Supercooled first-order phase transitions and gravitational waves in sub-GeV dark sectors

Zandi, Matteo (2025) Supercooled first-order phase transitions and gravitational waves in sub-GeV dark sectors. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (1MB)

Abstract

In the summer of 2023, various pulsar timing array (PTA) collaborations reported the first evidence for a stochastic gravitational wave background (SGWB) in the nHz frequency range. Among the possible explanations for this signal, a cosmological first-order phase transition (FOPT) is one of the most intriguing, as its realisation would open a new window into the early Universe to probe new physics. In this thesis, we present a novel semi-analytic, model-independent framework to study supercooled FOPTs in classically scale-invariant models. The goal is to establish the relation between the Lagrangian parameter space and the SGWB signal as clearly as possible. The main idea is to exploit collective couplings and the high-temperature expansion to write the effective potential as a polynomial, for which analytic results for the bounce action are known. We then derive a simplified equation for the computation of the percolation temperature, together with analytic expressions for the thermal parameters that enter into the expected SGWB spectrum. To validate and illustrate our proposal, we apply our framework to phenomenological sub-GeV dark abelian U(1) models, which are able to explain the PTA signal. We find that our approach not only reproduces full numerical analyses with high accuracy and significantly reduced computational time, but also provides valuable physical insights.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Zandi, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Cosmological first-order phase transition,Gravitational waves,Pulsar timing arrays,Sub-GeV dark sectors
Data di discussione della Tesi
26 Settembre 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^