Falzone, Matteo
(2025)
The cosmological constant problem in a minimal length scenario.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (872kB)
|
Abstract
The cosmological constant problem represents one of the most important unresolved issues in modern theoretical physics. It consists in the enormous numerical discrepancy between the measured value of vacuum energy density and the one estimated within the framework of quantum field theory (QFT).
Following the idea that, regardless of the choice of a specific model, the quantum nature of gravity should give rise to a fundamental minimal length scale, this thesis aims to study the phenomenological consequences of introducing such a minimal length within the framework of QFT in curved spacetimes, specifically in relation to the cosmological constant problem. In particular, the mathematical apparatus related to the point-splitting technique to regularize quadratic functions of quantum fields was employed.
The results achieved do not appear to differ significantly from those obtained through the typical flat spacetime approach. Nevertheless, the proposed approach could suggest new perspectives on the problem of divergences in quantum field theory.
Abstract
The cosmological constant problem represents one of the most important unresolved issues in modern theoretical physics. It consists in the enormous numerical discrepancy between the measured value of vacuum energy density and the one estimated within the framework of quantum field theory (QFT).
Following the idea that, regardless of the choice of a specific model, the quantum nature of gravity should give rise to a fundamental minimal length scale, this thesis aims to study the phenomenological consequences of introducing such a minimal length within the framework of QFT in curved spacetimes, specifically in relation to the cosmological constant problem. In particular, the mathematical apparatus related to the point-splitting technique to regularize quadratic functions of quantum fields was employed.
The results achieved do not appear to differ significantly from those obtained through the typical flat spacetime approach. Nevertheless, the proposed approach could suggest new perspectives on the problem of divergences in quantum field theory.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Falzone, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Cosmological constant problem,Minimal length,Quantum gravity,Generalized uncertainty principle,Point-separation renormalization,Schwinger-DeWitt expansion,Hadamard function,Bitensors
Data di discussione della Tesi
26 Settembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Falzone, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Cosmological constant problem,Minimal length,Quantum gravity,Generalized uncertainty principle,Point-separation renormalization,Schwinger-DeWitt expansion,Hadamard function,Bitensors
Data di discussione della Tesi
26 Settembre 2025
URI
Statistica sui download
Gestione del documento: