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So I’m picking up the pieces now, where to begin?
The hardest part of ending is starting again.

Linkin Park, Waiting for the End



Abstract

The cosmological constant problem represents one of the most important

unresolved issues in modern theoretical physics. It consists in the enormous

numerical discrepancy between the measured value of vacuum energy density

and the one estimated within the framework of quantum field theory (QFT).

Following the idea that, regardless of the choice of a specific model, the

quantum nature of gravity should give rise to a fundamental minimal length

scale, this thesis aims to study the phenomenological consequences of introduc-

ing such a minimal length within the framework of QFT in curved spacetimes,

specifically in relation to the cosmological constant problem. In particular, the

mathematical apparatus related to the point-splitting technique to regularize

quadratic functions of quantum fields was employed.

The results achieved do not appear to differ significantly from those ob-

tained through the typical flat spacetime approach. Nevertheless, the pro-

posed approach could suggest new perspectives on the problem of divergences

in quantum field theory.
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Introduction

Current observational data, primarily from Type Ia supernovae and the cosmic

microwave background, suggest that our universe is undergoing accelerated

expansion. Such a cosmic dynamic is consistent with a vacuum-dominated

universe model.

Contrary to common intuition, the vacuum in this context does not repre-

sent the complete absence of entities or physical properties. Rather, it refers

to the ground state upon which the entire framework of quantum field theory

is built, what has been described as “a stormy sea of quantum fluctuations”

[46]. This vacuum possesses its own energy density which, at the theoretical

level, is estimated to be vastly greater (by about 120 orders of magnitude)

than what cosmological observations appear to indicate.

To reconcile this enormous discrepancy, Einstein’s field equations of general

relativity would need to include a cosmological constant term whose value

almost perfectly cancels out the vacuum energy contribution. The extreme

improbability of such a precise fine-tuning has led to this issue being famously

known as the cosmological constant problem.

In recent decades, the cosmological constant problem has revealed numer-

ous facets, and an equally wide range of theoretical approaches have been

developed to address it. Nevertheless, none of these has proven entirely satis-

factory.

One might argue that, until we achieve a robust understanding of the quan-

tum properties of gravity, any attempt to resolve the problem will remain fun-

damentally incomplete. In this regard, however, modern approaches to quan-

tum gravity seem to converge, almost unanimously, on the idea that nature

admits a fundamental minimal length scale. This scale arises as a consequence

of the Heisenberg uncertainty principle, combined with the gravitational field’s

response to it.

All of this may suggest that introducing such a minimal length scale into

the framework of quantum field theory in curved spacetimes could shed light on
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the cosmological constant problem, as an effective manifestation of quantum

gravity. This is the path we have followed in the present thesis.

The first chapter begins by outlining the logical path, accompanied by a

historical perspective, that led to the formulation of the cosmological constant

problem. Subsequently, we present several approaches to the problem that still

hold relevance today, in particular: supersymmetry, the anthropic principle,

and the quintessence model for dark energy.

The second chapter develops the concept of a minimal length scale and

its connection to the generalized uncertainty principle. In particular, various

thought experiments are presented that seem to support the validity of these

concepts, mixing quantum and gravitational phenomena. We then show how

the idea of a minimal length can emerge naturally from certain well-structured

quantum gravity theories, in particular string theory and loop quantum gravity.

In the third and final chapter, we present our attempt to introduce the

concept of a minimal length at a phenomenological level within the context

of quantum field theory in curved spacetimes. To this end, we rely on the

framework of the point-separation regularization method for the quantization

of quadratic fields. This is followed by a discussion of the results obtained and

their connection to the cosmological constant problem.

Conventions The metric and curvature conventions adopted are those of

Misner, Thorne and Wheeler [28]. In particular, the metric signature is (− +

++).

The covariant derivative of a tensor quantity is expressed as:

∇µX
ν ≡ Xν

;µ. (1)

Natural units c = ℏ = 1 are used, so that the Planck length and Planck

mass are given by:

lP =
√
G, mP = 1/

√
G. (2)

In some sections of the thesis, we introduce the reduced Planck mass:

MP =
1√
8πG

. (3)
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Chapter 1

The cosmological constant

problem

Vanitas vanitatum et omnia

vanitas.

1.1 The cosmological constant

Einstein completed his formulation of general relativity between 1915 and 1916

by introducing the field equations:

Rµν −
1

2
Rgµν = 8πGTµν . (1.1)

Initially, motivated by the assumption that the velocities of stars are negli-

gible compared to the speed of light, he tried to apply his theory to the entire

universe, aiming for a static cosmological model.

Since, on very large scales (≳ 100Mpc), the universe is considered spa-

tially homogeneous and isotropic, its geometry can be described by the Fried-

mann–Lemâıtre– Robertson–Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (1.2)

where a(t) is the cosmic scale factor and k (that one can always rescale to:

−1, 0, or +1; depending on the spatial topology) is the curvature constant.

The adoption of this metric reduces the Einstein equations to the Fried-
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mann’s:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(1.3)

and
ä

a
= −4πG

3
(ρ+ 3p). (1.4)

A static universe (ȧ = 0) requires a positive curvature (k = +1) to be

consistent with a positive energy density ρ, which must be in any case appro-

priately tuned. However, such conditions cannot lead to a vanishing ä, unless

a negative pressure p is considered (but pressure is known to be non-negative

for usual forms of matter).

To overcome these difficulties, Einstein introduced the cosmological con-

stant1 Λ in his equations:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.5)

This new term modifies the Friedmann equations, that become:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
(1.6)

and
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.7)

allowing for a static solution associated to non-negative values of ρ, p and Λ.

In any case, this configuration is far from being non-problematic, since it is

unstable to fluctuations of these parameters.

Eventually, Hubble’s discovery that the universe is expanding removed the

empirical need for a static model and Einstein withdrew the cosmological con-

stant2.

1.2 The problem

Whether the cosmological constant should appear in the field equations of

general relativity is a subtle issue. In fact, anything that contributes to the

energy density of the vacuum ⟨ρ⟩ acts just like a cosmological constant.

1For a historical account of the introduction of the cosmological constant, see [44, 4, 26].
2Actually, Einstein found the presence of the cosmological constant disappointing, es-

pecially after de Sitter’s 1917 discovery of an expanding cosmological model as a vacuum
solution to the modified field equations, which showed that matter was not necessary to
generate inertia; contradicting Mach’s principle.
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Lorentz invariance requires that, in locally inertial coordinate systems, the

energy-momentum tensor of the vacuum be proportional to the Minkowski

metric ηµν . In general coordinate systems, this condition translates to (see

[43]):

⟨Tµν⟩ = −⟨ρ⟩gµν , (1.8)

where the minus sign arises from adopting the (−,+,+,+) metric convention.

This is equivalent to considering the presence, in Einstein equations, of an

effective cosmological constant:

Λeff = Λ+ 8πG⟨ρ⟩, (1.9)

or, alternatively, an effective vacuum density:

ρV = ⟨ρ⟩+ Λ

8πG
=

Λeff

8πG
. (1.10)

Observational data (see [4]) from Type Ia supernovae and the CMB sug-

gest the actual existence of a positive cosmological constant Λeff, which drives

an accelerated expansion of the universe, and provide an experimental upper

bound on it (or ρV ).

The present estimation of the Hubble parameter is:(
ȧ

a

)
now

≡ H0 ≃ 70 Km/sec/Mpc, (1.11)

and, since the effects of curvature are negligible and the vacuum energy dom-

inates the expansion’s dynamics, the first Friedmann equation yields to:

|Λeff| ≲ H2
0 , (1.12)

that is:

|ρV | ≲ 10−29 g/cm3 ≈ 10−48GeV4. (1.13)

Quantum field theory (QFT) allows one to estimate the vacuum energy

density by summing the zero-point energies of all normal modes of a scalar

field with mass m, up to an ultraviolet momentum cut-off M ≫ m (see, e.g.,

[44]):

⟨ρ⟩ =
∫ M

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ M4

16π2
. (1.14)
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The nature of the problem becomes apparent. By imposing a sharp cut-off

at the Planck scale M ≃ (8πG)−1/2 ≡ MP (where MP is the reduced Planck

mass; assuming the validity of ordinary QFT up to this order of magnitude),

the vacuum energy density is found to be3:

⟨ρ⟩ ≈ 2× 1072GeV4. (1.15)

As shown above, |ρV | = |⟨ρ⟩ + Λ
8πG

| is less than about 10−48GeV4, which

means that the two terms in the sum must cancel to better than 120 decimal

places. Such an extreme fine-tuning is utterly unreasonable, leading some

authors to label this result as “the largest discrepancy between theory and

experiment in all of science” [1] and “the worst theoretical prediction in the

history of physics” [19].

The approach to calculating the vacuum energy density discussed so far

dates back to Pauli [10]. He originally introduced an ultraviolet cutoff of

the order of the electron mass me, realizing that such a choice would imply

a cosmological horizon with a radius smaller than the distance between the

Earth and the Moon:

rH ≲ 1/Hvac ∼MP/m
2
e ∼ 106Km. (1.16)

In this context, shifting the cutoff to the Planck scale makes the prediction

for the Hubble radius even more dramatic: the universe would be unable to

grow beyond the Planck scale itself.

It is worth noting that some recent arguments pointed out that the usage

of a cutoff to regularize the vacuum energy density should be avoided since it

breaks the Lorentz invariance (for details, see [26]). Indeed, it is believed that

this choice underlies the incorrect equation of state that arises when evaluating

the vacuum expectation value of the full energy-momentum tensor of a free

scalar field (namely, p = 1/3 ρ)4.

A procedure which preserves this symmetry, such as dimensional regular-

ization (followed by applying the modified minimal subtraction (MS) renormal-

ization scheme), appears much more suitable and leads to a different expression

3In QFT the value of the vacuum energy density has no observational consequences and
can be simply neglected through a normal ordering procedure. However, this is not the case
when gravity is introduced in the picture, since every source of energy, the vacuum included,
influences the geometry of spacetime.

4For the theory to be self-consistent, one would expect the typical relation for a vacuum-
dominated universe, p = −ρ, to hold.
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for the zero-point energy density5:

⟨ρ⟩ ≃ m4

64π2
ln

(
m2

µ2

)
, (1.17)

where m denotes the mass of the field and µ the renormalization scale.

Regardless of the exact value of the parameter µ, reasonable choices yields

computed vacuum energy densities that are significantly lower than the previ-

ously estimated 1072GeV4. Nevertheless, the discrepancy with the experimen-

tal data remains enormous and the cosmological constant problem (or vacuum

catastrophe) persists.

1.3 Approaches to the problem

Several theoretical approaches6 have been pursued to address the cosmological

constant problem, but none has yet proven fully satisfactory. However, each

has offered valuable insights into different aspects of the issue.

Some of the most intriguing and historically relevant ideas are briefly re-

viewed below.

1.3.1 Supersymmetry and supergravity

A physical parameter is “naturally small”7 only if setting it exactly to zero

accentuates the symmetry of an underlying theory. In such cases, its vanishing

is not a coincidence, but a consequence of symmetry.

The typical example is the photon mass (experimentally constrained to

m2
γ ≲ O(10−50)GeV2), which is understood to be exactly zero as a direct

consequence of the U(1) gauge symmetry of quantum electrodynamics (QED),

together with Lorentz invariance.

By analogy, one may speculate that a symmetry could exist to suppress

the effective cosmological constant by many orders of magnitude, potentially

explaining its extreme smallness. Supersymmetry (SUSY) appears to be a

natural candidate.

The case can be reviewed through the free Wess-Zumino model, whose

lagrangian is given by:

5This latter result holds within the more rigorous framework where the curvature of
spacetime is considered (see [26]).

6For detailed overviews, see [4, 26, 30, 45, 44]
7The concept of naturalness is well exposed in [30].
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LWZ = −∂µΦ∗∂µΦ−mBΦ
∗Φ− 1

2
Ψ̄M (iγµ∂µ −mF )ΨM , (1.18)

where Φ denotes a complex scalar field and ΨM is a Majorana spinor satisfying

the condition ΨM = Ψc
M , with Ψc ≡ CΨ̄T and C is the charge conjugation

operator. The parameters mB and mF represent, respectively, the masses of

the bosonic and fermionic fields.

The contribution of a free field of spin s to the vacuum energy density is

given by:

⟨ρ⟩ = 1

2
(−1)2s(2s+ 1)

∫
d3k

(2π)3

√
k2 +m2, (1.19)

and, since a complex scalar field is equivalent to two real scalar fields, assuming

equal masses, mB = mF , the bosonic and fermionic contributions exactly

cancel, resulting in a vanishing vacuum energy density.

More generally, any theory ensuring for each mass m an equal number of

bosonic and fermionic degrees of freedom yields a net vacuum energy contri-

bution of zero. Supersymmetry is precisely such a symmetry.

The spin-1/2 supersymmetry generators (supercharges) Qα satisfy the an-

ticommutation relation:

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, (1.20)

remembering that Pµ ≡ −i∂µ is the four-momentum operator and (σµ)αβ̇ are

the Pauli matrices including the identity.

If supersymmetry is unbroken, then the vacuum state |0⟩ satisfies:

Qα|0⟩ = 0, (1.21)

implying:

⟨0|P0|0⟩ = 0, (1.22)

i.e., the vacuum expectation value of the hamiltonian ⟨0|H|0⟩ (the vacuum

energy) is zero.

The same result can be found following a different path. In supersymmetric

theories the scalar-field potential (depending on ϕi and their complex conjugate

ϕ̄i) is derived from a (holomorphic) superpotentialW (ϕi). In the Wess-Zumino

models of spin-0 and spin-1/2 fields, for example, the scalar potential is given

by:
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V (ϕi, ϕ̄i) =
∑
i

∣∣∣∣∣∂W∂ϕi

∣∣∣∣∣
2

. (1.23)

One can show that, in such a theory, SUSY is unbroken only for values of ϕi

such that ∂W/∂ϕi = 0, implying V (ϕi, ϕ̄i) = 0.

Perturbative quantum effects do not change this conclusion, because with

boson-fermion symmetry, the fermion loops cancel the boson ones in the Feyn-

man diagrams.

However, each boson (fermion) of the standard model of particle physics

is not observed to have a super-symmetric partner of the same mass, meaning

that, in the real world, supersymmetry must be broken (at least up to the TeV

scale, which again, if taken as a cut-off, induces a large vacuum energy).

In any case, to properly discuss the cosmological constant problem, gravity

must be brought into the picture; and in curved spacetime, the global transfor-

mations of ordinary supersymmetry are promoted to the gauge transformations

of supergravity (SUGRA).

Within this framework, the Hamiltonian and supercharges assume different

roles than in flat spacetime, yet it remains possible to express the vacuum

energy in terms of a scalar field potential V (ϕi, ϕ̄i), which now takes the form:

V (ϕi, ϕ̄j) = eK/M2
P

[
(DiW )(G−1)ij̄(Dj̄W )− 3M−2

P |W |2
]
, (1.24)

where K(ϕi, ϕ̄j) is the real-valued Kähler potential and (G−1)ij̄ represents the

inverse of the Kähler metric:

Gij̄ ≡ ∂2K/∂ϕi∂ϕ̄j. (1.25)

Furthermore, DiW is the Kähler derivative:

DiW ≡ ∂W

∂ϕi
+

1

M2
P

∂K

∂ϕi
W. (1.26)

By expressing the (inverse) Kähler metric in the canonical form, (G−1)ij̄ =

δij̄, in the limit MP → ∞ (or, equivalently, G → 0), the first term in square

brackets reduces to the flat-space result, which is non-negative. However, when

gravity is included, an additional second non-positive term arises.

Supersymmetry is unbroken when DiW = 0, which implies that the effec-

tive cosmological constant is non-positive.
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In fact, it is possible to consider a scenario in which supersymmetry is

broken in such a manner that the two aforementioned terms cancel to an

extraordinary degree of accuracy, requiring a new unexplained fine-tuning,

replacing the original fine-tuning at the heart of the cosmological constant

problem.

1.3.2 Anthropic principle

The anthropic principle states that certain parameters characterizing the ob-

served universe, such as the cosmological constant, may not be strictly de-

termined by fundamental physical laws alone, but are also constrained by the

(rather trivial) requirement that intelligent observers can only exist under con-

ditions compatible with their own existence.

For this tautology to be usable, alternative conditions (more or less com-

patible with the emergence of intelligent life forms) must exist “elsewhere” in

the universe (or in the multiverse): either in space, time, or branches of its

quantum wavefunction.

Figure 1.1: Anthropic principle. (a) Weak form: sentient beings must find
themselves in a spatio-temporal location in the universe at which the condi-
tions are suitable for sentient life. (b) Strong form: rather than considering just
one universe we envisage an ensemble of possible universes, among which the
fundamental constants of nature may vary. Sentient beings must find them-
selves to be located in a universe where the constants of nature (in addition
to the spacetime location) are congenial. Image from Penrose [35].

Several inflationary scenarios, quantum cosmologies and string theory pre-

dict the existence of such different domains, characterized by significantly vary-

ing physical properties: including multiple vacua (each associated with distinct

10



vacuum energies) and different values for the fundamental “constants” of na-

ture.

In the light of what has been discussed so far, one is faced with the task

of estimating quantitatively the likelihood of observing any specific value of Λ

within such a variegate landscape.

The most recognizable anthropic constraint on the vacuum energy density

is that it must not be so large to preclude the formation of galaxies.

Overdense regions in the cosmic fluid cease to undergo gravitational col-

lapse once the cosmological constant begins to dominate the energy density of

the universe. If this transition occurs before the epoch of galaxy formation,

the resulting universe would lack galaxies, and consequently stars, planets and,

presumably, intelligent life.

Thus, in terms of density parameters, one must have ΩΛ(zgal) ≤ ΩMatter(zgal),

i.e.:

ΩΛ0

ΩM0

≤ a−3
gal = (1 + zgal)

3 ∼ 125, (1.27)

where the redshift of formation of the first galaxies is taken to be zgal ∼ 4.

This demonstrates that the cosmological constant could, in principle, exceed its

observed value and still remain consistent with galaxy formation. Nonetheless,

it is evident that among the possible universes capable of supporting intelligent

life, those characterized by values of the ratio ΩΛ0/ΩM0 ∼ 1 tend to contain a

greater number of galaxies and, consequently, potential observers, with respect

to the ones where ΩΛ0/ΩM0 ∼ 100.

Up to this point, one might ask what is the most probable value of ΩΛ (or

ρV ), i.e. what is the value that would be experienced by the largest number

of observers.

Quantitatively, one could define the probability measure for ρV :

dP(ρV ) = ν(ρV )P∗(ρV ) dρV (1.28)

where P∗(ρV ) dρV is the a priori probability measure for the vacuum energy

density, and ν(ρV ) is the average number of galaxies which form at the specified

value of ρV (it is often assumed to be proportional to the number of baryons

in the universe).

The precise form of P∗ is a subtle issue. Some authors (e.g. Weinberg [42])

argue that it is natural to assume the latter to be approximately constant in

the narrow range of vacuum energy densities for which ν(ρV ) is supposed to be
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non-vanishing8. Others, based on arguments from quantum cosmology, affirm

that this assumption may not necessarily be true.

In any case, the conclusion is that observing ΩΛ0 to be of the same order of

magnitude as ΩM0 is not improbable at all. In particular, certain calculations

(see [25]) based on the so-called spherical infall model [15] indicate that the

probability of observing a big bang characterized by a vacuum energy density

sufficiently large to yield a present-day value of ΩΛ0 ≤ 0.7 is approximately

5% to 12%.

Although this latest result may seem reassuring, calculations based on an-

thropic reasoning are still quite uncertain and should be treated with caution,

given the large number of assumptions made about poorly known physical

conditions.

1.3.3 Quintessence

The presence of a cosmological constant is not necessarily the only explanation

for the accelerated expansion of the universe. Indeed, current observational

data may be equally well described by a form of dark energy that does not

cluster gravitationally on small scales and therefore does not contribute to the

formation of structures (hence, it does not contribute to ΩM).

Regardless of its underlying nature, it is common in theoretical modeling

to describe dark energy through an effective equation of state p = ωρ9. In the

case of a true cosmological constant, ω = −1.

The simplest model that satisfies the aforementioned conditions is a single

slowly-rolling homogeneous scalar field ϕ(t) called quintessence. In an expand-

ing universe, and in the presence of a potential V (ϕ), the equation of motion

for such a field, minimally coupled to gravity, is given by:

ϕ̈+ 3Hϕ̇+ V ′ = 0. (1.29)

where H is the Hubble parameter and V ′ ≡ ∂ϕV .

The associated energy density and pressure are respectively ρ = ϕ̇2/2 + V

and p = ϕ̇2/2− V , implying an equation of state parameter:

8This range is characterized by values of ρV much smaller than what particle physics
suggests, as in the case of our universe, which is considered to be typical among the ones
that could host intelligent life (following the so-called principle of mediocrity [41]).

9For the universe to undergo accelerated expansion, the strong energy condition must be
violated, i.e. ω < −1/3.
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ω =
p

ρ
=
ϕ̇2/2− V

ϕ̇2/2 + V
. (1.30)

When the field is slowly-varying and ϕ̇2 ≪ V (ϕ), we have ω ∼ −1, and the

scalar field potential acts like a cosmological constant.

One might wonder whether replacing a constant parameter Λ with a dy-

namical field could relax the fine-tuning that inevitably accompanies the cos-

mological constant. Indeed, tracker models10 can be constructed in which the

quintessence field evolves alongside matter or radiation, eventually becoming

the dominant component at late times, driving the accelerated expansion of

the universe observed today. In these models, quintessence’s energy density

exhibits weak dependence on the field’s initial conditions.

However, the ultimate value ρϕ, which must be compared with observa-

tional data, remains highly sensitive to the specific parameters of the potential.

Furthermore, quintessence models introduce new “naturalness” problems,

as the requirement for slow-roll dynamics demands the (effective) mass of the

field fluctuations to be mϕ ∼ H0 ∼ 10−33 eV (an extremely small value com-

pared to typical particle physics scales, unless protected by some kind of sym-

metry).

1.4 Weinberg no-go theorem

A popular class of proposed resolutions to the cosmological constant problem

involves the introduction of additional fields to cancel the vacuum energy (a

mechanism known as self-adjustment or self-tuning). However, Weinberg pro-

posed a no-go theorem that shows, under very general conditions, that such

approaches cannot succeed without fine-tuning11. Weinberg’s argument is as

follows (see [44, 31]).

Consider a theory characterized by a spacetime metric gµν and a set of self-

adjusting matter fields ϕi. The dynamics is described by a general Lagrangian

10A classic example is given by the potential:

V (ϕ) =
M4+α

ϕα
, α > 0. (1.31)

11The theorem does not directly apply to the case of quintessence described in the pre-
vious section. It only constrains mechanisms that attempt to cancel vacuum energy in
stationary configurations. Quintessence, on the other hand, describes a dynamical universe
in which dark energy is an evolving component, not a constant to be canceled. In this sense,
quintessence “bypasses” the theorem.
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density:

L(gµν , ϕi). (1.32)

One assumes that the vacuum is translationally invariant, so that:

gµν = constant, ϕi = constant. (1.33)

The residual symmetry implies invariance under the general linear groupGL(4),

corresponding to coordinate transformations of the form:

xµ → (M−1)µνx
ν , (1.34)

where Mµ
ν is a constant matrix.

Under this transformation, the metric transforms as:

gµν → gαβM
α
µM

β
ν , (1.35)

and the Lagrangian as:

L → (detM)L. (1.36)

To linear order, these transformations are:

δgµν = δMµν + δMνµ, δL = Tr(δM)L. (1.37)

Since the fields are constant, we can compute the variation of the Lagrangian

as:

δL =
∂L
∂ϕi

δϕi +
∂L
∂gµν

δgµν (1.38)

and vacuum field equations are:

∂L
∂ϕi

= 0,
∂L
∂gµν

= 0. (1.39)

First, suppose these equations hold independently. Then, using the GL(4)

variation and setting ∂L/∂ϕi = 0, one finds:

∂L
∂gµν

(δMµν + δMνµ) = Tr(δM)L. (1.40)

This implies:
∂L
∂gµν

=
1

2
gµνL. (1.41)
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This differential equation is solved by:

L =
√−g V (ϕi), (1.42)

where V (ϕi) is a potential depending on the self-tuning fields.

The remaining equation ∂L/∂gµν = 0 leads to:

V (ϕi) = 0, (1.43)

thus, requiring a fine-tuned cancellation of the potential.

Now consider the second case, where the field equations are not indepen-

dent. Weinberg assumes the existence of a relation of the form:

2gµν
∂L
∂gµν

=
∑
i

fi(ϕ)
∂L
∂ϕi

, (1.44)

which implies a scaling symmetry:

δϵgµν = 2ϵgµν , δϵϕi = −ϵfi(ϕ). (1.45)

One can define new field variables ϕ̃i such that:

δϵϕ̃0 = −ϵ, δϵϕ̃i = 0 (i ̸= 0). (1.46)

The Lagrangian must then be of the form:

L = L
(
e2ϕ̃0gµν , ϕ̃i

)
. (1.47)

Returning to GL(4) invariance, we compute:

δL =
∂L
∂ϕ̃0

δϕ̃0 +
∂L
∂ϕ̃i

δϕ̃i +
∂L
∂gµν

δgµν . (1.48)

Since ϕ̃0 is a scalar under GL(4), it does not transform (δϕ̃0 = 0). Thus, the

independent field equations are now:

∂L
∂ϕ̃i

= 0,
∂L
∂gµν

= 0. (1.49)

Proceeding as before, the form of the Lagrangian becomes:

L =
√−g e4ϕ̃0 V (ϕ̃i). (1.50)
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Applying the field equation for the metric, one obtains:

e4ϕ̃0 V (ϕ̃i) = 0. (1.51)

This condition admits two possibilities:

• V (ϕ̃i) = 0, which again represents fine-tuning;

• eϕ̃0 → 0, which drives all mass scales to zero.

The second possibility is unphysical. Since physical masses scale as eϕ̃0 ,

the limit ϕ̃0 → −∞ corresponds to a scale-invariant universe with vanishing

masses, in clear contradiction with observational reality.

It is worth noting that the validity of vacuum translational invariance de-

pends largely on the assumption of a flat, static spacetime. However, in a

more realistic context, where gravity is dynamic and quantum effects come

into play, this assumption is less certain. Therefore, while Weinberg no-go

theorem is a significant result, it may not exclude all possible mechanisms for

the dynamical relaxation of the cosmological constant, especially in scenarios

where the vacuum is not invariant.

1.5 Towards a quantum gravity-based approach

The cosmological constant problem represents one of the most complex issues

in contemporary physics, highlighting a deep discrepancy between the predic-

tions of quantum field theory and cosmological observations. Although several

theoretical approaches to the problem have been proposed, none have proven

free from fundamental difficulties.

This challenge emphasizes the urgency of developing a more suitable theo-

retical framework capable of integrating gravitational and quantum phenom-

ena, and naturally explaining the observed value of the cosmological constant.

Although there is still no unanimous consensus on the correct path to-

ward formulating a theory of quantum gravity, it is noteworthy that numerous

models suggest the existence of a minimum measurable length scale.

Beyond the question of which model of quantum gravity is most promising,

one may therefore ask what implications the introduction of such a minimal

length could have within the framework of quantum field theory. In partic-

ular, it is worth considering whether it could offer new perspectives on the

cosmological constant problem and, optimistically, help to alleviate some of

the challenges it poses.
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The following chapters will be dedicated to this topic: first, the scenario

of minimal length will be introduced, followed by its phenomenological imple-

mentation in quantum field theory on curved spacetime.
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Chapter 2

Quantum gravity and minimal

length

What we observe is not nature

itself, but nature exposed to our

method of questioning.

Werner Heisenberg

2.1 Thought experiments

Numerous thought experiments suggest that any theory attempting to describe

the quantum nature of gravity must incorporate a minimal measurable length,

presumably of the order of the Planck scale.

Several examples are presented, illustrating how the inclusion of gravita-

tional effects in a quantum setting leads to a modification of the Heisenberg

uncertainty relations, giving rise to what is referred to as the generalized un-

certainty principle (GUP).

2.1.1 Heisenberg microscope

The well-known Heisenberg microscope Gedankenexperiment [17] offers an ex-

plicit illustration of the uncertainty principle in quantum mechanics.

Schematically, a light beam of frequency ω is used to illuminate an electron

and the scattered photons pass through the objective of a microscope before

reaching the observer’s eye. Classical optics limits the accuracy of position

measurements introducing an uncertainty along the direction transverse to
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the line of sight, the x-axis, given by:

∆x ≳
1

ω sin δθ
, (2.1)

where δθ is the opening angle of the cone of light entering the objective af-

ter interacting with the electron. The photon used to measure the particle’s

position transfers momentum to it during the scattering process. Since the ob-

server cannot determine the photon’s incoming direction more precisely than

the angle δθ, the uncertainty in the electron’s momentum along the x-direction

is given by:

∆px ≳ ω sin δθ. (2.2)

The two uncertainties combine to yield the Heisenberg uncertainty relation:

∆x∆px ≳ 1. (2.3)

(From this point on, ∆px will be denoted simply by ∆p.)

Figure 2.1: Heisenberg microscope. Light of frequency λ bounces off the elec-
tron, enters the objective O of the microscope and enters the eye E of the
observer. Image from Shankar [39].

The case in which gravity is taken into account in the context of Heisen-

berg’s microscope was carefully analyzed by Mead [27] using both a Newtonian

approximation and the complete framework of general relativity.

Nevertheless, the Newtonian approximation alone is sufficient to obtain

significant results.

In addition to the uncertainty due to the unknown scattering direction of

the photon (yielding ∆x ≳ 1/∆p), an additional contribution arises from the

gravitational interaction between the photon and the observed particle. The
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particle is attracted toward the photon with acceleration l2P ω/r
2, where ω is

the photon’s energy and r the size of the interaction region. Over a time ∼ r,

this leads to a displacement ∼ l2P ω of the electron in the (unknown) photon’s

direction. Projected on the x-axis, this implies an additional uncertainty:

∆x ≳ l2P ∆p. (2.4)

Combining both pieces of uncertainty, one gets:

∆x ≳ max

(
1

∆p
, l2P ∆p

)
≳ lP . (2.5)

The physical idea behind this relation is quite straightforward. To get bet-

ter spatial resolution, photons with higher energy are needed, as suggested by

the usual Heisenberg uncertainty principle. However, increasing the photon’s

energy also makes its gravitational pull on the particle stronger, adding more

disturbance. If the energy is too high, gravity affects the particle so much that

it cancels out the benefit of using high-energy photons to improve precision.

Assuming that the uncertainties (2.3) and (2.4) add linearly, one obtains:

∆x ≳
1

∆p
+ l2P ∆p, (2.6)

that is invariant under the replacement:

lP ∆p↔ 1

lP ∆p
. (2.7)

Relations such as (2.6) are examples of the aforementioned GUP.

The standard microscope argument demonstrates a fundamental limit re-

sulting from the non-commutativity of position and momentum operators in

quantum mechanics. The appearance of a generalized uncertainty relation nat-

urally suggests that some modification of quantum mechanics may be required

to account for it (the details will be discussed in a later section).

The fully relativistic treatment is not presented here1. Nonetheless, a

heuristic argument involving general relativity is outlined.

A fundamental aspect of Einstein’s theory of gravity is that black holes

form when the energy density in a region becomes too high. According to

Thorne hoop conjecture [40], if energy ω is compressed into a region with

circumference R ≤ 4πGω, a black hole will form. Although this conjecture is

1For further details, the reader is referred to Mead’s original work [27] or to appropriate
review articles (see e.g. [13, 20]).
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unproven, analytical and numerical evidence supports it.

Considering a particle with energy ω, quantum mechanics imposes a limit

on how precisely the particle can be localized: its size R cannot be smaller

than its Compton wavelength:

R ≥ λC ∼ 1

ω
. (2.8)

This means that increasing the particle’s energy allows it to be confined in a

smaller region. However, if the size R falls below the threshold given by the

hoop conjecture, the particle would gravitationally collapse into a black hole

with radius:

RBH = 2Gω. (2.9)

Because the black hole radius increases linearly with energy while the Compton

wavelength decreases inversely with energy, these two limits overlap, setting a

fundamental minimal length scale:

Rmin ∼
√
G, (2.10)

which corresponds, again, to the Planck length lP .

2.1.2 Clock synchronization

The synchronization of a clock with another, taken as standard reference, can

be performed through photon exchange.

Two primary sources of uncertainty affect the clock reading. First, the

Heisenberg time-energy uncertainty relation limits the precision in the emission

or absorption of photons, restricting the accuracy to ∆TQM ∼ 1/∆ω. Second,

the gravitational interaction between the photon and the clock introduces an

additional uncertainty.

Assuming a strong interaction between photon and clock within a region of

radius r lasting for a time r (with the clock considered stationary), the proper

duration of the interaction as measured by the clock is given by:

T =
√
g00 r, (2.11)

where g00 is the time-time component of the gravitational field generated by

the photon and experienced by the clock2:

2The deviation from the Schwarzschild metric, represented by the factor 4, is explained
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g00 = 1− 4l2Pω

r
. (2.12)

Since the metric depends on the energy of the photon, the error on ω

propagates into T by:

∆TGR ∼
∣∣∣∣∂T∂ω

∣∣∣∣ ∆ω, (2.13)

that is:

∆TGR ∼ 2l2P√
1− 4l2Pω/r

∆ω ≳ 2l2P ∆ω, (2.14)

resulting in the overall uncertainty in the reading of the clock:

∆T ≳ max

(
1

∆ω
, l2P ∆ω

)
≳ lP . (2.15)

It is important to note that the uncertainty relations described so far repre-

sent low-energy approximations of what a complete theory of quantum gravity

would predict. They all consist of two contributions: the first arises from

the standard Heisenberg uncertainty principle, while the second stems from

the dynamical response of spacetime to quantum fluctuations. However, this

modification should, in turn, generate a new uncertainty in the gravitational

field itself, an effect that recursively introduces further uncertainty. This chain

of corrections reflects the inherent non-linearity of gravitational interactions.

2.1.3 Black hole horizon

What follows is a thought experiment proposed by Maggiore [24], aimed at

deriving an uncertainty relation based on the measurement of a black hole’s

radius.

In classical general relativity, the radius of the event horizon cannot be

measured; it can only be inferred from other parameters of the black hole

(namely, its mass, charge and angular momentum), but not directly verified.

However, this is no longer the case once quantum effects are taken into account.

In fact, Hawking radiation would allow for a direct assessment of the black

hole’s area, and thus enable a validation of the relationship between its radius

and the other aforementioned parameters.

Now, consider sending a photon with energy ω from an asymptotic region

in [27].
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Figure 2.2: Hawking black hole evaporation. A black hole forms through
calssical gravitational collapse. Then, over an extremely long period, it loses
mass at a very slow rate, through Hawking radiation. Image from Penrose
[35].

toward an extremal black hole (one with vanishing surface gravity, and there-

fore no thermal radiation emission). The black hole’s mass will increase by the

amount ω, and it will subsequently re-emit this energy to return to a stable

extremal state (assumed to occur through a single photon, that is eventually

measured).

By repeating the process many times, the observer would eventually be

able to “see” the black hole.

As in the preceding cases, the evaluation of the horizon radius RH is af-

fected by the usual uncertainty arising from the photon’s finite wavelength,

which limits the observer’s knowledge of the photon’s point of origin and leads

again to the Heisenberg inequality (2.3), where, this time, ∆p represent the

uncertainty in the final momentum of the black hole.

During the emission process, the mass of the black hole decreases from

M + ω to M , and the corresponding horizon radius must adjust accordingly.

If the energy of the emitted photon is known only within an uncertainty ∆p,

this uncertainty propagates into the precision with which the horizon radius

can be studied:

∆RH ∼
∣∣∣∣∂RH

∂M

∣∣∣∣ ∆p. (2.16)

23



Figure 2.3: Reissner-Nordström metric. Penrose diagram for the case Q2 =
GM2. Image from d’Inverno [8].

Considering a Reissner-Nordström black hole with charge Q (the extension

to the Kerr-Newman’s case is quite straightforward), whose outer horizon’s

radius is given by:

RH = GM

[
1 +

(
1− Q2

GM2

)1/2
]
, (2.17)

and assuming that no naked singularities occur in nature (i.e., M2G ≤ Q2,

where the equality holds for the extremal case), it follows that:

∆RH ≳ l2P ∆p. (2.18)

In his article, Maggiore combines linearly the two sources of uncertainties

(using ∆x in place of ∆RH), and obtains:

∆x ≳
1

∆p
+ α l2P ∆p, (2.19)

which represents a GUP. Where the dimensionless constant α is introduced to

facilitate comparison with predictions from various quantum gravity models

(e.g., string theory).
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2.2 Quantum gravity models

So far, a series of thought experiments has been presented which, indepen-

dently of the specific model, provide arguments supporting the existence of a

minimal measurable length in the context of quantum gravity.

In this section, by contrast, it is shown how the idea of a minimal length

can emerge from specific theories.

2.2.1 Quantized conformal fluctuations

The formulation of quantum gravity developed by Padmanabhan [32] is based

on the path integral:

K =

∫
Dgµν eiS[gµν ], (2.20)

where S[gµν ] is the Einstein-Hilbert action:

S =
1

16πG

∫ √−g d4xR. (2.21)

For simplicity, consider a conformally flat metric of the form:

gµν(x) =
[
1 + ϕ(x)2

]
ηµν , (2.22)

that reduces the path integral to:∫
Dϕ exp

(
i

l2P

∫
d4x ηµνϕ;µϕ;ν

)
, (2.23)

which presents a quadratic action and can be evaluated in closed form. This

allowed Padmanabhan to write the probability amplitude for a measurement

of the conformal fluctuation to give a value ϕ:

A(ϕ) =

(
l

lP

)1/4

exp

(
− l2

l2P
ϕ2

)
, (2.24)

where l is the resolution of the measuring apparatus. If the region over which

one measures is very large (l ≫ lP ), then the probability amplitude A will

have a sharp peak at flat spacetime (i.e., ϕ = 0).

The distribution leads to an uncertainty relation of the form:

∆ϕ l ≳ lP . (2.25)
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In other words, as the scale l decreases (and resolution increases), the fluctu-

ations of the conformal factor ϕ become stronger.

To proceed, consider the coincidence limit of the vacuum expectation value

of the proper interval between two nearby events:

⟨0| ds2 |0⟩ = lim
x→y

l2(x, y) = lim
x→y

[1 + ⟨ϕ(x)ϕ(y)⟩] l20(x, y), (2.26)

where l20(x, y) denotes the proper interval computed with respect to the flat

background metric ηµν .

Given that the action of the field ϕ corresponds to that of a free massless

scalar field with an inverted sign, one obtains the Green’s function:

⟨ϕ(x)ϕ(y)⟩ ∼ l2P
l20(x, y)

, (2.27)

which suggests, once inserted in (2.26), that the Planck length lP sets a lower

bound for the proper interval between any two events.

2.2.2 String theory

String theory3 is one of the leading candidates for a theory of quantum gravity.

For the purposes of this discussion, it is more than sufficient to observe that

a string is represented by a two-dimensional surface, known as the worldsheet,

which is swept out in a higher-dimensional spacetime. For internal consistency,

supersymmetric string theory requires a total of nine spatial dimensions, im-

plying the existence of six additional spatial dimensions beyond the familiar

three.

In this section, the total number of spacetime dimensions is denoted by D

(Greek indices range from 0 to D − 1).

The worldsheet is denoted byXν and is parameterized by two dimensionless

coordinates: τ , representing the time-like direction, and σ, typically ranging

from 0 to 2π. The physical state of a string can be described as a combination

of its discrete excitations and the motion of its center of mass.

Due to conformal invariance, the worldsheet acquires a complex structure

and can thus be treated as a Riemann surface, with complex coordinates la-

beled z and z. Scattering amplitudes in string theory are computed as sums

over such Riemann surfaces.

3For a comprehensive and pedagogic introduction to string theory, see [36].
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String theory already contains a minimum length as can be seen from a

simple (albeit rather formal) argument (see [21]). The classical relativistic

string dynamics is encoded inside the Polyakov action:

S ∝
∫
dτdσ

√
−hhab ηµν ∂aXµ(τ, σ) ∂bX

ν(τ, σ), (2.28)

where hab is the inverse of the worldsheet metric and h denotes its determinant.

The corresponding quantum theory can be expressed in the path integral

formalism. In discretized form:

Zstring ∼
∫

DX exp

{
i

1

α l2P

∑
ϵ2

[(
δτX

ϵ

)2

+

(
δσX

ϵ

)2
]}

, (2.29)

where the constant α that appears in the exponent depends on the particular

model that is considered. It can be observed that, since the worldsheet is

two-dimensional, the ϵ-factors cancel out, resulting in a spacetime distance:

⟨(δx)2⟩ ∼ α l2P

which is independent of ϵ. This is in contrast with the case of a point parti-

cle, where the worldline is one-dimensional: in that case, the corresponding

expression for the spacetime interval maintains a dependence on ϵ, and no

intrinsic length scale emerges in the same manner.

Furthermore, several rigorous calculations of high-energy string scattering

(e.g., [14]) indicate modifications to the Heisenberg uncertainty principle, high-

lighting a linear relationship between the string’s longitudinal spread and the

probe energy E:

∆xν∆pν ≳ 1 + lsE, (2.30)

where ls is the string scale, which, in most versions of string theory, is close to

the Planck scale.

2.2.3 Loop quantum gravity

Loop quantum gravity4 (LQG) is a non-perturbative approach to the quanti-

zation of gravity, formulated through a specific choice of canonical variables

known as the Ashtekar variables.

4The standard reference for LQG is [38].
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The formalism arises from a Hamiltonian treatment of general relativity,

employing the 3 + 1 ADM decomposition of spacetime into spacelike hyper-

surfaces. In this context, the spatial metric is supplemented by the extrinsic

curvature Kab, which encodes how the geometry evolves along the foliation.

To facilitate quantization, the spatial metric hab is reformulated using a triad

(or dreibein) basis Ea
i :

hab = Ea
i E

b
jδ

ij (2.31)

and the dynamical variables are replaced by the densitized triad Ẽa
i =√

hEa
i and the su(2) connection Ai

a. These variables form a canonical pair and,

in the quantum setting, are promoted to operators satisfying the commutation

relations:

[
Aj

a(x), Ẽ
b
i (y)

]
= iβ δbaδ

i
j δ

3(x− y), (2.32)

with β denoting the Barbero-Immirzi parameter.

The quantized theory admits various representations, among which the

loop (from which the name loop quantum gravity derives) and spin network

representations are of central importance. Spin networks, in particular, provide

a basis of quantum states |ψs⟩ defined on graphs whose edges are labeled by

irreducible su(2) representations.

In LQG the area of a two-dimensional surface Σ becomes an operator AΣ

acting on spin network states. Its eigenvalues are discrete and depend on the

su(2) half-integer representation labels jI associated with edges intersecting

the surface:

AΣ |ψs⟩ = 8πl2Pβ
∑
I

√
jI(jI + 1) |ψs⟩ . (2.33)

As a result, area is quantized (as shown in [37]), and the theory predicts the

existence of a minimal nonzero area, proportional to the square of the Planck

length and scaled by the Barbero–Immirzi parameter.

This discrete spectrum of geometric operators implies a fundamental min-

imal length scale within the framework of LQG.

A note on canonical quantization We believe it is worth mentioning,

among the notable approaches, the canonical quantization program of grav-

ity5, from which LQG itself originates. The presence of a minimal length

5For a complete discussion, see [22].
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does not appear to be, in itself, a structural feature of the theory. Nonethe-

less, a minimal scale seems to emerge dynamically in the study of certain

mini-superspace models of gravitational collapse (see, e.g., [23]), in which the

(simplified) Wheeler–DeWitt equation appears to suggest a bounce mechanism

once the star reaches Planck-scale dimensions.

2.3 Non-commutative geometry

Non-commutative geometry (for a detailed discussion, see [18]) emerges both

as a modification of quantum mechanics and quantum field theory in certain

approaches to quantum gravity, and as a distinct class of theoretical mod-

els. The idea is strongly motivated by developments in string theory. Fur-

thermore, there are indications that LQG may give rise to a specific type of

non-commutative spacetime known as κ-Poincaré geometry.

The key principle of non-commutative geometry is that, upon quantiza-

tion, the spacetime coordinates xν become Hermitian operators x̂ν that do not

commute:

[x̂µ, x̂ν ] = iθµν , (2.34)

where θµν is a real, antisymmetric tensor of dimension length squared, known

as the Poisson tensor. This tensor introduces a fundamental minimal area

scale, similar to the role of ℏ in quantum mechanics. The resulting uncertainty

relation among spatial coordinates implies:

∆xµ∆xν ≳
1

2
|θµν |. (2.35)

The elements of θµν are free parameters to be constrained experimentally, even

though, in the light of what has been discussed so far, one would expect them

to be of the order of the Planck length squared. Notably, θµν defines a preferred

frame, breaking Lorentz invariance.

Quantization in non-commutative geometry extends beyond coordinates to

functions on spacetime. Using Weyl quantization, a mapping W is defined

from classical functions f(x) to Hermitian operators:

f̂ = W (f) =
1

(2π)4

∫
d4k e−ikµx̂µ

f̃(k), (2.36)

where f̃(k) is the Fourier transform of f(x).

One can then introduce a product of functions known as the Moyal–Weyl
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(or ⋆) product [29]:

f(x) ⋆ g(x) = exp

(
i

2

∂

∂xµ
θµν

∂

∂yν

)
f(x)g(y)

∣∣∣∣
x→y

, (2.37)

which implies:

W (f ⋆ g)(x) = W (f) ·W (g) = f̂ · ĝ, (2.38)

establishing a homomorphism between the algebras of functions and Hermitian

operators.

2.4 Modified commutation relations and GUP

In the previous sections, it was shown, through the presentation of different

thought experiments, how extensions of Heisenberg’s uncertainty principle can

emerge dynamically.

Indeed, in quantum mechanics, uncertainty relations are not dynamical;

rather, they come from the kinematical structure of the theory. In particular,

the fact that the position and momentum operators do not commute leads to an

uncertainty relation between them. This applies to any pair of non-commuting

observables: they cannot be measured simultaneously with arbitrary precision.

This raises the question of whether generalized uncertainty relations can also

be derived from the kinematical structure of the theory.

In this regard, a widely studied approach to incorporate a minimal length

scale in quantum mechanics and quantum field theory is based on the imple-

mentation of modified commutation relations between position and momentum

operators. These modifications may extend beyond the canonical algebra and

can imply a non-commutative geometry in position (as seen in the previous

section) and/or momentum space.

To illustrate the mechanism, consider the standard quantization of the

variables k = (ω, ki), where ki are the spatial components, and x = (t, xi).

These satisfy the canonical commutation relations:

[xν , xκ] = 0, [xν , kκ] = iδνκ, [kν , kκ] = 0. (2.39)

Now define a new set of momentum variables p = (E, pi) = f(k), where f

is an invertible function. The inverse function k = f−1(p) is thus well-defined.
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We can express these transformations as:

pµ = hαµ(k) kα (2.40)

and:

kα = hµα(p) pµ. (2.41)

Under this change of variables, the commutation relations become:

[xν , xκ] = 0, [xν , pκ] = i
∂fκ
∂kν

, [pν , pκ] = 0. (2.42)

This directly leads to a modified uncertainty relation:

∆xi∆pi ≥
1

2

〈
∂fi
∂ki

〉
. (2.43)

To make this concrete, consider a simple deformation:

pi ≈ ki

(
1 +

αk2

m2
P

)
, (2.44)

where α is a dimensionless constant and k2 = |⃗k|2 (the same notation holds

for p). Inverting this relation yields:

ki ≈ pi

(
1− αp2

m2
P

)
. (2.45)

From this, the Jacobian becomes:

∂fi
∂kj

≈ δij

(
1 +

αp2

m2
P

)
+

2α pipj
m2

P

. (2.46)

Taking the expectation value, one obtains a generalized uncertainty relation:

∆xi∆pi ≥
1

2

(
1 +

α⟨p2⟩
m2

P

+
2α⟨p2i ⟩
m2

P

)
. (2.47)

Rewriting this inequality explicitly for ∆xi (remember, ∆A2 = ⟨A2⟩−⟨A⟩2),
one finds:

∆xi ≥
1

2

(
1

∆pi
+

3α∆pi
m2

P

)
, (2.48)

consistently with what was obtained through the thought experiments previ-

ously examined.
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The inequality (2.48) carries operational meaning only if p is interpreted

as a physical momentum (it is represented by a Hermitian operator). To dis-

tinguish the physical quantity p from k (which satisfies the canonical commu-

tation relations with x), the latter is sometimes called the pseudo-momentum

or the wave vector.

Now, consider the issue of Lorentz invariance. Without additional assump-

tions beyond the commutation relations, the transformation properties of the

quantities remain undetermined. They could, in principle, transform arbitrar-

ily, implying a possible violation of Lorentz invariance.

If the latter is imposed, further questions arise: how is it preserved, what

is the geometry of the corresponding phase space and, most importantly, how

can one identify physically meaningful coordinates on this space?

No widely accepted picture has emerged.

Nonetheless, assume that the phase space is a trivial fiber bundle S = M⊗
P , where M denotes spacetime and P denotes momentum space. Elements of

this space are of the form (x,p), with x ∈ M and p ∈ P .

One can further consider p as a coordinate on P that transforms under

standard Lorentz transformations and let k be an alternative coordinate system

on P , related to p through the function f .

Under a Lorentz transformation Λ, the momentum transforms as p′ = Λp

and the transformation of k follows as:

k′ = f(p′) = f(Λp) = f(Λf−1(k)), (2.49)

which defines a modified Lorentz transformation k′ = Λ̃(k) in the k-coordinates.

Importantly, one can choose the function f such that it maps infinite values

of p (in either the spatial or temporal components, or both) to finite values

of k (possibly of the order of the Planck scale). The corresponding Lorentz

transformation in k-space then preserves the Planck scale, all without intro-

ducing a preferred frame of reference. This construction forms the basis for

deformations of special relativity.

In any case, the choice of how to fix the transformation behavior is not

unique. An alternative to the approach outlined above treats k as transforming

conventionally and interprets p as the physical momentum (or x as ‘pseudo-

coordinates’).

This variety of conventions is one of the main reasons why the literature

on modified commutation relations can be difficult to navigate.
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2.5 Vacuum energy and minimal length

Returning to the cosmological constant problem, the calculation of the vacuum

energy density has been carried out in a minimal length scenario [6] (see also

[3]) by employing the modified commutation relations:

[xi, pj] = iδij(1 + βp2). (2.50)

When performing the integration over the normal modes, one must take

into account that the measure in momentum space now takes the following

form:

d3p⃗

(1 + βp2)3
, (2.51)

and the vacuum energy density becomes:

⟨ρ⟩ =
∫

4πp2

(2π)3
dp

(1 + βp2)3
1

2

√
p2 +m2. (2.52)

Since the integrand behaves as O
(

1
p3

)
at large momentum, the integral is

convergent and does not require a momentum cutoff. In fact, (2.52) can be

evaluated exactly for any value of m. For simplicity, in the massless case, the

integral reduces to:

⟨ρ⟩ = 1

16π2β2
. (2.53)

If one takes β to be of the order of the Planck scale, the result still yields

a GUP-modified vacuum energy that is, again, approximately 120 orders of

magnitude larger than the observed vacuum energy.

Thus, although the GUP functional cutoff factor (2.51) makes ⟨ρ⟩ finite

through justified physical assumptions, it still predicts a value that is vastly

too large, and therefore fails to resolve the vacuum catastrophe.

In any case, addressing the cosmological constant problem requires taking

into account the curvature of spacetime. To this end, the aim of the next

chapter is to heuristically adapt quantum field theory in curved spacetime to

a framework that incorporates the existence of a minimal length scale.
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Chapter 3

Covariant point-separation

renormalization and minimal

length

Cosmologists are often in error but

never in doubt.

Lev Landau

Guide to the chapter The goal of this chapter is to derive an expression for

the energy density of a massive scalar field in a de Sitter background, taking

into account the presence of a minimal spacetime interval.

In quantum field theory in curved spacetime, the vacuum expectation value

(VEV) of the energy-momentum tensor diverges, since it is constructed from

the product of two field operators evaluated at the same spacetime point. To

address this issue, several renormalization approaches have been developed.

Among them, the covariant geodesic point separation method stands out; it

involves replacing a quadratic operator with the product of two field operators

evaluated at nearby spacetime points. In this way, a finite result is obtained,

which can be expressed in terms of the Hadamard function. The latter is writ-

ten in terms of the biscalar of geodetic interval (also known as the Synge world

function), which provides a measure of the square of the geodesic distance

between the separated points.

Through the Synge biscalar, the Hadamard function explicitly reveals the

structure of the divergences that affect the Feynman propagator in the limit

where the previously separated points are brought together.

34



Such divergences, which are typically removed through appropriate regu-

larization techniques, may not arise in a scenario with a fundamental minimal

length, where the coincidence limit loses its physical meaning. In this context,

a minimal length scale emerging from the quantum nature of gravity appears

to provide a natural regularization mechanism for the ultraviolet divergences

that afflict quantum field theory.

3.1 The point-separated energy-momentum ten-

sor

The action functional for a scalar field in a curved background is:

S[ϕ] = −1

2

∫
d4x

√
g
(
gµν∇µϕ∇νϕ+ ξRϕ2 +m2ϕ2

)
, (3.1)

where:

• g = − det(gµν);

• R is the Ricci scalar;

• m is the mass of the scalar field;

• ξ is a coupling constant that governs the interaction between the field

and the curvature1.

From this action one obtains the equations of motion for the scalar field:

0 =
δS

δϕ
= −√

g
(
2− ξR−m2

)
ϕ, (3.2)

where 2 = ∇µ∇µ.

The classical stress tensor is defined as:

T µν =
2√−g

δS

δgµν
=

1

2
(1− 2ξ) {ϕ;µ, ϕ;ν}+ 1

2

(
2ξ − 1

2

)
gµν {ϕ;α, ϕ

;α}

− ξ {ϕ;µν , ϕ}+ gµν {ϕ;α
α, ϕ}

+ ξ

(
Rµν − 1

2
gµνR

)
{ϕ, ϕ} − 1

2
m2gµν{ϕ, ϕ}, (3.3)

1The value of ξ depends on the physical context: for a minimally coupled scalar field,
ξ = 0, while for a conformally coupled scalar field in four dimensions, ξ = 1

6 .

35



with { , } denoting the anti-commutator.

Tµν is symmetric and covariantly conserved, i.e.,

∇µT
µν = 0, (3.4)

as a consequence of the field equations. Moreover, when the scalar field is

massless (m = 0) and conformally coupled (ξ = 1
6
), the tensor is also traceless:

T µ
µ = 0. (3.5)

Going from classical to quantum theory, the scalar field ϕ is promoted to a

quantum operator ϕ̂. The stress-energy tensor then involves products of field

operators (or their derivatives) evaluated at the same spacetime point, which

become ill-defined when taking vacuum expectation values.

To circumvent this difficulty, one can employ the point-separation2 proce-

dure, which consists in replacing one of the field operators ϕ̂(x), appearing in

quadratic terms, with ϕ̂(x′), where x′ is a point close to x.

The finite quantity:

G(1)(x, x′) ≡ ⟨0| {ϕ̂(x), ϕ̂(x′)} |0⟩ (3.6)

takes the name of Hadamard elementary function3 and allows one to write the

divergent VEV of the energy momentum tensor, after some manipulations, as:

⟨T̂ µν⟩div = lim
x′→x

1

2

(
1

2
− ξ

)(
G(1) ;µ′ν +G(1) ;µν′

)
+

(
ξ − 1

4

)
gµνG(1)α′

;α

− 1

2
ξ
(
G(1) ;µν +G(1) ;µ′ν′

)
+

1

8
ξ gµν

(
G(1)α

;α +G
(1)α′

;α′

)
+

3

4
ξ gµν

(
ξR +m2

)
G(1) +

1

2
ξ

(
Rµν − 1

2
gµνR

)
G(1)

− 1

4
m2gµνG(1), (3.7)

where primed Greek indices denote covariant derivatives acting on fields de-

pendent on x′.

The latter expression is purely formal: terms such as G(1) ;µν +G(1) ;µ′ν′ are

meaningless, since each term transforms differently as a bitensor, and cannot

be added.

2Our discussion follows that of Christensen [7].
3A regularization technique based on the Hadamard function is presented in the appendix.
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3.2 The Schwinger-DeWitt method

The Hadamard function can be studied starting from the Feynman Green’s

function:

G(x, x′) = Ḡ(x, x′)− i

2
G(1)(x, x′), (3.8)

where Ḡ is the principal value part.

To compute the Feynman Green’s function in curved spacetime, it is useful

to employ DeWitt’s generalization of the Schwinger proper-time method4.

One considers an abstract Hilbert space equipped with a set of formal

operators x̂µ and p̂ν , satisfying the canonical commutation relations:

[x̂µ, x̂ν ] = 0,

[p̂µ, p̂ν ] = 0,

[x̂µ, p̂ν ] = iδµν . (3.9)

These operators act on a basis of eigenvectors |x⟩, normalized such that:

⟨x|x′⟩ = ⟨x|I|x′⟩ = δ(x, x′). (3.10)

Consider the quantum theory of a non-minimally coupled scalar field ϕ.

The field equation can be written in terms of an operator F :

Fϕ(x) =
√
g
(
2−m2 − ξR

)
ϕ(x) = 0. (3.11)

Within the Schwinger formalism, the operator F and the associated Green’s

function are interpreted as matrix elements in the abstract Hilbert space:

G(x, x′) = ⟨x|G|x′⟩, F (x, x′) = ⟨x|F|x′⟩ (3.12)

and satisfy the equation:

FG = −I. (3.13)

One may assign to the operator F an infinitesimal “positive” imaginary

part. Consequently, the following operator identity holds:

4See [11] for further details.
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g1/4G g1/4 = − 1

g−1/4F g−1/4 + i0+
= i

∫ ∞

0

ds exp
{
i g−1/4Fg−1/4 s

}
. (3.14)

This leads to the proper-time representation of the Feynman propagator:

G(x, x′) = i

∫ ∞

0

g−1/4(x)⟨x, s|x′, 0⟩g−1/4(x′) ds, (3.15)

where the kernel ⟨x, s|x′, 0⟩ = ⟨x| exp
{
i g−1/4Fg−1/4 s

}
|x′⟩ denotes the prob-

ability amplitude for a fictitious particle to propagate, in a “proper-time”

interval s, from point x to point x′ on a hypersurface having the number of

dimensions of the original spacetime. It satisfies the Schrödinger-like equation:

i
∂

∂s
⟨x, s|x′, 0⟩ = Fx⟨x, s|x′, 0⟩. (3.16)

In the case where the spacetime points x and x′ are close, a WKB expansion

can be written:

⟨x, s|x′, 0⟩ ∼ iD1/2(x, x′)

(4πs)2
exp

[
iσ(x, x′)

2s
− im2s

]
Ω(x, x′, s), (3.17)

where:

• σ(x, x′) ≡ 1
2
τ(x, x′)2 is the Synge’s world function, equal to half the

squared geodesic distance between x and x′. From geodesic theory

σ(x, x′) = 1
2
σ;µσ;µ;

• D(x, x′) ≡ − det(−σ;µν′) is the Van Vleck–Morette determinant, which

satisfies the identity D−1 (Dσ;µ);µ = 4;

• Ω(x, x′, s) encodes the higher-order contributions and admits an asymp-

totic expansion in powers of s:

Ω(x, x′, s) ∼
∞∑
n=0

an(x, x
′)(is)n. (3.18)

⟨x, s|x′, 0⟩ reduces to δ(x, x′) as s→ 0 and Ω(x, x′, 0) = a0(x, x) = 1 for all

x and x′.

Substituting (3.17) and (3.18) in (3.16), one gets a set of recursion relations

for the an:
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a0;µσ
;µ = 0, (3.19)

which is trivially satisfied since a0 = 1, and:

σ;µan+1 ;µ + (n+ 1)an+1 = ∆−1/2
(
∆1/2an

)
;µ

µ − ξRan, (3.20)

where ∆(x, x′) = g−1/2(x)D(x, x′) g−1/2(x′).

Substituting (3.17) into (3.15) and exchanging the summation in (3.18)

with the integration sign, one obtains the following form for the Feynman

Green’s function:

G(x, x′) =
∆1/2

(4π)2

∞∑
n=0

an

(
− ∂

∂m2

)n ∫ ∞

0

1

s2
exp

[
−i
(
m2s− σ

2s

)]
ds. (3.21)

Since:

1

(4π)2

∫ ∞

0

1

s2
exp

[
−i
(
m2s− σ

2s

)]
ds = −m

2

8π

H
(2)
1 (

√
−2m2σ)

(
√
−2m2σ)

, (3.22)

where H
(2)
1 is the Hankel function of the second kind of order one, and the

following identities hold:

1

σ + i0+
=

1

σ
− iπδ(σ), log(σ + i0+) = log |σ|+ iπθ(−σ), (3.23)

where:

θ(−σ) =
{

1, σ < 0

0, σ > 0
(3.24)

one can expand the Hadamard function as:
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G(1)(x, x′) ∼ ∆1/2

4π2

{
1

σ
+m2

(
γ +

1

2
log |m2σ/2|

)(
1 +

1

4
m2σ + . . .

)
− 1

2
m2 − 5

16
m4σ − . . .

− a1

[(
γ +

1

2
log |m2σ/2|

)(
1 +

1

2
m2σ + . . .

)
− 1

2
m2σ − . . .

]
+

(
1

2
a21 + a2

)
σ

[(
γ +

1

2
log |m2σ/2|

)(
1

2
+

1

8
m2σ + . . .

)
− 1

4
− . . .

]
+ · · ·+ 1

2m2

[
1

2
a21 + a2 +O(σ)

]
+

1

2m4

[
1

6
a31 + a1a2 + a3 +O(σ)

]
+ . . .

}
, (3.25)

with γ denoting the Euler-Mascheroni constant.

The latter equation includes only those terms which contribute to the di-

vergences and some finite terms in ⟨T̂ µν⟩div. In particular, the divergences in

G(1)(x, x′) appear as σ−1 and log |1
2
m2σ| terms which blow up when σ → 0 as

x′ → x.

3.3 The covariant expansion of the energy mo-

mentum tensor

The expression that defines the vacuum expectation value of the energy mo-

mentum tensor (3.7) is purely formal and presents certain inconsistencies at

the practical level. Specifically, the left-hand side of the equation represents

a tensorial quantity defined at the point x, while the right-hand side involves

bitensors5 that depend on both x and x′, and therefore transform differently

under coordinate changes associated with each point.

To make the two sides consistent, it is necessary to rewrite the bitensors

by expanding them in terms of functions defined at x and the tangent vector

σµ ≡ σ;µ, e.g., for the two-indices-object:

Tαβ′ = tαβ(x) + tαβρ(x)σ
ρ + . . . (3.26)

Such an expression is ill-defined as well, as it once again involves elements on

either side of the equation that transform differently under coordinate changes.

5More details on bitensors are given in the appendix.
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It is therefore necessary to replace the bitensor with a tensor that depends

only on the point x, obtained from the original bitensor by means of parallel

transport implemented through the parallel propagator gβ
γ′
:

T̄αβ = gβ
γ′
Tαγ′ = tαβ + tαβρσ

ρ +
1

2
tαβρλσ

ρσλ + . . . (3.27)

The t-coefficients can be obtained through the x′ → x limit of the bitensor,

gµ
ν′ and their derivatives.

An example of covariant expansion, among the ones useful to compute the

VEV of the energy-momentum tensor, is given by:

σ̄αβ = gβ
ρ′σ;αρ′ = −gαβ −

1

6
Rαµβνσ

µσν +
1

12
Rαµβν;σσ

µσνσσ

−
(

1

40
Rαµβν;στ +

7

360
Rκ

µανRκσβτ

)
σµσνσσστ + . . . (3.28)

Substituting the series for σ, ∆, a1 and a2 in the formula for the Hadamard’s

G(1)(x, x′) (3.25) one gets:

4π2G(1) (x, x′) =
2

(σρσρ)
+

[
m2 −

(
1

6
− ξ

)
R

] [
γ +

1

2
ln

∣∣∣∣14m2 (σρσρ)

∣∣∣∣]− 1

2
m2

+
1

6
Rαβ

σασβ

(σρσρ)
+

1

2m2

[
1

2

(
1

6
− ξ

)2

R2 − 1

180
RρτRρτ

+
1

180
RρτκlRρτκl +

1

6

(
1

5
− ξ

)
R;ρ

ρ

]
+O

(
1/m4

)
. (3.29)

Differentiating (3.25) and inserting the due expansions, one finally obtains,

after a series of long and tedious steps, ⟨T̂ µν⟩div. For the purpose of this work,
it is sufficient to present the divergent terms up to logarithmic order6:

〈
T̂ µν
〉
quartic

=
1

2π2

1

(σρσρ)
2

[
gµν − 4

σµσν

(σρσρ)

]
, (3.30)

6Other terms can be found in [7].
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〈
T̂ µν
〉
quadratic

=
1

4π2

1

(σρσρ)

({
2

3
R(µ

α
σν)σα

(σρσρ)
− 2

3
Rαβ

σασβσµσν

(σρσρ)
2

−1

2
m2

[
gµν − 2

σµσν

(σρσρ)

]}
−
(
1

6
− ξ

){
Rµν − 1

2
R

[
gµν − 2

σµσν

(σρσρ)

]
−2Rµ

α
ν
β
σασβ

(σρσρ)
+ 2Rαβ

σασβ

(σρσρ)
gµν
})

, (3.31)

〈
T̂ µν
〉
logarithmic

=
1

4π2

{[
1

60

(
RρµτνRρτ −

1

4
RρτRρτg

µν

)
− 1

180
R

(
Rµν − 1

4
Rgµν

)
+

1

120
Rµν

;ρ
ρ − 1

360
R;µν − 1

720
R;ρ

ρgµν − 1

8
m4gµν

]
−1

2

(
1

6
− ξ

)[
m2

(
Rµν − 1

2
Rgµν

)]
−1

4

(
1

6
− ξ

)2 [
−2R

(
Rµν − 1

4
Rgµν

)
+ 2R;µν − 2R;ρ

ρgµν
]}

×
[
γ +

1

2
ln

∣∣∣∣14m2 (σρσρ)

∣∣∣∣] (3.32)

3.4 Minimum length in de Sitter spacetime

Within the mathematical framework introduced in this chapter, Synge’s world

function σ(x, x′) appears to be the most suitable structure for heuristically

introducing the concept of a minimal length scale, identified in this section by

the parameter ϵ.

To address the problem of the cosmological constant’s value, we proceed

considering the theory of a free massive scalar field in a fixed de Sitter space-

time, which serves as a model for both the inflationary phase of the early

universe and the present-day accelerated expansion.

The stress-energy tensor ⟨T̂ µν⟩div for a generic spacetime, derived from the

Hadamard function, presents a highly complex and lengthy expression and

no immediate or physically transparent results can be extracted until some

simplifying assumptions are introduced.

Whatever the assumed value of the minimum length scale, it must lie well

below the range accessible to current experimental investigations. Therefore, in
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Figure 3.1: A commonly described history of the universe, as a logarithmic
plot, including an inflationary phase. Here logR(t) (with R(t) denoting the
scale factor) is plotted against log t. Image from Penrose [35].

light of this “smallness”, it is reasonable to initially focus on the most divergent

contribution (the quartic) of the stress-energy tensor in order to extract some

preliminary insights.

By adopting the de Sitter metric in its FLRW form:

ds2 = −dt2 + e2Ht
(
dr2 + r2dΩ2

)
(3.33)

and choosing an appropriate timelike geodesic tangent vector:

σµ = (ϵ, 0, 0, 0), (3.34)

such that σασα = −ϵ2 (remember, with ϵ of the order of the minimum length),

one obtains, through the covariant point-splitting method, a diagonal form for

the mixed-component stress-energy tensor:

⟨T̂ µ
ν⟩quartic =

3

2π2ϵ4


−1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3

 . (3.35)

Equating the previously derived ⟨T̂ 0
0⟩quartic component of the stress-energy

tensor with (minus) the vacuum energy density ⟨ρ⟩, related to the cosmological
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constant, we find:

3

2π2ϵ4
=

Λ

8πl2P
. (3.36)

When we insert the currently observed value of the cosmological constant

Λ ∼ 10−122 l−2
P , the resulting minimum length scale turns out to be highly

unphysical (indeed, ϵ ∼ 1030 lP ∼ 10µm; the size of a red blood cell). Shifting

perspective, imposing a minimum length of the order of the Planck scale leads

back to the same discrepancy between theory and observation found in flat

spacetime (indeed, the resulting energy-momentum tensor is nearly identical

to that obtained in Minkowski space through the imposition of an ultraviolet

cutoff in momentum space).

One might ask whether retaining higher-order divergent terms, such as

those up to the logarithmic order, could remedy this pathology by allowing

the tuning of additional parameters that would now come into play (namely,

the mass of the scalar field m and the additional mass scale µ that can always

be introduced into the argument of the logarithmic term).

The computation of the divergent terms below the quartic order is already

greatly simplified by the fact that de Sitter space is a constant curvature

spacetime, characterized by the Riemann tensor Rαβµν = Λ
3
(gαµgβν − gανgβµ),

but it can be further shortened if we impose the condition ξ = 1
6
, which

corresponds to conformal coupling, although we consider a nonzero mass m.

This choice is justified by the fact that the terms multiplying the now vanishing

factor (1/6 − ξ) are independent of the parameters m and ϵ. Moreover, they

consist only of geometric contributions, with the cosmological constant Λ being

the only physical parameter involved. Since we are interested in the regime

of a very small cosmological constant, the simplification appears physically

motivated.

What we finally obtain is the following result:

⟨T̂ µ
ν⟩div ≃

1

2π2ϵ4


−3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− m2

8π2ϵ2


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


− m4

64π2
δµ ν ln

(
m2

µ2

)
.

(3.37)

We grasp how no reasonable choices for the parameters m, ϵ and µ yield
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significant progress on the cosmological constant problem.

However, the new terms identified in our analysis open the door to further

considerations, which we develop in the following sections.

3.5 Discussion

The approach we have pursued so far, based on the introduction of a minimal

observable length scale within the Schwinger-DeWitt/Hadamard renormaliza-

tion framework, does not appear to lead to satisfactory results. On the con-

trary, it seems to be affected by some inconsistencies and ambiguities that go

well beyond the mere failure to achieve the desired outcomes.

Nonetheless, it offers the opportunity to view certain results from standard

approaches to quantum field theory in curved spacetime from a new perspec-

tive.

3.5.1 Direction dependence

The outcome exhibits a strong sensitivity to the choice of the separation vec-

tor used in the point-splitting procedure. For instance, adopting a spacelike

geodesic vector of the form:

σµ =
(
0, e−Htϵ, 0, 0

)
, (3.38)

defined such that σµσ
µ = ϵ2, yields a different result from the original expres-

sion obtained using a timelike geodesic vector. In particular, the components

⟨T̂ 0
0⟩ and ⟨T̂ 1

1⟩ become interchanged. For instance, the quartic divergent

term becomes:

⟨T̂ µ
ν⟩quartic =

3

2π2ϵ4


1
3

0 0 0

0 −1 0 0

0 0 1
3

0

0 0 0 1
3

 . (3.39)

This alternative choice leads to a problematic negative energy density and

appears particularly troubling since, from a physical perspective, the use of a

spacelike separation vector might appear even more natural, especially consid-

ering that, in a well-posed initial value formulation, one typically specifies the

stress-energy tensor on a spacelike Cauchy surface.

A possible interpretation of this directional preference is that the minimal
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length should not be regarded as a geometric property of spacetime, but rather

as a scale that characterizes scattering processes. In this regard, Casadio and

Kuntz [5], using the Schwinger-Keldysh formalism, showed that a minimal

length emerges as the vacuum expectation value of the metric, promoted to a

quantum operator, but only when considering in-out amplitudes:

lin-out(x, y) =
√
⟨0out| ds2 |0in⟩, (3.40)

and not in-in ones. Indeed, even though this is not explicitly shown in our

derivation, which remains essentially formal, the Green’s functions employed

are in fact associated with in-out amplitudes. Therefore, the physical meaning-

fulness of considering spacetime points separated by spacelike intervals, within

the point-splitting framework, becomes questionable. This feature does not

represent a real issue in the usual renormalization schemes, since these prob-

lematic direction-dependent terms are eventually subtracted (before taking the

limit ϵ → 0). This is not the case in the framework we are adopting, which

relies on introducing a physical ultraviolet cut-off via fixing ϵ as a minimum

length scale.

(In order to deal with physically-meaningful results, the following consid-

erations are stated considering the original timelike vector σµ = (ϵ, 0, 0, 0).)

3.5.2 Wrong equation of state and flat spacetime simi-

larities

The energy momentum tensor we obtained fails to satisfy the expected vacuum

equation of state p = −ρ, typical of a vacuum-dominated universe. In the lead-

ing divergent term, one instead finds the relation p = 1
3
ρ, which corresponds

to the behavior of a radiation-dominated universe.

In the absence of an introduced mass scale µ, one might attempt to elim-

inate the directional dependence by imposing a specific relation between the

cutoff parameter ϵ and the mass m, such as ϵ4 = 64/m4. This tuning enforces

the condition p = −ρ, effectively restoring isotropy. However, this constraint

appears ad hoc and lacks a compelling physical motivation. Moreover, even if

such a relation is assumed, the resulting vacuum energy density takes the form

⟨ρ⟩ ≃ 1

2π2ϵ4
(ln 64 + 1) ∼ 1

ϵ4
, (3.41)

which, when compared with the observed value of the cosmological constant,

implies again a minimal length scale on the order of tens of micrometers.
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The straightforward approach of estimating the vacuum energy density of

a scalar field in flat spacetime by imposing an ultraviolet cut-off in momentum

space yields (at the leading order) a result proportional toM4, whereM is the

cutoff scale with the dimension of a mass (equivalently, the inverse of a length

in natural units where ℏ = c = 1). Furthermore, in the same approach, one

finds that the pressure satisfies the equation of state p = 1
3
ρ.

These results corresponds, in every respect, to what we have found in the

quartically-divergent term of ⟨T µ
ν⟩div.

Indeed, such a coincidence of results is not surprising. Since we are deal-

ing with the ultraviolet behavior of quantum field theory, any local analysis

(regardless of whether a minimal length framework is used) that neglects space-

time curvature effects should necessarily yield correct and consistent results.

In the flat spacetime case, the wrong equation of state relating energy den-

sity and pressure stems from the usage of a procedure, the one of introducing

a sharp cutoff, that breaks the Lorentz invariance. This is not what happens

in our curved spacetime approach, which is, for its part, fully covariant. Nev-

ertheless, similarly, a non-vanishing value of ϵ selects a “preferred direction in

spacetime”. In any case, the connection between these interpretations, if any,

remains unclear.

Going back to the flat spacetime case, as mentioned in the first chapter,

some authors suggest that one should treat the regularization of the vacuum

energy density in a way that preserves Lorentz symmetry. Dimensional regu-

larization leads to a different expression for the zero-point energy density:

⟨ρ⟩ ≃ m4

64π2
ln

(
m2

µ2

)
, (3.42)

where m denotes the mass of the field and µ the renormalization scale. The

identical leading-order result is obtainable in curved spacetime by applying,

again, dimensional regularization.

We recognize that the logarithmic divergent term stemming from our min-

imum length computation takes exactly the same form.

Even if these results could be reconciled, the cosmological constant prob-

lem would remain fundamentally unresolved; alleviated by several orders of

magnitude, but far from healed.
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Conclusions

The various approaches devised in recent decades to tackle the cosmological

constant problem, although enlightening in clarifying the many facets of the

issue, have not proven to be fully conclusive.

It seems reasonable to suppose that the current difficulties in proposing a

satisfactory solution may stem from our still profound lack of understanding

regarding the quantum nature of spacetime. In fact, the cosmological con-

stant problem arises precisely at the intersection of the two fundamentally

incompatible theories that currently define our understanding of the universe:

quantum field theory, which allows us to estimate the vacuum energy density,

and general relativity, which provides a model for the current expansion of the

universe, entirely incompatible with what is suggested by the former.

To date, the most well-known approaches to the problem of quantum grav-

ity are string theory and loop quantum gravity, but neither is supported by

empirical evidence. These theories, and several others, although quite diverse,

seem to share a common feature: the emergence of a minimal measurable

length scale. This idea appears to be supported by several thought experi-

ments based on both quantum and gravitational phenomena. Indeed, both

impose epistemic limits related to measurement processes: the former through

Heisenberg’s uncertainty principle and the latter via the concept of event hori-

zons in black hole physics.

Based on this, one might hypothesize that, regardless of the particular

model of quantum gravity from which it arises, a minimal length scale, in-

troduced phenomenologically within the framework of quantum field theory,

could shed new light on the cosmological constant problem. To this end, we

proceeded as follows.

We focused on the vacuum expectation value of the energy-momentum ten-

sor associated with a free massive scalar field defined on a de Sitter spacetime.

This energy-momentum tensor has a quadratic structure in the fields that de-

fine it and is therefore divergent in quantum theory. To circumvent this issue,
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various regularization techniques can be employed, but the one most suited to

our purposes is the so-called covariant point-splitting method. In practice, this

involves replacing the squares of fields evaluated at the same spacetime point

with the product of two fields defined at nearby, but non-coincident, points.

This prescription allows us to work within the Feynman Green function

formalism. These functions display their divergences explicitly when written

in terms of the Hadamard function, which depends on the bitensor of the

geodesic interval through terms like 1/σ and log(σ/λ2). When we restore

the coincidence limit, the biscalar σ goes to zero and the Hadamard function

diverges. Typical regularization methods rely on the ad hoc subtraction of

these divergent structures, which are computable via the covariant Schwinger-

DeWitt expansion. However, if one considers the existence of a minimal length,

the coincidence limit loses its meaning, and the Green functions would remain

finite.

As attractive as this idea may be, the results we obtained, by inserting a

minimal length into the divergent structure of the energy-momentum tensor, do

not seem to alleviate the cosmological constant problem. On the contrary, new

ambiguities seem to emerge. The results we obtained do not differ significantly

from those of computing the vacuum energy density in flat spacetime using

an ultraviolet momentum-space cutoff (although our method might provide a

physical justification for the latter). In retrospect, this coincidence should not

surprise us: the equivalence principle in general relativity reduces any local

analysis, such as the one we employed, to one carried out in Minkowski space.

These results, physically consistent with what is already known in the lit-

erature, hold if one uses a timelike minimal geodesic interval. If instead a

spacelike interval is chosen, one must contend with a problematic negative en-

ergy density. Indeed, although choosing a spatial interval might seem more

natural (in light of an initial-value formulation in general relativity), it would

be imprudent to dismiss the choice of a temporal interval as meaningless. It is

worth noting that our mathematical construction is based on Green functions,

and thus on the propagation of dynamical fields, which cannot occur super-

luminally without violating causality. Therefore, it may be more appropriate

to interpret a possible minimal measurable length as a scale associated with

scattering processes, rather than as a geometrical property of space.

Returning to the similarity of the results obtained in flat spacetime and

through a minimal length approach: in both cases, the energy-momentum

tensors exhibit the relation between energy density and pressure p = 1
3
ρ, which
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does not correspond to the vacuum equation of state, but rather to that of

radiation. Some authors argue that, in the Minkowski case, this inconsistency

is due to the improper imposition of a sharp cutoff in momentum space, which

breaks Lorentz symmetry. This does not occur in our approach, yet the choice

of a specific geodesic interval on which to define a minimal length scale still

selects a preferred direction in spacetime. It remains unclear whether these

two symmetry breakings are somehow related.

Ultimately, we must acknowledge that the theoretical framework developed

in this thesis does not seem suitable for resolving the cosmological constant

problem (nevertheless, we cannot entirely rule out that the considerations pre-

sented here might lead to new perspectives on the interpretation of divergences

in quantum field theory).

After all, we cannot exempt the standard approaches to calculating the vac-

uum energy density, which underlie the cosmological constant problem, from a

similar critique. These methodologies are based on purely local reasoning that

entirely neglects the global geometry7 of spacetime and its dynamics. Given

that Weinberg’s no-go theorem itself relies on the same oversimplifications,

one might question whether the entire framework in which the cosmological

constant problem is posed, including the concept of vacuum, needs to be funda-

mentally reimagined (assuming we can even speak of a problem in the absence

of solid theoretical foundations that clearly define it).

In this regard, to conclude, we believe it is worth mentioning some modern

perspectives on QFT in curved spacetime that differ significantly from our

discussion thus far.

Recent studies have strongly criticized the construction of a quantum field

theory on a fixed background spacetime, as we did with de Sitter space, arguing

that it is necessary to explore the mutual dynamical interaction between mat-

ter and the spacetime background (the backreaction problem). In this regard,

Becker and Reuter [2] (later taken up by Ferrero and Percacci [12]) have de-

vised a non-perturbative, background-independent scheme in which quantum

theory is regularized via a sequence of quasi-physical approximating systems

with a finite number of degrees of freedom. Each of these approximations

interacts autonomously with the gravitational field. In the continuum limit

concerning these degrees of freedom, a preferred spacetime metric appears to

emerge spontaneously. Within this framework, the vacuum contribution to the

7It is even plausible that the topology of the universe influences the quantum systems it
contains by imposing boundary conditions (see, e.g., [33]).
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cosmological constant would dissolve precisely due to the effect of backreaction.

Figure 3.2: Penrose tribar, an impossible object. Locally, there is nothing
impossible about what the drawing represents, but the complete picture tells
a very different story. It serves as a powerful metaphor for the essence of our
conclusions. Image from Penrose [35].
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Appendix A

Hadamard regularization

The Hadamard regularization method1 is a general and powerful technique for

regularizing the expectation values of quadratic operators such as ⟨ϕ2⟩ and

the energy-momentum tensor ⟨Tµν⟩. It operates at the level of the Hadamard

Green function, defined as:

G(1)(x, x′) ≡ 1

2
⟨0| {ϕ(x), ϕ(x′)} |0⟩ , (A.1)

which is singular in the coincidence limit x′ → x.

In four spacetime dimensions, the Green function admits a formal Hadamard

series expansion of the form

G(1)(x, x′) =
∆1/2(x, x′)

(4π)2

[
2

σ(x, x′)
+ v(x, x′) ln

(
σ(x, x′)

λ2

)
+ w(x, x′)

]
,

(A.2)

where:

• σ(x, x′) is the Synge world function (i.e., half the squared geodesic dis-

tance between x and x′);

• ∆(x, x′) is the Van Vleck-Morette determinant;

• λ > 0 is a renormalization length scale;

• v(x, x′) and w(x, x′) are smooth biscalar functions admitting power series

expansions in σ:

v(x, x′) =
∞∑
n=0

vn(x, x
′)σn, (A.3)

1For more information on this and other regularization techniques, see [34] .
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w(x, x′) =
∞∑
n=0

wn(x, x
′)σn. (A.4)

The coefficients vn and wn of the expansions are determined by recursive

differential relations2:

v0 + v0,µσ
,µ = (1/6)R−∆−1/2

(
∆1/2

)
,µ

µ,

vn +
vn,µσ

,µ

n+ 1
= − 1

2n(n+ 1)

(
∆−1/2

(
∆1/2vn−1

)
,µ

µ − (1/6)Rvn−1

)
wn +

wn,µσ
,µ

n+ 1
= − 1

2n(n+ 1)

(
∆−1/2

(
∆1/2wn−1

)
,µ

µ

−(1/6)Rwn−1)−
vn

n+ 1

− 1

2n2(n+ 1)

(
∆−1/2

(
∆1/2vn−1

)
,µ

µ

−(1/6)Rvn−1) . (A.5)

All vn are uniquely determined, whereas w0 remains arbitrary and depends

on the global boundary conditions on the Green function.

It is natural to split of the Hadamard series into a locally determined part

GL(x, x′), obtained by setting w0 = 0, and a boundary-condition-dependent

remainder.

The regularized Green function is then defined as:

G(1)
reg(x, x

′) ≡ G(1)(x, x′)−GL(x, x′) (A.6)

and the regularized expectation value of ϕ2 is obtained in the coincidence limit:

⟨ϕ2(x)⟩reg = lim
x′→x

G(1)
reg(x, x

′). (A.7)

Since the subtraction is performed prior to taking the limit, this procedure

is an example of point-splitting regularization.

To compute the regularized energy-momentum tensor, one starts from the

classical expression for a scalar field. Applying the same point-splitting pro-

cedure to its quantum version leads to a finite but generally non-conserved

tensor ⟨T (0)
µν ⟩reg. As shown by Wald, conservation can be restored by adding a

2For practical use, see [9].
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local geometric correction:

⟨Tµν⟩reg = ⟨T (0)
µν ⟩reg −

1

2(4π)2
gµνv1(x, x). (A.8)

This corrected tensor satisfies:

• ∇µ⟨Tµν⟩reg = 0 (covariant conservation);

• For conformally invariant fields: ⟨T µ
µ⟩reg = a2(x)/(4π)

2,

where a2(x) = −2v1(x, x)
3 is the Schwinger–DeWitt coefficient associ-

ated with the trace anomaly.

In summary, Hadamard regularization provides a consistent local method

to obtain finite, conserved, and geometrically meaningful expressions for the

vacuum expectation values of quantum fields in curved spacetime.

3There exists a correlation between the Hadamard coefficients and the Schwinger-DeWitt
coefficients. Several connections among the various renormalization techniques in curved
spacetime are rigorously presented in [16].
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Appendix B

Bitensors

A bitensor is a tensorial object that depends on two points in a manifold:

Tα1...αnβ′
1...β

′
m
(x, x′). (B.1)

It transforms like the product of two tensors, one at each spacetime point:

Aα...(x)Bβ...(x
′). (B.2)

In our discussion we have introduced the biscalars: σ, ∆ and an. Another

important bitensor is gµ ν′ , i.e, the bivector of parallel displacement. This

object, when acting on a vector Aν′ , gives the vector Āµ which is obtained by

parallel transport of the first along the geodesic connecting x and x′:

Āµ = gµ ν′A
ν′ . (B.3)

We can find the properties of gµ ν′ by studying its action on σ;ν′ , which is

tangent to the geodesic at x′, has magnitude equal to the geodesic distance

between x and x′, and is oriented in the x→ x′ direction:

−σ;µ = gµ ν′σ
;ν′ . (B.4)

The minus sign comes from the fact that σ;µ is oriented in the x′ → x direction.

The coincidence limit of a bitensor is expressed adopting Synge’s bracket

notation:

[Tα...β′...] = lim
x′→x

Tα...β′.... (B.5)

We now focus on the coincidence limits of σ(x, x′) and its derivatives. As
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x′ approaches x, the length of the geodesic goes to zero by definition:

[σ] = 0 (B.6)

and:

[σ;µ] = 0. (B.7)

We have seen that:

σ =
1

2
σ;µσ;µ (B.8)

holds, such that, differentiating, one finds the relations:

σ;µ = σ;ρσ;ρµ, (B.9)

σ;µν = σ;ρ
νσ;ρµ + σ;ρσ;ρµν , (B.10)

σ;µνσ =σ;ρ
νσσ;ρµ + σ;ρ

νσ;ρµσ + σ;ρ
σσ;ρµν

+ σ;ρσ;ρµνσ,
(B.11)

and so forth. Up to this point, one can evaluate the coincidence limits:

[σ;µν ] = gµν , (B.12)

[σ;µνσ] = 0, (B.13)

[σ;µνστ ] = Sµνστ ≡ −1

3
(Rµσντ +Rµτνσ) , (B.14)

[σ;µνστρ] =
3

4
(Sµνστ ;ρ + Sµντρ;σ + Sµνρσ;τ ) . (B.15)

From these latter expansions it is possible to compute the coincidence limits

of the Van Vleck-Morette determinant, the bivector of parallel displacement,

their derivatives and, thus, the Scwhinger-DeWitt coefficients. Here we just

present some of the main results:

[∆1/2] = 1, (B.16)[
∆1/2;α

]
= 0, (B.17)[

∆1/2;αβ
]
=

1

6
Rαβ, (B.18)[

∆1/2;αβγ
]
=

1

12
(Rαβ;γ +Rαγ;β +RBγ;α) ; (B.19)
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[gµ ν′ ] = δµ ν′ , (B.20)

[gµ ν′;α] = 0, (B.21)

[gµ ν′;αβ] = −1

2
Rµ

ναβ, (B.22)

[gµ ν′;αβ...]σ
;ασ;β · · · = 0; (B.23)

[a0] = a0(x, x
′) = 1, (B.24)

[a1] =

(
1

6
− ξ

)
R, (B.25)

[a1;µ] =
1

2

(
1

6
− ξ

)
R;µ, (B.26)

[a1;µν ] =

(
1

20
− 1

3
ξ

)
R;µν +

1

60
Rµν;ρ

ρ +
1

90
RρτRρκτν (B.27)

− 1

45
RµρR

ρ
ν +

1

90
Rρκτ

µRρκτν

[a2] = − 1

180
RρτRρτ +

1

180
RρτκιRρτκι

1

6

(
1

5
− ξ

)
R;ρ

ρ +
1

2

(
1

6
− ξ

)2

R2. (B.28)

As we have seen in the construction of the energy-momentum tensor through

the Schwinger-DeWitt method, for practical purposess, it is useful to expand

bitensors in the form:

Tαβ′ = tαβ(x) + tαβρ(x)σ
ρ +

1

2!
tαβρσ(x)σ

ρσσ + . . . (B.29)

t-coefficients can be obtained by exploiting coincidence limits:

tαβ = [Tαβ′ ], (B.30)

tαβµ = [Tαβ′;µ]− tαβ;µ, (B.31)

tαβµν = [Tαβ′;µν ]− tαβ;µν − tαβµ;ν + [gαβ′;µν ] terms, (B.32)

these latter terms have no importance since they do not contribute in the

expansion, because of property (B.23).
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