Zavatta, Nicola
(2025)
Minimizers for a nonlocal anisotropic energy.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (4MB)
|
Abstract
In this work, we study the equilibrium configurations of a system of interacting particles. We focus on nonlocal interactions of Coulomb type modified with the addition of a generic anisotropic term and consider general confinements, in a bidimensional setting.
Using a $\Gamma$-convergence argument, we prove that, in the many-particle limit, the equilibrium configurations are given by the minimizers of an energy functional on the space of probability measures. Then, we discuss the existence and uniqueness of the minimizer for such energy, and review a recent result on the explicit characterisation of the minimizer in the case of quadratic confinement.
To address the case of general confinements, where the analytic solution is not known, we introduce a novel numerical method for the approximation of the minimizer.
Eventually, in the light of the numerical results, we make a conjecture on the shape of the minimizer for quartic confinement.
Abstract
In this work, we study the equilibrium configurations of a system of interacting particles. We focus on nonlocal interactions of Coulomb type modified with the addition of a generic anisotropic term and consider general confinements, in a bidimensional setting.
Using a $\Gamma$-convergence argument, we prove that, in the many-particle limit, the equilibrium configurations are given by the minimizers of an energy functional on the space of probability measures. Then, we discuss the existence and uniqueness of the minimizer for such energy, and review a recent result on the explicit characterisation of the minimizer in the case of quadratic confinement.
To address the case of general confinements, where the analytic solution is not known, we introduce a novel numerical method for the approximation of the minimizer.
Eventually, in the light of the numerical results, we make a conjecture on the shape of the minimizer for quartic confinement.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Zavatta, Nicola
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
Nonlocal energy,Anisotropic interaction,Equilibrium measure,Potential theory,Coulomb potential
Data di discussione della Tesi
26 Settembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Zavatta, Nicola
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
Nonlocal energy,Anisotropic interaction,Equilibrium measure,Potential theory,Coulomb potential
Data di discussione della Tesi
26 Settembre 2025
URI
Statistica sui download
Gestione del documento: