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Abstract

In this work, we study the equilibrium configurations of a system of interacting par-
ticles. We focus on nonlocal interactions of Coulomb type modified with the addition of
a generic anisotropic term and consider general confinements, in a bidimensional setting.
Using a I'-convergence argument, we prove that, in the many-particle limit, the equilib-
rium configurations are given by the minimizers of an energy functional on the space of
probability measures. Then, we discuss the existence and uniqueness of the minimizer for
such energy, and review a recent result on the explicit characterisation of the minimizer
in the case of quadratic confinement. To address the case of general confinements, where
the analytic solution is not known, we introduce a novel numerical method for the ap-
proximation of the minimizer. Eventually, in the light of the numerical results, we make
a conjecture on the shape of the minimizer for quartic confinement.
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CHAPTER 1

Introduction

In this thesis, we study the minimization problem for the energy of a system of
interacting particles. We assume that the particles interact with one another in such a
way that every particle is influenced by every other particle in the system. Hence, the
interaction energy of the system is nonlocal, in that even particles very far apart have a
mutual influence. Interactions of this type arise for instance in materials science, when
studying the dislocations in a crystalline material. Dislocations are defects in the crystal
lattice that result in a change of the lattice structure and are responsible for many of the
macroscopic properties of crystalline materials, such as plasticity and fracture toughness.

Given n particles located at z',...,2" € RY, the interaction energy of the system
can be expressed as

n
% Z W(z' — 27),
i,j=1
1#]
where W is a function that describes the interaction between two particles.

In general, the interaction may depend on the orientation between the particles, being
stronger along some directions and weaker along others. In this case, the interaction is
said to be anisotropic. In materials science, the arrangement of dislocations in a lattice is
frequently observed to be anisotropic, which motivates the study of energies of this type.

In addition to the reciprocal interactions, the particles are subjected to a confinement
V' that forces them to stay within a bounded region of space. The confinement energy is

i=1

If we assume that the particles have a repulsive behaviour at short range and an
attractive one at longer range, it is intuitively clear that there exists a distribution of
particles for which the system is in equilibrium. Identifying the distribution of particles
with the probability measure

1
Mgl gn = E E 6mia
i=1

the equilibrium configurations can be found by computing the minimizers of the energy

E(pgr _ on) = = Z W(x' —a7) + - ZV(x ),
i,j=1 i=1
i#]

under the assumption that:

e W(x) — +oo as |z| — 0, so that the energy blows up when the particles are too
close;

e V(x) = +o0 as |z| — 400, so that the energy blows up when the particles are
too far apart.



2 1. INTRODUCTION

The equilibrium configurations will be a trade-off between minimizing the interaction
term, which keeps the particles separate from one another, and minimizing the confine-
ment term, which tends to concentrate them in a narrow region.

In this work, we focus on the case N = 2, i.e. bidimensional distributions of particles,
and consider interactions of the form

W(zx) = —In|z|+ k(z),

where £ represents the anisotropic part of the interaction, in that x(z) depends only on
the angle between = and the horizontal axis.

We will show that, if the number of particles is large, the energy of the system can
be expressed by the functional I: P(R?) — R U {+oc},

16 = [[,  We=ndu@in)+ [ Vi) duta).

In particular, in Chapter 2 we generalise a result by Scagliotti [1] and prove that, under
certain assumptions, I is the I'-limit of the energies

Lo() = {E(le’“_,mn) if 3t 2" €RY i = pp e
n(p) = .
+o00 otherwise

as n — +00. Therefore, the equilibrium configuration can be found by solving the mini-
mization problem for the functional I.

In Chapter 3 we show that, under mild assumptions, this minimization problem admits
a solution. In particular, the minimizer of I is compactly supported and satisfies two
Euler-Lagrange equations (in a suitable capacitary sense). To prove that the minimizer
is unique, we relate the convexity of the functional I to the sign of the Fourier transform
of W. In fact, we show that, if the Fourier transform W is nonnegative on S', then
I is strictly convex and the minimization problem has a unique solution. Then, we
present a characterisation of the minimizers in the case of quadratic confinement, i.e.
V(x) = |z|%. The results discussed here follow the approach of a recent work by Mora [2].
We close the chapter with an example from dislocation theory. In particular, we address
the minimization problem for the energy

nw=[[, (—m P a<|_yy|)> duta)dus) + [ Jaf du(a).

This example raises an interesting question on the topology of the equilibrium con-
figuration. In fact, if |a| < 1 the minimizer is supported on an ellipse, whereas if |o| > 1
the support reduces to a segment, that is, the equilibrium configuration has a lower di-
mension. While it has already been proved that a necessary condition for this loss of
dimensionality to occur is that W vanishes somewhere on S!, a sufficient condition is still
unknown. The matter becomes even more complicated if we take into account general
confinements.

To shed some light on this question, we aim to compute the equilibrium configuration
using numerical methods. In Chapter 4 we introduce a novel method to approximate the
minimizer of I, which is based on Ritz method for the solution of variational problems.
We approximate the minimizer by its projection onto the set

(V1. ) = {MGP(RQ):M—Zalem Gk20}7

k=1
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where vy, ...,v, are probability measures with compact support. This transforms the
original problem into

n

min Z arl (V)

al,..-,an
k=1

ar > 0Vke{l,...,n}

n
Sw=t
k=1

which is a finite-dimensional minimization problem that can be solved using numerical
algorithms for constrained optimization.

We test the validity of the method by computing the minimizer of I, and comparing
the approximate result with the exact one. Then, we use this method to compute the
equilibrium configuration for the energy I, with a generalised confinement V' (z) = |z?,
for several values of v and p.

Finally, in Chapter 5 we conclude by summarising and discussing the main results.







CHAPTER 2

Equilibrium configurations for many-particle systems

In this chapter, we introduce the discrete energy associated with a finite number of
particles. We will show that, if the number of particles tends to infinity, the discrete
energy I'-converges to a limit energy, whose minimizers are the limits of the equilibrium
configurations for the discrete energy. Much of the material presented in this chapter
follows the approach of an earlier work by Scagliotti [1].

2.1. Distributions of particles and the discrete energy

DEFINITION 1. Let z',..., 2" € R%. We define the distribution of n particles located
at z', ... 2" as the probability measure
1 n
figt,  an = n}zz;azﬁ (2.1.1)
=

DEFINITION 2. Let i1 n be a distribution of n particles, with n > 2. The energy
corresponding to this distribution is

1 <& , A 1 <& A
E(pig1,..n) = — > Wzt —al)+ - > Vi), (2.1.2)
i,j=1 i=1
i#]

where W: R? — RU {400} and V: R? — RU {+oo} are given functions, called interac-
tion kernel and confinement potential, respectively.

The energy (2.1.2) is nonlocal, in that every particle interacts with every other particle,
as can be seen by the interaction term summing over all pairs of particles. Energies of
this form are representative, for instance, of the interaction between dislocations in a
crystalline material.

In anisotropic media, the interaction between particles depends on their orientation.
Hence, we may assume that the interaction kernel has the following form:

_ ) =In|z|+rk(z) ifz#0
W@%—{+m foo0 (2.1.3)

where x: R? — R is an even function with x(z) = H(ﬁ), that represents the anisotropic

behaviour of the interaction and is called anisotropic kernel.
In the isotropic case, the interaction reduces to the (2D) Coulomb kernel

Wo(z) = {—ln\aﬁ| ifx#0

400 if x = 0.
The energy as defined in (2.1.2) is a linear functional on the space of measures of the
form (2.1.1). It can be extended to a functional on P(R?), the space of Borel probability
measures over R?, via

(2.1.4)

By an) if 3zt 2" €R2:p =y 4m
1 = 2.1.5
n(1) { 400 otherwise. ( )

5
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The energy I, is also called discrete energy, as it is associated with a discrete distri-
bution of particles.
A distribution of n particles that minimizes I,,, i.e. u € P(R?) such that

is called an equilibrium configuration for n particles.
Under suitable assumptions on the confinement potential, the discrete energies I,
admit an equilibrium configuration.

THEOREM 1. Let I,, be defined as in (2.1.5), with W as in (2.1.3), k € C(S') and V
lower semi-continuous, bounded from below and strongly coercive, i.e.

1 1
lim (W(a; —y)+zV(z) + V(y)) = +o00.
|z|+|y|—=+o0 2 2

Then I, admits a minimizer on P(R?).

To prove this theorem, we will make use of the following result, which is the semi-
continuous equivalent of Weierstrass’ extreme value theorem for continuous functions.

THEOREM 2. Let (X,d) be a metric space, K C X compact and f: x — R a lower
semi-continuous function on K. Then, f is bounded from below on K. In particular,
there exists xg € K such that f(xo) = mingex f(z).

PRrROOF. Consider a minimizing sequence {z,}, C K such that f(x,) — infycx f(x).
Since K is compact,

lm x,=2z0€ K
n—4o0o

and, by lower semi-continuity of f, we have

f(wo) <liminf f(zn) = lim f(zn)= inf f(2),
which concludes the proof. O

We can now prove Theorem 1.

PROOF (THEOREM 1). We note that a minimizer of ,, must be of the form (2.1.1).
Therefore, minimizing I,, is equivalent to minimizing the function F: R*® — R U {+o0},

1 & . A 1 & A
1 ny __ 2: 7 § 7
F(.ZL’,,ZE’)—E W(x _x])‘i‘ﬁz_lV(LU)

ij=1
i#]

- 5> (W - )+ 1) + v + S 3 v

= n2 = €T xT B €T 9 xT n2 £ T ).
i#i

Clearly, F is lower semi-continuous on R?*”, as W and V are continuous and lower semi-
continuous on R2, respectively. Moreover, by Theorem 2 and by the assumptions on V,
we have that (z,y) — W (z—y)+3V(z)+1V(y) and V are bounded from below. Without
loss of generality, we may thus assume that they are non-negative.

Since V is strongly coercive, there exists K C R? compact such that

W(x—y)+ %V(m) + %V(y) >n2(inf F+1) VY(z,y) ¢ K x K.
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Therefore,
1
1 ny __
F(»T»-~-a33)—n2 El< Wz — 27) +§V(x)+ ij>+g Vix
7]
1#]

1 ; . 1 ) 1 . o
n2<W(:L‘Z —ax) + §V(xz) + 2V(£L'])> >inf F+1 V(z'2))¢ K x K,

v

which implies F(z!,...,2") > inf F+1 for every (z',...,2") ¢ K™ C R?". By Theorem 2,
F has a minimum point (z{, ..., x§) belonging to the compact set K".
Hence, p = Mzl an 1S & minimizer of I,.

O

2.2. I'-convergence of the discrete energy

We will now show that, under suitable assumptions, the family {1, },>2 I'-converges
to the energy functional I: P(R?) — R U {+oc},

— [[, We-ndu@dn) + [ Viz)duta). (2:2.1)
R2 xR2 R2

The energy I can be thought of as the limit of the discrete energies {I,, },>2 in the following
sense: as the number of particles increases, the equilibrium configurations tend to a limit
distribution, which is a minimizer of I.'

We suppose that the confinement potential satisfies the following hypotheses:

(H1) V is lower semi-continuous;
(H2) V is bounded from below;
(H3) strong coercivity

lim (W(ﬂs —y)+ 1V(m) + 1V(y)> = 400 (2.2.2)
|z[+[y|—-+o0 2 2
(H4) dom(V) == {z € R? : V(z) < +o0} is closed and with non-empty interior;
(H5) there exists a point z € dom(V') such that for every K C dom(V) compact and for
every t € (0,1) the set z + t(K — z) is contained in don;(V);

(H6) V is continuous on dom(V).

Examples of admissible confinements include the power law V(z) = |z|P with p > 0
and the characteristic function of a compact convex set.

Under these assumptions, we can prove the following theorem, that generalises an
analogous result by Scagliotti [1].

THEOREM 3. Let {I,}n>2 be the family of functionals defined in (2.1.5), with W as
n (2.1.3), k € O(SY) and V satisfying (H1)-(H6). Then, the functional I: P(R?) —
R U {400},

/Rz /RQ ( )+ V< )+ ;V(y)> dp(@)dp(y) (2.2.3)

1s well-defined and we have

I, 1.

I¥or a short introduction to I'-convergence, we refer to Appendix B.
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Before proving the theorem, we will prove the following useful lemmas.

LEMMA 1. Let {ftn}n C P(R?). If piy = p, then pu, @ pn, — p @ p. Moreover, suppose

that
1 n
15
n
i=1

and define

1 n
i B py = ﬁ Z 5(:51@])
i,j=1
i#j
Then, if jin — p, we have that iy, X p, — p Q@ p.

PROOF. Let 1 € Cy(R? x R?) and 0 < € < 1. By weak convergence, we have

/R2s0d(ﬂnu)‘ <e Vg e (R

for n large enough. Since (z +— ¥(x,y)), (v — ¥(z,y)) € Cp(R?), then

//RQXRQl/}d'un@Mn //Wxﬂvwdu@u‘ ‘//RQXRde — 1)@ fin)
//szszd”" fin //RQX]RQ ﬂ)®(/~‘n_ﬂ)’
<’Q/RQafd,unJr/RQaed(,un—u)'<357

which proves the first claim.
Moreover, we note that

1
& == — 5 th = — 6 i i),
Mn &N Up Un & Up — Vn, With vy, n2 ;:1 (zt,x%)

and v, — 0. Indeed,

1 & o
dnzi ) RQ R2
//R2XR2¢) v 3 E oz, x') — 0 Vp € Cp(R* x R?),

=1

which concludes the proof. O

LEMMA 2. Let I be defined as in Theorem 3. Then, for every u € P(R?) there exists
a sequence {ji,}n C Pe(R?), whose support is contained in dom(V'), such that

® [n = s
o I(un) < I(u) for n large enough.

PROOF. Let p € P(R?) and suppose that it is not compactly supported. We will first
prove that it can be approximated by a sequence of measures with compact support that
satisfy the thesis.

We consider an exhaustion by compact sets of R?, i.e. sequence {Kn}12 C R?
of compact sets such that K, C K, for every n and U K,, = R2. Without loss of
generality, suppose that p(K1) > 0. We can then define

1

o, = plx, € P.(R?) for every n > 1.

p(Ky)
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Let ¢ € Cy(R?), with |p(z)| < M for every x € R%2. We have

/cpdun— sod/L’ ’/ z du /cpdu‘
R2 n n R2
s!/ H<K>du—/ inf | [ o]
( 1)l ol
i p
(Kn) K

>M ) + Mu(KE)

by choosing n large enough that p(kK,) > 1 — 557, with € > 0. Hence, py, Ao
As for the second point, we may suppose I() < 400, otherwise the conclusion is
trivial. We have

[ (We-n v v w) dus ey

+ //(K o (W(x —y)+ %V(Sﬂ) + ;V(y)> d(p @ p)(z,y)
2 ,U,(Kn)zf(un) + C(,U ® :U)((Kn % Kn)c)

= p(Kn)? 1 (pn) + C(1 — p(Kn)?),

where in the second line we have used the fact that, by (2.2.2) and [J/ = R?, for
every C > 0 there exists m € N such that

1 1
W(xr —vy)+ iV(:E) + iv(y) > C for every (z,y) ¢ K,, X K, n > 7.
By choosing C' = I(u), we obtain

I(pp) < I(p) for every n > 7,

which proves the second point.

Let now p be a probability measure with compact support K C dom(V) and such
that I(u) < +oo. Without loss of generality, we may assume that (H5) is fulfilled for
z = 0 up to a translation. We define the scaling map ¥': R? — R?,

Ul(z) =tz for t € (0,1),

and consider the push-forward measure
t t\y—1 1 2
(ven) (4) = () () =u(j4) A€ B

which is supported in tK C dOII;(V)
First we prove that Wiy = past — 1. Let € > 0, ¢ € Cy(R?) and

UtK

te(0,1)
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We have

/ () dyu(z) — / (@) d(WLp) (2)
R2 R2

_ / () dp(z) — / () d(Vp) ()
K tK

_ / o(x) du(z) — / (¥ (x)) dp(z)
K K

- / () — pltz) du(z)
/ (@) — p(t2)] du(z).

By uniform continuity of ¢ on K’, there exists § > 0 such that
lo(z) —p(tx)| <e Vexe K':|(1-t)z| <4,

and by boundedness of K’ there exists C' > 0 such that |z| < C. Hence, for ¢t > % —1 we

obtain
| tet@) = ptta)] dta) < [ cduta) =

We are left to prove that limg 1 I(¥!u) = I(u). We note that

W(tx—y))=—Injlzr —y| —Int +k(z —y) = W(zr —y) — Int.

Ulp) //R2><R2 (z —y)d(Vip @ Vi) x,y)+/RQV(:c)d(\I'iu)(a:)

_ // Wt — ) d(u ® 1) (&, y) + / V(tz) dp(z)
R2xR2 R?

—[[ Wwe-ydueney+ [ Vi duw) - e
KxK K

Hence,

Since K’ C dom(V), then V| is continuous and supgs V' < +oo. Therefore, by domi-
nated convergence we conclude that

lim 7(Wip) = I(p).

t—1

We can now prove the theorem.

PROOF (THEOREM 3). (liminf inequality) Let 1 € P(R?) and {u,}, € P(R?) such
that g, — p. We need to show that

I(p) < liminf I, (pn).

n—-+4o0o

Without loss of generality, we may assume liminf,,_, Ip,(ftn) < 400 and I, (py,) < 400
for every n. Therefore, for every n there exist z!,..., 2" € dom(V') such that

1 n
:n;(szi.
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Moreover, we can assume V' > 0, up to a translation. By definition, we have

Tn(in) = - 37 Wa't — ) %Z

t,j=1
i#]
s
// +1V + iy d(pn B )+1§V(i)
n n l‘ T
R2 JR2 2 2 Iu H Y TL

W(z —y) d(pn X pin) (2, y) +/ V(x) dpin(x
i=1
1 1
/ / ( )+ 5V >dﬂnlzﬂn (z,9).
R2 JR2 2 2

R2
Lemma 1 ensures that fi, K 1, — p ® g and, since (z,y) = W(z —y) + sV (2) + 1V (y)
is lower semi-continuous and bounded from below, by Lemma 7 we deduce

w=[ [ (We-n+ 3@+ v dus )

1
< lim inf/ / ( ) + V( )+ V(y)) d(pn X py)(z,y) < liminf I, (u,),
R2 JR2 2 n—-+00

n—+00

which is the desired inequality.
(limsup inequality) We have to prove that for every u € P(R?) there exists a recovery

sequence {ji,}n € P(R?) such that p,, = p and

I(p) > limsup I, ()

n—-+o00

Without loss of generality, we may assume that I(u) < +oo, otherwise p, = p would
be a recovery sequence.

By virtue of Lemma 2, it is enough to prove that such a recovery sequence exists for
every compactly supported probability measure whose support is contained in the interior
of dom(V). Indeed, let p € P(R?) and consider a sequence {i, }r, C P.(R?), with support

contained in dom(V), such that g, — g and I(p) > I(u,) for n > 7. Suppose that

(n)

{,u(n)} C P(R?) is a recovery sequence for fi,, i.e. pum’ — pi, and

I () > lim sup Im(:ugr?))'

m——+00

The diagonal sequence {u%n)}n satisfies u%n) =y and

I(i) > limsup I, (u{"),

n—-+o0o

therefore it is a recovery sequence for p.
Step 1 (approzimation of p): Let u € P.(R?), with support K. We consider a covering
of R? by squares of side length 2h,

h = {[0,2h]? + 2h(i, j) : (i, ) € 22},

and denote by {QZ}k 1

1N, the squares in Q" whose intersection with K is non-empty.
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For every k =1,..., Ny, we define the square
QZ = {xGQZ:x+)\161+)\262 EQZ, 0< A, < h}.

We approximate p with the sequence {u”};, C P.(R?),

Np, Ah
p(Q
ph=3" (h2k)£2’62’;' (2.2.4)
k=1

It can be noticed that u” (QZ) =pul (QZ) = ,u(QZ) for every k.
We claim that:

o i = pas h —0;
o I(p) > limsupy, o I(u").

For h < 1, supp(uh) C K+ B 5(0) = K'. Let ¢ € Cy(R*) and ¢ > 0. By uniform
continuity of ¢ on K’, there exists § > 0 such that

lp(x) — oY) <e Vr,ye K':|z—y| <4

We thus have

[oat= [ oa - é{wduh—/wsodu’

) ( JRECEACE /Q o) dmy))'
(/Qh vy o= [, [ 5y o)

sg /Q/Q ) du (2)d(y)

< /Q/Q o)l dp (@) du(y)

/ / Edu x)du(y Zsu
QhJQr

where in the fourth line we have used p* (QZ) = M(QZ) and applied Fubini’s theorem,

while the last inequality descends from the fact that, for z,y € QZ e —yl <2v2h <6
as h — 0, therefore by uniform continuity |p(z) — ¢(y)| < e.
To prove the second claim, we first notice that supp(u") C K + B, an(0), so for h

sufficiently small there exists an open set Q CC dom(V') such that supp(u”*) C Q. Hence,

Vduh:/VduhH/Vdp:/ V dp,
R2 Q Q R2

because p = 1 and Vg € Cy(Q).

I
N\g

[
Mz

k=1
Ny,

2

IA
TMZ |
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Since W is unbounded on R?, we define its truncation
W (z) = min{W(z), M}

and write

lim sup / W (z — y) du(z)dp" (y) = lim sup ( / (W = War)(z — y) dp"(x)dp" (y)
h—0 JR2 JR2 h—0 R2 JRR2

+ /R2 g Wy (z —y) duh(w‘)duh(y)>

< lim sup/ (W = War)(z — y) dp"(x)dp" (y)
h—0 R2 JR2

+ lim sup / War(z — y) dp"(2)dp" (y).
h—0 R2 JR2

We note that, thanks to the assumption £ € C(S!), W)y is continuous and bounded on
R?, therefore by narrow convergence of 1 we obtain

lim sup / Wt( — y) d (@) (y) = lim War(z — y) di (z)di ()
h—0 JR2 JR2 h—0 Jr2 Jr2

— / Wiz — y) du(z)dp(y)
R2 JR2

< / W(z —y) du(z)du(y).
R2 JR?
We will conclude by showing that

lim sup/ (W — W) (z — ) du"(z)dp" (y) — 0 as M — +o0.
h—0 JR2 JR2

Let C1,C5 € R be such that
—Injz—y|+C <W(x—y) < —In|z—y|+ Co.
Hence,
WE-—y)>M = —Injlz—y|+Cy>M < |z—y| <> M =Ry
and Ry — 0 as M — 400. As a result,
(W —=Wh)(z—y) =0if |[x —y| > Ry (2.2.5)
We have

/ (W — War)(@ — y) d" () du (y) = / < / <W—WM><x—y>duh<m>> dyit(y)
R2 JR? Q \/Bg,, ()

_ h(yg h
< /Q </BRM(y)W(fU y) du” ( )) du” (y)
=S L ( /Q o —y)dm)) a4 ()

i,j=1

Np,
—ZZ/h </th3 (o =) du’"”(%)) dp" (y)

=1 j=1
JF#i

Np,
+ Zl/h ( W(z —y) duh(ﬂs)> dp"(y).

QI'NBRy, (v)
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We rewrite the right-hand side of the previous inequality by arranging the squares
{Q?} ._1__n, depending on their distance from th, according to the set of indices
J=L--,[Np

pr = {j e{l,...,Np}: Q;’ = Q? + 2h(m,n), (m,n) € 72, max{|m|,|n|} :p},

where p=1,..., Py, with P, == [ o7 —‘ Hence, we obtain

Ny, Py
/RQ V=W ) du @)du () < D Z/ ( W — )duh(w)> dyit ()

=1 p= 1 EJh thBRM()

-l—Z/ ( Wz — )duh(:x)) du"(y). (2.2.6)

QINBRr,, (v)

IfreQlandyc Q;-l, with j € thp, then (2p — 1)h < |z —y| < (p+ 1)2v/2h, so

Cr = ((p+1)2v2h) <W(z—y) < Gy —In((2p — D).
On the other hand, if z,y € Qf, then |z — y| < 2v/2h, so
Wz —-y)>Ci—1In (2\@)1).
Let us fix i € {1,...,Np},pe{l,...,P,} and j € pr. We have

/ ( W —y) duh(x)> dt(y) < / ( / (Cy — n((2p — 1)) duh<m>> dyi ()
¢ \/QINBry, (v) P \/QINBry, (v)
< (Cy —In((2p — 1)h)) 1" (Q7) " (Q))

_ 2=l ) Y (O
= <02—1n<(p+1>2ﬂ> 1 <(p—i— 1)2\/§h>>u(czﬁ)u(@§)

< Cp(Qr)n(@) + /Q ( o Wz —y) du(fﬂ)) dp(y),

where C' is a constant independent of 7, j, p and h. Moreover,

/ ( W(fﬂ—y)duh(x)> W< | ( / (02—1n|$—y|)duh($)> du (y)
QF \/QINBry, (y) Qr \/Qr
Coul (QM)? — In|z — y|du(z) | du™
< Cop™(Q7) /Q? (/Bml(y) yl du”( )) 1 (y)
B 2 1(QF) vah
= Con(Q7)" = =55 /Q . <2W /0 ln(?”)rdr) dp"(y)

. x [V2h
= pu( ?)2<Cg—22/0 ln(r)rdr>
27V2h
=u(OM?| C r? In(r -
M(QZ)<2 - )
2h) ) u(QF
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where C’ is a constant independent of ¢ and h. By substituting into (2.2.6), we obtain
Ny Pp

/R2 /RQ (W = W) (@ —y) du"(@)dp"(y) <D > <Cu(Q?)u(Q?)

i=1 p=1 je‘]z‘h,p

Np,
— X ! Nh 2 T xr — X
+/th ( Q?W(x y) dp( )) du(y)>+; (C w(Q7)” +2 /Q? ( Q?W( y) dp( )) du@))
< [ wBnym)dnt) +27 [ [ Ve et

Hence,

lim sup /R 2 /R (W = W) — ) dp (2)dp () < lim (c" /Q (B +2n(v)) dia(y)

h—0
+27r/Q/BR W%x —y) dp(z) du(y)>

_ o / 1(Bry, (v)) dpi(y)

Q
+27T//
QJB

because by assumption I(u) < +o0, therefore (z,y) — W(z—y) € L'(R? x R?, p®@u) and
we can apply the dominated convergence theorem. Recalling that Ry; — 0 as M — +oo,
we conclude

W(z —y) du(z)du(y),
(v)

Rpr

lim limsup/ / (W_WM)(x—y)duh(x)duh(y):0.
M=+4oc0 poo JR2 JR2

Step 2 (construction of the recovery sequence): it is sufficient to construct a recovery
sequence for measures of the form (2.2.4). We approximate uh by a sequence

Ny,
=D cknl’lgn, (2.2.7)
k=1

where the coefficients ¢y ,, are such that uh (QZ) — ph (QZ) asn — +oo and |/ ul (QZ)n €
N for every n € N and every k. This can be obtained by choosing

2
(@]
h2n '
The sequence {u”},, is narrowly convergent to u”. In fact, let ¢ € Cy(R?) and observe

that
2
Q) | 1= @n (Vi @n 1) e

h? h2n - h2n = Gn =T
therefore by dominated convergence

Np, Np, h(NHh
X h.%' = x)c T %M(Qk)
[, et i ];/szk,nd —>I;/%¢() o

We note, however, that in general the measures p! are not probability measures. In fact,
Nh Nh

h(Ah

h (2 K (Qk)

Mn(R):E / Ck,ndSCSE / dr = 1.
=17 Q% =17 Q% h?

Ck,n =

(2.2.8)

dx = /]1&2 o(x) dul(z).
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We subdivide each square QZ into Zp, , == uh (QZ)n subsquares of side length

"

The subsquares are denoted by QZ , and their corresponding centres by w,i. s With ¢ =
- Ziom. |
For a fixed n, there are in total u” (R?)n centres wy, - We denote n, = (1= pl(R?)n
By inequality (2.2.8), we get

Ny, Np 1—24/p(QM)n

i (R?) = Zun QY) =D arah® =D | 1" (Q)) + -
k=1 k=1
_1+———Z\/ (@),

from which we obtain the estimate

Np
_ (1 - MQ(R%) n< Nyt 2vny \Juh(QF) < 2N/ (2.2.9)
k=1

Similarly to how we defined QZ, for every k € {1,..., Ny} we define
QZ = {ZCGQZI.T—)\lel—)\QeQGQZ,OS)\L)\Z Sh}

As above, we subdivide each square QZ into Zj , subsquares of side length Ly, and
denote their centres by {w;n}zzl Zioom - We select n, of these centres at random and
denote them by {@%}i=1.  n,
Observing that
Lk,n = L > i
uh(Qpn VT

and noting that the centres have a distance greater than or equal to Ly, ,, from one another,
we get the following estimates:

(2.2.10)

|Whn — i | = T i F J, (2.2.11)
- L h
| Wy, — 07| = N for every 4, j, (2.2.12)
N h ..., .
Wy, — Wy > —=if 7& J- (2213)

We now define the recovery sequence as follows:

Ny, Zin ny
225 LD
k=1 1=1 =1

Note that, according to the way Zj , is defined, the number of dislocations allocated in
each square QZ is proportional to the measure ,u?l (QZ) As a consequence, the squares
whose measure is greater are weighted more by the recovery sequence.
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Step 3 (proving the limsup inequality for u"): we claim that

° unﬁ,uh as n — +0o9o;
® I(:uh) > limsup,, 4 o In(fin)-

As we have observed in step 1, there exists a compact set K such that supp(uh) CK.
By definition of y,, this implies supp(u,) € K. Let ¢ € Cp(R?) such that |p(z)] < M,
fix e > 0 and let § > 0 be such that

lo(x) —e(y)| <e Va,ye K:|x—y| <4

=’/ wduh—/wdun
K K

We have

/wduh—/ o dpin
R2 R2

Np, (s
- () dp (@)~ [ o) dpu >) -y
;(/Qgso " /szy (Y ngw( )

IN

hig) LS (i
/QZ p(x) dp(x) / o(y) din(y) +n;!s0( ]

Qk

IN

2 IM7 IMe

/ () du"(z) — / o) dn (9)| + "2 M0
Qr Qp "

oy IN, M
/Q ) /Q )|+ =

where the last term comes from inequality (2.2.9) and vanishes for n — +o0.
As for the first term of the right-hand side,

IN

£
Il

1

) dp'(z) — dpiy, = xdhfc—l Wy, ,
fy et @ = [ o) =| [ o)t e) - 3ok
Zin
= z) dul(x) — wy e
= ;(/@giw( ) dp (z) /Q’é,i(p( ko) dp" ()
i 1 ;o\ dp(y)
Zin
<Y [l - (o)l dn @)
i=1 ki
Zkmn
3 Jeluk) (@) - 1 )]
=1
Z,n Zkn h(h h(Hh
h i 1 (Q)) — 1 (@)
<3 /Q , S+ 3 o)

< e (Q)) + M| (@}) — (@),

if we choose n large enough that }x — wi n‘ < Li,n < 0, which is possible because Ly, ,, — 0

for n — +o0. Since p! (QZ) — uh (QZ) as n — 400, we conclude that g, — u'.
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To prove the second claim, we consider

Nin Zkn . Nn Zkn Zin
(ZZW SCBED % % SIS
k=11,5=1 k=1 1=1 j=1
i#£j k;él
Nin Zkn n, . Ni Zkn
+2) 3> W (wh, — ZW ) (ZZVwkn +ZV o)
k=1 =1 j=1 ,i]#jl k=1 =1

For the confinement term, we have

Ny, Zk,n
(ZZV@UM +ZV > /KV(x)dun(x)—)/KVx Ay

k=1 i=1

because Vg € Cy(K) and j, converges narrowly to p”.
‘We can thus focus on the interaction terms. We have

Zk n Zln

)

a2 Wk, —ud,) = [[ Wia =)@ p)w) — [ W -yl i)

h s Oh
=1 j=1 QkXQl QyxQ;

because (z,y) — W (z —y) € Cp(QF x Q?) if k#1 and p, @ pn — p" @ ph by Lemma 1.
As for the other terms, we get

Nin Zkn ny Nin Zkn ny
SN Wlwh i) < 5> 3 S (G- Infu, — )
k=1 i=1 j=1 k=1 i=1 j=1
Nin Zkn ny
EEE((2)
a2 (i
= %thkmn?« (CQ + In (\Z';))

B () o

where the second inequality descends from estimate (2.2.12), while the last inequality is
a consequence of (2.2.9). Furthermore,

1 & R 1 & X h
LS wlih - 0d) < 5 > (Co— Infaf, - i) <Mz<cz_1n<f>>

ij=1 ij=1 ij=1
i#j i#j i#j

e on ()< (e n ()

where again we have used inequality (2.2.9) and estimate (2.2.13).
Similarly to step 1, we consider the truncation

Wi (x) = min{W (z), M}
and rewrite
Zk,n Zk; n Zk,n

i Z W(w}‘f’n—wén ) Z WM wkn—wj’ ) Z W WM)(wkn—wjm).

t,j=1 5,j=1 t,j=1
i#] i#] i#]

Y),
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By the boundedness of Wj; and Lemma 1, we obtain

Zk n
n2 Z W (wh,, = w},) = /h Wiz —y) d(pn B pn) (2, 9)
3,j=1 Q
i#]
— W (z —y) d(u" @ p") (2, y)
QhJQy

< / Wz — y) d(p" @ u") (@, y).
Qr QZ

The claim is proved if we show that

an

1 ,
lim sup — Z (W — W) (wkn in) —0as M — 400 (2.2.14)
n—+oo M ii=1

i#]

for every k € {1,..., Np}.
Thanks to (2.2.5), we can write

Zk n

Z W WM)(wkn_win <
,j=1
i#j

1

1
n2 n2

||‘M;

Z i,n)’
J

with J,im = {j e{l,.... Zyn}: ‘w}m — w{m‘ < R, j # z}

We arrange the points wén according to their distance from w}%yn by defining

Tin®) = {j € (0 Zin} 1w, = why + () L, (1m) € Z2 maxc{|i],|m|} = p}

forp=1,..., Py, with P, == {ﬁM —‘
For every i € {1,...,Z;,}, j € J,i,n(p), we have ‘w}cn - wfm‘ > pLy p, which gives
the following inequality:
W(w}m - wi’n) <Cy—In ‘wim — win‘ < Cy—1In(pLiy). (2.2.15)
Moreover, we can estimate

card (J1,,(p)) < 2p+1)* — (2(p— 1) + 1) = 8p, (2.2.16)

by observing that the points wi , With j € J,i ,(p) are contained in the difference of two
squares of centre w};n and side lengths equal to 2p + 1 and 2(p — 1) + 1, respectively.
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We thus get
1 Zk:,n Zk n Pk n
il i a0 ) — _
n2§: E: W(wk,n wk,n)_n2§:§: E: W wkn)
=l jeJ; . =1 p=1jeJi ()

anpkn

~ ZZ > (Co—In(pLiy))

=1 p=1jeJi ()

| /\

anpkn

= Z Z card Jkn (02 —In(pLkn))

i=1 p=1

|/\
l\')
M
1[]:
L
Q
|
=)
=
"
3

8 ’ 1
23 <pcz - ppbiatn <ka,n>)

8 Pin(Pen+1 1
ﬁZk:,n k,n( b )CQ + Pk,n )
n 2 eLyn

IN

where we have used the estimates (2.2.15) and (2.2.16), while the last inequality comes
from the fact that —zIn(z) < 1/e.
Finally, we obtain

8 Pkn(Pkn+1) szn 4 8 RM
7Zn ) ) ) <7 2 1
n? k( 2 CﬁeLk,n ~n L,m L;m+ CﬁneLk,n Ton
4 ( Ry (CoRas +2 3CoRy + 2e7 !
_ 4 M 2l +2€ ) 2fupy + 2e + 20,
n Lk’n Lk,n
Ry (CoR 2 2¢71 2
§4< 2 (Cs M+ e™!) | 3CaRurf207! 02>
hy/n n
(C2R 21
— 4 M 2l 7 e )asn—>+oo,

h2

where the last inequality comes from estimate (2.2.10). Since Ry — 0 as M — +o0,
claim (2.2.14) is proved.
Hence, I(p") > limsup,,_, | o In(tn), which concludes the proof. O

THEOREM 4. Let {I,}n>2 be the family of functionals defined in (2.1.5). If V satisfies
assumptions (H1)-(H3), then I, is coercive with respect to the narrow topology for every
n > 2. Moreover, the sequence {I}n>2 is equi-coercive.

PROOF. We first show that I,, is coercive for every n > 2, i.e. {u € P(R?): L,(n) < t}
is compact (with respect to the narrow topology) for every t € R.

By Theorem 12, it is enough to prove that there exists a compact set K; containing
the support of every measure y such that I,,(u) < t, as this implies that {u € P(R?) :
I,(p) <t} is tight and hence compact.
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We fix n > 2 and t € R and suppose

I n22< W (z! — 27) +%V( N+ VxJ> ZV

i,7=1
i#]

Without loss of generality, by Theorem 2 we may assume (z,y) — W(z —y) + 3V (z) +
%V(y) and V' to be non-negative. We observe that, by (2.2.2), there exists a compact
K; C R? such that

n2
— 1t V(J},y> € (Kt X Kt)c.

W(e—y) + V() + V() >

By contradiction, suppose that the support of i is not contained in K3, e.g.
1 n
— Ezfsmi, ot ¢ K.
i=1

We thus have

1 « 1
(i) = (Wx o) V) + W))
7j=2
1 n ; . 1 ; n .
o Z W(z' —27) + ~V( )+§V(x) +72V(x)
=2 j#i =1
-1 ~
n? n—1 7
7j=2

which gives a contradiction.
To prove equi-coercivity, we will show that, for every ¢ € R, the set

= {reP®?) : I(u) <t}

n>2

is relatively compact.
If there exists N > 2 such that

N

X, €| J{neP®): L(n) <t}
n=2

then the claim follows from the previous result, because X; is contained in a finite union
of compact sets.

Otherwise, there exists a sequence {y}r C X; such that pg € {u € P(R?) : I, () <
t}, with {ny}x strictly increasing. Again, by Prokhorov’s theorem it suffices to show that
{pr}r has a tight subsequence.

For every M > 0, there exists a compact K C R? such that

1 1
inf W—y)+ V@) +5V(y) > M.
(z0)e(KxK)e (@ —y) +5V(2) + V() >
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Therefore we have

tZInk(,uk): Z( zt — a7) +%V( Y+ = Vx]>+nll2€ZV
; =1
z% > <W(xi—xﬂ)+ “V(ah) + vw)
k( J)EI,
i
> M B (K  K)°) 2 M ({0 1) (K x K)) - )

_ M<1 (e (K))? — 1) — M<(1 — i (K) (1 + pp(K)) — n1>

ng k
. 1
ng
where = iZ?’“l 6, and I = {(i,j) : (2%,27) € (K x K)}.
Choosing M > 0 and k € N such that M = 5 and # < 5, we obtain
k

t 1 —
KY)Y< —+—<e Vk>k,
pe(KS) < 77 + o < >
hence the subsequence {1}, is tight. O
Since the family {I,,},>2 is equi-coercive and I'-converges to I, by the fundamental

theorem of I'-convergence (Theorem 14) we deduce that I has a minimum. In particular,

min / = lim min I,,. (2.2.17)
P(R?) n—+00 P(R?)

The minimizers of I can be found as the limit of those of the discrete energies I,, in that,
if {pin}n is a relatively compact sequence such that

o Tn(in) = lim - min, Tn(p),

then any limit point of {uy,}, is a minimizer of I.



CHAPTER 3

Existence and uniqueness of the minimizer and its
characterisation

In this chapter, we focus on the minimization problem for the energy

1= [[, W= dut@dut)+ [ Vi) duta).

We first review some recent results concerning the existence and uniqueness of the mini-
mizer (see e.g. [2-4]) and then we provide a characterisation for the case V(z) = |z|%.
We will start by giving some useful definitions.

DEFINITION 3. Let s € R. The fractional Sobolev space of order s on S! is

H(SY) = {u eD'(S"): ) (1+K) i) < —I—oo} .
keZ
Here, D'(S') denotes the space of distributions on S' (which can be identified with the
space of periodic distributions on R?) and {l}yez 15 the sequence of Fourier coefficients
of u. The space H*(SY), endowed with the inner product

() s = (14 k) g
keZ
and the norm

lull s =" (1+ k)" [axl* = /(u, w) s,
k€EZ
is a Hilbert space. In particular, HO(S') = L?(S!).

Provided that the order s is high enough, the space H*(S') can be embedded into the
space C*(S') of k-times continuously differentiable functions.

THEOREM 5 (Sobolev embedding). Let k € Zy, s > k+ 3. Then, the embedding
H(S') — C*(s")
is continuous, i.e. there exists a constant C > 0 such that ||ul|cr < Cllul|gs for every

u € H5(SY).
Moreover, if s > t, we have the compact embedding

H(SY) < HY(SY).
We recall that the interaction kernel is of the form
W(z) = Wy(z) + r(x), (3.0.1)

where Wy is the Coulomb kernel defined in (2.1.4). For reasons that will become more
clear later, we assume that the anisotropic kernel & is of class H*(S!), with s > 3/2.

Owing to Theorem 5, H*(S') is continuously embedded into C(S!) for s > 1/2,
therefore x is continuous on S!, up to modifications on a set of zero measure. Hence, & is
bounded on R? \ {0} and there exist two constants Cy,Cy € R such that

Wo(z) +Cy < W(z) < Wo(z) +Cy Va € R% (3.0.2)

23
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We will now state the following notion of capacity.

DEFINITION 4. Let K C R? compact. We define the logarithmic capacity of K as

cap (K) =@ < inf /KxK Wo(z —y) du(ﬂc)du(y)> ,

REP(K)

where

.
o= {o" IR
For any Borel set U C R?, we define its logarithmic capacity
cap (U) == sup {cap (K) : K CU compact} .
A property is said to hold quasi everywhere (q.e.) if it holds up to sets of zero capacity.
The capacity satisfies the following property.

LEMMA 3. Let U C R? be a Borel set such that cap(U) = 0. Then u(U) = 0 for every
p € P(R?) with compact support and such that

// Wi(x —y)du(z)du(y) < +oo. (3.0.3)
R2 xR2
Moreover, the countable union of sets of zero capacity has zero capacity.

PROOF. By contradiction, assume that u(U) > 0 for a Borel set U C R? such that
cap(U) = 0. Then there exists a compact K C U such that p(K) > 0. We define
1
mM\K
Because p has compact support, there exists C' > 0 such that

W(z—y)>-C VY(x,y) € (supp ),

which gives

W(z —y)dv(z)dv(y) = du(x)du(y)
/KXK /K><K
< sy LG = v du@anty) +.0 (wlf)? - 1) < e

Recalling (3.0.2), we have

/ Wo(z —y) dv(z)dv(y / W(z —y)dv(z)dv(y) — Ci < +o0.
KxK KxK

Hence, cap(K) > 0, which contradicts the assumption cap(U) = 0.

To prove the second claim, we consider V' = | J,,cy Vi, with cap(V;,) = 0 for every n,
and suppose by contradiction that cap(V) > 0. Then, there exist K C V compact and
u € P(K) such that

/ Wo(z —y) du(z)dp(y) < +oo.
KxK

Since pu(K) = 1, there exist ng € N and a compact K,, C K NV, for which pu(K,,) > 0.

As above, we define
1

—— K,
M(Kno) 0

and observe that

/ / Wolx — y) dv(x)dv(y) < / Wolz — ) du(z)du(y) + C < +oo,
KnOxKnO KxK
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where C' = inf {Wy(z — y) : (z,y) € (supp p)*}.
Therefore, we obtain cap(Ky,) > 0, contradicting the assumption cap(V,,) =0. O

In particular, if a property holds quasi everywhere, it also holds p-almost everywhere
for all measures u € P.(R?) satisfying (3.0.3). Notably, this is the class of measures of
relevance for the minimization of I.

In the following, we assume that the confinement potential V is lower semi-continuous,
bounded from below and satisfies

) 1
mlgﬂoo (Wo(x) + 2V(ac)) = +00 (3.0.4)
and
cap({z € R? : V(z) < +00}) > 0. (3.0.5)

3.1. Existence of minimizers

Under the assumptions above, the functional I: P(R?) — R U {+o00}
1 1
0= [, (We-n+ 3V ve)) duoint) G
R2xR?

is well-defined. Indeed, the function (z,y) — W(z — y) + 3V (z) + 1V (y) is lower semi-
continuous. Since a lower semi-continuous function is bounded from below on a compact
set, by (3.0.2) and (3.0.4) we deduce that the integrand is bounded from below by a
constant ¢y < 0. Therefore,

10> [ cdu@dut) = Vi PE)

and inf I > —oo. Moreover, by applying Tonelli’s theorem one can see that the defini-
tions (2.2.1) and (3.1.1) are equivalent.
We refer to the term

R = [ W=y dunt

as interaction energy, while the term

Iy () = /R V(@) du(e)

is called confinement energy.
The minimization problem for I admits a solution. We have the following result.

THEOREM 6 (existence of minimizers). The energy I admits a minimizer u € P(R?)
such that I(p) < +o00. Moreover, p has compact support and satisfies the following Euler-
Lagrange equations: there exists ¢ € R such that

(W s p)(x) + %V(x) =c for p-a.e. x € supp u, (3.1.2)

1
(W p)(z) + §V(a:) >c for ge x€R (3.1.3)
PROOF. We first prove that inf I < +00. We write

dom(V) = {z € R?: V(z) < +oo} = U K,,
neZ
with
K, ={z¢ R?: V(z) < n}.
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By assumption (3.0.5) and Lemma 3, we have cap(K,,) > 0 for some ng € Z. Therefore,
there exists py € P(Kp,) such that

/ / Wo( — y) dpo()dgio(y) < +o0,
R2xR2

which implies

// W (z = y) dpo(x)dpo(y) < +oc.
R2xR2

Moreover,
/ V(x) duop(z) < ng,
R2

therefore I(pp) < +o0.

The existence of a minimizer can be proved using the direct method of calculus of
variations, i.e. showing that I is lower semi-continuous and that any minimizing sequence
has a converging subsequence. Let {in}neny € P(R?) be a minimizing sequence, i.e.
I(py) — inf I. Without loss of generality, we may suppose that I(u,) < C for every
n € N, for some C > 0. By (3.0.2) and assumption (3.0.4), for every M > 0 there exists
a compact K C R? such that

W —y)+ V(@) + V) > M W) ¢ Ku x K

Recalling that (z,y) — W(z —y) + 3V (z) + 3V (y) is bounded from below by ¢y < 0, we
have

1 1
c =1 = [[ (W= 5v@+ 51 ) dun(edin)
R2ZxR2
> M (pn @ pn) (K X Kar)©) + co(pin @ pin) (Kar X Kar)
2 Mﬂn(KM) + Co-
Therefore, the sequence { i, }y is tight and, by Theorem 12, it has a subsequence (we still

denote it {j,},) that converges narrowly to some g € P(R?). By applying Lemma 7,
we can show that I is lower semi-continuous:

(o) //RQ hmmf( (z—y)+ %V(x) + ;V(y)) dpn (z)dpin (y)
1
2

< R2 n—-400

o 1 o
< lim inf //RQXRQ (W(a: —y)+ §V(x) + V(y)> dpin (x)dpn (y) = EEE;E I(pn).

n—-+o0o

Hence, po is a minimizer.
We will now prove that, if 4 is a minimizer of, then u € P.(R?). By (3.0.4), there
exists a compact K C R? such that

W —y)+ 3V(@) + V) > 1) i) e (K x K.

Without loss of generality, we may assume that p(K) > 0. By contradiction, suppose
that supp p Z K, which implies (4 ® pu)((K x K)¢) > 0. We can construct a measure
ol
p(K)
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Therefore, we obtain

1 1 1
1) =g [ (W04 5@+ 5v0)) duaiduty

1 1 1
L (I O~ [ oo (W0 3V 3 0) dﬂ(m’)du(y)>

< ﬂ(}()zumu — (p® p) (K x K)) = (),

which contradicts the minimality of p.
We are left to prove (3.1.2) and (3.1.3). Let v € P(R?) be a measure with compact
support and such that I(r) < +o0o0. By minimality of p, for every ¢ € (0, 1) we have

I(n) < I(1 = )+ ev),

which implies
0< -2 //szmz Wz —y) dp(x)du(y) + 2 //ngz W(z —y) du(z)dv(y)
v [ V@ - n@) +0E)

1
——26/ W*,udu+26/ W*udu—i—%/ “Vd(v—p) + 0.
R2 R2 R22

Dividing by 2¢ and letting e — 07, we obtain

1 1
/ Wxp+ =V duz/ Wxp+ -V )du=:c. (3.1.4)
R2 2 R2 2

Let @ =W pu+ %V and assume by contradiction that
cap({z € R?: ®(z) < c}) > 0.

We note that {z € R? : ®(z) < ¢} is open because ® is lower semi-continuous, so its
capacity is well-defined. Therefore, there must exist a compact K C R? and pp € P(K)
such that

// Wz —y) duo(z)dpo(y) < +oo.
R2xR2

Moreover,

/R2 %V(m) dup(x) < /R?(C — (W p)(x)) dpo(z)

(3.1.5)
—e ] W (@ — y) diu(y)duolz) < +oo,
(supp p)x K

because (z,y) — W (z—y) is bounded from below on the compact set (supp p) x K. Hence,
Lo has finite energy and must satisfy (3.1.4), which gives a contradiction with (3.1.5). This
shows that W % u + %V > ¢ quasi everywhere. By Lemma 3, this inequality is also true
p-almost everywhere, and by definition of ¢ we deduce that W x p + %V = ¢ p-almost
everywhere, which concludes the proof. O

We notice that, while we have assumed x € C(S') thanks to the continuous embedding
H3(S') < C(S'), Theorem 6 holds for more general interaction kernels. In particular, the
only regularity assumptions on « that were required to prove the existence of a minimizer
are lower semi-continuity and boundedness.

However, more regularity is needed to ensure that the minimizer is unique, as we shall
see in the following section.
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2. Uniqueness of the minimizer

Uniqueness of the minimizer is guaranteed if the energy functional is strictly convex.
On the other hand, strict convexity is ensured if the Fourier transform of W (provided
that it exists) satisfies the sign condition W(f ) >0 for £ #0.

Given a function ¢ € S(R?), the Schwartz space of rapidly decreasing functions, its
Fourier transform (denoted Fy or @) is defined by

56 = L / o(@)e— @9 gy Ve € R2.
RZ

27
The Fourier transform % of a tempered distribution u € S’(R?) can thus be defined by
duality as

(@lp) = (ulp) Yy € S(R?).
The Coulomb kernel W is locally integrable and has sublinear growth, therefore it

defines a tempered distribution and its Fourier transform is well-defined. Observing that
— AWy = 2mwdg, we can compute

—AWH(€) = [€PWo(€) = 2mdo(€) = 1,

which yields T/Vg(f) = 15, Since this function is not integrable at 0, it does not define a

€]
tempered distribution. To take into account the singularity at 0, we can interpret Wy in
a distributional sense as

(Wle) = copl0) + /|§ ka‘

where ¢y = %(7 + In), v being the Euler-Mascheroni constant.
In order to compute the Fourier transform of the anisotropic kernel, we can consider

((€) — 0(0)) dt + /{ . ,;‘Qw(@ de Vo e SR?), (3.2.1)

its Fourier expansion. Since k(z) = /’i(é) for every z € R?, & is fully determined by the

values that it takes on S!. By parameterizing z € S' via z = €?, with 6 € [0, 27], we can
write k as a Fourier series of variable #. Moreover, because k is even, the series contains
only the even terms. In particular,

—+00

K(z) = k() = ag + Y _ (agn cos(2n0) + by, sin(2n0)) , (3.2.2)
n=1
with {a2n},en s {620}t nen € 2(N). We have
cos(nf) = Rez—n = (bn(z), sin(nf) = Imz—n = ?l)n(j)’
2| 2| 2| 2]

where ¢,,, ¥, are homogeneous polynomials of degree n. In fact, using binomial expansion,
for z = x + iy we obtain

e S A
¢n(z) = Re (xz + iy)" —Reg ()k ok = E <k>zkx kyk
k=0
k even

ot i ()it - 5 ()

k=0
k odd

Hence, we can write

=ag + Z (agn ¢27|LG + bay, w|272(n)> Vz € R2.
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Since the addition of a constant to x does not affect the minimization problem, we assume
ag = 0. A straightforward computation shows that ¢, 1, are harmonic, i.e. A¢, = 0 and
A, = 0. The Fourier transform of x can thus be computed according to the following
lemma.

LEMMA 4. Let ¢: R? — R be a harmonic homogeneous polynomial function of degree

n. Then,
o( P&
<*’r ( n) (5) =Cn EL-BQ )
] €]
where ¢, is a constant. In particular, ca, = (—1)"2n.

The function |§£§22 is not integrable at 0, because it behaves like # close to 0.

Therefore, the Fourier transform should be interpreted in a distributional sense as

)y — 9(§) B o(§) 2
(F nE o) = n</§|§1 |£|n+2(so(§) sO(O))d£+A|>1 |£’n+2s0(§)d§> Vo € S(R?).

Hence, the Fourier transform of k (to be interpreted in a distributional sense as above) is
given by
+o00

AE =Y <(—1)"2na2n 92n(8) (1), ’”2“(5)). (3.2.3)

‘§|2n+2 n’€‘2n+2

n=1
This expression makes sense if {2nag, },cn , {2nban}hen € 2(N), ie. if K € H(SY).
By (3.2.1) and (3.2.3), we obtain

~( & ~
- R B()
W(f) =codp+ —5 + —== = codp + R (324)
SR €1
where \/I\l(g ) =1+ E(l%) and the formula should be interpreted again in a distributional

A~

sense. We note that ¥ is real, as it is the Fourier transform of an even function. In
addition, it is even and homogeneous.

To prove the uniqueness of the minimizer, we will require ¥ to be continuous on St,
therefore we need % € C(S'). Because the embedding H*(S') — C(S') is continuous if
s > 1/2, this is true if & € H5(S') with s > 1/2. By (3.2.3) and writing ¢ = ¢V, we can
express & on S! as a Fourier series of variable ¥:

+o0o
Re™) = ((=1)"2nag, cos(2nd) + (—1)"2nbay sin(2n9)).
n=1

Therefore, we can determine the Fourier coefficients of k and compute

+00
&l s = Z (1 +4n?)"4n? (a3, + b3,).
n=1
On the other hand, by (3.2.2) we have
+o0o 1
Ikl e = (1 +4n%)"" (a3, + 3,,).
n=1

Comparing the two expressions, we observe that
1Bl s < [|6]] grsr-

Hence, & € H*(S!) with s > 1/2 if x € H*(S!) with s > 3/2, which justifies our initial
assumption.
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LEMMA 5. Let U > 0 on S and uo, p1 € P.(R?) with finite interaction energy. Then,

letting v '= g — p1, we have

=91 (I\l(é') M 2
LV @) =2 [ Zme)Rae (3.2.5)
In particular,
/RQ(W xv)(x)dv(z) =0 <= po = p1. (3.2.6)

PrRoOOF. Formally, the idea is to apply Plancherel theorem:

L@ ave) = [ (Ve ds
R2 R2
Then, since

W= QWWI//\,

we can write

/ (W s v)(x)dv(z) =27
R2

By (3.2.4), we have

W(OnO7E s =2 [ WO .

RQ

T(¢)

e POF e

WEOPOF & =a [ POF e+ [

RZ
and, because

0 = 5= [, v = 5 (uo(R) — i (%) =0,

we obtain

xv)(x)dv(z) =27 @(6)3 2
Lv @ ane) =2r [ pe)ras

Unfortunately, W and v are not regular enough to apply Plancherel theorem.

circumvent this difficulty, we will prove (3.2.5) by approximation.
Let ¢.(z) == E%go(%) be a mollifier supported in B(0), with £ > 0. We consider

ve(x) = (v * ¢e)(2) = /R2 pe(z —y) dv(y) € CZ(R?) C S(R?).

Therefore, 7 € S(R?) as well, and

720 =5 [ ([ eda-navt) as
:% i (/Rzgog(x—y)dx>du(y):21w/w dv =0,

To

We observe that W * v, € C*(R?). Moreover, because W € &'(R?) and v. € C°(R?)
(thus v. belongs also to the space & (R?) of distributions with compact support), we have'

mg = ZWWI;\&.
Since 7;(0) = 0, this implies

(W 12)(€) = 2n <c050 + iﬂ?) (€)= 2m i(ﬁ)uz(o € L'(R?).

IFor this result, see for instance Theorem 6.1 in [5].



3.2. UNIQUENESS OF THE MINIMIZER 31

In fact, using polar coordinates and recalling that 7 € S(R?), we have

21 +oo ‘I’ )
/|W*ya \d§_27r/ / [(re?)| |72 (re'®)|r drdf

_zﬂ/o G (e 19)|</0 MWW) df < +oc.

We can now apply Plancherel theorem to W kv, and v, and obtain an approximate version
of (3.2.5):

*Ue dve = xVe ) (x)ve(x) do = Vv, 7 =27 @(5)17 2
[ Wavave = [ Wrwawete) e = [ (Trm@7@ds=2r [ Tim©Pde

Letting € — 0T, on the right-hand side we have

v=(€) = 2m0(€)B(e€) — 2n0()P(0) = V(€) V€ € R?,

SO %WA{)]Q converges to Té(\g) |7(€)|? for a.e. £ € R?, as e — 0. Since

1 1
7 < — dr = —
|30(5§)| =5 /R? go(x) x 271_”90HL17

by dominated convergence we obtain

o [ YO _ [ Y,
i e O = [ e oo

For the left-hand side, a direct computation shows that

/RZ(W v ve)(@)ve(a) da = /]R </R W(y) </R el —y —2) du(z)> dy) (/R pe(z — 1) du(t)) da

- [ [ v ( ooz = adonte - e ) dyavlpante)
:/R/R/RW [ e+ +t-a)pa )dx) dy dv(2)dv (?)
.

2 < / W () (pe + po)y + 2 + 1) dy> (=) (t)
< . W (y)(pe * pe)(—2 =t —y) dy) dv(z)dv(t)

_ /R </R2(W* oot ) (2 + 1) du(z)) v (t)
/R2(W*905*905*1/)( )dy(t)—/Rz(W*%*%)*udy

= /RQ(W*%)*W,

with ¥ == @, * ¢, radial, non-negative, compactly supported in By.(0) and integrating
to one. The function (z,y) — (W x1.)(z — y) is continuous, hence bounded from below
on compact sets, and even. Since supp po, supp g1 are compact, by Tonelli’s theorem we
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can thus write

L s svar=[[ Wi =) duolu)dnola)
[ Wi =) i) ) (3:2.7)
2 [0V = ) )i (@)

We observe that (W * v.)(z) — W(x) for every z € R2 as ¢ — 01, because W is
continuous. By (3.0.2), we have
(W s 9)(x) < (Wo * ) (z) + Co Vo € R2.

Because Wy * 1), is harmonic and Wy is superharmonic in R?, then for every Bo.(z) C R?
2
we have

(Wo * ¢e)(z) = ﬁ /aB ( )(Wo 1) (y) do(y) = 4—; /aB (0)(W0 s« ) (y — ) do(y)
1
" e Josa.0) </ng(o) Woly = o = 2)e(2) dZ) do(y)

1 2e
" ane Jom,.0) </o /aBp(m Wolz =y = 2))9el2) d"(z)dp> do(y)

1 2e 1 )
T2 21p z) do(z B dpdo
2e /<9ng(0)/0 (27rp /63,,(?,_;,;) Wo(z) do( ))%ﬁ (p)pdpdo(y)

1 2e _
< 25/ / Wo(y — x)v=(p)pdpdo(y)
dBa:(0) J0O

2e 1 ~
= 27r/0 (W /3325@) Wo(y) dff(y)>ws(p)pdp

2e ~
<or [ Wo@)iphpdp= [ Wow)i(z) dz = o)
0 B2g(0)
where we have used the fact that Wy and 1. are radial and we denote ¥ (|z|) == 1. ().
Hence, it follows that

(Wo * ) () < Wo(x) < W(x) — C; Vo € R
Combining the two inequalities above, we obtain the upper bound
(W s 1pe)(z) < W(z) — C1 4+ Cy Vz e R

By hypothesis, pg, 11 have finite interaction energy, therefore by dominated convergence
applied to each term on the right-hand side of (3.2.7) we obtain

lim (W) xvdv= | Wxvdy,

e—=0t JR2 R2

2We recall that a function p: Q — RU {+0o0}, with Q@ C R" open, is superharmonic if:
e ¢ is lower semi-continuous;
e for every closed ball B.(z) C Q, it satisfies the inequality
1
o(z) > 7/ e(y) do(y),
a(0Br()) 8B, ()

where o denotes the surface measure on the n-sphere.
If p € C*(Q), the equality holds if and only if ¢ is harmonic, i.e. Ap =0 on Q.
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which proves (3.2.5).
To prove the last claim, assume that

= xv)(x)dv(z) =27 %/1) 2
0= [ OV ane) =2n [ TR de

We observe that \11(50) > 0 for some & € S', otherwise W= codg, which would 1mp1y w
to be constant. Since ¥ is continuous on S!, there exist 7 > 0, 7 > 0 such that \I/(§) n
for every £ € B,(&). Therefore, we should have 7 = 0 on B, (). On the other hand,
since v € £'(R?), by Paley-Wiener-Schwartz theorem, its Fourier transform ' is an entire
function. Hence, 7 = 0 on the whole R?, which implies v = 0. O

We are now able to prove the main result of this section.

THEOREM 7 (uniqueness of the minimizer). If‘/l\l > 0 on S!, the functional I is strictly
convex on the class of compactly supported measures with finite interaction energy.

In particular, the minimizer is unique. Moreover, a measure i € P.(R?), with I(p) <
+oo, minimizes I if and only if it satisfies the Euler-Lagrange equations (3.1.2)-(3.1.3).

PROOF. Let pug, i1 € Pe(R?), with Iy (o), Iy (p1) < +00. By Lemma 5, we have

/2W*(M0—M1)d(uo—m)207
R

which implies

/W*Modﬂo+/ W*uldu122/ Wk puo dpn -
2 RQ

For t € [0,1], we define ju; :== (1 — t)ug + tuy € Pe(R?). Therefore,

/W*utd,ut:(l—t)2/ W*,uoduo+t2/ W*uldu1+2t(1—t)/ W x po dpy
R2 R2 R2 R2

§(1—t)/ W*Modu0+t/ W o py dug,
R2 R2

where, by (3.2.6), the equality holds if and only if ug = p1. Moreover,

/Vd,ut—(l—t)/ Vduo—i-t/ Vdus,
R2 R2 R2

hence we deduce that I is strictly convex.

This implies that the minimizer is unique. In fact, suppose by contradiction that ug,
p1 are both minimizers of I, with uop # w1 and I(pg) = (1) = m < +oo (which is
guaranteed by Theorem 6). Considering p; = (1 — ¢)po + tug with ¢ € [0, 1] as above, we
obtain

I(pe) < (1= 8)I(po) +tI(p1) =m
which contradicts the minimality of g, f1.

Finally, we prove that if a compactly supported measure with finite energy satisfies
the Euler-Lagrange equations (3.1.2)-(3.1.3), then it is the minimizer of I. By Theorem 6,
there exists a minimizer p that satisfies (3.1.2)-(3.1.3) for some constant ¢, € R. Assume
that there exists another measure v € P,(R?) with I(v) < 400, v # pu, that satisfies the
Euler-Lagrange equations for a constant ¢, € R. Letting u; == (1 —t)u+tv for t € (0, 1),
we have

(W*,ut+ V /W:U— y) + V()d,ut()

—(1-1) /R W) + V() duly) + 1 /R W)+ V() dvly)
= (1 —t)ey + tey.
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Therefore,

1
/ (W*ut+V> dut—/ (1 —t)ey+teydpy = (1 —t)e, +tey
Rz 2 R2

1 1
:(1—t)/ (W*,u—I—V)d,u—l—t/ <W>|<1/—|—V>dl/.
R2 2 R2 2

On the other hand, by strict convexity

1 1 1
/ Wy + -V dut<(1—t)/ Wxpu+ =V d,u—i—t/ Wxv+ -V |dv,
- 2 - 2 - 2

which gives a contradiction. O

3.3. Characterisation of minimizers for quadratic confinement

In this section, we will discuss the case of quadratic confinement, i.e. V(z) = |z|2.
This confinement potential clearly satisfies the assumptions established in the beginning,
being continuous, non-negative and fulfilling (3.0.4)-(3.0.5), and therefore guarantees the
existence and uniqueness of the minimizer. In addition, with this particular choice of the
confinement, we can also give an explicit characterisation of the shape of the minimizer.

We consider two distinct cases: isotropic and anisotropic energy.

3.3.1. Isotropic energy. First we consider the case of isotropic energy, that is, the
interaction energy does not depend on the direction (i.e. the energy functional is invariant
of rotations). This corresponds to x = 0, and the energy functional reduces to

16 = [, Wl =) dute)dnt) + [ ol duto). (33.1)

The minimizer pg € P.(R?) must also be invariant of rotations. Otherwise, we would
obtain another minimizer by considering the push-forward of ug through a rotation R €
SO(2), i.e.
pi(A) = po(RTA) VA € B(R?),
which would contradict the uniqueness of the minimizer.
By the Euler-Lagrange equation (3.1.2), we have that po must satisfy

(Wo * po) () + %!9«“\2 =c for pg-a.e. x € supp o,
which, recalling that AWy = —27dg, implies
AWy pg+2=—2mwpug+2=0 on supp uo.
Hence, the minimizer of I must be constant on its support, i.e. it is a uniform probability
measure. Indeed, we have the following result.

THEOREM 8. The minimizer of the isotropic energy (3.3.1) is given by the measure

1
fo = ;XBl(O)ﬁQ, (3.3.2)

i.e. the uniform probability distribution on the unit ball. This is also called circle law.

PROOF. We need to show that pg satisfies the Euler-Lagrange equations. By a change
of coordinates, we can write

1 1 1 2m )
(Wo * po)(x) = — Wo(x —y)dy = / Wo(z — re®)r dodr.
T JB1(0) ™ Jo Jo

Then, we have

— Wo(z —re') df =

1 o {ln\$| if r < |z (3.3.3)
2 0

—Inr ifr > |z|.
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In fact, since Wy is harmonic on R?\ {0}, if » < |z|, by the mean value property of
harmonic functions we have

1 1 [ .
—Inz| = Wy(x) = py— /83 ) Wo(y) do(y) = o Wo(x — reze) do.
r(2) 0
Analogously, denoting z = |z]e’?' with 6, € [0, 27], if r > |z|, we obtain
A 1 1 [27 ) .
—Inr = Wy(re) = Wo(y)do(y) = / Wo(re — |z|e) do
27T|JJ’ GB‘Z‘(rewl) 2m 0
1 2 ) ) 1 2 -
=5 ), Wo(re ™ — |z|e™?1) df = Py Wo(|z|efr — rei?) do
1 2 i 1 2 "
=5 ; Wo(x — rei?)df = o, Wo(x — re”) db.
If r = |x|, we apply dominated convergence:
1 2 ) 2w )
— Wo(x — re??) df = lim — Wo(z — (r —e)e®?)df = —1n |z
27 0 e—0t 27 0

Using (3.3.3), we compute

T 1
-2 (/ In |x|r dr —I—/ ln(r)rdr) if |z| <1
0 T

1 1 2m )
- / ( Wo(x — reze) dﬁ)rdr = N
T
0 0 —2/ In |z|rdr if || > 1,
0
which yields
1
“(1—1jz*) ifjz[ <1
Wy« po)(w) = § 211~ 1) T
—In |z| if |z > 1.
Hence, we obtain
1 1
(Wo * po)(x) + glx\Q =3 if x € B1(0)
and
1 ., 1 o, 1
(Wo * po)(2) + 5lal” = —Infa[ + Sz 2 5 if & ¢ Ba(0),
therefore 4 satisfies the Euler-Lagrange equations (3.1.2)-(3.1.3) with ¢ = 3, thus being
the unique minimizer of I. O

3.3.2. Anisotropic energy. Now we consider the more general case of anisotropic
energy, i.e. K # 0. The energy functional is

I(p) = //R2XR2 (Wolx —y) + k(z —y)) du(z)du(y) + /11@2 2|2 d(x), (3.3.4)

with & of class H*(S!), s > 3/2, as assumed in the beginning.

Perhaps not surprisingly, the shape of the minimizer can be related to the sign of
the Fourier transform \T/, which already played a central role in the uniqueness of the
minimizer. We first suppose that U is strictly positive.

THEOREM 9. Let U > 0 on S!. Then, the minimizer of the anisotropic energy (3.3.4)
s given by the measure
1

:]EﬂXEE% (3.3.5)

7
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where E is the elliptic domain E = REy, with

2
b= {erm) e B B+ D <1} afaf =2 and Re 50)
ai = a3

PROOF. As we did in the isotropic case, we want to show that p satisfies the Euler-
Lagrange equations (3.1.2)-(3.1.3). To this end, we need to compute W * p. The idea

—
is to retrieve its expression by calculating the inverse Fourier transform of W x u. Since

W is not a function, but rather a tempered distribution, we apply this reasoning to the
Fourier transform of V(W * 1) (note that the gradient exists as W p € C1(R?)). In fact,

VW # w)(€) = i€(W * m)(€) = 2mic W (E)A(E),

and

iEW (&) = i€ (m + ‘”5)> _ 2O

€17 €>

because the factor £ cancels out the singular part of W. Therefore, we have

VW 1)(€) = 2mit ,gﬁ) ).

To compute the Fourier transform i we reason as follows. Writing a = (a1, az) € R?

and
_lar 0O
D(a) = [01 GJ ,
we have £ = RD(a)B1(0), therefore
XE(2) = X5, (0)(RD(a)) ™ 'x). (3.3.6)

The Fourier transform of xp, (o) is given by

_— J
X B1(0) &= 1|(§||£|),

where J; is the Bessel function of first kind of order 1, which can be expressed as®

k ’é-‘ 2k+1
il Zk'k+1< ) '

From this expression, we observe that

Tl = 5lél s Jel 0.

(3.3.7)

Moreover,
1
[J1([ENI < ClE72  as [§] — 4oo.
By (3.3.6) and (3.3.7), we have
1 —i(x 1 —i( a
xe(§) = 271'/ xp(@)e 8 dy = o Jos X8 (0)(x)e =P B9 det(D(a))| dx

E| _ |E| Ji(ID(a)RT€])
7)(131( )( (a)RTg) = 7W’

therefore we obtain
1.J1(|D(a)RT¢))

e = Da)RTE]

3See formula 9.1.10 in [6].
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Hence,

U (¢) Ji(|D(a)RT¢))
1> [D(a)RTE[

which belongs to L'(R?). In fact, due to the properties of T and J1, we have

2 1400 G (rei®)]| |y (1D () RTre?))|
d =2 i drdf
/’VW*” ) ds / / - DR

ooy ([T ([ D(a) R e?))]
—2/0 |W (e )\(/0 1D (@) R dr) df < +oo0.

We can thus apply the Fourier inversion formula, which gives

VW * )(€) = 2i€

. &g [ (YOS
v e = [ i€ neeieda = [ P Dnie) e 0)de

where the last equality descends from the fact that ¥ and i are even. By the change of
variables ¢ = rz, with (r, z) € [0,+00) x S!, we obtain

V() o A Al TN
et oyde = [ [T b a0 sinrta.2) drda )

¥ G ArD@RT)
/s/ er( VRT Sn(r(@,2)) drdo(z),

therefore
1 z\/I\l(z) o Ji(p) .
V(W p)(z) = - /Sl D) R </0 p sin(pa(z, z)) dp | do(z), (3.3.8)
where p = r|D(a)R" 2| and a(z, 2) = %.
The integral on the right-hand side can be computed using
«a f0<a<1
+o0 J — —
/ 1p) sin(pa) dp = 1 fas1 (3.3.9)
0 P a+va?—1

and observing that |a(z, z)| <1 for every z € E, because
(@, 2)] = {(RD(a)) "'z, D(a)R"2)| < |(RD(a))'z||D(a)R" 2| < |D(a)R" z|.

Hence, we conclude that, for every x € E,

1 V(2 1 U(z
VW xp)(z) = - /S1 ’D(CL§R)TZ|O[($72)2 do(z) = - /S1 ]D(a)(Rzpz|2<x’Z>Z do(z).

From this expression, we note that V(W x ) is a linear homogeneous polynomial. There-
fore, up to a constant, W x p is a quadratic homogeneous polynomial inside E.

We need to find aj,ap > 0 and R € SO(2) that satisfy the Euler-Lagrange equa-
tion (3.1.2). This is equivalent to satisfying

VW xp)(z)+x=0 VzekFE.

Therefore, we need to solve the following system of three equations:

1 U(z )
_ /Sl w@%zpzjzk dg(z) = 0jk for j,]{j =1,2, (3310)

where ;5 denotes the Kronecker delta. We observe that
|D(a)RT 2|? = (D(a)RT 2, D(a)RT 2) = (M2, 2), with M := RD(a)*RT € SPD(2),
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where SPD(2) denotes the set of 2 x 2 symmetric positive-definite matrices. Therefore,
solving with respect to a1, ag, R is equivalent to finding M € SPD(2) that satisfies

1 T(2) .
— — 2 =0 f =1,2. 311
/S1 <szz>z]zk do(z) =0, for j, k=1, (3.3.11)

Denoting by My the elements of M and multiplying both sides of the equation by Mjy,
we obtain

(M) = My + Myy = - /S B()do(z) = /S (U4 A()do(z) =2

T T
and, since tr(M) = a? + a3, the semi-axes of Ey must satisfy
a? + a% = 2.
We define f: SPD(2) — R,

FOM) = 1 /S B(2) In((Mz, 2)) do(z) + tr(M).

T
We note that My € SPD(2) is a solution of (3.3.11) if it is a critical point of f, i.e.
Vi f(My) = 0, with Vy = (81\3117 81\?1127 81\(2122)' We will show that f has a minimum
in the open set SPD(2), therefore it also has a critical point, which is thus a solution
of (3.3.11). For a fixed M and for ¢t > 0, we consider

P — /S B () (M=, 2)) do(2) — 2In(t) + 1 tx(M)

™

2
tr(M)

as a function of ¢t and observe that it is minimized when t = . Therefore, minimizing

fon SPD(2) is equivalent to minimizing it on the subset
M={M e SPD(2): tr(M) = 2}.
By the spectral theorem, every matrix M € M can be decomposed as
M =QD®)Q",

with @ € SO(2) and b = (5,2 — ), 8 € (0,2). Hence, for M € M, we can write

F00) = =2 [ FE)m(@DO)Q 2, 2) doz) + 2
S / $(Q2) (822 + (2 — §)) dor(2) + 2.
™ Jst
We define 9 : [0,2] x SO(2) — R,
0(0.Q) =~ [ (@2 n(s:? + (2= 5):3) do:),

and look for a minimizer in (0,2) x SO(2). The function 1 is continuous, therefore it
admits a minimizer (8o, Qo) in the compact set [0,2] x SO(2). We need to prove that
/80 7& 07 2.
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By assumption there exists Cy > 0 such that \Tl(ﬁ) > Cy for every € € S!. Hence,
2

1 22 — 22
S508 0 = — [ W@ R o)

_1 222 -1

/ (Qoz) %2 5 do(z)
i

1

op

521 (2 )2
1
—w( (Qo2); /Tw@y_éf%5%+%2—m%dd@>

Co
377 wéﬁﬁ+@—m%““)

By Fatou’s lemma, we have

1 C 1 C

lim inf — / 0 5 do(z) > / —02 do(z)
oot Jo1 B22 4 (2 — B)23 T Js1 225

Co [*™ 1 Co 9

=— g = — t(0)]" =

2r Jo  sin?(0) 27r[ cot(O)y" = +oo,
therefore %1/1(6,@0) — —o0 as 8 — 0. We deduce that there exists § > 0 such that
%1#(@@0) < 0 for every 8 € (0,0). Hence, Sy # 0. Repeating the same reasoning for

B8 — 27, we can show that 5y # 2 as well. This proves the existence of a critical point for
f, that is, a solution of (3.3.11).

We are left to show that u satisfies the second Euler-Lagrange equation (3.1.3). This
is true if (W # p)(z) + 1|2|* increases in the outward normal direction to OE, i.e.

(VW x p)(z) + z,2) = (VW * p)(z),z) + |2[>* >0 VzcR*\E.

Every z € R? \ E can be written as = txg for some 29 € E and t > 0. By the first
FEuler-Lagrange equation, we have

(V(W * p)(0), wo0) + |aol* > 0,

which yields
1 -
—/ \If(z)a (0, 2)do(z) + |:t:0|2 =0.
™ Jst1

Multiplying by 2, we obtain
1 [ ~
—/ B(2)a2(z, 2) do(2) + 22 = 0. (3.3.12)
™ Jst
On the other hand, by (3.3.8) and (3.3.9), we find

<vmwmwww:—;@@@&wwWWMMmMMd@

1 U(z oz, Z)‘ a(z, z)|)do(z
Lo X(14m0) (a2, 2)]) do (2).

alz,z)| +/a
Together with (3.3.12), this implies

~

wmwmmwwmfzi@wwﬁuwMH@wwwmww

1 (2 oz, 2)] a(z,2)|) do(z
L g e Ko (e ) do )

— 711/51 U(2)|a(z, 2)| Va2 (2, 2) — 1x(1 100 (|2, 2)]) do(2) > 0,

which concludes the proof. O
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Now, we will consider the more general case of a non-negative . Remarkably, we
will observe that in the degenerate case, i.e. if ¥(¢) = 0 for some ¢ € S, the shape of the
minimizer may change radically.

THEOREM 10. Let U > 0 on S'. Then, the minimizer of the anisotropic energy is
either as in (3.3.5) or is the push-forward of the so-called semicircle law,

1
;50(1‘1) ®1/2— :L'% Hl’[f\/i\/i] (.%'2), (3.3.13)

through a rotation map p(z) = Rz, with R € SO(2) such that W(Re;) = 0.*

PROOF. Let € > 0. We consider the following approximation of I:

L = [, W= y)dut@ydn) + [ Jof duta),
R2Z xR2 R2
where W, is the approximation of W given by
We(z) = (1+e)Wo(z) + ().

The corresponding Fourier transform is

W2(6) = cedo + &)

&2
where \I//\6 = U +4+e>0onSh Hence, by the previous theorem, I. admits a unique
minimizer p. of the form
_ 1 £2
M€ - ’Eg‘ XEg 9
where E. = R.Ey ., with
5. a7 3 2 2
Eoe = (v1,22) €R*: 4+ 5= <15, aj.+a3, =2and R. € SO(2).
al,s a2,€ ’ ’

For every € > 0, we have that supp - C B, 5(0), therefore the sequence {uc}e>o is tight.

By Prokhorov’s theorem, {/i.}.~0 converges narrowly to a measure g € P.(R?), up to
subsequences. We will show that pg is the minimizer of I.
Since Wy is bounded from below on supp p. by a constant ¢y < 0, we have

Lne) = 1u)+ [ <Wal =) diela)dic ) = 112 + o,

therefore, by lower semi-continuity of I,
liminf I (pe) > liminf I(p.) > I(uo).
e—0+ e—0t
Moreover, by minimality of u., one has that
limsup Ie(pe) < lim Ie(p) = I(p)
e—07t

e—0t+

for every p1 € Pe(R?) such that [[po, pe W(z —y) du(z)du(y) < +oo. Because this is the
class of admissible minimizers for I, then pq is the minimizer of I on P(R?).

To deduce the shape of 1, we observe that, up to subsequences, a1 . — a1, az. — as
and R. — Rase — 0", Also, aj,a2 >0, a? +a3 = 2 and R € SO(2). We have two cases.
If both a1 and a9 are strictly positive, then

1 2
Ho = 7XE[’ 3
|E|

4Here, 7—[1|[_ NeRVe) denotes the restriction of the 1-dimensional Hausdorff measure to the interval

V2, V).
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with £ = REj and
2 2
T T
Eoz{(xl,xz)eRQ;;Jrggl}.
a a
1 2

If either a; = 0 or ag = 0, then the ellipse Ey becomes degenerate.
Suppose that a; = 0 and as = v/2. For every ¢ € Cy(R?), we have

1 1
a1 e, o=~ [[ (a1, 2) dardas
‘E€’ R2 0 Ta1,e042 ¢ {x2<a2,5,x1<a1,5 1_;72% }

2,e

1 2
=—— o\ /1= 21,22 = d331d9627
Ta1,e02,e J J{|z2|<as,e, |z1]|<a1,c} 22 92,

1
2\ 2
where in the last line we have used the change of variables (z1, z2) — <<1 — o2 ) z1, x2> .

2
a2,£

Passing to the limit for ¢ — 0", we obtain

1 2
lim — // <p<,/1 - 1;2561,:62> 1-— 2 dmldatg
=0t Ta1 A2 ¢ {\x2\<a2 o z1]<a1,e} 2,e aj ¢
li 1— % 1— % dard
[ dim (o (1= e ) 1 X 0N s (02 ) i

. 1 2 -
- /Rel_lgljr W </]R 4 (H{Eh SL‘2> X[-a1¢,01 ] (1‘1) dxl) @X[—tm,g,azs] (xQ) dxo
CL’2 IQ
/ Var </R S 680 <\/§m1 m) Xi-eel) dwl) \/;X[—ﬂ,\/i] (22) day.

2
We note that, denoting by F' € C*(R) a primitive of the function 1 ~ ¢ (\/ 1-— %xl, m2> ,

one has

.1 / 2 ) 1 2
/Rsl_lgl+ 6@( 1-— w22x1,$2> X[-e,¢)(z1) dz1 = lim cp(\/ 1-— z;xl,m))q_&a] (x1) dxy

e—=0t JRr €
F(e) — F(—
=i TOZFED oy o
e—0t € e—0t
2
= lim 2 1— e, = 2p(0, 73).
sim 2 (/1 Fem) = 200,22

Therefore, we conclude that

1 1
=0+ |Ee| Jpe @(x)XEO,a (z)dz = p /RSO(O’ 2) \/ 2— ng[—ﬁ,\/ﬁ] (z2) dz,

that is, the measure WX B, . L? converges narrowly to the measure
- :

1
— 2941
,U,S—;(So@) 2—$2H|[7\/§,\/§].
Hence, upon defining the rotation maps p.(x) := Rcx and p(z) := Rx, we have
R:Fop - *\ T (XEpe — Px = MO-
/’LE |E5’X 0, pE ’Ea‘X 0, p /'[/S /’[/

Similarly, if a; = v/2 and ag = 0, we have that g is the push-forward of j, through a
rotation map p(x) = RJx, where J € SO(2) corresponds to a rotation of 7/2.



42 3. EXISTENCE AND UNIQUENESS OF THE MINIMIZER AND ITS CHARACTERISATION

Finally, we prove that \T/(Rel) = 0. Without loss of generality, assume that a; = 0
and az = v/2. By (3.3.10) and denoting a. = (a1, as.), we obtain, for j = 1,2,

LY (R G NNTRP P S N 1€, LT
| e esPaota) = 5 |(Rezy ) do(z) = 1.

T a:)RT z|? ™ Jst a3 27 4 a3 23
Therefore, summing over j and applying Fatou’s lemma, we find
1 [ W(R 1 U(R.z) +¢
— (F2) do(z) < liminf / % do(z) = 2.
2m Js1 o 25 e—=0t T Js1 af 2] + a5,

On the other hand,

1 Jr 27 it
o [ P o) = 5 [T R
21 Jst 25 2 Jo  sin®(t)

and the integral converges only if \Tl(Reit) =0 for ¢t =0 and t = 7. Hence, we conclude
that W(Rep) = 0. O

Interestingly, we observe that if U vanishes somewhere on S', the minimizer may
exhibit a loss of dimensionality, in that its support reduces to a segment.

However, this condition is only necessary. In fact, one can show examples of x for
which W(¢) = 0 for some ¢ € S, while the minimizer is still supported on an ellipse. At
present, the question of under which conditions the loss of dimensionality occurs is still
open. We might conjecture that the minimizer exhibits a loss of dimensionality only if
the region where ¥ is sufficiently large. In the next chapter, we will propose a numerical
method to further investigate this question.

3.4. An example: the dislocation energy

We conclude this chapter by showing a concrete example of anisotropic energy coming
from material science. For a linear elastic material (e.g. a metal), the interaction energy
of a 2-dimensional system of dislocations is given by

/ / (Wole — ) + r(z — ) du)du(y),
R2xRR2

with

la+b 22+ (a + b)%z3 1b—a 2+ (b—a)?x3
K(I):—f + In 1+(+) 2 - In 1+( ) 2 ’
a |z|? 4 a ||
where 0 < a < b are constants depending on the material.” In particular, if the material
is isotropic, i.e. its mechanical properties do not depend on the orientation, then a — 0T
and b = 1, therefore the anisotropic kernel reduces to
2
L1
k(z) = —5.
More generally, we can consider an interaction kernel of the form

5
Wulz) = —Inl|z| + a—5,
Oé( ) ’ ‘ ’x‘g
where the parameter a € R represents the degree of anisotropy of the interaction. Note
that, if @« = 0, we retrieve the Coulomb kernel Wj. If we assume that the confinement
potential is quadratic, the energy becomes

=[], Wale -y dut@anto) + [ jafduto) (3.4.1)

5For an in-depth discussion of dislocations in anisotropic materials see Chapters 13-3 and 13-4 in [7].
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Since ) ) )
NS U s S B
Ka(x) : a|x‘2 SRRPE 5"

by Lemma 4 its Fourier transform is given by

a(e) = —a£%|£_|4£% + mado.
Therefore, N
o) = (ca + ma)do + 205,
where

— —~( £ & &
B0 =147 () =0 - + (g
We note that the sign of \f/\a depends on the value of a. If @ < 1, then \f/\a >0 on S!.
Theorem 9 thus ensures that the minimizer of (3.4.1) is of the form (3.3.5). The ellipse
E, can be found noticing that W, is symmetric with respect to the coordinate axes
and xg, i.e. Wo(—21,29) = Wo(x1,22) = Wo(x1, —22) for every (x1,22) € R2. Therefore,
the minimizer must respect this symmetry, which implies that the rotation matrix R is
equal to the identity and
2 2
EQZE07QZ{(x1,x2)€R2 Rt BUE . 2 <1}

1a 2a

The semiaxes a1 o, a2, can be computed solving (3.3.10), which gives

1/ (1_a)z1+(1+0‘)22 2do(z) =1 forj=1,2.
St

2 2
ay azl + a3 2
A simple computation shows that a1, = V1 — ¢, aso = V1 + a is a solution of the
system. In fact, since the minimizer is unique, it is the only solution. Hence, if |a| < 1,

the minimizer is .
& |XEa£27 (3.4.2)
o

Ha =
with

2, f”% 55%
b, = , eR <1;.
o {(xlmz) 1—oz+1—f—oz_ }
If « =1, then \I/f\a > 0 on S'. Reasoning as in the proof of Theorem 10, we observe
that the minimizer of Iy is the limit of the minimizer of I, as & — 17. This results in the
semicircle law

1
If « = —1, we can apply the same reasoning for o — —17%, which yields
1
_ 2941
H—1 = p 2 — $17'[ |[7\/§’\/§] ® dg, (3.4.4)

that is the semicircle law on the horizontal axis.

REMARK. We could arrive at the same result also noticing that

2 2
_ il T2
F—a(T) —a|x|2 i a

Therefore, since the addition of a constant to x does not affect the minimization problem,
the minimizer of I_, can be obtained from that of I, just by swapping the roles of z;
and 9, i.e. by a rotation of /2.
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If @ > 1, we observe that
In(p) > Ii(n) V€ P(R?).

Also, because k(z) = 0 for every x € supp p1, and by minimality of y1 and uniqueness of
the minimizer, we have

Io(pm) = Li(p) < Li(p) < Ia(p)  Vp# p,

hence pq is the minimizer of I, for every a > 1. Finally, owing to the above remark, we
deduce that p—p is the minimizer of I, for every a < —1.



CHAPTER 4

A numerical method for the approximation of the
minimizer

As we have seen in the previous chapter, the minimization problem for the anisotropic
energy poses some interesting questions. Even if we limit ourselves to the case of quadratic
confinement, determining the shape of the minimizer is not obvious. In particular, we
have observed that, if ¥ = 0 somewhere on S', then the minimizer could either be an
ellipse law of the form (3.3.5) or the semicircle law (3.3.13) (up to rotations). Ideally,
we would like to devise a criterion to determine a priori which of the two cases occurs.
Currently, such a criterion does not exist. If we consider more general confinements, such
as V(z) = |z|P with p > 0, we may expect things to become even more complicated, and
a characterisation of the minimizer is missing. To the author’s knowledge, even basic
questions regarding the topology of the minimizer are unanswered.

We might gain more insight into these matters by computing the minimizer using
numerical methods. In this chapter, we will introduce a novel technique, based on Ritz
method, for the approximation of the energy functional. We will test the method by
solving the minimization problem for the dislocation energy with quadratic confinement
and comparing the approximate solution with the exact one. Then, we will compute the
minimizer of the dislocation energy with generalised confinements.

4.1. Modified Ritz method

4.1.1. Ritz method. The Ritz method is a technique to compute the approximate
solution of variational problems. In its standard form, the method considers the mini-
mization problem for a functional 7: X — R,

I(u):/QF(Vu(x),u(:U),:c)dx, (4.1.1)

where Q C R? is bounded and F: R?*! — R is a fixed function (sufficiently regular,
e.g. F € C(R?*1)). The function space X is assumed to be large enough to ensure the
existence and uniqueness of the minimizer (classically, X = C1(Q2) or X = H'(2)). Also,
u is usually required to satisfy some boundary condition, such as

u(z) = g(x) VYo e 0. (4.1.2)

The idea is to project the infinite-dimensional space X onto a subspace V' of dimension
n € N, and search for a minimizer in V. Therefore, we approximate u by a linear
combination

() = anpn(x),
h=1

where {¢p}_; is a complete basis of V' and the coefficients {ap}}_, € R are to be
computed. The functional (4.1.2) can then be rewritten as a function I: R" — R,

f(al,...,an)—/F Zathoh(ac),Zahgoh(x),x dzx. (4.1.3)
& \n=1 h=1

45
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To enforce the boundary condition (4.1.2), we require that
n
Zahgph(:z:) =g(x) VYxe . (4.1.4)
h=1

Note that this condition can be fulfilled easily if g = 0, in which case we can choose the
basis functions ¢y, in such a way that

op(x) =0 Vo e o

for every h € {1,...,n}. Also, if Q = [a,b], condition (4.1.2) reduces to

Y anpn(a) = gla), D anpn(b) = g(b).
h=1 h=1

For more complicated cases, the boundary condition can be relaxed to hold only at a

finite number of points {z1,...,2,} C IQ, with m < n, i.e.
n
> apep(x) = g(xi) Vie{l,...,m}. (4.1.5)
k=1
The approximate variational problem can be solved by minimizing the function (4.1.3)
subject to constraint (4.1.4). This can be done by expressing a,—m+1,- - ., Gy in terms of
ai,...,an—m using (4.1.5), and then solving
oI
— =0 fork=1,...,n—m.
day,
This yields the values of ay, ..., an—m, which are substituted back in (4.1.5) to compute
the remaining an—m+1,- .-, an.

The accuracy and complexity of Ritz method depend largely on the choice of the basis
functions {4 }}_;. Choosing suitable basis functions for a given problem represents a
critical step in the implementation of Ritz method, and can be rather difficult, particularly
if the domain €2 does not possess a simple geometry. In this case, it is often convenient
to subdivide €2 into smaller subdomains and consider separate sets of basis functions on
each subdomain (which is equivalent to considering basis functions that are supported
only on a small subset of ). This approach leads to the finite element method, which is
widely applied for the solution of partial differential equations.

4.1.2. Modified Ritz method. In the spirit of Ritz method, our idea is to solve
the minimization problem for the energy functional I: P(R?) — R U {+oc},

0= [, We-pdu@int)+ [ V) duto),
R2 X R2 R2
by approximating p with a linear combination
p= Z agVk,
k=1

where the measures {vy}7_, should be taken in a suitable subset of P(R?) and the coef-
ficients {ay}7_; € R are to be determined.
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The original problem then transforms into that of minimizing the function

I(ay,... ap) = //]RQX]RQ W(x —y) d(; ahyh(:ﬁ)) d<; akuk(y)>
+ /R? V(z)d (; akvk(x)> (4.1.6)

=SS [ W pdn@dn) + Yo [ Vie ),
h=1 k=1 R2xR? h—1 /R
We note that, in general, evaluating the integrals

//R2X1R<2 W (z — y) dvp(x)dvg(y) and /R2 V(x) dup(z)

is rather complicated from the numerical point of view. In fact, both the domain of inte-
gration and the integrand functions are unbounded, which makes integration techniques
such as Gaussian quadrature unsuitable.

However, we have already seen that the minimizer of I must be compactly supported;
therefore, we can restrict the minimization problem to the class P.(R?) of probability
measures with compact support. The minimizer p can thus be approximated by its
projection onto

(V1. ) = {u €P.(R?) :p= Zaka, ag > 0}7
k=1

with {vx}?_, € P.(R?). This yields the finite-dimensional constrained minimization
problem

min  I(p)= min  I(ai,...,an), (4.1.7)
BE(V1,.esn) (at,...,an)EA

where

n
A= {aeR”:Zakzl, akZOVk:E{l,...,n}}.
k=1
By analogy with Ritz method, the measures {1} }}_, will be called basis measures.
With a suitable choice of the basis measures, the integrals in (4.1.6) can be evaluated
numerically, which gives the values

M= [ W pdn@dnt), b= [ V@) (118)
R2 xR2 R2
Therefore, denoting

al M11 Ce Mln bl

a = S, M= : : , b= I

Qp, A4ﬁ1 Ce A4ﬁn bn

the approximate energy (4.1.6) becomes
I(a) = a"Ma+ a". (4.1.9)

We can thus rewrite (4.1.7) as

min o’ Ma + a'b
acR"™

ap > 0VEke{l,...,n}

n
Zak:L
k=1

(4.1.10)
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This is a minimization problem for a quadratic function with inequality constraints, and
can be solved using numerical optimization algorithms.

4.2. Implementation of modified Ritz method

The method above lends itself to numerical computing. In particular, the matrix
formulation (4.1.9) makes it possible to leverage the existing, highly optimized linear
algebra packages. Here, we implement the modified Ritz method using MATLAB.

4.2.1. Choice of the basis measures. Without loss of generality, assume that the
support of the minimizer is contained in = [~R, R]?. On this domain, we consider a
quadrangular grid with N x N elements. The elements are given by the squares

Qi) = {x ER?:z€[0,In]>+(i—1,5 — 1)5N},

where [y = % is the element side length and ¢,j7 = 1,..., N. We denote the centre of

each square by
11
T = i—5J" 5 In.

Rearranging the elements as {Qp}rh=1.. n = {Qi;}ij=1,. N, with n = N? we can
define a set of basis measures by considering the uniform probability measure on each
square, i.e.

1
Vp = ZTXQh‘CZ' (4.2.1)
N

Alternatively, if we let {zp}p=1,n = {®i;}ij=1,.., N, Wwe could construct another set
of basis measures by considering the Dirac measure at each node, that is,

Vp = 0y, . (4.2.2)

With either choice of the basis measures, we can compute the matrix coefficients My,
bp. For the uniform basis measures, the integrals in (4.1.8) are evaluated using 4-point
Gaussian quadrature, that is,

/Q Q W(z —y)dxdy = l4 //W ©on(s) — i (t)) det(Jy, (5)Jyp, (1)) dsdt

Z Z W;W; Wi Wm, (@h(&iaéj)_Qak(flygm))det( vh(gzvgj) s&k(gl’fm))

N]llml

=g | V= /Q V(pn(s)) det(J, (5)) ds

4
=Y wawV(&, &) det(Jp, (&, €)),
ij=1
where ¢p,: Q@ — Qp is a mapping from the unit square Q := [—1,1]? onto Qj (with
positive Jacobian determinant) and {&}7_, {w;}%_; are the Gaussian points and weights,
respectively. To avoid the singularity at W (0,0), if h = k we consider

/ W(z —y)dedy = / W(z —y) dzedy + / W(z —y) dzdy,
nJQn nJQy hJQF

with Q, = {z € Q) : 1 < €}, QZ = Qn\ Q) , € >0, and apply the quadrature rule
above separately to each integral on the right-hand side.
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For the Dirac basis measures, the integrals are computed by evaluating the integrand
at the centre of each square, which gives

My = / /R Wl =) i, ()b, () = W (),

by = /R V(@) di, () = V().

We can then assemble the matrices M, b and compute the approximate energy (4.1.9).
Notably, the choice of Dirac basis measures is more efficient from a computational point
of view, as the calculation of each Mjy, requires a single function evaluation, while using
the quadrature formula employed for the uniform basis measures the same computation
requires 256 function evaluations.

4.2.2. Minimization algorithm. The constrained minimization problem (4.1.10)
is solved using the Interior Point algorithm implemented by the fmincon function in
MATLAB. We give here a sketch of the method'.

Let us consider the following minimization problem:

min f(z)

h(z) =0,
where Q CR", f: Q >R, g: 2—=R™and h: Q — R".
For p > 0, we define the approximate problem

m

min fi,(z, 5), with f,(z,5) = f() — '3 In(s;)
’ i=1 (4.2.4)
g(x)+s=0
h(z) =0,
where s; > 0 for every ¢ = 1,...,m. We note that this problem is simpler than the

original one, as it only contains equality constraints. Since the minimum of f, tends to
that of f as u — 0, we can approximate the solution of (4.2.3) by solving a sequence
of problems (4.2.4). Each of these is solved by either Newton’s method or the conjugate
gradient method. If the approximate problem is solved with sufficient accuracy, the
algorithm cuts p by a given factor (1/5 or 1/100 depending on the speed of convergence).
The process is iterated until a stopping criterion is reached.

REMARK. It should be noted that, in general, the domain Q = [—R, R] where we
search for a minimizer is not known a priori (even though it is guaranteed to exist as the
minimizer is compactly supported). For a quadratic confinement, we have seen that the
support of the minimizer is contained in an ellipse whose semiaxes satisfy a3 + a3 = 2,
therefore it is sufficient to take R = /2. For general confinements, one would need to
estimate the size of the support. In the absence of such an estimate, we could follow
a trial-and-error procedure, starting with a large value of R and a coarse grid to guess
the general shape of the minimizer, and then refining the grid in the regions where the
minimizer is supported.

