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Abstract
In the summer of 2023, various pulsar timing array (PTA) collaborations reported the first evi-

dence for a stochastic gravitational wave background (SGWB) in the nHz frequency range. Among
the possible explanations for this signal, a cosmological first-order phase transition (FOPT) is one of
the most intriguing, as its realisation would open a new window into the early Universe to probe new
physics. In this thesis, we present a novel semi-analytic, model-independent framework to study su-
percooled FOPTs in classically scale-invariant models. The goal is to establish the relation between
the Lagrangian parameter space and the SGWB signal as clearly as possible. The main idea is to ex-
ploit collective couplings and the high-temperature expansion to write the effective potential as a
polynomial, for which analytic results for the bounce action are known. We then derive a simplified
equation for the computation of the percolation temperature, together with analytic expressions
for the thermal parameters that enter into the expected SGWB spectrum. To validate and illustrate
our proposal, we apply our framework to phenomenological sub-GeV dark abelian U(1)D models,
which are able to explain the PTA signal. We find that our approach not only reproduces full nu-
merical analyses with high accuracy and significantly reduced computational time, but also provides
valuable physical insights.
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1 INTRODUCTION

1 Introduction
So little we know about the Universe, yet so much we have already learned. The quest to under-

stand Nature through the laws of physics has been driven by curiosity and creativity, guiding scientists
to unveil the underlying principles that govern reality: from the smallest building blocks described by
Quantum Field Theory (QFT), to the largest cosmic structures explained by General Relativity (GR).
Among the many unanswered questions, the early Universe represents a fascinating frontier, not only
to trace its earliest moments, but also to investigate the nature of fundamental interactions. Thus,
the early Universe emerges as a natural laboratory at the intersection of cosmology and high-energy
particle physics.

Cosmological observations, such as the Cosmic Microwave Background (CMB) radiation [1] and
the primordial abundances of light elements produced during Big Bang Nucleosynthesis (BBN) [2], in-
dicate that the early Universe was a thermal plasma, whose temperature increases as one approaches
the Big Bang. This epoch is of particular interest for high-energy particle physics, because it reached
energy scales far beyond those accessible in terrestrial experiments. However, our current direct
observational access is limited by the CMB: no electromagnetic signal from epochs earlier than pho-
ton decoupling can reach us. This constraint does not apply to Gravitational Wavess (GWs), as they
decouple from the thermal plasma near the Planck scale and propagate unaltered through cosmic
history, preserving information from times earlier than the CMB. Other species, such as neutrinos,
also decouple before recombination and could provide complementary insights into the early Uni-
verse.

For this reason, the groundbreaking discovery of GW from binary black hole mergers by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) collaboration in 2015 [3], a century after their
prediction in 1916 by Einstein [4, 5], inaugurated a new era of astronomical and cosmological ob-
servations. More recently, in 2023, several Pulsar Timing Array (PTA) collaborations, namely North
American Nanohertz Observatory for Gravitational Waves (NANOGrav) [6], Chinese Pulsar Timing
Array (CPTA) [7], European Pulsar Timing Array (EPTA) [8] and Parkes Pulsar Timing Array (PPTA) [9],
have reported the first compelling evidence at the 3-4σ level of a Stochastic Gravitational Wave Back-
ground (SGWB) in the nHz frequency range. This breakthrough may open an unprecedented obser-
vational window into the early Universe.

Due to the weakness of the gravitational interaction, only the most violent events can explain the
PTA signal, which may originate from astrophysical or cosmological sources. The leading astrophysi-
cal candidates are Supermassive Black Hole Binaries (SMBHBs) [10–14], but they require departures
from standard astrophysics [15] and no individual SMBHB has been detected [16]. These uncertain-
ties motivate the hypothesis that at least part of the observed PTA signal may have a cosmological
origin [17–22], including cosmic inflation, scalar-induced GWs, First-Order Phase Transitions (FOPTs),
metastable cosmic strings and domain walls. In particular, a cosmological FOPT [23–27] fits the PTA
signal better than SMBHBs do, given the large amplitude and spectral shape [28]. All this evidence
provides strong motivation to investigate cosmological FOPTs, both refining theoretical methods and
developing phenomenological models.

Phase Transitions (PTs) are common phenomena in Nature and may also occur in a cosmological
scenario, where the vacuum of the theory, driven by the temperature dependence of the scalar ef-
fective potential, changes during the evolution of the Universe and gives the scalar field a Vacuum Ex-
pectation Value (VEV), through the mechanism of Spontaneous Symmetry Breaking (SSB). In a FOPT,
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1 INTRODUCTION

a metastable symmetric false vacuum is separated by a barrier from a lower-energy true vacuum.
The transition proceeds via quantum tunneling through the barrier [29, 30] or thermal fluctuations
[31–33] over the barrier, leading to the nucleation of bubbles of true vacuum within the false vacuum
sea, similar to bubbles in boiling water. If the bubbles are large enough, the pressure from the poten-
tial energy difference will overcome the surface tension and the bubbles will expand [29]. Collisions
between bubbles, together with sound waves and turbulence in the surrounding thermal plasma,
break spherical symmetry and generate GWs, which subsequently propagate freely until today [34–
37]. On the other hand, if the PT is second-order or a crossover, the absence of the barrier makes the
transition between the vacuum states smooth and continuous, so that no abrupt events can generate
observable GWs.

