 shows an ablation study of window size on the discrete gesture

recognition task, using CLER as the performance metric. This analysis ex-

plores the impact of window size on gesture recognition accuracy, relevant

for real-time applications. The results indicate that a window size of 16,000

samples yields the best performance for both the Meta-LSTM and finetuned

models. Performance degrades as the window size decreases, particularly with

a significant drop at 4,000 samples (2 seconds at 2kHz sampling rate), suggest-

ing that smaller windows may not capture sufficient temporal information for

accurate gesture recognition.
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Table B.2: Results for the most confused pairs of phonemes
IPA Phonemes Confusion (%) Accuracy (%)

v f 13.5 74.1
k g 13.0 73.3
z s 10.9 77.1
t d 10.6 62.8
p m 10.5 76.5
m b 9.5 74.2
p b 8.9 69.7
S dZ 8.4 63.4
r 3‘ 7.5 77.0

dZ tS 7.0 56.7
E ae 6.6 70.3
n d 6.4 64.9
I V 6.1 67.9
t n 6.1 65.6
I E 5.7 63.0
S tS 5.5 60.1
u: oU 5.4 77.5
j g 4.9 50.1
T D 4.5 80.1
i: eI 4.4 82.5

Table B.3: Ablation study on the window size for the discrete gesture recog-
nition task, measured by CLER.

Method Window size CLER Inference Method

Meta - LSTM — 0.1819 Full sequence
Meta - LSTM 16 000 0.1596 Windowed

Finetuning 16 000 0.1553 Windowed
Finetuning 8 000 0.1634 Windowed
Finetuning 6 000 0.1651 Windowed
Finetuning 4 000 0.2770 Windowed
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B.4 Visualization of EPN612 Experimental Re-

sults

noGesture waveIn waveOut pinch open fist
Predicted label

noGesture

waveIn

waveOut

pinch

open

fist

Tr
ue

 la
be

l

4567 6 2 8 5 2

0 4504 15 10 17 44

2 4 4358 13 208 5

1 5 17 4497 33 37

1 21 226 47 4250 45

0 60 4 30 43 4453

0

1000

2000

3000

4000

Figure B.2: Confusion matrix on the EPN612 test set.

Figure B.2 shows the confusion matrix for the EPN612 dataset. Performance

is generally high, with most gestures being correctly classified. Most misclas-

sifications occur between waveOut and open. Given the sparse distribution of

off-diagonal values, the model demonstrates strong generalization capabilities

across the different gestures.

Figure B.3 shows the ROC curves for each gesture in the EPN612 test set. The

noGesture class achieves the highest AUC of 1.0, indicating perfect classifi-

cation for this class, followed by the waveIn, pinch, and fist, all with AUCs

of 0.999. All the curves are located well above the diagonal of the random

classifier, indicating strong separation between positive and negative classes

across all gestures.

Figure B.4 shows the t-SNE embeddings of the EPN612 dataset. The em-

beddings are well-separated for most gestures, with a slight overlap between

waveOut and open, indicating some confusion between these two classes
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Figure B.3: ROC curves for each gesture in the EPN612 test set.
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which is also reflected in the confusion matrix. The noGesture class is clearly

separated from the others, demonstrating that the model effectively learns

to distinguish between active gestures and rest, and the overall visualization

reveals non-linear clustering structures.



Appendix C

FLOPs and Peak Memory Usage

Table C.1: Per-GPU FLOPs and peak memory usage during pretraining and
finetuning.

Model FLOPs Peak memory usage

Pretraining 9.6 G 7,778 MB
Finetuning (DB5) 9.6 G 1,968 MB
Finetuning (EPN-612) 3.8 G 1,060 MB

Table C.1 shows the FLOPs and peak memory usage during pretraining

and finetuning on Ninapro DB5 and EPN-612. FLOPs were estimated

per GPU using lightning measure_flops on the per-GPU training batch

(only forward pass); reported FLOPs are per training step per GPU.

Peak GPU memory is the maximum per-GPU allocation measured with

torch.cuda.max_memory_allocated() on rank 0 GPU.

For distributed data-parallel (DDP) training each GPU holds a full model

replica and optimizer/activation memory; the aggregate cluster FLOPs can

be computed by multiplying the per-GPU GFLOPS by the number of GPUs

but communication may reduce observed throughput.
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