Bertoglio, Francesca
(2025)
Topological Data Analysis for Matching Homology Classes in Time-Varying Data.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (8MB)
|
Abstract
This thesis explores Topological Data Analysis (TDA) as a framework to study time-varying datasets, which appear in fields ranging from biology and dynamical systems to social networks and neuroscience.
TDA encodes data as point clouds and uses algebraic topology to capture intrinsic shape. Persistent Homology (PH) extracts topological features, identifying homology classes (connected components, loops, and higher-dimensional voids) across multiple scales through filtrations. Each feature is assigned a birth and death parameter, visualized via barcodes or persistence diagrams. PH provides a canonical representation of features and is robust to small perturbations.
To extend PH to dynamic datasets, this thesis employs vineyards, which track the evolution of homology classes over time, and Topological Optimal Transport (TpOT), a computationally efficient method for matching topological features across large datasets and multiple time steps. Vineyards preserve interpretability but can be computationally intensive, while TpOT aligns features efficiently.
Overall, this work combines algebraic and computational approaches to analyze the dynamics of homology classes over time, balancing theoretical rigor with practical efficiency.
Abstract
This thesis explores Topological Data Analysis (TDA) as a framework to study time-varying datasets, which appear in fields ranging from biology and dynamical systems to social networks and neuroscience.
TDA encodes data as point clouds and uses algebraic topology to capture intrinsic shape. Persistent Homology (PH) extracts topological features, identifying homology classes (connected components, loops, and higher-dimensional voids) across multiple scales through filtrations. Each feature is assigned a birth and death parameter, visualized via barcodes or persistence diagrams. PH provides a canonical representation of features and is robust to small perturbations.
To extend PH to dynamic datasets, this thesis employs vineyards, which track the evolution of homology classes over time, and Topological Optimal Transport (TpOT), a computationally efficient method for matching topological features across large datasets and multiple time steps. Vineyards preserve interpretability but can be computationally intensive, while TpOT aligns features efficiently.
Overall, this work combines algebraic and computational approaches to analyze the dynamics of homology classes over time, balancing theoretical rigor with practical efficiency.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Bertoglio, Francesca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
Topological Data Analysis,Persistent homology,vineyards,Topological optimal transport,Computational topology,Homology,Time-varying data
Data di discussione della Tesi
26 Settembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Bertoglio, Francesca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
Topological Data Analysis,Persistent homology,vineyards,Topological optimal transport,Computational topology,Homology,Time-varying data
Data di discussione della Tesi
26 Settembre 2025
URI
Statistica sui download
Gestione del documento: