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Abstract

In this work, we study the equilibrium configurations of a system of interacting par-
ticles. We focus on nonlocal interactions of Coulomb type modified with the addition of
a generic anisotropic term and consider general confinements, in a bidimensional setting.
Using a Γ-convergence argument, we prove that, in the many-particle limit, the equilib-
rium configurations are given by the minimizers of an energy functional on the space of
probability measures. Then, we discuss the existence and uniqueness of the minimizer for
such energy, and review a recent result on the explicit characterisation of the minimizer
in the case of quadratic confinement. To address the case of general confinements, where
the analytic solution is not known, we introduce a novel numerical method for the ap-
proximation of the minimizer. Eventually, in the light of the numerical results, we make
a conjecture on the shape of the minimizer for quartic confinement.

i





Ringraziamenti

Desidero innanzitutto ringraziare il mio relatore, Prof. Berardo Ruffini, per avermi ac-
cettato come tesista sotto la propria supervisione. Il confronto con lui, iniziato dalla scelta
dell’argomento di tesi e proseguito durante lo svolgimento del lavoro, è stato determinante
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CHAPTER 1

Introduction

In this thesis, we study the minimization problem for the energy of a system of
interacting particles. We assume that the particles interact with one another in such a
way that every particle is influenced by every other particle in the system. Hence, the
interaction energy of the system is nonlocal, in that even particles very far apart have a
mutual influence. Interactions of this type arise for instance in materials science, when
studying the dislocations in a crystalline material. Dislocations are defects in the crystal
lattice that result in a change of the lattice structure and are responsible for many of the
macroscopic properties of crystalline materials, such as plasticity and fracture toughness.

Given n particles located at x1, . . . , xn ∈ RN , the interaction energy of the system
can be expressed as

1

n2

n∑
i,j=1
i ̸=j

W (xi − xj),

where W is a function that describes the interaction between two particles.
In general, the interaction may depend on the orientation between the particles, being

stronger along some directions and weaker along others. In this case, the interaction is
said to be anisotropic. In materials science, the arrangement of dislocations in a lattice is
frequently observed to be anisotropic, which motivates the study of energies of this type.

In addition to the reciprocal interactions, the particles are subjected to a confinement
V that forces them to stay within a bounded region of space. The confinement energy is

1

n

n∑
i=1

V (xi).

If we assume that the particles have a repulsive behaviour at short range and an
attractive one at longer range, it is intuitively clear that there exists a distribution of
particles for which the system is in equilibrium. Identifying the distribution of particles
with the probability measure

µx1,...,xn =
1

n

n∑
i=1

δxi ,

the equilibrium configurations can be found by computing the minimizers of the energy

E
(
µx1,...,xn

)
=

1

n2

n∑
i,j=1
i ̸=j

W (xi − xj) +
1

n

n∑
i=1

V (xi),

under the assumption that:

• W (x) → +∞ as |x| → 0, so that the energy blows up when the particles are too
close;

• V (x) → +∞ as |x| → +∞, so that the energy blows up when the particles are
too far apart.
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2 1. INTRODUCTION

The equilibrium configurations will be a trade-off between minimizing the interaction
term, which keeps the particles separate from one another, and minimizing the confine-
ment term, which tends to concentrate them in a narrow region.

In this work, we focus on the case N = 2, i.e. bidimensional distributions of particles,
and consider interactions of the form

W (x) = − ln |x|+ κ(x),

where κ represents the anisotropic part of the interaction, in that κ(x) depends only on
the angle between x and the horizontal axis.

We will show that, if the number of particles is large, the energy of the system can
be expressed by the functional I : P(R2) → R ∪ {+∞},

I(µ) =

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) +

∫
R2

V (x) dµ(x).

In particular, in Chapter 2 we generalise a result by Scagliotti [1] and prove that, under
certain assumptions, I is the Γ-limit of the energies

In(µ) =

{
E(µx1,...,xn) if ∃x1, . . . , xn ∈ R2 : µ = µx1,...,xn

+∞ otherwise

as n → +∞. Therefore, the equilibrium configuration can be found by solving the mini-
mization problem for the functional I.

In Chapter 3 we show that, under mild assumptions, this minimization problem admits
a solution. In particular, the minimizer of I is compactly supported and satisfies two
Euler-Lagrange equations (in a suitable capacitary sense). To prove that the minimizer
is unique, we relate the convexity of the functional I to the sign of the Fourier transform

of W . In fact, we show that, if the Fourier transform Ŵ is nonnegative on S1, then
I is strictly convex and the minimization problem has a unique solution. Then, we
present a characterisation of the minimizers in the case of quadratic confinement, i.e.
V (x) = |x|2. The results discussed here follow the approach of a recent work by Mora [2].
We close the chapter with an example from dislocation theory. In particular, we address
the minimization problem for the energy

Iα(µ) =

∫∫
R2×R2

(
− ln |x− y|+ α

(x1 − y1)
2

|x− y|

)
dµ(x)dµ(y) +

∫
R2

|x|2 dµ(x).

This example raises an interesting question on the topology of the equilibrium con-
figuration. In fact, if |α| < 1 the minimizer is supported on an ellipse, whereas if |α| ≥ 1
the support reduces to a segment, that is, the equilibrium configuration has a lower di-
mension. While it has already been proved that a necessary condition for this loss of

dimensionality to occur is that Ŵ vanishes somewhere on S1, a sufficient condition is still
unknown. The matter becomes even more complicated if we take into account general
confinements.

To shed some light on this question, we aim to compute the equilibrium configuration
using numerical methods. In Chapter 4 we introduce a novel method to approximate the
minimizer of I, which is based on Ritz method for the solution of variational problems.
We approximate the minimizer by its projection onto the set

⟨ν1, . . . , νn⟩ =

{
µ ∈ P(R2) : µ =

n∑
k=1

akνk, ak ≥ 0

}
,
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where ν1, . . . , νn are probability measures with compact support. This transforms the
original problem into 

min
a1,...,an

n∑
k=1

akI(νk)

ak ≥ 0 ∀k ∈ {1, . . . , n}
n∑

k=1

ak = 1,

which is a finite-dimensional minimization problem that can be solved using numerical
algorithms for constrained optimization.

We test the validity of the method by computing the minimizer of Iα and comparing
the approximate result with the exact one. Then, we use this method to compute the
equilibrium configuration for the energy Iα with a generalised confinement V (x) = |x|p,
for several values of α and p.

Finally, in Chapter 5 we conclude by summarising and discussing the main results.





CHAPTER 2

Equilibrium configurations for many-particle systems

In this chapter, we introduce the discrete energy associated with a finite number of
particles. We will show that, if the number of particles tends to infinity, the discrete
energy Γ-converges to a limit energy, whose minimizers are the limits of the equilibrium
configurations for the discrete energy. Much of the material presented in this chapter
follows the approach of an earlier work by Scagliotti [1].

2.1. Distributions of particles and the discrete energy

Definition 1. Let x1, . . . , xn ∈ R2. We define the distribution of n particles located
at x1, . . . , xn as the probability measure

µx1,...,xn =
1

n

n∑
i=1

δxi . (2.1.1)

Definition 2. Let µx1,...,xn be a distribution of n particles, with n ≥ 2. The energy
corresponding to this distribution is

E(µx1,...,xn) =
1

n2

n∑
i,j=1
i ̸=j

W (xi − xj) +
1

n

n∑
i=1

V (xi), (2.1.2)

where W : R2 → R ∪ {+∞} and V : R2 → R ∪ {+∞} are given functions, called interac-
tion kernel and confinement potential, respectively.

The energy (2.1.2) is nonlocal, in that every particle interacts with every other particle,
as can be seen by the interaction term summing over all pairs of particles. Energies of
this form are representative, for instance, of the interaction between dislocations in a
crystalline material.

In anisotropic media, the interaction between particles depends on their orientation.
Hence, we may assume that the interaction kernel has the following form:

W (x) :=

{
− ln |x|+ κ(x) if x ̸= 0

+∞ if x = 0,
(2.1.3)

where κ : R2 → R is an even function with κ(x) = κ
(

x
|x|

)
, that represents the anisotropic

behaviour of the interaction and is called anisotropic kernel.
In the isotropic case, the interaction reduces to the (2D) Coulomb kernel

W0(x) :=

{
− ln |x| if x ̸= 0

+∞ if x = 0.
(2.1.4)

The energy as defined in (2.1.2) is a linear functional on the space of measures of the
form (2.1.1). It can be extended to a functional on P(R2), the space of Borel probability
measures over R2, via

In(µ) :=

{
E(µx1,...,xn) if ∃x1, . . . , xn ∈ R2 : µ = µx1,...,xn

+∞ otherwise.
(2.1.5)

5



6 2. EQUILIBRIUM CONFIGURATIONS FOR MANY-PARTICLE SYSTEMS

The energy In is also called discrete energy, as it is associated with a discrete distri-
bution of particles.

A distribution of n particles that minimizes In, i.e. µ ∈ P(R2) such that

In(µ) = min
P(R2)

In,

is called an equilibrium configuration for n particles.
Under suitable assumptions on the confinement potential, the discrete energies In

admit an equilibrium configuration.

Theorem 1. Let In be defined as in (2.1.5), with W as in (2.1.3), κ ∈ C(S1) and V
lower semi-continuous, bounded from below and strongly coercive, i.e.

lim
|x|+|y|→+∞

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
= +∞.

Then In admits a minimizer on P(R2).

To prove this theorem, we will make use of the following result, which is the semi-
continuous equivalent of Weierstrass’ extreme value theorem for continuous functions.

Theorem 2. Let (X, d) be a metric space, K ⊆ X compact and f : x → R a lower
semi-continuous function on K. Then, f is bounded from below on K. In particular,
there exists x0 ∈ K such that f(x0) = minx∈K f(x).

Proof. Consider a minimizing sequence {xn}n ⊆ K such that f(xn) → infx∈K f(x).
Since K is compact,

lim
n→+∞

xn = x0 ∈ K

and, by lower semi-continuity of f , we have

f(x0) ≤ lim inf
n→+∞

f(xn) = lim
n→+∞

f(xn) = inf
x∈K

f(x),

which concludes the proof. □

We can now prove Theorem 1.

Proof (theorem 1). We note that a minimizer of In must be of the form (2.1.1).
Therefore, minimizing In is equivalent to minimizing the function F : R2n → R ∪ {+∞},

F (x1, . . . , xn) =
1

n2

n∑
i,j=1
i ̸=j

W (xi − xj) +
1

n

n∑
i=1

V (xi)

=
1

n2

n∑
i,j=1
i ̸=j

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)
+

1

n2

n∑
i=1

V (xi).

Clearly, F is lower semi-continuous on R2n, as W and V are continuous and lower semi-
continuous on R2, respectively. Moreover, by Theorem 2 and by the assumptions on V ,
we have that (x, y) 7→W (x−y)+ 1

2V (x)+ 1
2V (y) and V are bounded from below. Without

loss of generality, we may thus assume that they are non-negative.
Since V is strongly coercive, there exists K ⊆ R2 compact such that

W (x− y) +
1

2
V (x) +

1

2
V (y) > n2(inf F + 1) ∀(x, y) /∈ K ×K.
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Therefore,

F (x1, . . . , xn) =
1

n2

n∑
i,j=1
i ̸=j

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)
+

1

n2

n∑
i=1

V (xi)

≥ 1

n2

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)
> inf F + 1 ∀(xi, xj) /∈ K ×K,

which implies F (x1, . . . , xn) > inf F+1 for every (x1, . . . , xn) /∈ Kn ⊆ R2n. By Theorem 2,
F has a minimum point (x10, . . . , x

n
0 ) belonging to the compact set Kn.

Hence, µ = µx1
0,...,x

n
0
is a minimizer of In.

□

2.2. Γ-convergence of the discrete energy

We will now show that, under suitable assumptions, the family {In}n≥2 Γ-converges
to the energy functional I : P(R2) → R ∪ {+∞},

I(µ) :=

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) +

∫
R2

V (x) dµ(x). (2.2.1)

The energy I can be thought of as the limit of the discrete energies {In}n≥2 in the following
sense: as the number of particles increases, the equilibrium configurations tend to a limit
distribution, which is a minimizer of I.1

We suppose that the confinement potential satisfies the following hypotheses:

(H1) V is lower semi-continuous;
(H2) V is bounded from below;
(H3) strong coercivity

lim
|x|+|y|→+∞

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
= +∞ (2.2.2)

(H4) dom(V ) := {x ∈ R2 : V (x) < +∞} is closed and with non-empty interior;
(H5) there exists a point z ∈ dom(V ) such that for every K ⊆ dom(V ) compact and for

every t ∈ (0, 1) the set z + t(K − z) is contained in ˚dom(V );
(H6) V is continuous on dom(V ).

Examples of admissible confinements include the power law V (x) = |x|p with p > 0
and the characteristic function of a compact convex set.

Under these assumptions, we can prove the following theorem, that generalises an
analogous result by Scagliotti [1].

Theorem 3. Let {In}n≥2 be the family of functionals defined in (2.1.5), with W as
in (2.1.3), κ ∈ C(S1) and V satisfying (H1)-(H6). Then, the functional I : P(R2) →
R ∪ {+∞},

I(µ) :=

∫
R2

∫
R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµ(x)dµ(y) (2.2.3)

is well-defined and we have

In
Γ−→ I.

1For a short introduction to Γ-convergence, we refer to Appendix B.
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Before proving the theorem, we will prove the following useful lemmas.

Lemma 1. Let {µn}n ⊆ P(R2). If µn
∗
⇀ µ, then µn⊗µn

∗
⇀ µ⊗µ. Moreover, suppose

that

µn =
1

n

n∑
i=1

δxi

and define

µn ⊠ µn :=
1

n2

n∑
i,j=1
i ̸=j

δ(xi,xj).

Then, if µn
∗
⇀ µ, we have that µn ⊠ µn

∗
⇀ µ⊗ µ.

Proof. Let ψ ∈ Cb(R2 × R2) and 0 < ε < 1. By weak convergence, we have∣∣∣∣∫
R2

φd(µn − µ)

∣∣∣∣ < ε ∀φ ∈ Cb(R2)

for n large enough. Since (x 7→ ψ(x, y)), (y 7→ ψ(x, y)) ∈ Cb(R2), then∣∣∣∣∫∫
R2×R2

ψ d(µn ⊗ µn)−
∫∫

R2×R2

ψ d(µ⊗ µ)

∣∣∣∣ = ∣∣∣∣∫∫
R2×R2

ψ d((µn − µ)⊗ µn)

+

∫∫
R2×R2

ψ d(µn ⊗ (µn − µ)) +

∫∫
R2×R2

ψ d((µn − µ)⊗ (µn − µ)

∣∣∣∣
<

∣∣∣∣ 2∫
R2

ε dµn +

∫
R2

ε d(µn − µ)

∣∣∣∣ < 3ε,

which proves the first claim.
Moreover, we note that

µn ⊠ µn = µn ⊗ µn − νn, with νn =
1

n2

n∑
i=1

δ(xi,xi),

and νn
∗
⇀ 0. Indeed,∫∫

R2×R2

φdνn =
1

n2

n∑
i=1

φ(xi, xi) −→ 0 ∀φ ∈ Cb(R2 × R2),

which concludes the proof. □

Lemma 2. Let I be defined as in Theorem 3. Then, for every µ ∈ P(R2) there exists

a sequence {µn}n ⊆ Pc(R2), whose support is contained in ˚dom(V ), such that

• µn
∗
⇀ µ;

• I(µn) ≤ I(µ) for n large enough.

Proof. Let µ ∈ P(R2) and suppose that it is not compactly supported. We will first
prove that it can be approximated by a sequence of measures with compact support that
satisfy the thesis.

We consider an exhaustion by compact sets of R2, i.e. a sequence {Kn}+∞
n=1 ⊆ R2

of compact sets such that Kn ⊆ Kn+1 for every n and
⋃+∞

n=1Kn = R2. Without loss of
generality, suppose that µ(K1) > 0. We can then define

µn =
1

µ(Kn)
µ|Kn ∈ Pc(R2) for every n ≥ 1.
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Let φ ∈ Cb(R2), with |φ(x)| ≤M for every x ∈ R2. We have∣∣∣∣∫
R2

φdµn −
∫
R2

φdµ

∣∣∣∣ = ∣∣∣∣∫
Kn

φ

µ(Kn)
dµ−

∫
R2

φdµ

∣∣∣∣
≤
∣∣∣∣∫

Kn

φ

µ(Kn)
dµ−

∫
Kn

φdµ

∣∣∣∣+ ∣∣∣∣∫
Kc

n

φdµ

∣∣∣∣
≤
∫
Kn

∣∣∣∣( 1

µ(Kn)
− 1

)
φ

∣∣∣∣ dµ+

∫
Kc

n

|φ| dµ

≤
(

1

µ(Kn)
− 1

)
Mµ(Kn) +Mµ(Kc

n)

= 2(1− µ(Kn))M < ε

by choosing n large enough that µ(Kn) > 1− ε
2M , with ε > 0. Hence, µn

∗
⇀ µ.

As for the second point, we may suppose I(µ) < +∞, otherwise the conclusion is
trivial. We have

I(µ) =

∫∫
Kn×Kn

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
d(µ⊗ µ)(x, y)

+

∫∫
(Kn×Kn)c

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
d(µ⊗ µ)(x, y)

≥ µ(Kn)
2I(µn) + C(µ⊗ µ)((Kn ×Kn)

c)

= µ(Kn)
2I(µn) + C(1− µ(Kn)

2),

where in the second line we have used the fact that, by (2.2.2) and
⋃+∞

n=1Kn = R2, for
every C > 0 there exists n ∈ N such that

W (x− y) +
1

2
V (x) +

1

2
V (y) ≥ C for every (x, y) /∈ Kn ×Kn, n > n.

By choosing C = I(µ), we obtain

I(µn) ≤ I(µ) for every n > n,

which proves the second point.
Let now µ be a probability measure with compact support K ⊆ dom(V ) and such

that I(µ) < +∞. Without loss of generality, we may assume that (H5) is fulfilled for
z = 0 up to a translation. We define the scaling map Ψt : R2 → R2,

Ψt(x) = tx for t ∈ (0, 1),

and consider the push-forward measure

(
Ψt

∗µ
)
(A) := µ

((
Ψt
)−1

(A)
)
= µ

(
1

t
A

)
∀A ∈ B(R2),

which is supported in tK ⊆ ˚dom(V ).

First we prove that Ψt
∗µ

∗
⇀ µ as t→ 1. Let ε > 0, φ ∈ Cb(R2) and

K ′ :=
⋃

t∈(0,1)

tK.
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We have∣∣∣∣∫
R2

φ(x) dµ(x)−
∫
R2

φ(x) d
(
Ψt

∗µ
)
(x)

∣∣∣∣ = ∣∣∣∣∫
K
φ(x) dµ(x)−

∫
tK
φ(x) d

(
Ψt

∗µ
)
(x)

∣∣∣∣
=

∣∣∣∣∫
K
φ(x) dµ(x)−

∫
K
φ
(
Ψt(x)

)
dµ(x)

∣∣∣∣
=

∣∣∣∣∫
K
φ(x)− φ(tx) dµ(x)

∣∣∣∣
≤
∫
K
|φ(x)− φ(tx)| dµ(x).

By uniform continuity of φ on K ′, there exists δ > 0 such that

|φ(x)− φ(tx)| < ε ∀x ∈ K ′ : |(1− t)x| < δ,

and by boundedness of K ′ there exists C > 0 such that |x| < C. Hence, for t > δ
C − 1 we

obtain ∫
K
|φ(x)− φ(tx)| dµ(x) <

∫
K
ε dµ(x) = ε.

We are left to prove that limt→1 I(Ψ
t
∗µ) = I(µ). We note that

W (t(x− y)) = − ln |x− y| − ln t+ κ(x− y) =W (x− y)− ln t.

Hence,

I(Ψt
∗µ) =

∫∫
R2×R2

W (x− y) d
(
Ψt

∗µ⊗Ψt
∗µ
)
(x, y) +

∫
R2

V (x) d
(
Ψt

∗µ
)
(x)

=

∫∫
R2×R2

W (t(x− y)) d(µ⊗ µ)(x, y) +

∫
R2

V (tx) dµ(x)

=

∫∫
K×K

W (x− y) d(µ⊗ µ)(x, y) +

∫
K
V (tx) dµ(x)− ln t.

Since K ′ ⊆ dom(V ), then V |K′ is continuous and supK′ V < +∞. Therefore, by domi-
nated convergence we conclude that

lim
t→1

I(Ψt
∗µ) = I(µ).

□

We can now prove the theorem.

Proof (theorem 3). (liminf inequality) Let µ ∈ P(R2) and {µn}n ⊆ P(R2) such

that µn
∗
⇀ µ. We need to show that

I(µ) ≤ lim inf
n→+∞

In(µn).

Without loss of generality, we may assume lim infn→+∞ In(µn) < +∞ and In(µn) < +∞
for every n. Therefore, for every n there exist x1, . . . , xn ∈ dom(V ) such that

µn =
1

n

n∑
i=1

δxi .



2.2. Γ-CONVERGENCE OF THE DISCRETE ENERGY 11

Moreover, we can assume V ≥ 0, up to a translation. By definition, we have

In(µn) =
1

n2

n∑
i,j=1
i ̸=j

W (xi − xj) +
1

n

n∑
i=1

V (xi)

=

∫
R2

∫
R2

W (x− y) d(µn ⊠ µn)(x, y) +

∫
R2

V (x) dµn(x)

=

∫
R2

∫
R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
d(µn ⊠ µn)(x, y) +

1

n2

n∑
i=1

V (xi)

≥
∫
R2

∫
R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
d(µn ⊠ µn)(x, y).

Lemma 1 ensures that µn ⊠ µn
∗
⇀ µ⊗ µ and, since (x, y) 7→ W (x− y) + 1

2V (x) + 1
2V (y)

is lower semi-continuous and bounded from below, by Lemma 7 we deduce

I(µ) =

∫
R2

∫
R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
d(µ⊗ µ)(x, y)

≤ lim inf
n→+∞

∫
R2

∫
R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
d(µn ⊠ µn)(x, y) ≤ lim inf

n→+∞
In(µn),

which is the desired inequality.
(limsup inequality) We have to prove that for every µ ∈ P(R2) there exists a recovery

sequence {µn}n ⊆ P(R2) such that µn
∗
⇀ µ and

I(µ) ≥ lim sup
n→+∞

In(µn).

Without loss of generality, we may assume that I(µ) < +∞, otherwise µn = µ would
be a recovery sequence.

By virtue of Lemma 2, it is enough to prove that such a recovery sequence exists for
every compactly supported probability measure whose support is contained in the interior
of dom(V ). Indeed, let µ ∈ P(R2) and consider a sequence {µn}n ⊆ Pc(R2), with support

contained in ˚dom(V ), such that µn
∗
⇀ µ and I(µ) ≥ I(µn) for n > n. Suppose that

{µ(n)m }m ⊆ P(R2) is a recovery sequence for µn, i.e. µ
(n)
m

∗
⇀ µn and

I(µn) ≥ lim sup
m→+∞

Im(µ(n)m ).

The diagonal sequence {µ(n)n }n satisfies µ
(n)
n

∗
⇀ µ and

I(µ) ≥ lim sup
n→+∞

In(µ
(n)
n ),

therefore it is a recovery sequence for µ.
Step 1 (approximation of µ): Let µ ∈ Pc(R2), with support K. We consider a covering
of R2 by squares of side length 2h,

Qh :=
{
[0, 2h]2 + 2h(i, j) : (i, j) ∈ Z2

}
,

and denote by
{
Q̃h

k

}
k=1,...,Nh

the squares in Qh whose intersection with K is non-empty.



12 2. EQUILIBRIUM CONFIGURATIONS FOR MANY-PARTICLE SYSTEMS

For every k = 1, . . . , Nh, we define the square

Qh
k :=

{
x ∈ Q̃h

k : x+ λ1e1 + λ2e2 ∈ Q̃h
k , 0 ≤ λ1, λ2 ≤ h

}
.

We approximate µ with the sequence {µh}h ⊆ Pc(R2),

µh :=

Nh∑
k=1

µ
(
Q̃h

k

)
h2

L2|Qh
k
. (2.2.4)

It can be noticed that µh
(
Q̃h

k

)
= µh

(
Qh

k

)
= µ

(
Q̃h

k

)
for every k.

We claim that:

• µh
∗
⇀ µ as h→ 0;

• I(µ) ≥ lim suph→0 I(µ
h).

For h < 1, supp(µh) ⊆ K +B√
2(0) =: K ′. Let φ ∈ Cb(R2) and ε > 0. By uniform

continuity of φ on K ′, there exists δ > 0 such that

|φ(x)− φ(y)| < ε ∀x, y ∈ K ′ : |x− y| < δ.

We thus have∣∣∣∣∫
R2

φdµh −
∫
R2

φdµ

∣∣∣∣ = ∣∣∣∣∫
K′
φdµh −

∫
K′
φdµ

∣∣∣∣
=

∣∣∣∣∣
Nh∑
k=1

(∫
Q̃h

k

φ(x) dµh(x)−
∫
Q̃h

k

φ(y) dµ(y)

)∣∣∣∣∣
=

∣∣∣∣∣
Nh∑
k=1

(∫
Q̃h

k

∫
Q̃h

k

φ(x)

µ
(
Q̃h

k

) dµh(x)dµ(y)− ∫
Q̃h

k

∫
Q̃h

k

φ(y)

µh
(
Q̃h

k

) dµ(y)dµh(x))∣∣∣∣∣
≤

Nh∑
k=1

1

µ
(
Q̃h

k

)∣∣∣∣∣
∫
Q̃h

k

∫
Q̃h

k

(φ(x)− φ(y)) dµh(x)dµ(y)

∣∣∣∣∣
≤

Nh∑
k=1

1

µ
(
Q̃h

k

) ∫
Q̃h

k

∫
Q̃h

k

|φ(x)− φ(y)| dµh(x)dµ(y)

≤
Nh∑
k=1

1

µ
(
Q̃h

k

) ∫
Q̃h

k

∫
Q̃h

k

ε dµh(x)dµ(y) =

Nh∑
k=1

εµ
(
Q̃h

k

)
= ε,

where in the fourth line we have used µh
(
Q̃h

k

)
= µ

(
Q̃h

k

)
and applied Fubini’s theorem,

while the last inequality descends from the fact that, for x, y ∈ Q̃h
k , |x − y| ≤ 2

√
2h < δ

as h→ 0, therefore by uniform continuity |φ(x)− φ(y)| < ε.
To prove the second claim, we first notice that supp(µh) ⊆ K + B2

√
2h(0), so for h

sufficiently small there exists an open set Ω ⊂⊂ dom(V ) such that supp(µh) ⊆ Ω. Hence,∫
R2

V dµh =

∫
Ω
V dµh −→

∫
Ω
V dµ =

∫
R2

V dµ,

because µh
∗
⇀ µ and V |Ω ∈ Cb(Ω).
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Since W is unbounded on R2, we define its truncation

WM (x) := min{W (x),M}

and write

lim sup
h→0

∫
R2

∫
R2

W (x− y) dµh(x)dµh(y) = lim sup
h→0

(∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y)

+

∫
R2

∫
R2

WM (x− y) dµh(x)dµh(y)

)
≤ lim sup

h→0

∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y)

+ lim sup
h→0

∫
R2

∫
R2

WM (x− y) dµh(x)dµh(y).

We note that, thanks to the assumption κ ∈ C(S1), WM is continuous and bounded on
R2, therefore by narrow convergence of µh we obtain

lim sup
h→0

∫
R2

∫
R2

WM (x− y) dµh(x)dµh(y) = lim
h→0

∫
R2

∫
R2

WM (x− y) dµh(x)dµh(y)

=

∫
R2

∫
R2

WM (x− y) dµ(x)dµ(y)

≤
∫
R2

∫
R2

W (x− y) dµ(x)dµ(y).

We will conclude by showing that

lim sup
h→0

∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y) → 0 as M → +∞.

Let C1, C2 ∈ R be such that

− ln |x− y|+ C1 ≤W (x− y) ≤ − ln |x− y|+ C2.

Hence,

W (x− y) > M =⇒ − ln |x− y|+ C2 > M ⇐⇒ |x− y| < eC2−M =: RM

and RM → 0 as M → +∞. As a result,

(W −WM )(x− y) = 0 if |x− y| ≥ RM . (2.2.5)

We have∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y) =

∫
Ω

(∫
BRM

(y)
(W −WM )(x− y) dµh(x)

)
dµh(y)

≤
∫
Ω

(∫
BRM

(y)
W (x− y) dµh(x)

)
dµh(y)

=

Nh∑
i,j=1

∫
Qh

i

(∫
Qh

j ∩BRM
(y)
W (x− y) dµh(x)

)
dµh(y)

=

Nh∑
i=1

Nh∑
j=1
j ̸=i

∫
Qh

i

(∫
Qh

j ∩BRM
(y)

W (x− y) dµh(x)

)
dµh(y)

+

Nh∑
i=1

∫
Qh

i

(∫
Qh

i ∩BRM
(y)

W (x− y) dµh(x)

)
dµh(y).
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We rewrite the right-hand side of the previous inequality by arranging the squares{
Qh

j

}
j=1,...,Nh

depending on their distance from Qh
i , according to the set of indices

Jh
i,p :=

{
j ∈ {1, . . . , Nh} : Qh

j = Qh
i + 2h(m,n), (m,n) ∈ Z2, max{|m|, |n|} = p

}
,

where p = 1, . . . , Ph, with Ph :=
⌈
RM
2h

⌉
. Hence, we obtain∫

R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y) ≤
Nh∑
i=1

Ph∑
p=1

∑
j∈Jh

i,p

∫
Qh

i

(∫
Qh

j ∩BRM
(y)

W (x− y) dµh(x)

)
dµh(y)

+

Nh∑
i=1

∫
Qh

i

(∫
Qh

i ∩BRM
(y)

W (x− y) dµh(x)

)
dµh(y). (2.2.6)

If x ∈ Qh
i and y ∈ Qh

j , with j ∈ Jh
i,p, then (2p− 1)h ≤ |x− y| ≤ (p+ 1)2

√
2h, so

C1 − ln
(
(p+ 1)2

√
2h
)
≤W (x− y) ≤ C2 − ln ((2p− 1)h).

On the other hand, if x, y ∈ Q̃h
i , then |x− y| ≤ 2

√
2h, so

W (x− y) ≥ C1 − ln
(
2
√
2h
)
.

Let us fix i ∈ {1, . . . , Nh}, p ∈ {1, . . . , Ph} and j ∈ Jh
i,p. We have∫

Qh
i

(∫
Qh

j ∩BRM
(y)

W (x− y) dµh(x)

)
dµh(y) ≤

∫
Qh

i

(∫
Qh

j ∩BRM
(y)

(C2 − ln((2p− 1)h)) dµh(x)

)
dµh(y)

≤ (C2 − ln((2p− 1)h))µh
(
Qh

i

)
µh
(
Qh

j

)
=

(
C2 − ln

(
2p− 1

(p+ 1)2
√
2

)
− ln

(
(p+ 1)2

√
2h

))
µ
(
Q̃h

i

)
µ
(
Q̃h

j

)
≤ Cµ

(
Q̃h

i

)
µ
(
Q̃h

j

)
+

∫
Q̃h

i

(∫
Q̃h

j

W (x− y) dµ(x)

)
dµ(y),

where C is a constant independent of i, j, p and h. Moreover,∫
Qh

i

(∫
Qh

i ∩BRM
(y)

W (x− y) dµh(x)

)
dµh(y) ≤

∫
Qh

i

(∫
Qh

i

(C2 − ln |x− y|) dµh(x)

)
dµh(y)

≤ C2µ
h
(
Qh

i

)2 − ∫
Qh

i

(∫
B√

2h(y)
ln |x− y| dµh(x)

)
dµh(y)

= C2µ
(
Q̃h

i

)2 − µ
(
Q̃h

i

)
h2

∫
Qh

i

(
2π

∫ √
2h

0
ln(r)r dr

)
dµh(y)

= µ
(
Q̃h

i

)2(
C2 −

2π

h2

∫ √
2h

0
ln(r)r dr

)

= µ
(
Q̃h

i

)2(
C2 −

π

h2

[
r2 ln(r)− r2

2

]√2h

0

)
= C ′µ

(
Q̃h

i

)2
+ 2π

(
C1 − ln(2

√
2h)
)
µ
(
Q̃h

i

)2
≤ C ′µ

(
Q̃h

i

)2
+ 2π

∫
Q̃h

i

(∫
Q̃h

i

W (x− y) dµ(x)

)
dµ(y),
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where C ′ is a constant independent of i and h. By substituting into (2.2.6), we obtain∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y) ≤
Nh∑
i=1

Ph∑
p=1

∑
j∈Jh

i,p

(
Cµ
(
Q̃h

i

)
µ
(
Q̃h

j

)

+

∫
Q̃h

i

(∫
Q̃h

j

W (x− y) dµ(x)

)
dµ(y)

)
+

Nh∑
i=1

(
C ′µ

(
Q̃h

i

)2
+ 2π

∫
Q̃h

i

(∫
Q̃h

i

W (x− y) dµ(x)

)
dµ(y)

)

≤ C ′′
∫
Ω
µ(BRM+2h(y)) dµ(y) + 2π

∫
Ω

∫
BRM+2h(y)

W (x− y) dµ(x)dµ(y).

Hence,

lim sup
h→0

∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y) ≤ lim
h→0

(
C ′′
∫
Ω
µ(BRM+2h(y)) dµ(y)

+ 2π

∫
Ω

∫
BRM+2h(y)

W (x− y) dµ(x) dµ(y)

)
= C ′′

∫
Ω
µ(BRM

(y)) dµ(y)

+ 2π

∫
Ω

∫
BRM

(y)
W (x− y) dµ(x)dµ(y),

because by assumption I(µ) < +∞, therefore (x, y) 7→W (x−y) ∈ L1(R2×R2, µ⊗µ) and
we can apply the dominated convergence theorem. Recalling that RM → 0 as M → +∞,
we conclude

lim
M→+∞

lim sup
h→0

∫
R2

∫
R2

(W −WM )(x− y) dµh(x)dµh(y) = 0.

Step 2 (construction of the recovery sequence): it is sufficient to construct a recovery
sequence for measures of the form (2.2.4). We approximate µh by a sequence

µhn :=

Nh∑
k=1

ck,nL2|Qh
k
, (2.2.7)

where the coefficients ck,n are such that µhn
(
Qh

k

)
→ µh

(
Qh

k

)
as n→ +∞ and

√
µhn
(
Qh

k

)
n ∈

N for every n ∈ N and every k. This can be obtained by choosing

ck,n :=

⌊√
µh
(
Qh

k

)
n
⌋2

h2n
.

The sequence {µhn}n is narrowly convergent to µh. In fact, let φ ∈ Cb(R2) and observe
that

µh
(
Qh

k

)
h2

+
1− 2

√
µh
(
Qh

k

)
n

h2n
=

(√
µh
(
Qh

k

)
n− 1

)2
h2n

≤ ck,n ≤
µh
(
Qh

k

)
h2

, (2.2.8)

therefore by dominated convergence∫
R2

φ(x) dµhn(x) =

Nh∑
k=1

∫
Qh

k

φ(x)ck,n dx −→
Nh∑
k=1

∫
Qh

k

φ(x)
µh
(
Qh

k

)
h2

dx =

∫
R2

φ(x) dµh(x).

We note, however, that in general the measures µhn are not probability measures. In fact,

µhn(R2) =

Nh∑
k=1

∫
Qh

k

ck,n dx ≤
Nh∑
k=1

∫
Qh

k

µh
(
Qh

k

)
h2

dx = 1.
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We subdivide each square Qh
k into Zk,n := µhn

(
Qh

k

)
n subsquares of side length

Lk,n :=
h√
Zk,n

.

The subsquares are denoted by Qh
k,i and their corresponding centres by wi

k,n, with i =
1, . . . , Zk,n.

For a fixed n, there are in total µhn(R2)n centres wi
k,n. We denote nr :=

(
1− µhn(R2)

)
n.

By inequality (2.2.8), we get

µhn(R2) =

Nh∑
k=1

µhn
(
Qh

k

)
=

Nh∑
k=1

ck,nh
2 ≥

Nh∑
k=1

µh(Qh
k

)
+

1− 2
√
µh
(
Qh

k

)
n

n


= 1 +

Nh

n
− 2√

n

Nh∑
k=1

√
µh
(
Qh

k

)
,

from which we obtain the estimate

nr =
(
1− µhn(R2)

)
n ≤ −Nh + 2

√
n

Nh∑
k=1

√
µh
(
Qh

k

)
≤ 2Nh

√
n. (2.2.9)

Similarly to how we defined Qh
k , for every k ∈ {1, . . . , Nh} we define

Q̂h
k :=

{
x ∈ Q̃h

k : x− λ1e1 − λ2e2 ∈ Q̃h
k , 0 ≤ λ1, λ2 ≤ h

}
.

As above, we subdivide each square Q̂h
k into Zk,n subsquares of side length Lk,n and

denote their centres by {ŵi
k,n}i=1,...,Zk,n

. We select nr of these centres at random and

denote them by {ŵi
n}i=1,...,nr .

Observing that

Lk,n =
h√

µhn
(
Qh

k

)
n
≥ h√

n
(2.2.10)

and noting that the centres have a distance greater than or equal to Lk,n from one another,
we get the following estimates:∣∣wi

k,n − wj
k,n

∣∣ ≥ h√
n

if i ̸= j, (2.2.11)∣∣wi
k,n − ŵj

n

∣∣ ≥ h√
n

for every i, j, (2.2.12)∣∣ŵi
n − ŵj

n

∣∣ ≥ h√
n

if i ̸= j. (2.2.13)

We now define the recovery sequence as follows:

µn =
1

n

 Nh∑
k=1

Zk,n∑
i=1

δwi
k,n

+

nr∑
i=1

δŵi
n

.
Note that, according to the way Zk,n is defined, the number of dislocations allocated in

each square Qh
k is proportional to the measure µhn

(
Qh

k

)
. As a consequence, the squares

whose measure is greater are weighted more by the recovery sequence.
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Step 3 (proving the limsup inequality for µh): we claim that

• µn
∗
⇀ µh as n→ +∞;

• I(µh) ≥ lim supn→+∞ In(µn).

As we have observed in step 1, there exists a compact set K such that supp(µh) ⊆ K.
By definition of µn, this implies supp(µn) ⊆ K. Let φ ∈ Cb(R2) such that |φ(x)| ≤ M ,
fix ε > 0 and let δ > 0 be such that

|φ(x)− φ(y)| < ε ∀x, y ∈ K : |x− y| < δ.

We have∣∣∣∣∫
R2

φdµh −
∫
R2

φdµn

∣∣∣∣ = ∣∣∣∣∫
K
φdµh −

∫
K
φdµn

∣∣∣∣
=

∣∣∣∣∣
Nh∑
k=1

(∫
Qh

k

φ(x) dµh(x)−
∫
Qh

k

φ(y) dµn(y)

)
− 1

n

nr∑
i=1

φ
(
ŵi
n

)∣∣∣∣∣
≤

Nh∑
k=1

∣∣∣∣∣
∫
Qh

k

φ(x) dµh(x)−
∫
Qh

k

φ(y) dµn(y)

∣∣∣∣∣+ 1

n

nr∑
i=1

∣∣φ(ŵi
n

)∣∣
≤

Nh∑
k=1

∣∣∣∣∣
∫
Qh

k

φ(x) dµh(x)−
∫
Qh

k

φ(y) dµn(y)

∣∣∣∣∣+ nr
n
M

≤
Nh∑
k=1

∣∣∣∣∣
∫
Qh

k

φ(x) dµh(x)−
∫
Qh

k

φ(y) dµn(y)

∣∣∣∣∣+ 2NhM√
n

,

where the last term comes from inequality (2.2.9) and vanishes for n→ +∞.
As for the first term of the right-hand side,∣∣∣∣∣

∫
Qh

k

φ(x) dµh(x)−
∫
Qh

k

φ(y) dµn(y)

∣∣∣∣∣ =
∣∣∣∣∣
∫
Qh

k

φ(x) dµh(x)− 1

n

Zk,n∑
i=1

φ
(
wi
k,n

)∣∣∣∣∣
=

∣∣∣∣∣
Zk,n∑
i=1

(∫
Qh

k,i

φ(x) dµh(x)−
∫
Qh

k,i

φ
(
wi
k,n

)
dµh(x)

+

∫
Qh

k,i

φ
(
wi
k,n

)
dµh(y)− 1

n

∫
Qh

k,i

φ
(
wi
k,n

) dµh(y)

µh
(
Qh

k,i

))∣∣∣∣∣
≤

Zk,n∑
i=1

∫
Qh

k,i

∣∣φ(x)− φ
(
wi
k,n

)∣∣ dµh(x)
+

Zk,n∑
i=1

∣∣∣∣φ(wi
k,n

)(
µh
(
Qh

k,i

)
− 1

n

)∣∣∣∣
≤

Zk,n∑
i=1

∫
Qh

k,i

ε dµh(x) +

Zk,n∑
i=1

∣∣∣∣∣φ(wi
k,n)

µh
(
Qh

k

)
− µhn

(
Qh

k

)
Zk,n

∣∣∣∣∣
≤ εµh

(
Qh

k

)
+M

∣∣∣µh(Qh
k

)
− µhn

(
Qh

k

)∣∣∣,
if we choose n large enough that

∣∣x−wi
k,n

∣∣ < Lk,n < δ, which is possible because Lk,n → 0

for n→ +∞. Since µhn
(
Qh

k

)
→ µh

(
Qh

k

)
as n→ +∞, we conclude that µn

∗
⇀ µh.
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To prove the second claim, we consider

In(µn) =
1

n2

(
Nh∑
k=1

Zk,n∑
i,j=1
i ̸=j

W
(
wi
k,n − wj

k,n

)
+

Nh∑
k,l=1
k ̸=l

Zk,n∑
i=1

Zl,n∑
j=1

W
(
wi
k,n − wj

l,n

)

+2

Nh∑
k=1

Zk,n∑
i=1

nr∑
j=1

W
(
wi
k,n − ŵj

n

)
+

nr∑
i,j=1
i ̸=j

W
(
ŵi
n − ŵj

n

))
+

1

n

(
Nh∑
k=1

Zk,n∑
i=1

V
(
wi
k,n

)
+

nr∑
i=1

V
(
ŵi
n

))
.

For the confinement term, we have

1

n

(
Nh∑
k=1

Zk,n∑
i=1

V
(
wi
k,n

)
+

nr∑
i=1

V
(
ŵi
n

))
=

∫
K
V (x) dµn(x) −→

∫
K
V (x) dµh(x),

because V |K ∈ Cb(K) and µn converges narrowly to µh.
We can thus focus on the interaction terms. We have

1

n2

Zk,n∑
i=1

Zl,n∑
j=1

W
(
wi
k,n − wj

l,n

)
=

∫∫
Qh

k×Qh
l

W (x− y) d(µn ⊗ µn)(x, y) −→
∫
Qh

k×Qh
l

W (x− y) d(µh ⊗ µh)(x, y),

because (x, y) 7→W (x− y) ∈ Cb

(
Qh

k ×Qh
l

)
if k ̸= l and µn ⊗ µn

∗
⇀ µh ⊗ µh by Lemma 1.

As for the other terms, we get

2

n2

Nh∑
k=1

Zk,n∑
i=1

nr∑
j=1

W
(
wi
k,n − ŵj

n

)
≤ 2

n2

Nh∑
k=1

Zk,n∑
i=1

nr∑
j=1

(
C2 − ln

∣∣wi
k,n − ŵj

n

∣∣)
≤ 2

n2

Nh∑
k=1

Zk,n∑
i=1

nr∑
j=1

(
C2 − ln

(
h√
n

))

=
2

n2
NhZk,nnr

(
C2 + ln

(√
n

h

))
≤

4N2
h√
n

(
C2 + ln

(√
n

h

))
−→ 0,

where the second inequality descends from estimate (2.2.12), while the last inequality is
a consequence of (2.2.9). Furthermore,

1

n2

nr∑
i,j=1
i ̸=j

W
(
ŵi
n − ŵj

n

)
≤ 1

n2

nr∑
i,j=1
i ̸=j

(
C2 − ln

∣∣ŵi
n − ŵj

n

∣∣) ≤ 1

n2

nr∑
i,j=1
i ̸=j

(
C2 − ln

(
h√
n

))

≤ n2r
n2

(
C2 + ln

(√
n

h

))
≤

4N2
h

n

(
C2 + ln

(√
n

h

))
−→ 0,

where again we have used inequality (2.2.9) and estimate (2.2.13).
Similarly to step 1, we consider the truncation

WM (x) = min{W (x),M}

and rewrite

1

n2

Zk,n∑
i,j=1
i ̸=j

W
(
wi
k,n − wj

k,n

)
=

1

n2

Zk,n∑
i,j=1
i ̸=j

WM

(
wi
k,n − wj

k,n

)
+

1

n2

Zk,n∑
i,j=1
i ̸=j

(
W −WM

)(
wi
k,n − wj

k,n

)
.
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By the boundedness of WM and Lemma 1, we obtain

1

n2

Zk,n∑
i,j=1
i ̸=j

WM

(
wi
k,n − wj

k,n

)
=

∫
Qh

k

∫
Qh

k

WM (x− y) d(µn ⊠ µn)(x, y)

−→
∫
Qh

k

∫
Qh

k

WM (x− y) d(µh ⊗ µh)(x, y)

≤
∫
Qh

k

∫
Qh

k

W (x− y) d(µh ⊗ µh)(x, y).

The claim is proved if we show that

lim sup
n→+∞

1

n2

Zk,n∑
i,j=1
i ̸=j

(
W −WM

)(
wi
k,n − wj

k,n

)
→ 0 as M → +∞ (2.2.14)

for every k ∈ {1, . . . , Nh}.
Thanks to (2.2.5), we can write

1

n2

Zk,n∑
i,j=1
i ̸=j

(
W −WM

)(
wi
k,n − wj

k,n

)
≤ 1

n2

Zk,n∑
i=1

∑
j∈Ji

k,n

W
(
wi
k,n − wj

k,n

)
,

with J i
k,n :=

{
j ∈ {1, . . . , Zk,n} :

∣∣wi
k,n − wj

k,n

∣∣ < RM , j ̸= i
}
.

We arrange the points wj
k,n according to their distance from wi

k,n by defining

J i
k,n(p) :=

{
j ∈ {1, . . . , Zk,n} : wj

k,n = wi
k,n + (l,m)Lk,n, (l,m) ∈ Z2, max{|l|, |m|} = p

}
,

for p = 1, . . . , Pk,n, with Pk,n :=
⌈

RM
Lk,n

⌉
.

For every i ∈ {1, . . . , Zk,n}, j ∈ J i
k,n(p), we have

∣∣wi
k,n − wj

k,n

∣∣ ≥ pLk,n, which gives

the following inequality:

W
(
wi
k,n − wj

k,n

)
≤ C2 − ln

∣∣wi
k,n − wj

k,n

∣∣ ≤ C2 − ln (pLk,n). (2.2.15)

Moreover, we can estimate

card
(
J i
k,n(p)

)
≤ (2p+ 1)2 − (2(p− 1) + 1)2 = 8p, (2.2.16)

by observing that the points wj
k,n with j ∈ J i

k,n(p) are contained in the difference of two

squares of centre wi
k,n and side lengths equal to 2p+ 1 and 2(p− 1) + 1, respectively.
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We thus get

1

n2

Zk,n∑
i=1

∑
j∈Ji

k,n

W
(
wi
k,n − wj

k,n

)
=

1

n2

Zk,n∑
i=1

Pk,n∑
p=1

∑
j∈Ji

k,n(p)

W
(
wi
k,n − wj

k,n

)

≤ 1

n2

Zk,n∑
i=1

Pk,n∑
p=1

∑
j∈Ji

k,n(p)

(C2 − ln (pLk,n))

=
1

n2

Zk,n∑
i=1

Pk,n∑
p=1

card
(
J i
k,n(p)

)
(C2 − ln (pLk,n))

≤ 1

n2

Zk,n∑
i=1

Pk,n∑
p=1

8p(C2 − ln (pLk,n))

=
8

n2

Zk,n∑
i=1

Pk,n∑
p=1

(
pC2 −

1

Lk,n
pLk,n ln (pLk,n)

)

≤ 8

n2
Zk,n

(
Pk,n(Pk,n + 1)

2
C2 +

1

eLk,n
Pk,n

)
,

where we have used the estimates (2.2.15) and (2.2.16), while the last inequality comes
from the fact that −x ln(x) ≤ 1/e.

Finally, we obtain

8

n2
Zk,n

(
Pk,n(Pk,n + 1)

2
C2 +

Pk,n

eLk,n

)
≤ 4

n

(
RM

Lk,n
+ 1

)(
RM

Lk,n
+ 2

)
C2 +

8

neLk,n

(
RM

Lk,n
+ 1

)
=

4

n

(
RM

(
C2RM + 2e−1

)
(Lk,n)2

+
3C2RM + 2e−1

Lk,n
+ 2C2

)

≤ 4

(
RM

(
C2RM + 2e−1

)
h2

+
3C2RM + 2e−1

h
√
n

+
2C2

n

)

−→ 4
RM

(
C2RM + 2e−1

)
h2

as n→ +∞,

where the last inequality comes from estimate (2.2.10). Since RM → 0 as M → +∞,
claim (2.2.14) is proved.

Hence, I(µh) ≥ lim supn→+∞ In(µn), which concludes the proof. □

Theorem 4. Let {In}n≥2 be the family of functionals defined in (2.1.5). If V satisfies
assumptions (H1)-(H3), then In is coercive with respect to the narrow topology for every
n ≥ 2. Moreover, the sequence {In}n≥2 is equi-coercive.

Proof. We first show that In is coercive for every n ≥ 2, i.e. {µ ∈ P(R2) : In(µ) ≤ t}
is compact (with respect to the narrow topology) for every t ∈ R.

By Theorem 12, it is enough to prove that there exists a compact set Kt containing
the support of every measure µ such that In(µ) ≤ t, as this implies that {µ ∈ P(R2) :
In(µ) ≤ t} is tight and hence compact.
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We fix n ≥ 2 and t ∈ R and suppose

In(µ) =
1

n2

n∑
i,j=1
i ̸=j

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)
+

1

n2

n∑
i=1

V (xi) ≤ t.

Without loss of generality, by Theorem 2 we may assume (x, y) 7→ W (x− y) + 1
2V (x) +

1
2V (y) and V to be non-negative. We observe that, by (2.2.2), there exists a compact

Kt ⊆ R2 such that

W (x− y) +
1

2
V (x) +

1

2
V (y) >

n2

n− 1
t ∀(x, y) ∈ (Kt ×Kt)

c .

By contradiction, suppose that the support of µ is not contained in Kt, e.g.

µ =
1

n

n∑
i=1

δxi , x1 /∈ Kt.

We thus have

In(µ) =
1

n2

n∑
j=2

(
W (x1 − xj) +

1

2
V (x1) +

1

2
V (xj)

)

+
1

n2

n∑
i=2

∑
j ̸=i

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)
+

1

n2

n∑
i=1

V (xi)

>
1

n2

n∑
j=2

n2

n− 1
t = t,

which gives a contradiction.
To prove equi-coercivity, we will show that, for every t ∈ R, the set

Xt =
⋃
n≥2

{
µ ∈ P(R2) : In(µ) ≤ t

}
is relatively compact.

If there exists N ≥ 2 such that

Xt ⊆
N⋃

n=2

{
µ ∈ P(R2) : In(µ) ≤ t

}
,

then the claim follows from the previous result, because Xt is contained in a finite union
of compact sets.

Otherwise, there exists a sequence {µk}k ⊆ Xt such that µk ∈ {µ ∈ P(R2) : Ink
(µ) ≤

t}, with {nk}k strictly increasing. Again, by Prokhorov’s theorem it suffices to show that
{µk}k has a tight subsequence.

For every M > 0, there exists a compact K ⊆ R2 such that

inf
(x,y)∈(K×K)c

W (x− y) +
1

2
V (x) +

1

2
V (y) > M.
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Therefore we have

t ≥ Ink
(µk) =

1

n2k

nk∑
i,j=1
i ̸=j

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)
+

1

n2k

nk∑
i=1

V (xi)

≥ 1

n2k

∑
(i,j)∈Ik

i ̸=j

(
W (xi − xj) +

1

2
V (xi) +

1

2
V (xj)

)

≥M(µk ⊠ µk)((K ×K)c) ≥M

(
(µk ⊗ µk)((K ×K)c)− 1

nk

)
=M

(
1− (µk(K))2 − 1

nk

)
=M

(
(1− µk(K))(1 + µk(K))− 1

nk

)
≥M

(
µk(K

c)− 1

nk

)
,

where µk = 1
nk

∑nk
i=1 δxi and Ik :=

{
(i, j) : (xi, xj) ∈ (K ×K)c

}
.

Choosing M > 0 and k ∈ N such that t
M = ε

2 and 1
nk
< ε

2 , we obtain

µk(K
c) ≤ t

M
+

1

nk
< ε ∀k ≥ k,

hence the subsequence {µk}k≥k is tight. □

Since the family {In}n≥2 is equi-coercive and Γ-converges to I, by the fundamental
theorem of Γ-convergence (Theorem 14) we deduce that I has a minimum. In particular,

min
P(R2)

I = lim
n→+∞

min
P(R2)

In. (2.2.17)

The minimizers of I can be found as the limit of those of the discrete energies In in that,
if {µn}n is a relatively compact sequence such that

lim
n→+∞

In(µn) = lim
n→+∞

min
µ∈P(R2)

In(µ),

then any limit point of {µn}n is a minimizer of I.



CHAPTER 3

Existence and uniqueness of the minimizer and its
characterisation

In this chapter, we focus on the minimization problem for the energy

I(µ) =

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) +

∫
R2

V (x) dµ(x).

We first review some recent results concerning the existence and uniqueness of the mini-
mizer (see e.g. [2–4]) and then we provide a characterisation for the case V (x) = |x|2.

We will start by giving some useful definitions.

Definition 3. Let s ∈ R. The fractional Sobolev space of order s on S1 is

Hs(S1) :=

{
u ∈ D′(S1) :

∑
k∈Z

(
1 + k2

)s |ûk|2 < +∞

}
.

Here, D′(S1) denotes the space of distributions on S1 (which can be identified with the
space of periodic distributions on R2) and {ûk}k∈Z is the sequence of Fourier coefficients

of u. The space Hs(S1), endowed with the inner product

⟨u, v⟩Hs :=
∑
k∈Z

(
1 + k2

)s
ûkv̂k

and the norm
∥u∥Hs :=

∑
k∈Z

(
1 + k2

)s |ûk|2 =√⟨u, u⟩Hs ,

is a Hilbert space. In particular, H0(S1) = L2(S1).

Provided that the order s is high enough, the space Hs(S1) can be embedded into the
space Ck(S1) of k-times continuously differentiable functions.

Theorem 5 (Sobolev embedding). Let k ∈ Z+, s > k + 1
2 . Then, the embedding

Hs(S1) ↪→ Ck(S1)
is continuous, i.e. there exists a constant C > 0 such that ∥u∥Ck ≤ C∥u∥Hs for every
u ∈ Hs(S1).

Moreover, if s > t, we have the compact embedding

Hs(S1) ↪→↪→ Ht(S1).

We recall that the interaction kernel is of the form

W (x) =W0(x) + κ(x), (3.0.1)

where W0 is the Coulomb kernel defined in (2.1.4). For reasons that will become more
clear later, we assume that the anisotropic kernel κ is of class Hs(S1), with s > 3/2.

Owing to Theorem 5, Hs(S1) is continuously embedded into C(S1) for s > 1/2,
therefore κ is continuous on S1, up to modifications on a set of zero measure. Hence, κ is
bounded on R2 \ {0} and there exist two constants C1, C2 ∈ R such that

W0(x) + C1 ≤W (x) ≤W0(x) + C2 ∀x ∈ R2. (3.0.2)

23
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We will now state the following notion of capacity.

Definition 4. Let K ⊆ R2 compact. We define the logarithmic capacity of K as

cap (K) := Φ

(
inf

µ∈P(K)

∫∫
K×K

W0(x− y) dµ(x)dµ(y)

)
,

where

Φ(t) :=

{
e−t if t ∈ R
0 if t = +∞.

For any Borel set U ⊆ R2, we define its logarithmic capacity

cap (U) := sup {cap (K) : K ⊆ U compact} .
A property is said to hold quasi everywhere (q.e.) if it holds up to sets of zero capacity.

The capacity satisfies the following property.

Lemma 3. Let U ⊆ R2 be a Borel set such that cap(U) = 0. Then µ(U) = 0 for every
µ ∈ P(R2) with compact support and such that∫∫

R2×R2

W (x− y) dµ(x)dµ(y) < +∞. (3.0.3)

Moreover, the countable union of sets of zero capacity has zero capacity.

Proof. By contradiction, assume that µ(U) > 0 for a Borel set U ⊆ R2 such that
cap(U) = 0. Then there exists a compact K ⊆ U such that µ(K) > 0. We define

ν :=
1

µ(K)
µ|K .

Because µ has compact support, there exists C > 0 such that

W (x− y) ≥ −C ∀(x, y) ∈ (suppµ)2,

which gives∫∫
K×K
W (x− y) dν(x)dν(y) =

1

µ(K)2

∫∫
K×K
W (x− y) dµ(x)dµ(y)

≤ 1

µ(K)2

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) + C

(
1

µ(K)2
− 1

)
< +∞.

Recalling (3.0.2), we have∫∫
K×K

W0(x− y) dν(x)dν(y) ≤
∫∫

K×K
W (x− y) dν(x)dν(y)− C1 < +∞.

Hence, cap(K) > 0, which contradicts the assumption cap(U) = 0.
To prove the second claim, we consider V =

⋃
n∈N Vn, with cap(Vn) = 0 for every n,

and suppose by contradiction that cap(V ) > 0. Then, there exist K ⊆ V compact and
µ ∈ P(K) such that ∫∫

K×K
W0(x− y) dµ(x)dµ(y) < +∞.

Since µ(K) = 1, there exist n0 ∈ N and a compact Kn0 ⊆ K ∩ Vn0 for which µ(Kn0) > 0.
As above, we define

ν :=
1

µ(Kn0)
µ|Kn0

and observe that∫∫
Kn0×Kn0

W0(x− y) dν(x)dν(y) ≤
∫∫

K×K
W0(x− y) dµ(x)dµ(y) + C < +∞,
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where C = inf
{
W0(x− y) : (x, y) ∈ (suppµ)2

}
.

Therefore, we obtain cap(Kn0) > 0, contradicting the assumption cap(Vn0) = 0. □

In particular, if a property holds quasi everywhere, it also holds µ-almost everywhere
for all measures µ ∈ Pc(R2) satisfying (3.0.3). Notably, this is the class of measures of
relevance for the minimization of I.

In the following, we assume that the confinement potential V is lower semi-continuous,
bounded from below and satisfies

lim
|x|→+∞

(
W0(x) +

1

2
V (x)

)
= +∞ (3.0.4)

and

cap
({
x ∈ R2 : V (x) < +∞

})
> 0. (3.0.5)

3.1. Existence of minimizers

Under the assumptions above, the functional I : P(R2) → R ∪ {+∞}

I(µ) =

∫∫
R2×R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµ(x)dµ(y) (3.1.1)

is well-defined. Indeed, the function (x, y) 7→ W (x − y) + 1
2V (x) + 1

2V (y) is lower semi-
continuous. Since a lower semi-continuous function is bounded from below on a compact
set, by (3.0.2) and (3.0.4) we deduce that the integrand is bounded from below by a
constant c0 < 0. Therefore,

I(µ) ≥
∫∫

R2×R2

c0 dµ(x)dµ(y) = c0 ∀µ ∈ P(R2)

and inf I > −∞. Moreover, by applying Tonelli’s theorem one can see that the defini-
tions (2.2.1) and (3.1.1) are equivalent.

We refer to the term

IW (µ) :=

∫∫
R2×R2

W (x− y) dµ(x)dµ(y)

as interaction energy, while the term

IV (µ) :=

∫
R2

V (x) dµ(x)

is called confinement energy.
The minimization problem for I admits a solution. We have the following result.

Theorem 6 (existence of minimizers). The energy I admits a minimizer µ ∈ P(R2)
such that I(µ) < +∞. Moreover, µ has compact support and satisfies the following Euler-
Lagrange equations: there exists c ∈ R such that

(W ∗ µ)(x) + 1

2
V (x) = c for µ-a.e. x ∈ suppµ, (3.1.2)

(W ∗ µ)(x) + 1

2
V (x) ≥ c for q.e. x ∈ R2. (3.1.3)

Proof. We first prove that inf I < +∞. We write

dom(V ) =
{
x ∈ R2 : V (x) < +∞

}
=
⋃
n∈Z

Kn,

with

Kn :=
{
x ∈ R2 : V (x) ≤ n

}
.
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By assumption (3.0.5) and Lemma 3, we have cap(Kn0) > 0 for some n0 ∈ Z. Therefore,
there exists µ0 ∈ P(Kn0) such that∫∫

R2×R2

W0(x− y) dµ0(x)dµ0(y) < +∞,

which implies ∫∫
R2×R2

W (x− y) dµ0(x)dµ0(y) < +∞.

Moreover, ∫
R2

V (x) dµ0(x) ≤ n0,

therefore I(µ0) < +∞.
The existence of a minimizer can be proved using the direct method of calculus of

variations, i.e. showing that I is lower semi-continuous and that any minimizing sequence
has a converging subsequence. Let {µn}n∈N ⊆ P(R2) be a minimizing sequence, i.e.
I(µn) → inf I. Without loss of generality, we may suppose that I(µn) ≤ C for every
n ∈ N, for some C > 0. By (3.0.2) and assumption (3.0.4), for every M > 0 there exists
a compact KM ⊆ R2 such that

W (x− y) +
1

2
V (x) +

1

2
V (y) ≥M ∀(x, y) /∈ KM ×KM .

Recalling that (x, y) 7→W (x− y) + 1
2V (x) + 1

2V (y) is bounded from below by c0 < 0, we
have

C ≥ I(µn) =

∫∫
R2×R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµn(x)dµn(y)

≥M(µn ⊗ µn)((KM ×KM )c) + c0(µn ⊗ µn)(KM ×KM )

≥Mµn(K
c
M )2 + c0.

Therefore, the sequence {µn}n is tight and, by Theorem 12, it has a subsequence (we still
denote it {µn}n) that converges narrowly to some µ0 ∈ P(R2). By applying Lemma 7,
we can show that I is lower semi-continuous:

I(µ0) =

∫∫
R2×R2

lim inf
n→+∞

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµn(x)dµn(y)

≤ lim inf
n→+∞

∫∫
R2×R2

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµn(x)dµn(y) = lim inf

n→+∞
I(µn).

Hence, µ0 is a minimizer.
We will now prove that, if µ is a minimizer of, then µ ∈ Pc(R2). By (3.0.4), there

exists a compact K ⊆ R2 such that

W (x− y) +
1

2
V (x) +

1

2
V (y) > I(µ) ∀(x, y) ∈ (K ×K)c.

Without loss of generality, we may assume that µ(K) > 0. By contradiction, suppose
that suppµ ̸⊆ K, which implies (µ⊗ µ)((K ×K)c) > 0. We can construct a measure

ν :=
1

µ(K)
µ|K .
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Therefore, we obtain

I(ν) =
1

µ(K)2

∫∫
K×K

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµ(x)dµ(y)

=
1

µ(K)2

(
I(µ)−

∫∫
(K×K)c

(
W (x− y) +

1

2
V (x) +

1

2
V (y)

)
dµ(x)dµ(y)

)

<
1

µ(K)2
I(µ)(1− (µ⊗ µ)((K ×K)c)) = I(µ),

which contradicts the minimality of µ.
We are left to prove (3.1.2) and (3.1.3). Let ν ∈ P(R2) be a measure with compact

support and such that I(ν) < +∞. By minimality of µ, for every ε ∈ (0, 1) we have

I(µ) ≤ I((1− ε)µ+ εν),

which implies

0 ≤ −2ε

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) + 2ε

∫∫
R2×R2

W (x− y) dµ(x)dν(y)

+ ε

∫
R2

V (x) d(ν − µ)(x) +O(ε2)

= −2ε

∫
R2

W ∗ µdµ+ 2ε

∫
R2

W ∗ µdν + 2ε

∫
R2

1

2
V d(ν − µ) +O(ε2).

Dividing by 2ε and letting ε→ 0+, we obtain∫
R2

(
W ∗ µ+

1

2
V

)
dν ≥

∫
R2

(
W ∗ µ+

1

2
V

)
dµ =: c. (3.1.4)

Let Φ :=W ∗ µ+ 1
2V and assume by contradiction that

cap
({
x ∈ R2 : Φ(x) < c

})
> 0.

We note that {x ∈ R2 : Φ(x) < c} is open because Φ is lower semi-continuous, so its
capacity is well-defined. Therefore, there must exist a compact K ⊆ R2 and µ0 ∈ P(K)
such that ∫∫

R2×R2

W (x− y) dµ0(x)dµ0(y) < +∞.

Moreover,∫
R2

1

2
V (x) dµ0(x) <

∫
R2

(c− (W ∗ µ)(x)) dµ0(x)

= c−
∫∫

(suppµ)×K
W (x− y) dµ(y)dµ0(x) < +∞,

(3.1.5)

because (x, y) 7→W (x−y) is bounded from below on the compact set (suppµ)×K. Hence,
µ0 has finite energy and must satisfy (3.1.4), which gives a contradiction with (3.1.5). This
shows that W ∗ µ + 1

2V ≥ c quasi everywhere. By Lemma 3, this inequality is also true

µ-almost everywhere, and by definition of c we deduce that W ∗ µ + 1
2V = c µ-almost

everywhere, which concludes the proof. □

We notice that, while we have assumed κ ∈ C(S1) thanks to the continuous embedding
Hs(S1) ↪→ C(S1), Theorem 6 holds for more general interaction kernels. In particular, the
only regularity assumptions on κ that were required to prove the existence of a minimizer
are lower semi-continuity and boundedness.

However, more regularity is needed to ensure that the minimizer is unique, as we shall
see in the following section.
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3.2. Uniqueness of the minimizer

Uniqueness of the minimizer is guaranteed if the energy functional is strictly convex.
On the other hand, strict convexity is ensured if the Fourier transform of W (provided

that it exists) satisfies the sign condition Ŵ (ξ) ≥ 0 for ξ ̸= 0.
Given a function φ ∈ S(R2), the Schwartz space of rapidly decreasing functions, its

Fourier transform (denoted Fφ or φ̂) is defined by

φ̂(ξ) :=
1

2π

∫
R2

φ(x)e−i⟨x,ξ⟩ dx ∀ξ ∈ R2.

The Fourier transform û of a tempered distribution u ∈ S ′(R2) can thus be defined by
duality as

⟨û|φ⟩ = ⟨u|φ̂⟩ ∀φ ∈ S(R2).

The Coulomb kernel W0 is locally integrable and has sublinear growth, therefore it
defines a tempered distribution and its Fourier transform is well-defined. Observing that
−∆W0 = 2πδ0, we can compute

−∆̂W0(ξ) = |ξ|2Ŵ0(ξ) = 2πδ̂0(ξ) = 1,

which yields Ŵ0(ξ) =
1

|ξ|2 . Since this function is not integrable at 0, it does not define a

tempered distribution. To take into account the singularity at 0, we can interpret Ŵ0 in
a distributional sense as

⟨Ŵ0|φ⟩ = c0φ(0) +

∫
|ξ|≤1

1

|ξ|2
(φ(ξ)− φ(0)) dξ +

∫
|ξ|>1

1

|ξ|2
φ(ξ) dξ ∀φ ∈ S(R2), (3.2.1)

where c0 =
1
2π (γ + lnπ), γ being the Euler-Mascheroni constant.

In order to compute the Fourier transform of the anisotropic kernel, we can consider

its Fourier expansion. Since κ(z) = κ
(

z
|z|

)
for every z ∈ R2, κ is fully determined by the

values that it takes on S1. By parameterizing z ∈ S1 via z = eiθ, with θ ∈ [0, 2π], we can
write κ as a Fourier series of variable θ. Moreover, because κ is even, the series contains
only the even terms. In particular,

κ(z) = κ(eiθ) = a0 +
+∞∑
n=1

(a2n cos(2nθ) + b2n sin(2nθ)) , (3.2.2)

with {a2n}n∈N , {b2n}n∈N ∈ ℓ2(N). We have

cos(nθ) = Re
zn

|z|n
=
ϕn(z)

|z|n
, sin(nθ) = Im

zn

|z|n
=
ψn(z)

|z|n
,

where ϕn, ψn are homogeneous polynomials of degree n. In fact, using binomial expansion,
for z = x+ iy we obtain

ϕn(z) = Re (x+ iy)n = Re

n∑
k=0

(
n

k

)
ikxn−kyk =

n∑
k=0

k even

(
n

k

)
ikxn−kyk

ψn(z) = Im (x+ iy)n = Im

n∑
k=0

(
n

k

)
ikxn−kyk =

n∑
k=0
k odd

(
n

k

)
ik−1xn−kyk.

Hence, we can write

κ(z) = a0 +

+∞∑
n=1

(
a2n

ϕ2n(z)

|z|2n
+ b2n

ψ2n(z)

|z|2n

)
∀z ∈ R2.
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Since the addition of a constant to κ does not affect the minimization problem, we assume
a0 = 0. A straightforward computation shows that ϕn, ψn are harmonic, i.e. ∆ϕn = 0 and
∆ψn = 0. The Fourier transform of κ can thus be computed according to the following
lemma.

Lemma 4. Let ϕ : R2 → R be a harmonic homogeneous polynomial function of degree
n. Then, (

F ϕ( ·)
| · |n

)
(ξ) = cn

ϕ(ξ)

|ξ|n+2
,

where cn is a constant. In particular, c2n = (−1)n2n.

The function ϕ(ξ)
|ξ|n+2 is not integrable at 0, because it behaves like 1

|ξ|2 close to 0.

Therefore, the Fourier transform should be interpreted in a distributional sense as

⟨F ϕ( ·)
| · |n

|φ⟩ = cn

(∫
|ξ|≤1

ϕ(ξ)

|ξ|n+2
(φ(ξ)− φ(0)) dξ +

∫
|ξ|>1

ϕ(ξ)

|ξ|n+2
φ(ξ) dξ

)
∀φ ∈ S(R2).

Hence, the Fourier transform of κ (to be interpreted in a distributional sense as above) is
given by

κ̂(ξ) =

+∞∑
n=1

(
(−1)n2na2n

ϕ2n(ξ)

|ξ|2n+2
+ (−1)n2nb2n

ψ2n(ξ)

|ξ|2n+2

)
. (3.2.3)

This expression makes sense if {2na2n}n∈N , {2nb2n}n∈N ∈ ℓ2(N), i.e. if κ ∈ H1(S1).
By (3.2.1) and (3.2.3), we obtain

Ŵ (ξ) = c0δ0 +
1

|ξ|2
+
κ̂
(

ξ
|ξ|

)
|ξ|2

= c0δ0 +
Ψ̂(ξ)

|ξ|2
, (3.2.4)

where Ψ̂(ξ) := 1 + κ̂
(

ξ
|ξ|

)
and the formula should be interpreted again in a distributional

sense. We note that Ψ̂ is real, as it is the Fourier transform of an even function. In
addition, it is even and homogeneous.

To prove the uniqueness of the minimizer, we will require Ψ̂ to be continuous on S1,
therefore we need κ̂ ∈ C(S1). Because the embedding Hs(S1) ↪→ C(S1) is continuous if
s > 1/2, this is true if κ̂ ∈ Hs(S1) with s > 1/2. By (3.2.3) and writing ξ = eiϑ, we can
express κ̂ on S1 as a Fourier series of variable ϑ:

κ̂(eiϑ) =
+∞∑
n=1

((−1)n2na2n cos(2nϑ) + (−1)n2nb2n sin(2nϑ)).

Therefore, we can determine the Fourier coefficients of κ̂ and compute

∥κ̂∥Hs =
+∞∑
n=1

(
1 + 4n2

)s
4n2
(
a22n + b22n

)
.

On the other hand, by (3.2.2) we have

∥κ∥Hs+1 =
+∞∑
n=1

(
1 + 4n2

)s+1(
a22n + b22n

)
.

Comparing the two expressions, we observe that

∥κ̂∥Hs ≤ ∥κ∥Hs+1 .

Hence, κ̂ ∈ Hs(S1) with s > 1/2 if κ ∈ Hs(S1) with s > 3/2, which justifies our initial
assumption.
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Lemma 5. Let Ψ̂ ≥ 0 on S1 and µ0, µ1 ∈ Pc(R2) with finite interaction energy. Then,
letting ν := µ0 − µ1, we have∫

R2

(W ∗ ν)(x) dν(x) = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ (3.2.5)

In particular, ∫
R2

(W ∗ ν)(x) dν(x) = 0 ⇐⇒ µ0 = µ1. (3.2.6)

Proof. Formally, the idea is to apply Plancherel theorem:∫
R2

(W ∗ ν)(x) dν(x) =
∫
R2

̂(W ∗ ν)(ξ)ν̂(ξ) dξ.

Then, since

Ŵ ∗ ν = 2πŴ ν̂,

we can write∫
R2

(W ∗ ν)(x) dν(x) = 2π

∫
R2

Ŵ (ξ)ν̂(ξ)ν̂(ξ) dξ = 2π

∫
R2

Ŵ (ξ)|ν̂(ξ)|2 dξ.

By (3.2.4), we have∫
R2

Ŵ (ξ)|ν̂(ξ)|2 dξ = c0

∫
R2

|ν̂(0)|2 dξ +
∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ,

and, because

ν̂(0) =
1

2π

∫
R2

dν =
1

2π

(
µ0(R2)− µ1(R2)

)
= 0,

we obtain ∫
R2

(W ∗ ν)(x) dν(x) = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ.

Unfortunately, W and ν are not regular enough to apply Plancherel theorem. To
circumvent this difficulty, we will prove (3.2.5) by approximation.

Let φε(x) :=
1
ε2
φ(xε ) be a mollifier supported in Bε(0), with ε > 0. We consider

νε(x) := (ν ∗ φε)(x) =

∫
R2

φε(x− y) dν(y) ∈ C∞
c (R2) ⊆ S(R2).

Therefore, ν̂ε ∈ S(R2) as well, and

ν̂ε(0) =
1

2π

∫
R2

(∫
R2

φε(x− y) dν(y)

)
dx

=
1

2π

∫
R2

(∫
R2

φε(x− y) dx

)
dν(y) =

1

2π

∫
R2

dν = 0.

We observe that W ∗ νε ∈ C∞(R2). Moreover, because W ∈ S ′(R2) and νε ∈ C∞
c (R2)

(thus νε belongs also to the space E ′(R2) of distributions with compact support), we have1

Ŵ ∗ νε = 2πŴ ν̂ε.

Since ν̂ε(0) = 0, this implies

̂(W ∗ νε)(ξ) = 2π

(
c0δ0 +

Ψ̂(ξ)

|ξ|2

)
ν̂ε(ξ) = 2π

Ψ̂(ξ)

|ξ|2
ν̂ε(ξ) ∈ L1(R2).

1For this result, see for instance Theorem 6.1 in [5].
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In fact, using polar coordinates and recalling that ν̂ε ∈ S(R2), we have∫
R2

| ̂(W ∗ νε)(ξ)| dξ = 2π

∫ 2π

0

∫ +∞

0

|Ψ̂(reiθ)|
r2

|ν̂ε(reiθ)|r drdθ

= 2π

∫ 2π

0
|Ψ̂(eiθ)|

(∫ +∞

0

|ν̂ε(reiθ)|
r

dr

)
dθ < +∞.

We can now apply Plancherel theorem toW ∗νε and νε and obtain an approximate version
of (3.2.5):∫
R2

W∗νε dνε =
∫
R2

(W∗νε)(x)νε(x) dx =

∫
R2

(Ŵ ∗ νε)(ξ)ν̂ε(ξ) dξ = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂ε(ξ)|2 dξ.

Letting ε→ 0+, on the right-hand side we have

ν̂ε(ξ) = 2πν̂(ξ)φ̂(εξ) −→ 2πν̂(ξ)φ̂(0) = ν̂(ξ) ∀ξ ∈ R2,

so Ψ̂(ξ)
|ξ|2 |ν̂ε(ξ)|

2 converges to Ψ̂(ξ)
|ξ|2 |ν̂(ξ)|

2 for a.e. ξ ∈ R2, as ε→ 0+. Since

|φ̂(εξ)| ≤ 1

2π

∫
R2

φ(x) dx =
1

2π
∥φ∥L1 ,

by dominated convergence we obtain

lim
ε→0+

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂ε(ξ)|2 dξ =

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ.

For the left-hand side, a direct computation shows that∫
R2

(W ∗ νε)(x)νε(x) dx =

∫
R2

(∫
R2

W (y)

(∫
R2

φε(x− y − z) dν(z)

)
dy

)(∫
R2

φε(x− t) dν(t)

)
dx

=

∫
R2

∫
R2

∫
R2

W (y)

(∫
R2

φε(y + z − x)φε(x− t) dx

)
dy dν(z)dν(t)

=

∫
R2

∫
R2

∫
R2

W (y)

(∫
R2

φε(y + z + t− x)φε(x) dx

)
dy dν(z)dν(t)

=

∫
R2

∫
R2

(∫
R2

W (y)(φε ∗ φε)(y + z + t) dy

)
dν(z)dν(t)

=

∫
R2

∫
R2

(∫
R2

W (y)(φε ∗ φε)(−z − t− y) dy

)
dν(z)dν(t)

=

∫
R2

(∫
R2

(W ∗ φε ∗ φε)(z + t) dν(z)

)
dν(t)

=

∫
R2

(W ∗ φε ∗ φε ∗ ν)(t) dν(t) =
∫
R2

(W ∗ φε ∗ φε) ∗ ν dν

=

∫
R2

(W ∗ ψε) ∗ ν dν,

with ψε := φε ∗ φε radial, non-negative, compactly supported in B2ε(0) and integrating
to one. The function (x, y) 7→ (W ∗ ψε)(x− y) is continuous, hence bounded from below
on compact sets, and even. Since suppµ0, suppµ1 are compact, by Tonelli’s theorem we
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can thus write∫
R2

(W ∗ ψε) ∗ ν dν =

∫∫
R2×R2

(W ∗ ψε)(x− y) dµ0(y)dµ0(x)

+

∫∫
R2×R2

(W ∗ ψε)(x− y) dµ1(y)dµ1(x)

− 2

∫∫
R2×R2

(W ∗ ψε)(x− y) dµ0(y)dµ1(x).

(3.2.7)

We observe that (W ∗ ψε)(x) → W (x) for every x ∈ R2, as ε → 0+, because W is
continuous. By (3.0.2), we have

(W ∗ ψε)(x) ≤ (W0 ∗ ψε)(x) + C2 ∀x ∈ R2.

Because W0 ∗ψε is harmonic and W0 is superharmonic in R2, then for every B2ε(x) ⊆ R2

we have2

(W0 ∗ ψε)(x) =
1

4πε

∫
∂B2ε(x)

(W0 ∗ ψε)(y) dσ(y) =
1

4πε

∫
∂B2ε(0)

(W0 ∗ ψε)(y − x) dσ(y)

=
1

4πε

∫
∂B2ε(0)

(∫
B2ε(0)

W0(y − x− z)ψε(z) dz

)
dσ(y)

=
1

4πε

∫
∂B2ε(0)

(∫ 2ε

0

∫
∂Bρ(0)

W0(z − (y − x))ψε(z) dσ(z)dρ

)
dσ(y)

=
1

2ε

∫
∂B2ε(0)

∫ 2ε

0

(
1

2πρ

∫
∂Bρ(y−x)

W0(z) dσ(z)

)
ψ̃ε(ρ)ρ dρ dσ(y)

≤ 1

2ε

∫
∂B2ε(0)

∫ 2ε

0
W0(y − x)ψ̃ε(ρ)ρ dρ dσ(y)

= 2π

∫ 2ε

0

(
1

4πε

∫
∂B2ε(x)

W0(y) dσ(y)

)
ψ̃ε(ρ)ρ dρ

≤ 2π

∫ 2ε

0
W0(x)ψ̃ε(ρ)ρ dρ =

∫
B2ε(0)

W0(x)ψε(z) dz =W0(x),

where we have used the fact that W0 and ψε are radial and we denote ψ̃ε(|z|) := ψε(z).
Hence, it follows that

(W0 ∗ ψε)(x) ≤W0(x) ≤W (x)− C1 ∀x ∈ R2.

Combining the two inequalities above, we obtain the upper bound

(W ∗ ψε)(x) ≤W (x)− C1 + C2 ∀x ∈ R2.

By hypothesis, µ0, µ1 have finite interaction energy, therefore by dominated convergence
applied to each term on the right-hand side of (3.2.7) we obtain

lim
ε→0+

∫
R2

(W ∗ ψε) ∗ ν dν =

∫
R2

W ∗ ν dν,

2We recall that a function φ : Ω → R ∪ {+∞}, with Ω ⊆ Rn open, is superharmonic if:

• φ is lower semi-continuous;

• for every closed ball Br(x) ⊆ Ω, it satisfies the inequality

φ(x) ≥ 1

σ(∂Br(x))

∫
∂Br(x)

φ(y) dσ(y),

where σ denotes the surface measure on the n-sphere.

If φ ∈ C2(Ω), the equality holds if and only if φ is harmonic, i.e. ∆φ = 0 on Ω.
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which proves (3.2.5).
To prove the last claim, assume that

0 =

∫
R2

(W ∗ ν)(x) dν(x) = 2π

∫
R2

Ψ̂(ξ)

|ξ|2
|ν̂(ξ)|2 dξ.

We observe that Ψ̂(ξ0) > 0 for some ξ0 ∈ S1, otherwise Ŵ = c0δ0, which would imply W

to be constant. Since Ψ̂ is continuous on S1, there exist η > 0, r > 0 such that Ψ̂(ξ) > η
for every ξ ∈ Br(ξ0). Therefore, we should have ν̂ = 0 on Br(ξ0). On the other hand,
since ν ∈ E ′(R2), by Paley-Wiener-Schwartz theorem, its Fourier transform ν̂ is an entire
function. Hence, ν̂ = 0 on the whole R2, which implies ν = 0. □

We are now able to prove the main result of this section.

Theorem 7 (uniqueness of the minimizer). If Ψ̂ ≥ 0 on S1, the functional I is strictly
convex on the class of compactly supported measures with finite interaction energy.

In particular, the minimizer is unique. Moreover, a measure µ ∈ Pc(R2), with I(µ) <
+∞, minimizes I if and only if it satisfies the Euler-Lagrange equations (3.1.2)-(3.1.3).

Proof. Let µ0, µ1 ∈ Pc(R2), with IW (µ0), IW (µ1) < +∞. By Lemma 5, we have∫
R2

W ∗ (µ0 − µ1) d(µ0 − µ1) ≥ 0,

which implies ∫
R2

W ∗ µ0 dµ0 +
∫
R2

W ∗ µ1 dµ1 ≥ 2

∫
R2

W ∗ µ0 dµ1.

For t ∈ [0, 1], we define µt := (1− t)µ0 + tµ1 ∈ Pc(R2). Therefore,∫
R2

W ∗ µt dµt = (1− t)2
∫
R2

W ∗ µ0 dµ0 + t2
∫
R2

W ∗ µ1 dµ1 + 2t(1− t)

∫
R2

W ∗ µ0 dµ1

≤ (1− t)

∫
R2

W ∗ µ0 dµ0 + t

∫
R2

W ∗ µ1 dµ1,

where, by (3.2.6), the equality holds if and only if µ0 = µ1. Moreover,∫
R2

V dµt = (1− t)

∫
R2

V dµ0 + t

∫
R2

V dµ1,

hence we deduce that I is strictly convex.
This implies that the minimizer is unique. In fact, suppose by contradiction that µ0,

µ1 are both minimizers of I, with µ0 ̸= µ1 and I(µ0) = I(µ1) = m < +∞ (which is
guaranteed by Theorem 6). Considering µt = (1− t)µ0 + tµ1 with t ∈ [0, 1] as above, we
obtain

I(µt) < (1− t)I(µ0) + tI(µ1) = m,

which contradicts the minimality of µ0, µ1.
Finally, we prove that if a compactly supported measure with finite energy satisfies

the Euler-Lagrange equations (3.1.2)-(3.1.3), then it is the minimizer of I. By Theorem 6,
there exists a minimizer µ that satisfies (3.1.2)-(3.1.3) for some constant cµ ∈ R. Assume
that there exists another measure ν ∈ Pc(R2) with I(ν) < +∞, ν ̸= µ, that satisfies the
Euler-Lagrange equations for a constant cν ∈ R. Letting µt := (1− t)µ+ tν for t ∈ (0, 1),
we have

(W ∗ µt +
1

2
V )(x) =

∫
R2

W (x− y) +
1

2
V (x) dµt(y)

= (1− t)

∫
R2

W (x− y) +
1

2
V (x) dµ(y) + t

∫
R2

W (x− y) +
1

2
V (x) dν(y)

= (1− t)cµ + tcν .
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Therefore,∫
R2

(
W ∗ µt +

1

2
V

)
dµt =

∫
R2

(1− t)cµ + tcν dµt = (1− t)cµ + tcν

= (1− t)

∫
R2

(
W ∗ µ+

1

2
V

)
dµ+ t

∫
R2

(
W ∗ ν + 1

2
V

)
dν.

On the other hand, by strict convexity∫
R2

(
W ∗ µt +

1

2
V

)
dµt < (1− t)

∫
R2

(
W ∗ µ+

1

2
V

)
dµ+ t

∫
R2

(
W ∗ ν + 1

2
V

)
dν,

which gives a contradiction. □

3.3. Characterisation of minimizers for quadratic confinement

In this section, we will discuss the case of quadratic confinement, i.e. V (x) = |x|2.
This confinement potential clearly satisfies the assumptions established in the beginning,
being continuous, non-negative and fulfilling (3.0.4)-(3.0.5), and therefore guarantees the
existence and uniqueness of the minimizer. In addition, with this particular choice of the
confinement, we can also give an explicit characterisation of the shape of the minimizer.

We consider two distinct cases: isotropic and anisotropic energy.

3.3.1. Isotropic energy. First we consider the case of isotropic energy, that is, the
interaction energy does not depend on the direction (i.e. the energy functional is invariant
of rotations). This corresponds to κ = 0, and the energy functional reduces to

I(µ) =

∫∫
R2×R2

W0(x− y) dµ(x)dµ(y) +

∫
R2

|x|2 dµ(x). (3.3.1)

The minimizer µ0 ∈ Pc(R2) must also be invariant of rotations. Otherwise, we would
obtain another minimizer by considering the push-forward of µ0 through a rotation R ∈
SO(2), i.e.

µ1(A) := µ0(R
TA) ∀A ∈ B(R2),

which would contradict the uniqueness of the minimizer.
By the Euler-Lagrange equation (3.1.2), we have that µ0 must satisfy

(W0 ∗ µ0)(x) +
1

2
|x|2 = c for µ0-a.e. x ∈ suppµ0,

which, recalling that ∆W0 = −2πδ0, implies

∆W0 ∗ µ0 + 2 = −2πµ0 + 2 = 0 on suppµ0.

Hence, the minimizer of I must be constant on its support, i.e. it is a uniform probability
measure. Indeed, we have the following result.

Theorem 8. The minimizer of the isotropic energy (3.3.1) is given by the measure

µ0 =
1

π
χB1(0)L

2, (3.3.2)

i.e. the uniform probability distribution on the unit ball. This is also called circle law.

Proof. We need to show that µ0 satisfies the Euler-Lagrange equations. By a change
of coordinates, we can write

(W0 ∗ µ0)(x) =
1

π

∫
B1(0)

W0(x− y) dy =
1

π

∫ 1

0

∫ 2π

0
W0(x− reiθ)r dθdr.

Then, we have

1

2π

∫ 2π

0
W0(x− reiθ) dθ =

{
− ln |x| if r ≤ |x|
− ln r if r > |x|.

(3.3.3)
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In fact, since W0 is harmonic on R2 \ {0}, if r < |x|, by the mean value property of
harmonic functions we have

− ln |x| =W0(x) =
1

2πr

∫
∂Br(x)

W0(y) dσ(y) =
1

2π

∫ 2π

0
W0(x− reiθ) dθ.

Analogously, denoting x = |x|eiθ1 with θ1 ∈ [0, 2π], if r > |x|, we obtain

− ln r =W0(re
iθ1) =

1

2π|x|

∫
∂B|x|(re

iθ1 )
W0(y) dσ(y) =

1

2π

∫ 2π

0
W0(re

iθ1 − |x|eiθ) dθ

=
1

2π

∫ 2π

0
W0(re

−iθ − |x|e−iθ1) dθ =
1

2π

∫ 2π

0
W0(|x|eiθ1 − reiθ) dθ

=
1

2π

∫ 2π

0
W0(x− reiθ) dθ =

1

2π

∫ 2π

0
W0(x− reiθ) dθ.

If r = |x|, we apply dominated convergence:

1

2π

∫ 2π

0
W0(x− reiθ) dθ = lim

ε→0+

1

2π

∫ 2π

0
W0(x− (r − ε)eiθ) dθ = − ln |x|.

Using (3.3.3), we compute

1

π

∫ 1

0

(∫ 2π

0
W0(x− reiθ) dθ

)
r dr =


−2

(∫ x

0
ln |x|r dr +

∫ 1

x
ln(r)r dr

)
if |x| ≤ 1

−2

∫ 1

0
ln |x|r dr if |x| > 1,

which yields

(W0 ∗ µ0)(x) =


1

2

(
1− |x|2

)
if |x| ≤ 1

− ln |x| if |x| > 1.

Hence, we obtain

(W0 ∗ µ0)(x) +
1

2
|x|2 = 1

2
if x ∈ B1(0)

and

(W0 ∗ µ0)(x) +
1

2
|x|2 = − ln |x|+ 1

2
|x|2 ≥ 1

2
if x /∈ B1(0),

therefore µ0 satisfies the Euler-Lagrange equations (3.1.2)-(3.1.3) with c = 1
2 , thus being

the unique minimizer of I. □

3.3.2. Anisotropic energy. Now we consider the more general case of anisotropic
energy, i.e. κ ̸= 0. The energy functional is

I(µ) =

∫∫
R2×R2

(W0(x− y) + κ(x− y)) dµ(x)dµ(y) +

∫
R2

|x|2 dµ(x), (3.3.4)

with κ of class Hs(S1), s > 3/2, as assumed in the beginning.
Perhaps not surprisingly, the shape of the minimizer can be related to the sign of

the Fourier transform Ψ̂, which already played a central role in the uniqueness of the

minimizer. We first suppose that Ψ̂ is strictly positive.

Theorem 9. Let Ψ̂ > 0 on S1. Then, the minimizer of the anisotropic energy (3.3.4)
is given by the measure

µ =
1

|E|
χEL2, (3.3.5)
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where E is the elliptic domain E = RE0, with

E0 =

{
(x1, x2) ∈ R2 :

x21
a21

+
x22
a22

≤ 1

}
, a21 + a22 = 2 and R ∈ SO(2).

Proof. As we did in the isotropic case, we want to show that µ satisfies the Euler-
Lagrange equations (3.1.2)-(3.1.3). To this end, we need to compute W ∗ µ. The idea

is to retrieve its expression by calculating the inverse Fourier transform of Ŵ ∗ µ. Since

Ŵ is not a function, but rather a tempered distribution, we apply this reasoning to the
Fourier transform of ∇(W ∗µ) (note that the gradient exists as W ∗µ ∈ C1(R2)). In fact,

̂∇(W ∗ µ)(ξ) = iξ ̂(W ∗ µ)(ξ) = 2πiξŴ (ξ)µ̂(ξ),

and

iξŴ (ξ) = iξ

(
c0δ0 +

Ψ̂(ξ)

|ξ|2

)
= iξ

Ψ̂(ξ)

|ξ|2
,

because the factor ξ cancels out the singular part of Ŵ . Therefore, we have

̂∇(W ∗ µ)(ξ) = 2πiξ
Ψ̂(ξ)

|ξ|2
µ̂(ξ).

To compute the Fourier transform µ̂ we reason as follows. Writing a = (a1, a2) ∈ R2

and

D(a) :=

[
a1 0
0 a2

]
,

we have E = RD(a)B1(0), therefore

χE(x) = χB1(0)((RD(a))−1x). (3.3.6)

The Fourier transform of χB1(0) is given by

χ̂B1(0)(ξ) =
J1(|ξ|)
|ξ|

, (3.3.7)

where J1 is the Bessel function of first kind of order 1, which can be expressed as3

J1(|ξ|) =
+∞∑
k=0

(−1)k

k!(k + 1)!

(
|ξ|
2

)2k+1

.

From this expression, we observe that

J1(|ξ|) ≃
1

2
|ξ| as |ξ| → 0.

Moreover,

|J1(|ξ|)| ≤ C|ξ|−
1
2 as |ξ| → +∞.

By (3.3.6) and (3.3.7), we have

χ̂E(ξ) =
1

2π

∫
R2

χE(x)e
−i⟨x,ξ⟩ dx =

1

2π

∫
R2

χB1(0)(x)e
−i⟨x,D(a)RT ξ⟩| det(D(a))| dx

=
|E|
π
χ̂B1(0)(D(a)RT ξ) =

|E|
π

J1(|D(a)RT ξ|)
|D(a)RT ξ|

,

therefore we obtain

µ̂(ξ) =
1

π

J1(|D(a)RT ξ|)
|D(a)RT ξ|

.

3See formula 9.1.10 in [6].
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Hence,

̂∇(W ∗ µ)(ξ) = 2iξ
Ψ̂(ξ)

|ξ|2
J1(|D(a)RT ξ|)
|D(a)RT ξ|

,

which belongs to L1(R2). In fact, due to the properties of Ψ̂ and J1, we have∫
R2

| ̂∇(W ∗ µ)(ξ)| dξ = 2

∫ 2π

0

∫ +∞

0

|Ψ̂(reiθ)|
r

|J1(|D(a)RT reiθ|)|
|D(a)RT reiθ|

r drdθ

= 2

∫ 2π

0
|Ψ̂(eiθ)|

(∫ +∞

0

|J1(r|D(a)RT eiθ|)|
r|D(a)RT eiθ|

dr

)
dθ < +∞.

We can thus apply the Fourier inversion formula, which gives

∇(W ∗ µ)(x) =
∫
R2

iξ
Ψ̂(ξ)

|ξ|2
µ̂(ξ)ei⟨x,ξ⟩ dξ = −

∫
R2

ξ
Ψ̂(ξ)

|ξ|2
µ̂(ξ) sin(⟨x, ξ⟩) dξ,

where the last equality descends from the fact that Ψ̂ and µ̂ are even. By the change of
variables ξ = rz, with (r, z) ∈ [0,+∞)× S1, we obtain∫

R2

ξ
Ψ̂(ξ)

|ξ|2
µ̂(ξ) sin(⟨x, ξ⟩) dξ =

∫
S1

∫ +∞

0
zΨ̂(rz)µ̂(rz) sin(r⟨x, z⟩) drdσ(z)

=
1

π

∫
S1

∫ +∞

0
zΨ̂(z)

J1(r|D(a)RT z|)
r|D(a)RT z|

sin(r⟨x, z⟩) drdσ(z),

therefore

∇(W ∗ µ)(x) = − 1

π

∫
S1

zΨ̂(z)

|D(a)RT z|

(∫ +∞

0

J1(ρ)

ρ
sin(ρα(x, z)) dρ

)
dσ(z), (3.3.8)

where ρ := r|D(a)RT z| and α(x, z) := ⟨x,z⟩
|D(a)RT z| .

The integral on the right-hand side can be computed using∫ +∞

0

J1(ρ)

ρ
sin(ρα) dρ =


α if 0 ≤ α ≤ 1

1

α+
√
α2 − 1

if α > 1
(3.3.9)

and observing that |α(x, z)| ≤ 1 for every x ∈ E, because

|⟨x, z⟩| = |⟨(RD(a))−1x,D(a)RT z⟩| ≤ |(RD(a))−1x||D(a)RT z| ≤ |D(a)RT z|.

Hence, we conclude that, for every x ∈ E,

∇(W ∗ µ)(x) = − 1

π

∫
S1

Ψ̂(z)

|D(a)RT z|
α(x, z)z dσ(z) = − 1

π

∫
S1

Ψ̂(z)

|D(a)RT z|2
⟨x, z⟩z dσ(z).

From this expression, we note that ∇(W ∗µ) is a linear homogeneous polynomial. There-
fore, up to a constant, W ∗ µ is a quadratic homogeneous polynomial inside E.

We need to find a1, a2 > 0 and R ∈ SO(2) that satisfy the Euler-Lagrange equa-
tion (3.1.2). This is equivalent to satisfying

∇(W ∗ µ)(x) + x = 0 ∀x ∈ E.

Therefore, we need to solve the following system of three equations:

1

π

∫
S1

Ψ̂(z)

|D(a)RT z|2
zjzk dσ(z) = δjk for j, k = 1, 2, (3.3.10)

where δjk denotes the Kronecker delta. We observe that

|D(a)RT z|2 = ⟨D(a)RT z,D(a)RT z⟩ = ⟨Mz, z⟩, with M := RD(a)2RT ∈ SPD(2),
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where SPD(2) denotes the set of 2 × 2 symmetric positive-definite matrices. Therefore,
solving with respect to a1, a2, R is equivalent to finding M ∈ SPD(2) that satisfies

1

π

∫
S1

Ψ̂(z)

⟨Mz, z⟩
zjzk dσ(z) = δjk for j, k = 1, 2. (3.3.11)

Denoting by Mjk the elements of M and multiplying both sides of the equation by Mjk,
we obtain

tr(M) =M11 +M22 =
1

π

∫
S1
Ψ̂(z) dσ(z) =

1

π

∫
S1
(1 + κ̂(z)) dσ(z) = 2

and, since tr(M) = a21 + a22, the semi-axes of E0 must satisfy

a21 + a22 = 2.

We define f : SPD(2) → R,

f(M) := − 1

π

∫
S1
Ψ̂(z) ln(⟨Mz, z⟩) dσ(z) + tr(M).

We note that M0 ∈ SPD(2) is a solution of (3.3.11) if it is a critical point of f , i.e.
∇Mf(M0) = 0, with ∇M = ( ∂

∂M11
, ∂
∂M12

, ∂
∂M22

). We will show that f has a minimum

in the open set SPD(2), therefore it also has a critical point, which is thus a solution
of (3.3.11). For a fixed M and for t > 0, we consider

f(tM) = − 1

π

∫
S1
Ψ̂(z) ln(⟨Mz, z⟩) dσ(z)− 2 ln(t) + t tr(M)

as a function of t and observe that it is minimized when t = 2
tr(M) . Therefore, minimizing

f on SPD(2) is equivalent to minimizing it on the subset

M = {M ∈ SPD(2) : tr(M) = 2} .

By the spectral theorem, every matrix M ∈ M can be decomposed as

M = QD(b)QT ,

with Q ∈ SO(2) and b = (β, 2− β), β ∈ (0, 2). Hence, for M ∈ M, we can write

f(M) = − 1

π

∫
S1
Ψ̂(z) ln(⟨QD(b)QT z, z⟩) dσ(z) + 2

= − 1

π

∫
S1
Ψ̂(Qz) ln(βz21 + (2− β)z22) dσ(z) + 2.

We define ψ : [0, 2]× SO(2) → R,

ψ(β,Q) := − 1

π

∫
S1
Ψ̂(Qz) ln(βz21 + (2− β)z22) dσ(z),

and look for a minimizer in (0, 2) × SO(2). The function ψ is continuous, therefore it
admits a minimizer (β0, Q0) in the compact set [0, 2] × SO(2). We need to prove that
β0 ̸= 0, 2.
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By assumption, there exists C0 > 0 such that Ψ̂(ξ) ≥ C0 for every ξ ∈ S1. Hence,
∂

∂β
ψ(β,Q0) = − 1

π

∫
S1
Ψ̂(Q0z)

z21 − z22
βz21 + (2− β)z22

dσ(z)

=
1

π

∫
S1
Ψ̂(Q0z)

2z22 − 1

βz21 + (2− β)z22
dσ(z)

≤ 1

π

(∫
S1
Ψ̂(Q0z)

2

2− β
dσ(z)−

∫
S1
C0

1

βz21 + (2− β)z22
dσ(z)

)
=

4

2− β
− 1

π

∫
S1

C0

βz21 + (2− β)z22
dσ(z).

By Fatou’s lemma, we have

lim inf
β→0+

1

π

∫
S1

C0

βz21 + (2− β)z22
dσ(z) ≥ 1

π

∫
S1

C0

2z22
dσ(z)

=
C0

2π

∫ 2π

0

1

sin2(θ)
dθ =

C0

2π
[− cot(θ)]2π0 = +∞,

therefore ∂
∂βψ(β,Q0) → −∞ as β → 0+. We deduce that there exists δ > 0 such that

∂
∂βψ(β,Q0) < 0 for every β ∈ (0, δ). Hence, β0 ̸= 0. Repeating the same reasoning for

β → 2−, we can show that β0 ̸= 2 as well. This proves the existence of a critical point for
f , that is, a solution of (3.3.11).

We are left to show that µ satisfies the second Euler-Lagrange equation (3.1.3). This
is true if (W ∗ µ)(x) + 1

2 |x|
2 increases in the outward normal direction to ∂E, i.e.

⟨∇(W ∗ µ)(x) + x, x⟩ = ⟨∇(W ∗ µ)(x), x⟩+ |x|2 ≥ 0 ∀x ∈ R2 \ E.
Every x ∈ R2 \ E can be written as x = tx0 for some x0 ∈ E and t > 0. By the first
Euler-Lagrange equation, we have

⟨∇(W ∗ µ)(x0), x0⟩+ |x0|2 ≥ 0,

which yields

− 1

π

∫
S1
Ψ̂(z)α2(x0, z) dσ(z) + |x0|2 = 0.

Multiplying by t2, we obtain

− 1

π

∫
S1
Ψ̂(z)α2(x, z) dσ(z) + |x|2 = 0. (3.3.12)

On the other hand, by (3.3.8) and (3.3.9), we find

⟨∇(W ∗ µ)(x), x⟩ =− 1

π

∫
S1
Ψ̂(z)α2(x, z)χ[0,1](|α(x, z)|) dσ(z)

− 1

π

∫
S1
Ψ̂(z)

|α(x, z)|
|α(x, z)|+

√
α2(x, z)− 1

χ(1,+∞)(|α(x, z)|) dσ(z).

Together with (3.3.12), this implies

⟨∇(W ∗ µ)(x), x⟩+ |x|2 = 1

π

∫
S1
Ψ̂(z)α2(x, z)χ(1,+∞)(|α(x, z)|) dσ(z)

− 1

π

∫
S1
Ψ̂(z)

|α(x, z)|
|α(x, z)|+

√
α2(x, z)− 1

χ(1,+∞)(|α(x, z)|) dσ(z)

=
1

π

∫
S1
Ψ̂(z)|α(x, z)|

√
α2(x, z)− 1χ(1,+∞)(|α(x, z)|) dσ(z) ≥ 0,

which concludes the proof. □
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Now, we will consider the more general case of a non-negative Ψ̂. Remarkably, we

will observe that in the degenerate case, i.e. if Ψ̂(ξ) = 0 for some ξ ∈ S1, the shape of the
minimizer may change radically.

Theorem 10. Let Ψ̂ ≥ 0 on S1. Then, the minimizer of the anisotropic energy is
either as in (3.3.5) or is the push-forward of the so-called semicircle law,

1

π
δ0(x1)⊗

√
2− x22H

1|[−√
2,
√
2](x2), (3.3.13)

through a rotation map ρ(x) = Rx, with R ∈ SO(2) such that Ψ̂(Re1) = 0.4

Proof. Let ε > 0. We consider the following approximation of I:

Iε(µ) :=

∫∫
R2×R2

Wε(x− y) dµ(x)dµ(y) +

∫
R2

|x|2 dµ(x),

where Wε is the approximation of W given by

Wε(x) := (1 + ε)W0(x) + κ(x).

The corresponding Fourier transform is

Ŵε(ξ) = cεδ0 +
Ψ̂ε(ξ)

|ξ|2
,

where Ψ̂ε := Ψ̂ + ε > 0 on S1. Hence, by the previous theorem, Iε admits a unique
minimizer µε of the form

µε =
1

|Eε|
χEεL2,

where Eε = RεE0,ε, with

E0,ε =

{
(x1, x2) ∈ R2 :

x21
a21,ε

+
x22
a22,ε

≤ 1

}
, a21,ε + a22,ε = 2 and Rε ∈ SO(2).

For every ε > 0, we have that suppµε ⊆ B√
2(0), therefore the sequence {µε}ε>0 is tight.

By Prokhorov’s theorem, {µε}ε>0 converges narrowly to a measure µ0 ∈ Pc(R2), up to
subsequences. We will show that µ0 is the minimizer of I.

Since W0 is bounded from below on suppµε by a constant c0 < 0, we have

Iε(µε) = I(µε) +

∫∫
R2×R2

εW0(x− y) dµε(x)dµε(y) ≥ I(µε) + c0ε,

therefore, by lower semi-continuity of I,

lim inf
ε→0+

Iε(µε) ≥ lim inf
ε→0+

I(µε) ≥ I(µ0).

Moreover, by minimality of µε, one has that

lim sup
ε→0+

Iε(µε) ≤ lim
ε→0+

Iε(µ) = I(µ)

for every µ ∈ Pc(R2) such that
∫∫

R2×R2 W (x− y) dµ(x)dµ(y) < +∞. Because this is the

class of admissible minimizers for I, then µ0 is the minimizer of I on P(R2).
To deduce the shape of µ0, we observe that, up to subsequences, a1,ε → a1, a2,ε → a2

and Rε → R as ε→ 0+. Also, a1, a2 ≥ 0, a21+a
2
2 = 2 and R ∈ SO(2). We have two cases.

If both a1 and a2 are strictly positive, then

µ0 =
1

|E|
χEL2,

4Here, H1|[−√
2,
√
2] denotes the restriction of the 1-dimensional Hausdorff measure to the interval[

−
√
2,
√
2
]
.
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with E = RE0 and

E0 =

{
(x1, x2) ∈ R2 :

x21
a21

+
x22
a22

≤ 1

}
.

If either a1 = 0 or a2 = 0, then the ellipse E0 becomes degenerate.
Suppose that a1 = 0 and a2 =

√
2. For every φ ∈ Cb(R2), we have

1

|Eε|

∫
R2

φ(x)χE0,ε(x) dx =
1

πa1,εa2,ε

∫∫{
|x2|≤a2,ε, |x1|≤a1,ε

√
1−

x2
2

a22,ε

} φ(x1, x2) dx1dx2

=
1

πa1,εa2,ε

∫∫
{|x2|≤a2,ε, |x1|≤a1,ε}

φ

(√
1− x2

2

a22,ε
x1, x2

)√
1− x2

2

a22,ε
dx1dx2,

where in the last line we have used the change of variables (x1, x2) 7→

((
1− x2

2

a22,ε

)− 1
2

x1, x2

)
.

Passing to the limit for ε→ 0+, we obtain

lim
ε→0+

1

πa1,εa2,ε

∫∫
{|x2|≤a2,ε, |x1|≤a1,ε}

φ

(√
1− x2

2

a22,ε
x1, x2

)√
1− x2

2

a22,ε
dx1dx2

=

∫∫
R2

lim
ε→0+

(
1

πa1,εa2,ε
φ

(√
1− x2

2

a22,ε
x1, x2

)√
1− x2

2

a22,ε
χ[−a1,ε,a1,ε](x1)χ[−a2,ε,a2,ε](x2)

)
dx1dx2

=

∫
R

lim
ε→0+

1

πa1,εa2,ε

(∫
R
φ

(√
1− x2

2

a22,ε
x1, x2

)
χ[−a1,ε,a1,ε](x1) dx1

)√
1− x2

2

a22,ε
χ[−a2,ε,a2,ε](x2) dx2

=

∫
R

1√
2π

(∫
R

lim
ε→0+

1

ε
φ

(√
1− x2

2
2 x1, x2

)
χ[−ε,ε(x1) dx1

)√
1− x2

2
2 χ[−

√
2,
√
2](x2) dx2.

We note that, denoting by F ∈ C1(R) a primitive of the function x1 7→ φ

(√
1− x2

2
2 x1, x2

)
,

one has∫
R

lim
ε→0+

1

ε
φ

(√
1− x2

2
2 x1, x2

)
χ[−ε,ε](x1) dx1 = lim

ε→0+

∫
R

1

ε
φ

(√
1− x2

2
2 x1, x2

)
χ[−ε,ε](x1) dx1

= lim
ε→0+

F (ε)− F (−ε)
ε

= lim
ε→0+

2F ′(ε)

= lim
ε→0+

2φ

(√
1− x2

2
2 ε, x2

)
= 2φ(0, x2).

Therefore, we conclude that

lim
ε→0+

1

|Eε|

∫
R2

φ(x)χE0,ε(x) dx =
1

π

∫
R
φ(0, x2)

√
2− x22χ[−

√
2,
√
2](x2) dx2,

that is, the measure 1
|Eε|χE0,εL2 converges narrowly to the measure

µs =
1

π
δ0 ⊗

√
2− x22H

1|[−√
2,
√
2].

Hence, upon defining the rotation maps ρε(x) := Rεx and ρ(x) := Rx, we have

µε =
1

|Eε|
χRεE0,εL2 = ρε∗

(
1

|Eε|
χE0,εL2

)
∗−−⇀ ρ∗(µs) = µ0.

Similarly, if a1 =
√
2 and a2 = 0, we have that µ0 is the push-forward of µs through a

rotation map ρ(x) = RJx, where J ∈ SO(2) corresponds to a rotation of π/2.
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Finally, we prove that Ψ̂(Re1) = 0. Without loss of generality, assume that a1 = 0
and a2 =

√
2. By (3.3.10) and denoting aε = (a1,ε, a2,ε), we obtain, for j = 1, 2,

1

π

∫
S1

Ψ̂ε(z)

|D(aε)RT
ε z|2

|⟨z, ej⟩|2 dσ(z) =
1

π

∫
S1

Ψ̂(Rεz) + ε

a21,εz
2
1 + a22,εz

2
2

|⟨Rεz, ej⟩|2 dσ(z) = 1.

Therefore, summing over j and applying Fatou’s lemma, we find

1

2π

∫
S1

Ψ̂(Rz)

z22
dσ(z) ≤ lim inf

ε→0+

1

π

∫
S1

Ψ̂(Rεz) + ε

a21,εz
2
1 + a22,εz

2
2

dσ(z) = 2.

On the other hand,

1

2π

∫
S1

Ψ̂(Rz)

z22
dσ(z) =

1

2π

∫ 2π

0

Ψ̂(Reit)

sin2(t)
dt,

and the integral converges only if Ψ̂(Reit) = 0 for t = 0 and t = π. Hence, we conclude

that Ψ̂(Re1) = 0. □

Interestingly, we observe that if Ψ̂ vanishes somewhere on S1, the minimizer may
exhibit a loss of dimensionality, in that its support reduces to a segment.

However, this condition is only necessary. In fact, one can show examples of κ for

which Ψ̂(ξ) = 0 for some ξ ∈ S1, while the minimizer is still supported on an ellipse. At
present, the question of under which conditions the loss of dimensionality occurs is still
open. We might conjecture that the minimizer exhibits a loss of dimensionality only if

the region where Ψ̂ is sufficiently large. In the next chapter, we will propose a numerical
method to further investigate this question.

3.4. An example: the dislocation energy

We conclude this chapter by showing a concrete example of anisotropic energy coming
from material science. For a linear elastic material (e.g. a metal), the interaction energy
of a 2-dimensional system of dislocations is given by∫∫

R2×R2

(W0(x− y) + κ(x− y)) dµ(x)dµ(y),

with

κ(x) = −1

4

a+ b

a
ln

(
x21 + (a+ b)2x22

|x|2

)
+

1

4

b− a

a
ln

(
x21 + (b− a)2x22

|x|2

)
,

where 0 < a < b are constants depending on the material.5 In particular, if the material
is isotropic, i.e. its mechanical properties do not depend on the orientation, then a→ 0+

and b = 1, therefore the anisotropic kernel reduces to

κ(x) =
x21
|x|2

.

More generally, we can consider an interaction kernel of the form

Wα(x) = − ln |x|+ α
x21
|x|2

,

where the parameter α ∈ R represents the degree of anisotropy of the interaction. Note
that, if α = 0, we retrieve the Coulomb kernel W0. If we assume that the confinement
potential is quadratic, the energy becomes

Iα(µ) =

∫∫
R2×R2

Wα(x− y) dµ(x)dµ(y) +

∫
R2

|x|2 dµ(x). (3.4.1)

5For an in-depth discussion of dislocations in anisotropic materials see Chapters 13-3 and 13-4 in [7].
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Since

κα(x) := α
x21
|x|2

=
α

2

x21 − x22
|x|2

+
α

2
,

by Lemma 4 its Fourier transform is given by

κ̂α(ξ) = −αξ
2
1 − ξ22
|ξ|4

+ παδ0.

Therefore,

Ŵα(ξ) = (c0 + πα)δ0 +
Ψ̂α(ξ)

|ξ|2
,

where

Ψ̂α(ξ) = 1 + κ̂α

(
ξ

|ξ|

)
= (1− α)

ξ21
|ξ|2

+ (1 + α)
ξ22
|ξ|2

.

We note that the sign of Ψ̂α depends on the value of α. If α < 1, then Ψ̂α > 0 on S1.
Theorem 9 thus ensures that the minimizer of (3.4.1) is of the form (3.3.5). The ellipse
Eα can be found noticing that Wα is symmetric with respect to the coordinate axes x1
and x2, i.e. Wα(−x1, x2) =Wα(x1, x2) =Wα(x1,−x2) for every (x1, x2) ∈ R2. Therefore,
the minimizer must respect this symmetry, which implies that the rotation matrix R is
equal to the identity and

Eα = E0,α =

{
(x1, x2) ∈ R2 :

x21
a21,α

+
x22
a22,α

≤ 1

}
.

The semiaxes a1,α, a2,α can be computed solving (3.3.10), which gives

1

π

∫
S1

(1− α)z21 + (1 + α)z22
a21,αz

2
1 + a22,αz

2
2

z2j dσ(z) = 1 for j = 1, 2.

A simple computation shows that a1,α =
√
1− α, a2,α =

√
1 + α is a solution of the

system. In fact, since the minimizer is unique, it is the only solution. Hence, if |α| < 1,
the minimizer is

µα =
1

|Eα|
χEαL2, (3.4.2)

with

Eα =

{
(x1, x2) ∈ R2 :

x21
1− α

+
x22

1 + α
≤ 1

}
.

If α = 1, then Ψ̂α ≥ 0 on S1. Reasoning as in the proof of Theorem 10, we observe
that the minimizer of I1 is the limit of the minimizer of Iα as α→ 1−. This results in the
semicircle law

µ1 =
1

π
δ0 ⊗

√
2− x22H

1|[−√
2,
√
2]. (3.4.3)

If α = −1, we can apply the same reasoning for α→ −1+, which yields

µ−1 =
1

π

√
2− x21H

1|[−√
2,
√
2] ⊗ δ0, (3.4.4)

that is the semicircle law on the horizontal axis.

Remark. We could arrive at the same result also noticing that

κ−α(x) = −α x21
|x|2

= α
x22
|x|2

− α.

Therefore, since the addition of a constant to κ does not affect the minimization problem,
the minimizer of I−α can be obtained from that of Iα just by swapping the roles of x1
and x2, i.e. by a rotation of π/2.
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If α > 1, we observe that

Iα(µ) ≥ I1(µ) ∀µ ∈ P(R2).

Also, because κ(x) = 0 for every x ∈ suppµ1, and by minimality of µ1 and uniqueness of
the minimizer, we have

Iα(µ1) = I1(µ1) < I1(µ) ≤ Iα(µ) ∀µ ̸= µ1,

hence µ1 is the minimizer of Iα for every α > 1. Finally, owing to the above remark, we
deduce that µ−1 is the minimizer of Iα for every α < −1.



CHAPTER 4

A numerical method for the approximation of the
minimizer

As we have seen in the previous chapter, the minimization problem for the anisotropic
energy poses some interesting questions. Even if we limit ourselves to the case of quadratic
confinement, determining the shape of the minimizer is not obvious. In particular, we

have observed that, if Ψ̂ = 0 somewhere on S1, then the minimizer could either be an
ellipse law of the form (3.3.5) or the semicircle law (3.3.13) (up to rotations). Ideally,
we would like to devise a criterion to determine a priori which of the two cases occurs.
Currently, such a criterion does not exist. If we consider more general confinements, such
as V (x) = |x|p with p > 0, we may expect things to become even more complicated, and
a characterisation of the minimizer is missing. To the author’s knowledge, even basic
questions regarding the topology of the minimizer are unanswered.

We might gain more insight into these matters by computing the minimizer using
numerical methods. In this chapter, we will introduce a novel technique, based on Ritz
method, for the approximation of the energy functional. We will test the method by
solving the minimization problem for the dislocation energy with quadratic confinement
and comparing the approximate solution with the exact one. Then, we will compute the
minimizer of the dislocation energy with generalised confinements.

4.1. Modified Ritz method

4.1.1. Ritz method. The Ritz method is a technique to compute the approximate
solution of variational problems. In its standard form, the method considers the mini-
mization problem for a functional I : X → R,

I(u) =

∫
Ω
F (∇u(x), u(x), x) dx, (4.1.1)

where Ω ⊆ Rd is bounded and F : R2d+1 → R is a fixed function (sufficiently regular,
e.g. F ∈ C(R2d+1)). The function space X is assumed to be large enough to ensure the
existence and uniqueness of the minimizer (classically, X = C1(Ω) or X = H1(Ω)). Also,
u is usually required to satisfy some boundary condition, such as

u(x) = g(x) ∀x ∈ ∂Ω. (4.1.2)

The idea is to project the infinite-dimensional spaceX onto a subspace V of dimension
n ∈ N, and search for a minimizer in V . Therefore, we approximate u by a linear
combination

ũ(x) =
n∑

h=1

ahφh(x),

where {φh}nh=1 is a complete basis of V and the coefficients {ah}nh=1 ⊆ R are to be

computed. The functional (4.1.2) can then be rewritten as a function Ĩ : Rn → R,

Ĩ(a1, . . . , an) =

∫
Ω
F

(
n∑

h=1

ah∇φh(x),
n∑

h=1

ahφh(x), x

)
dx. (4.1.3)

45
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To enforce the boundary condition (4.1.2), we require that

n∑
h=1

ahφh(x) = g(x) ∀x ∈ ∂Ω. (4.1.4)

Note that this condition can be fulfilled easily if g = 0, in which case we can choose the
basis functions φh in such a way that

φh(x) = 0 ∀x ∈ ∂Ω

for every h ∈ {1, . . . , n}. Also, if Ω = [a, b], condition (4.1.2) reduces to

n∑
h=1

ahφh(a) = g(a),
n∑

h=1

ahφh(b) = g(b).

For more complicated cases, the boundary condition can be relaxed to hold only at a
finite number of points {x1, . . . , xm} ⊆ ∂Ω, with m < n, i.e.

n∑
k=1

akφk(xi) = g(xi) ∀i ∈ {1, . . . ,m}. (4.1.5)

The approximate variational problem can be solved by minimizing the function (4.1.3)
subject to constraint (4.1.4). This can be done by expressing an−m+1, . . . , an in terms of
a1, . . . , an−m using (4.1.5), and then solving

∂Ĩ

∂ak
= 0 for k = 1, . . . , n−m.

This yields the values of a1, . . . , an−m, which are substituted back in (4.1.5) to compute
the remaining an−m+1, . . . , an.

The accuracy and complexity of Ritz method depend largely on the choice of the basis
functions {φh}nh=1. Choosing suitable basis functions for a given problem represents a
critical step in the implementation of Ritz method, and can be rather difficult, particularly
if the domain Ω does not possess a simple geometry. In this case, it is often convenient
to subdivide Ω into smaller subdomains and consider separate sets of basis functions on
each subdomain (which is equivalent to considering basis functions that are supported
only on a small subset of Ω). This approach leads to the finite element method, which is
widely applied for the solution of partial differential equations.

4.1.2. Modified Ritz method. In the spirit of Ritz method, our idea is to solve
the minimization problem for the energy functional I : P(R2) → R ∪ {+∞},

I(µ) =

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) +

∫
R2

V (x) dµ(x),

by approximating µ with a linear combination

µ̃ =

n∑
k=1

akνk,

where the measures {νk}nk=1 should be taken in a suitable subset of P(R2) and the coef-
ficients {ak}nk=1 ⊆ R are to be determined.
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The original problem then transforms into that of minimizing the function

Ĩ(a1, . . . , an) :=

∫∫
R2×R2

W (x− y) d

(
n∑

h=1

ahνh(x)

)
d

(
n∑

k=1

akνk(y)

)

+

∫
R2

V (x) d

(
n∑

k=1

akνk(x)

)
(4.1.6)

=
n∑

h=1

n∑
k=1

ahak

∫∫
R2×R2

W (x− y) dνh(x)dνk(y) +
n∑

h=1

ah

∫
R2

V (x) dνh(x).

We note that, in general, evaluating the integrals∫∫
R2×R2

W (x− y) dνh(x)dνk(y) and

∫
R2

V (x) dνh(x)

is rather complicated from the numerical point of view. In fact, both the domain of inte-
gration and the integrand functions are unbounded, which makes integration techniques
such as Gaussian quadrature unsuitable.

However, we have already seen that the minimizer of I must be compactly supported;
therefore, we can restrict the minimization problem to the class Pc(R2) of probability
measures with compact support. The minimizer µ can thus be approximated by its
projection onto

⟨ν1, . . . , νn⟩ :=

{
µ ∈ Pc(R2) : µ =

n∑
k=1

akνk, ak ≥ 0

}
,

with {νk}nk=1 ⊆ Pc(R2). This yields the finite-dimensional constrained minimization
problem

min
µ∈⟨ν1,...,νn⟩

I(µ) = min
(a1,...,an)∈A

Ĩ(a1, . . . , an), (4.1.7)

where

A :=

{
a ∈ Rn :

n∑
k=1

ak = 1, ak ≥ 0 ∀k ∈ {1, . . . , n}

}
.

By analogy with Ritz method, the measures {νk}nk=1 will be called basis measures.
With a suitable choice of the basis measures, the integrals in (4.1.6) can be evaluated

numerically, which gives the values

Mhk =

∫∫
R2×R2

W (x− y) dνh(x)dνk(y), bh =

∫
R2

V (x) dνh(x). (4.1.8)

Therefore, denoting

a :=

a1...
an

 , M :=

M11 . . . M1n
...

. . .
...

Mn1 . . . Mnn

 , b :=

b1...
bn

 ,

the approximate energy (4.1.6) becomes

Ĩ(a) = aTMa+ aT b. (4.1.9)

We can thus rewrite (4.1.7) as 

min
a∈Rn

aTMa+ aT b

ak ≥ 0 ∀k ∈ {1, . . . , n}
n∑

k=1

ak = 1.

(4.1.10)



48 4. A NUMERICAL METHOD FOR THE APPROXIMATION OF THE MINIMIZER

This is a minimization problem for a quadratic function with inequality constraints, and
can be solved using numerical optimization algorithms.

4.2. Implementation of modified Ritz method

The method above lends itself to numerical computing. In particular, the matrix
formulation (4.1.9) makes it possible to leverage the existing, highly optimized linear
algebra packages. Here, we implement the modified Ritz method using MATLAB.

4.2.1. Choice of the basis measures. Without loss of generality, assume that the
support of the minimizer is contained in Ω = [−R,R]2. On this domain, we consider a
quadrangular grid with N ×N elements. The elements are given by the squares

Qi,j :=
{
x ∈ R2 : x ∈ [0, lN ]2 + (i− 1, j − 1)lN

}
,

where lN = 2R
N is the element side length and i, j = 1, . . . , N . We denote the centre of

each square by

xi,j :=

(
i− 1

2
, j − 1

2

)
lN .

Rearranging the elements as {Qh}h=1,...,n := {Qi,j}i,j=1,...,N , with n = N2, we can
define a set of basis measures by considering the uniform probability measure on each
square, i.e.

νh :=
1

l2N
χQh

L2. (4.2.1)

Alternatively, if we let {xh}h=1,...,n := {xi,j}i,j=1,...,N , we could construct another set
of basis measures by considering the Dirac measure at each node, that is,

νh := δxh
. (4.2.2)

With either choice of the basis measures, we can compute the matrix coefficientsMhk,
bh. For the uniform basis measures, the integrals in (4.1.8) are evaluated using 4-point
Gaussian quadrature, that is,

Mhk =
1

l4N

∫
Qh

∫
Qk

W (x− y) dxdy =
1

l4N

∫
Q

∫
Q
W (φh(s)− φk(t)) det(Jφh

(s)Jφk
(t)) dsdt

=
1

l4N

4∑
i,j=1

4∑
l,m=1

wiwjwlwmW (φh(ξi, ξj)− φk(ξl, ξm)) det(Jφh
(ξi, ξj)Jφk

(ξl, ξm)),

bh =
1

l2N

∫
Qh

V (x) dx =
1

l2N

∫
Q
V (φh(s)) det(Jφh

(s)) ds

=

4∑
i,j=1

wiwjV (ξi, ξj) det(Jφh
(ξi, ξj)),

where φh : Q → Qh is a mapping from the unit square Q := [−1, 1]2 onto Qh (with
positive Jacobian determinant) and {ξi}4i=1, {wi}4i=1 are the Gaussian points and weights,
respectively. To avoid the singularity at W (0, 0), if h = k we consider∫

Qh

∫
Qh

W (x− y) dxdy =

∫
Qh

∫
Q−

h

W (x− y) dxdy +

∫
Qh

∫
Q+

h

W (x− y) dxdy,

with Q−
h := {x ∈ Qh : x1 < ε}, Q+

h := Qh \ Q−
h , ε > 0, and apply the quadrature rule

above separately to each integral on the right-hand side.
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For the Dirac basis measures, the integrals are computed by evaluating the integrand
at the centre of each square, which gives

Mhk =

∫∫
R2×R2

W (x− y) dδxh
(x)dδxk

(y) =W (xh − xk),

bh =

∫
R2

V (x) dδxh
(x) = V (xh).

We can then assemble the matrices M , b and compute the approximate energy (4.1.9).
Notably, the choice of Dirac basis measures is more efficient from a computational point
of view, as the calculation of each Mhk requires a single function evaluation, while using
the quadrature formula employed for the uniform basis measures the same computation
requires 256 function evaluations.

4.2.2. Minimization algorithm. The constrained minimization problem (4.1.10)
is solved using the Interior Point algorithm implemented by the fmincon function in
MATLAB. We give here a sketch of the method1.

Let us consider the following minimization problem:
min
x∈Ω

f(x)

g(x) ≤ 0

h(x) = 0,

(4.2.3)

where Ω ⊆ Rn, f : Ω → R, g : Ω → Rm and h : Ω → Rr.
For µ > 0, we define the approximate problem

min
x,s

fµ(x, s), with fµ(x, s) := f(x)− µ
m∑
i=1

ln(si)

g(x) + s = 0

h(x) = 0,

(4.2.4)

where si ≥ 0 for every i = 1, . . . ,m. We note that this problem is simpler than the
original one, as it only contains equality constraints. Since the minimum of fµ tends to
that of f as µ → 0, we can approximate the solution of (4.2.3) by solving a sequence
of problems (4.2.4). Each of these is solved by either Newton’s method or the conjugate
gradient method. If the approximate problem is solved with sufficient accuracy, the
algorithm cuts µ by a given factor (1/5 or 1/100 depending on the speed of convergence).
The process is iterated until a stopping criterion is reached.

Remark. It should be noted that, in general, the domain Ω = [−R,R] where we
search for a minimizer is not known a priori (even though it is guaranteed to exist as the
minimizer is compactly supported). For a quadratic confinement, we have seen that the
support of the minimizer is contained in an ellipse whose semiaxes satisfy a21 + a22 = 2,

therefore it is sufficient to take R =
√
2. For general confinements, one would need to

estimate the size of the support. In the absence of such an estimate, we could follow
a trial-and-error procedure, starting with a large value of R and a coarse grid to guess
the general shape of the minimizer, and then refining the grid in the regions where the
minimizer is supported.

1For a detailed description of the algorithm, see MATLAB documentation [8].
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α = 0

α = 0.5

α = 1

Figure 1. Minimizer computed for α = 0, α = 0.5 and α = 1, in the case
p = 2, using uniform basis measures. The red line is the boundary of the
support of the exact minimizer.
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α = 0

α = 0.5

α = 1

Figure 2. Minimizer computed for α = 0, α = 0.5 and α = 1, in the case
p = 2, using Dirac basis measures. The red line is the boundary of the
support of the exact minimizer.
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Uniform basis Dirac basis

Figure 3. Density profile computed with uniform and Dirac basis mea-
sures for α = 1, in the case p = 2.

4.3. Numerical results

We test the modified Ritz method by solving the minimization problem for the dis-
location energy discussed in Section 3.4. Here, we consider a more general power-law
confinement V (x) = |x|p, with p > 1. The dislocation energy functional becomes

Iα(µ) =

∫∫
R2×R2

(
− ln |x− y|+ α

(x1 − y1)
2

|x− y|2

)
dµ(x)dµ(y) +

∫
R2

|x|p dµ(x).

4.3.1. Quadratic confinement. First, we consider the case p = 2, i.e. quadratic
confinement. As we have seen in the previous chapter, in this case we can find an exact
expression for the minimizer, whose shape depends strongly on the value of α.

Figures 1 and 2 show the minimizer computed using the uniform basis measures and
the Dirac basis measures, respectively, for different values of α. We observe that for α = 0
and α = 0.5 the modified Ritz method yields a good approximation of the exact minimizer
(whose boundary is shown in red in the figures). In particular, the approximate minimizer
has almost constant density inside its support and vanishes close to the boundary, which
is a discretized version of (3.4.2). For α = 1, the results differ slightly depending on
the choice of the basis measures. With the uniform basis, the approximate minimizer is
more concentrated around the support of the exact minimizer (3.4.3), that is, the vertical
segment of endpoints (0,−

√
2), (0,

√
2), while with the Dirac basis it is more spread

out. In both cases, the density of the approximate minimizer is maximum at y = 0 and
decreases towards y = ±

√
2, as can be seen in Figure 3. This is similar to the profile

given by the semicircle law.

4.3.2. General confinement. We now consider a general exponent p ̸= 2. In par-
ticular, we investigate the cases p = 4 and p = 1.5.

Figures 4 and 5 show the approximate minimizer computed with the uniform and Dirac
basis measures for p = 4. Compared to the case p = 2 (represented by the red line), we
observe some remarkable differences. For α = 0 and α = 0.5, the minimizer is contained
in a smaller region, which can be intuitively explained by the increased confinement if
|x| > 1. Moreover, the density is concentrated in an elliptical annulus instead of being
uniformly distributed inside an ellipse. For α = 1, the minimizer is also concentrated in
a thin region and exhibits two distinct peaks at the upper and lower extremities. Both
choices of the basis measures yield almost identical approximations of the minimizer, the
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α = 0

α = 0.5

α = 1

Figure 4. Minimizer computed for α = 0, α = 0.5 and α = 1, in the case
p = 4, using uniform basis measures. The red line is the boundary of the
support of the exact minimizer.
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α = 0

α = 0.5

α = 1

Figure 5. Minimizer computed for α = 0, α = 0.5 and α = 1, in the case
p = 4, using Dirac basis measures. The red line is the boundary of the
support of the exact minimizer.
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α = 0

α = 0.5

α = 1

Figure 6. Minimizer computed for α = 0, α = 0.5 and α = 1, in the case
p = 1.5, using uniform basis measures. The red line is the boundary of the
support of the exact minimizer.
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α = 0

α = 0.5

α = 1

Figure 7. Minimizer computed for α = 0, α = 0.5 and α = 1, in the case
p = 1.5, using Dirac basis measures. The red line is the boundary of the
support of the exact minimizer.
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density obtained with the Dirac basis being slightly more spread out, similarly to what
was found in the case p = 2.

These results seem to suggest that the topology of the minimizer might differ signif-
icantly from that observed in the case of quadratic confinement. In particular, it is not
clear whether the support of the minimizer is simply connected or not.

Finally, we consider the case p = 1.5. The minimizers calculated with the two sets of
basis measures are shown in Figures 6 and 7. For all values of α, the minimizer exhibits
a strong peak at the origin and decreases radially. The direction of maximum decrease
depends on the degree of anisotropy; in particular, for α = 1 the density decreases very
fast in the horizontal direction and is concentrated along a vertical segment.

For all the cases considered here, the results are almost unaffected by the choice of the
basis measures. On the other hand, using the Dirac basis yields a slight computational
advantage and results in a shorter computational time.

The minimizers computed for p = {1.5, 4} are in agreement with those found by
Scagliotti [1] using a different numerical method. Interestingly, for p = 4 and α = 1,
Scagliotti observes that the support of the minimizer seems to become one-dimensional.
Our results tend to support this hypothesis and even open up the question of whether the
support of the minimizer is a simply connected set. Moreover, the annular shape observed
for p = 4 and α ∈ {0, 0.5} is consistent with a recent remark by Mora [2], who suggests

that for p ≥ 2 and Ŵ strictly positive the minimizer should retain full dimensionality.
These questions about the shape of the minimizer need to be investigated in more detail
and could become the subject of further research using analytical tools.





CHAPTER 5

Conclusions

In this work, we analysed the minimization problem for the energy

I(µ) =

∫∫
R2×R2

W (x− y) dµ(x)dµ(y) +

∫
R2

V (x) dµ(x),

with interaction kernel

W (x) = − ln |x|+ κ(x).

We proved that, in the rather general case where κ ∈ C(S1), the energy I arises as
the Γ-limit of a sequence of discrete energies {In}n≥2. Therefore, the minimizer of I is
the limit of the equilibrium configurations for the energies In, as n→ +∞.

Under suitable assumptions, I admits a minimizer µ, which is compactly supported
and satisfies the Euler-Lagrange equations

(W ∗ µ)(x) + 1

2
V (x) = c for µ-a.e. x ∈ suppµ,

(W ∗ µ)(x) + 1

2
V (x) ≥ c for q.e. x ∈ R2,

for some constant c ∈ R. In addition, if W is regular enough and its Fourier transform

Ŵ is nonnegative on S1, then the minimizer is unique.
In the case of quadratic confinement, the minimizer can be characterised as follows:

• If Ŵ > 0 on S1, the minimizer is

µ =
1

|E|
χEL2,

where E is the domain contained in an ellipse with semiaxes a1, a2 such that
a21 + a22 = 2.

• If Ŵ ≥ 0 on S1, the minimizer is either as above or the push-forward of

1

π
δ0 ⊗

√
2− x22H

1|[−√
2,
√
2]

through a rotation map.

Notably, if Ŵ vanishes somewhere on S1, the topology of the minimizer may change
substantially, passing from a measure with 2-dimensional support to one supported on a
segment. However, this condition is only necessary. One could conjecture that the loss of

dimensionality occurs only if the region where Ŵ vanishes is large enough.
To solve the minimization problem with general confinements, we developed a novel

numerical method. The accuracy of the method was assessed by computing the approxi-
mate minimizer of

Iα(µ) =

∫∫
R2×R2

(
− ln |x− y|+ α

(x1 − y1)
2

|x− y|

)
dµ(x)dµ(y) +

∫
R2

|x|2 dµ(x).

The numerical results are in agreement with the exact ones. Finally, we computed the
minimizer of Iα with generalised confinement V (x) = |x|p, where the analytic solution is
still unknown, for various values of α and p. The results show that rather complicated
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patterns could arise. In fact, for p = 4 the topology of the minimizer seems to change,
with the support becoming not simply connected.

Rather than marking an endpoint, these findings suggest some paths for future de-
velopments. In particular, the patterns emerging from the numerical results should be
examined in more detail through the lens of analytical techniques.



APPENDIX A

Fundamentals on measures

Let (X, d) be a separable metric space. We denote by B(X) the Borel σ-algebra on
X and by P(X) the family of probability measures on X. The support of a measure
µ ∈ P(X) is defined as

suppµ := {x ∈ X : µ(U) > 0 for every neighborhood U of x} .

We denote by Pc(X) the space of probability measures with compact support.
A sequence {µn}n∈N ⊆ P(X) is said to converge narrowly (or weakly) to µ ∈ P(X) if

lim
n→+∞

∫
X
φdµn =

∫
X
φdµ

for every continuous and bounded function φ ∈ Cb(X). This will be denoted by µn
∗
⇀ µ.

The topology of narrow convergence is generated by the following basis of open sets:

{Uφ1,...,φn(µ, δ) : φ1, . . . , φn ∈ Cb(X), n ∈ N, µ ∈ P(X), δ > 0} ,

where

Uφ1,...,φn(µ, δ) :=

{
ν ∈ P(X) :

∣∣∣∣∫
X
φi dν −

∫
X
φi dµ

∣∣∣∣ < δ, i = 1, . . . , n

}
.

The space P(X) can be endowed with the Kantorovich-Rubinshtein norm

∥µ∥0 := sup

{∫
X
φdµ : φ ∈ Lip1(X), sup

x∈X
|φ(x)| ≤ 1

}
,

where

Lip1(X) := {f : X → R : |f(x)− f(y)| ≤ d(x, y), ∀x, y ∈ X} .
This norm induces the so-called Kantorovich-Rubinshtein metric

d0(µ, ν) := ∥µ− ν∥0.

The space P(X) endowed with the narrow topology is metrizable using this metric.

Theorem 11. Let (X, d) be a separable metric space. Then the narrow topology
on P(X) is generated by the Kantorovich-Rubinshtein metric d0. Moreover, if (X, d) is
complete, then the space (P(X), d0) is also complete.

A proof of this theorem can be found in [9] (Theorems 8.3.2 and 8.10.43).
Since the narrow topology is metrizable, compactness is equivalent to sequential com-

pactness. The following result is useful for characterising compact subsets of P(X).

Theorem 12 (Prokhorov). If a set K ⊆ P(X) is tight, i.e.

∀ϵ > 0 ∃Kϵ ⊆ X compact s.t. µ(X \Kϵ) ≤ ϵ ∀µ ∈ K,

then K is relatively compact in P(X). Conversely, if X is a Polish space, i.e. a separable,
completely metrizable space, then every relatively compact subset of P(X) is tight.
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Lemma 6. Tightness is equivalent to the following condition: there exists a coercive
function F : X → [0,+∞], i.e. a function whose sublevel sets {x ∈ X : F (x) ≤ c} are
compact in X, such that

sup
µ∈K

∫
X
F dµ < +∞.

We have the following useful characterisation of narrow convergence in terms of lower
semi-continuous functions.

Lemma 7. Let (X, d) be a metric space and µ ∈ P(X). Then, a sequence {µn}n∈N ⊆
P(X) is narrowly convergent to µ if and only if∫

X
ψ dµ ≤ lim inf

n→+∞

∫
X
ψ dµn

for every function ψ : X → R that is lower semi-continuous and bounded from below.

Proof. Suppose µn
∗
⇀ µ and let ψ ∈ Lb(X), the space of lower semi-continuous

functions that are bounded from below. We can approximate ψ by a sequence of bounded
continuous functions {ψk}k∈N such that inf ψ ≤ ψk ≤ ψk+1 ↗ ψ. Consider for instance

ψk(x) := min{ψ̃k(x), k},
with

ψ̃k(x) = inf
y∈X

{ψ(y) + kd(x, y)}.

For every k ∈ N,

lim inf
n→+∞

∫
X
ψ dµn ≥ lim inf

n→+∞

∫
X
ψk dµn =

∫
X
ψk dµ,

so by monotone convergence we deduce lim infn→+∞
∫
X ψ dµn ≥

∫
X ψ dµ.

Conversely, suppose
∫
X ψ dµ ≤ lim infn→+∞

∫
X ψ dµn for every ψ ∈ Lb(X) and let

φ ∈ Cb(X). Since Cb(X) ⊆ Lb(X), then ±φ ∈ Lb(X) and we have∫
X
φdµ ≤ lim inf

n→+∞

∫
X
φdµn∫

X
−φdµ ≤ lim inf

n→+∞

∫
X
−φdµn,

which implies

lim sup
n→+∞

∫
X
φdµn ≤

∫
X
φdµ ≤ lim inf

n→+∞

∫
X
φdµn.

Hence, limn→+∞
∫
X φdµn =

∫
X φdµ. □

We conclude this section by defining the Fourier transform of a probability measure.
Given a measure µ ∈ P(Rn), we define its Fourier transform by

µ̂(ξ) :=
1

2π

∫
R2

e−i⟨x,ξ⟩ dµ(x) ∀ξ ∈ Rn.

We observe that µ̂ is well-defined, because e−i⟨ · ,ξ⟩ ∈ L1(Rn, µ) for every ξ ∈ Rn.



APPENDIX B

Introduction to Γ-convergence

Let X be a topological space and {Fn}n∈N a sequence of functions Fn : X → R, with
R = [−∞,+∞]. We define the Γ-lower limit and Γ-upper limit of {Fn}n at x in X as

Γ- lim inf
n→+∞

Fn(x) = sup
U∈N (x)

lim inf
n→+∞

inf
y∈U

Fn(y),

Γ- lim sup
n→+∞

Fn(x) = sup
U∈N (x)

lim sup
n→+∞

inf
y∈U

Fn(y),

where N (x) denotes the collection of all open neighbourhoods of x in X. We say that
{Fn}n Γ-converges to F : X → R at x ∈ X as n→ +∞ if

F (x) = Γ- lim inf
n→+∞

Fn(x) = Γ- lim sup
n→+∞

Fn(x).

In this case, F (x) is called the Γ-limit of Fn at x, which is written

F (x) = Γ- lim
n→∞

Fn(x).

If this holds true for every x in X, we say that {Fn}n Γ-converges to F on X and F is
called the Γ-limit of Fn (on the whole X).

We use the notation Fn
Γ−→ F .

Remark. Γ-convergence is independent of pointwise convergence, as shown by the
following examples.
We consider X = R (with the usual Euclidean topology).

(a) If Fn(x) = nxe−2n2x2
, then {Fn(x)}n Γ-converges to

F (x) =

{
−1

2e
− 1

2 , x = 0

0, x ̸= 0,

while it converges pointwise to 0.
(b) If

Fn(x) =

{
nxe−2n2x2

, if n is even

2nxe−2n2x2
, if n is odd,

then {Fn(x)}n converges pointwise to 0 ∀x ∈ R, but

Γ- lim inf
n→+∞

Fn(x) =

{
−e−

1
2 , x = 0

0, x ̸= 0,

Γ- lim sup
n→+∞

Fn(x) =

{
−1

2e
− 1

2 , x = 0

0, x ̸= 0,

so {Fn(x)}n does not Γ-converge in x = 0.
(c) If Fn(x) = sin(nx), then {Fn(x)}n Γ-converges to F (x) = −1 ∀x ∈ R, but it does not

converge pointwise.

For metric spaces (in fact for first-countable topological spaces), we can give the
following sequential characterisation of Γ-convergence.
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Theorem 13. Let X be a first-countable topological space and {Fn}n∈N a sequence
of functions Fn : X → R. Then, the Γ-convergence of {Fn}n to F : X → R at x ∈ X is
equivalent to the following conditions:

(i) (liminf inequality) for every sequence {xn}n∈N ⊆ X converging to x,

F (x) ≤ lim inf
n→+∞

Fn(xn);

(ii) (limsup inequality) there exists a sequence {xn}n∈N ⊆ X converging to x such that

F (x) ≥ lim sup
n→+∞

Fn(xn).

Equivalently, (i) holds and

(ii)’ (existence of a recovery sequence) there exists a sequence {xn}n∈N ⊆ X converging
to x such that

F (x) = lim
n→+∞

Fn(xn).

Definition 5. Given a topological space X and a sequence of functions Fn : X → R,
we say that {Fn}n is equi-coercive if for every t ∈ R there exists a compact set Kt such
that {x ∈ X : Fn(x) ≤ t} ⊆ Kt for every n ∈ N.

Theorem 14 (Fundamental theorem of Γ-convergence). Let (X, d) be a metric space,
{Fn}n an equi-coercive sequence of functions Fn : X → R and F = Γ- limn→+∞ Fn. Then

min
X

F = lim
n→+∞

inf
X
Fn.

Moreover, if {xn}n is a relatively compact sequence such that

lim
n→+∞

Fn(xn) = lim
n→+∞

inf
x∈X

Fn(x),

then every limit point of {xn}n is a minimum point for F .

For a proof of this theorem, one can refer to Theorem 7.8 and Corollary 7.20 in [10].
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