IFor a detailed description of the algorithm, see MATLAB documentation [3].
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FiGURE 1. Minimizer computed for « = 0, a = 0.5 and « = 1, in the case
p = 2, using uniform basis measures. The red line is the boundary of the
support of the exact minimizer.
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FIGURE 2. Minimizer computed for « = 0, a = 0.5 and = 1, in the case
p = 2, using Dirac basis measures. The red line is the boundary of the

support of the exact minimizer.
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107 x10° <103 10

Uniform basis Dirac basis

FIGURE 3. Density profile computed with uniform and Dirac basis mea-
sures for a = 1, in the case p = 2.

4.3. Numerical results

We test the modified Ritz method by solving the minimization problem for the dis-
location energy discussed in Section 3.4. Here, we consider a more general power-law
confinement V' (z) = |z|P, with p > 1. The dislocation energy functional becomes

= [[ (Fwle= o+ o220 duwiduto) + [ lapduto)

4.3.1. Quadratic confinement. First, we consider the case p = 2, i.e. quadratic
confinement. As we have seen in the previous chapter, in this case we can find an exact
expression for the minimizer, whose shape depends strongly on the value of a.

Figures 1 and 2 show the minimizer computed using the uniform basis measures and
the Dirac basis measures, respectively, for different values of ae. We observe that for o = 0
and « = 0.5 the modified Ritz method yields a good approximation of the exact minimizer
(whose boundary is shown in red in the figures). In particular, the approximate minimizer
has almost constant density inside its support and vanishes close to the boundary, which
is a discretized version of (3.4.2). For a = 1, the results differ slightly depending on
the choice of the basis measures. With the uniform basis, the approximate minimizer is
more concentrated around the support of the exact minimizer (3.4.3), that is, the vertical
segment of endpoints (0, —\@)7 (0,\/5), while with the Dirac basis it is more spread
out. In both cases, the density of the approximate minimizer is maximum at y = 0 and
decreases towards y = 4+/2, as can be seen in Figure 3. This is similar to the profile
given by the semicircle law.

4.3.2. General confinement. We now consider a general exponent p # 2. In par-
ticular, we investigate the cases p =4 and p = 1.5.

Figures 4 and 5 show the approximate minimizer computed with the uniform and Dirac
basis measures for p = 4. Compared to the case p = 2 (represented by the red line), we
observe some remarkable differences. For a = 0 and o = 0.5, the minimizer is contained
in a smaller region, which can be intuitively explained by the increased confinement if
|x| > 1. Moreover, the density is concentrated in an elliptical annulus instead of being
uniformly distributed inside an ellipse. For o« = 1, the minimizer is also concentrated in
a thin region and exhibits two distinct peaks at the upper and lower extremities. Both
choices of the basis measures yield almost identical approximations of the minimizer, the
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a=1

FIGURE 4. Minimizer computed for « = 0, a = 0.5 and = 1, in the case

p = 4, using uniform basis measures. The red line is the boundary of the
support of the exact minimizer.
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FIGURE 5. Minimizer computed for « = 0, a = 0.5 and « = 1, in the case
p = 4, using Dirac basis measures. The red line is the boundary of the
support of the exact minimizer.
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FIGURE 6. Minimizer computed for « = 0, a = 0.5 and « = 1, in the case
p = 1.5, using uniform basis measures. The red line is the boundary of the
support of the exact minimizer.
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%102
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FIGURE 7. Minimizer computed for « = 0, a = 0.5 and = 1, in the case
p = 1.5, using Dirac basis measures. The red line is the boundary of the
support of the exact minimizer.
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density obtained with the Dirac basis being slightly more spread out, similarly to what
was found in the case p = 2.

These results seem to suggest that the topology of the minimizer might differ signif-
icantly from that observed in the case of quadratic confinement. In particular, it is not
clear whether the support of the minimizer is simply connected or not.

Finally, we consider the case p = 1.5. The minimizers calculated with the two sets of
basis measures are shown in Figures 6 and 7. For all values of a;, the minimizer exhibits
a strong peak at the origin and decreases radially. The direction of maximum decrease
depends on the degree of anisotropy; in particular, for & = 1 the density decreases very
fast in the horizontal direction and is concentrated along a vertical segment.

For all the cases considered here, the results are almost unaffected by the choice of the
basis measures. On the other hand, using the Dirac basis yields a slight computational
advantage and results in a shorter computational time.

The minimizers computed for p = {1.5,4} are in agreement with those found by
Scagliotti [1] using a different numerical method. Interestingly, for p = 4 and a = 1,
Scagliotti observes that the support of the minimizer seems to become one-dimensional.
Our results tend to support this hypothesis and even open up the question of whether the
support of the minimizer is a simply connected set. Moreover, the annular shape observed
for p =4 and « € {0,0.5} is consistent with a recent remark by Mora [2], who suggests
that for p > 2 and 1% strictly positive the minimizer should retain full dimensionality.
These questions about the shape of the minimizer need to be investigated in more detail
and could become the subject of further research using analytical tools.






CHAPTER 5

Conclusions

In this work, we analysed the minimization problem for the energy

)= [[, W= du@dn)+ [ Vi) duta).

with interaction kernel
W(z) = —In|z| + r(x).

We proved that, in the rather general case where x € C(S!), the energy I arises as
the T'-limit of a sequence of discrete energies {I,,},>2. Therefore, the minimizer of I is
the limit of the equilibrium configurations for the energies I,,, as n — +oo.

Under suitable assumptions, I admits a minimizer p, which is compactly supported
and satisfies the Euler-Lagrange equations

1
(W s p)(z) + §V(ac) =c¢ for p-a.e. T € supp u,

(W s p)(z) + %V(x) >c for qe. x€R?

for some constant ¢ € R. In addition, if W is regular enough and its Fourier transform
W is nonnegative on S', then the minimizer is unique.
In the case of quadratic confinement, the minimizer can be characterised as follows:
o If W >0on S!, the minimizer is
1
|E|
where FE is the domain contained in an ellipse with semiaxes a1, as such that
2 2 _
ai +aj = 2.
o If W >0 on S!, the minimizer is either as above or the push-forward of

w XEE2,

1
Fho @2 B
through a rotation map.

Notably, if W vanishes somewhere on S', the topology of the minimizer may change
substantially, passing from a measure with 2-dimensional support to one supported on a
segment. However, this condition is only necessary. One could conjecture that the loss of
dimensionality occurs only if the region where W vanishes is large enough.

To solve the minimization problem with general confinements, we developed a novel
numerical method. The accuracy of the method was assessed by computing the approxi-
mate minimizer of

2
L1 — U
= [ (—mra: — 4 +a<)> du@dn(y) + [ ol du(o).
R2xR2 |z -y R2
The numerical results are in agreement with the exact ones. Finally, we computed the

minimizer of I, with generalised confinement V' (z) = |z|P, where the analytic solution is
still unknown, for various values of o and p. The results show that rather complicated
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patterns could arise. In fact, for p = 4 the topology of the minimizer seems to change,
with the support becoming not simply connected.

Rather than marking an endpoint, these findings suggest some paths for future de-
velopments. In particular, the patterns emerging from the numerical results should be
examined in more detail through the lens of analytical techniques.



APPENDIX A

Fundamentals on measures

Let (X, d) be a separable metric space. We denote by B(X) the Borel o-algebra on

X and by P(X) the family of probability measures on X. The support of a measure
€ P(X) is defined as

supp i == {x € X : u(U) > 0 for every neighborhood U of z} .

We denote by P.(X) the space of probability measures with compact support.
A sequence {i fnen C P(X) is said to converge narrowly (or weakly) to u € P(X) if

lim @dunz/ wdp
X X

n—-+o0o

for every continuous and bounded function ¢ € Cy(X). This will be denoted by i, — .
The topology of narrow convergence is generated by the following basis of open sets:

{Upy,on(11,8) 1 01, on € Cp(X), n €N, peP(X), §> 0},

where

Upi,ion(ft,0) = {VEP(X) : ‘/ gpz-dy—/ @idﬂ‘ <0, izl,...,n}.
X X

The space P(X) can be endowed with the Kantorovich-Rubinshtein norm
o =sup{ [ o o € Lipy (), supliotol <1},
X zeX
where
Lip)(X) ={f: X = R: |f(z) = f(¥)| < d(z,y), Va,y € X}.
This norm induces the so-called Kantorovich-Rubinshtein metric
do(p,v) = [ = vlo-
The space P(X) endowed with the narrow topology is metrizable using this metric.

THEOREM 11. Let (X,d) be a separable metric space. Then the narrow topology
on P(X) is generated by the Kantorovich-Rubinshtein metric dy. Moreover, if (X,d) is
complete, then the space (P(X),do) is also complete.

A proof of this theorem can be found in [9] (Theorems 8.3.2 and 8.10.43).
Since the narrow topology is metrizable, compactness is equivalent to sequential com-
pactness. The following result is useful for characterising compact subsets of P(X).

THEOREM 12 (Prokhorov). If a set K C P(X) is tight, i.e.
Ve >0 3JK.C X compact s.t. p(X \ K.) <e VueK,

then IC is relatively compact in P(X). Conversely, if X is a Polish space, i.e. a separable,
completely metrizable space, then every relatively compact subset of P(X) is tight.
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LEMMA 6. Tightness is equivalent to the following condition: there exists a coercive
function F: X — [0,+00], i.e. a function whose sublevel sets {x € X : F(x) < ¢} are
compact in X, such that

sup/ Fdy < 4o00.
neK JX

We have the following useful characterisation of narrow convergence in terms of lower
semi-continuous functions.

LEMMA 7. Let (X,d) be a metric space and u € P(X). Then, a sequence {jin}nen C
P(X) is narrowly convergent to w if and only if

/ Ydyu < liminf/ Y dpin
X n—-+o0o X
for every function ¢: X — R that is lower semi-continuous and bounded from below.

PROOF. Suppose g, — g and let o) € Ly(X), the space of lower semi-continuous
functions that are bounded from below. We can approximate ¢ by a sequence of bounded
continuous functions {¥y }ren such that inf ¢ < i < g1 1. Consider for instance

1/%(37) = min{zzk(w)v k}7
with ~
k(@) = inf {¢(y) + kd(@, y)}-

For every k € N,
liminf/ Ydp, > liminf/ Vi dity :/ U du,
n—+oo X n—-+oo X X

so by monotone convergence we deduce liminf,, oo [y ¥ dpn > [y ¥ dp.

Conversely, suppose [y ¥ dp < liminf, 1o [ ¥ duy, for every ¢ € Ly(X) and let
v € Cy(X). Since Cp(X) C Ly(X), then £¢ € Ly(X) and we have

/ wdp < liminf [ @du,
X X

n—-+o0o

/—gpd,u,gliminf/ —pdin,
X n—+oo Jx

limsup/ gpd,ung/ gpd,ugliminf/ O dpiy.
n—+oo J X X oo Jx

Hence, lim, s o0 [y 0 dpn = [ @dp. O

which implies

We conclude this section by defining the Fourier transform of a probability measure.
Given a measure pu € P(R"), we define its Fourier transform by
1 .
i) = 5 [ e dula) e e
R2

:27'('

We observe that [ is well-defined, because e " €) e LY(R™, i) for every & € R™.



APPENDIX B

Introduction to I'-convergence

Let X be a topological space and {F}, },en a sequence of functions Fy,: X — R, with
R = [~o0, +oc]. We define the T'-lower limit and T-upper limit of {F,}, at x in X as

I-liminf F,(z) = sup liminf inf F,(y),
n—+00 UeN (z) n—+oo yelU

I-limsup F,(z) = sup limsup inf F,(y),
n—+o0o UeN (z) n—+oo yeUu

where N (z) denotes the collection of all open neighbourhoods of z in X. We say that
{F,}n T-converges to F: X - R at z € X as n — +oo if

F(x)=T- liginf F,(z) =T-limsup F,(x).

n—+o0o
In this case, F(z) is called the I'-limit of F,, at x, which is written
F(z) =T- lim F,(z).
n—oo

If this holds true for every x in X, we say that {F),}, I'-converges to F on X and F is
called the I'-limit of F;, (on the whole X).
We use the notation Fj, L> F.

REMARK. I'-convergence is independent of pointwise convergence, as shown by the

following examples.
We consider X = R (with the usual Euclidean topology).

(a) If F,(z) = nze 27" then {F,(z)}, [-converges to
_le—3 -
F(I) = 26 2’ r O
0, x #0,
while it converges pointwise to 0.

(b) If

F"(x) = 2n2x

5,22 . .
nxe 2" if n is even

— 2 . .
2nzxe , if n is odd,

then {F,,(z)}, converges pointwise to 0 Vz € R, but

_1
I-liminf F, (z) = {_e » o z=0
n—-+o0 0, x 7& 0,

_le—3 -
I-limsup F,(z) = 2¢ %, ¢=0
n—-+00 0, €T 7é 0,

s0 {F,(x)}, does not I'-converge in x = 0.
(c) If F,(z) = sin(nz), then {F,(z)}, I'-converges to F(z) = —1 Vx € R, but it does not
converge pointwise.

For metric spaces (in fact for first-countable topological spaces), we can give the
following sequential characterisation of I'-convergence.
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THEOREM 13. Let X be a first-countable topological space and {Fn}nEN a sequence
of functions F,,: X — R. Then, the I'-convergence of {F,}, to F: X - R at z € X is
equivalent to the following conditions:

(i) (liminf inequality) for every sequence {xy}nen C X converging to x,

i _
F(z) < lim inf Fo(xn);

(#) (limsup inequality) there exists a sequence {x,}neny C X converging to x such that
F(z) > limsup Fy,(x,,).

n—+oo
Equivalently, (i) holds and
(71)’ (existence of a recovery sequence) there exists a sequence {Ty}neny € X converging
to x such that
F(z)= lm F,(z,).

n—-+o00

DEFINITION 5. Given a topological space X and a sequence of functions F,: X — R,
we say that {F,}, is equi-coercive if for every t € R there exists a compact set K; such
that {x € X : F,(z) <t} C K, for every n € N.

THEOREM 14 (Fundamental theorem of I'-convergence). Let (X, d) be a metric space,
{F.}n an equi-coercive sequence of functions F,: X — R and F = T'-lim,,_, o F,. Then

min F' = lim inf F;,.
X n—+oo X

Moreover, if {xy}n is a relatively compact sequence such that

i Flen) = T S B

then every limit point of {xy}n is a minimum point for F.

For a proof of this theorem, one can refer to Theorem 7.8 and Corollary 7.20 in [10].
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