The SM of particle physics predicts the occurrence of two PTs: the Electroweak (EW) PT and the
Quantum Chromodynamics (QCD) PT, both of which are expected to be crossover [38–44]. However,
it is known that the SM fails to describe a number of observed phenomena in the Universe, such
as neutrino oscillations, baryon asymmetry, and dark matter, which motivates the development and
search for Beyond the Standard Model (BSM) physics. Interestingly, the characteristics of the PTA
signal point toward a VEV on the order of hundreds of MeV, hinting at new particles below the GeV
scale. This is suitable for Dark Sectors (DSs), extensions of the SM involving new particles and in-
teractions, which couple to it through renormalisable interaction portals, such as the kinetic mixing
between a dark photon and a SM gauge boson, or the interaction between a dark scalar and the
Higgs boson. Experimental searches for these scenarios are ongoing [45, 46].

In this thesis, we investigate supercooled FOPTs in classically scale-invariant or nearly-conformal
models. In this class of models, the barrier between the false and true vacuum is absent at zero
temperature and is generated by thermal corrections, leading to significant supercooling. This oc-
curs when the onset of the PT is significantly delayed, so that the vacuum energy density becomes
comparable to or even exceeds the radiation energy density, inducing a period of inflation followed
by reheating [47–50]. This process releases a large amount of latent heat, making these models can-
didates to explain a strong observable SGWB [51–61].

In particular, we propose a new semi-analytic, model-independent framework to study super-
cooled FOPTs in classically scale-invariant models. The aim of this thesis is to establish the relation
between the Lagrangian parameter space and the SGWB signal as clearly as possible, clarifying how
macroscopic thermal parameters governing the FOPT emerge from fundamental microscopic cou-
plings. The main advantage of this approach is to obtain rapid information about the SGWB spectrum
once a model is specified, without performing a heavy numerical analysis, and to provide valuable
insights into the underlying physics. This framework builds upon and supersedes previous results in
Refs. [58–61].

Chapter 2 presents the relevant background, such as cosmology and the history of the early Uni-
verse, the theory of GWs and SGWB with their detection via PTAs, the SM and the mechanism of SSB,
and dark sector scenarios. In Chapter 3, we review the theory of cosmological FOPTs. We develop
the general expressions for the effective potential and the false vacuum decay rate, including one-
loop and finite-temperature contributions. We then compute the false vacuum fraction to define the
percolation temperature Tp, at which the thermal parameters characterising the FOPT are evaluated:
the transition strength α, the inverse transition duration β, and the bubble wall velocity vw. Chapter
3 concludes with the presentation of the expected SGWB spectrum, based on Laser Interferometer
Space Antenna (LISA) Cosmology Working Group’s latest results [62].
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1 INTRODUCTION

Building upon the knowledge of the previous chapters, we present the novel semi-analytic, model-
independent framework in Chapter 4. The starting point consists of writing the most general form
of the effective potential in a polynomial form, so that a closed-form analytic bounce action can be
used to compute the nucleation rate. We then derive a root-finding equation to calculate the per-
colation temperature Tp, which replaces the expensive integrals in its definition, along with explicit
analytic expressions for the thermal parameters. We apply this framework to phenomenological
sub-GeV dark abelian U(1)D extensions of the SM, which include a dark photon, a dark scalar, and
a dark fermion. We compare our approach against full numerical computations and validate it using
posterior distributions from the NANOGrav 15-year dataset, while also drawing physical insights.
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2 COSMOLOGY, GRAVITATIONAL WAVES AND PARTICLE PHYSICS

2 Cosmology, gravitational waves and particle
physics

The theory of cosmological PTs is an interdisciplinary field situated at the intersection of various
areas of physics, including GR and QFT. In this chapter, we present relevant concepts that are nec-
essary for their understanding: cosmology is introduced in Sec. 2.1, GWs are studied in Sec. 2.2, and
particle physics is covered in Secs. 2.3 and 2.4, focusing on the SM and its possible DS extensions.

2.1 Cosmology
The theoretical description of modern cosmology, which is the field of physics that accounts for

the origin, evolution, and structure of the Universe, started with the formulation of the theory of GR
by Einstein in 1915 [63, 64], when he realised that spacetime is not a static background upon which
objects move, but a dynamical entity whose geometry both affects and is affected by any form of
energy. In the following decades, theoretical models to describe the Universe began to appear: in
the 1920s by Friedmann [65, 66] and Lemâıtre [67–69], followed in the 1930s by Robertson [70–72]
and Walker [73]. These models are known today as Friedmann-Lemaitre-Robertson-Walker (FLRW)
models.

In parallel with these theoretical developments, astronomical observations helped shape our un-
derstanding of the Universe. One of the most important discoveries was the expansion of the Uni-
verse and the measurement of the relation between galaxy recession velocity and redshift in 1929
by Hubble [74]. As a consequence, at early times, the Universe must have been in a hot dense state,
hence the name Hot Big Bang, proposed by Hoyle in 1948 in contrast to his steady-state theory, formu-
lated together with Bondi and Gold [75, 76]. Evidence supporting the Hot Big Bang scenario accumu-
lated in the following years: the successful calculation of the primordial abundance of light elements
in 1948 by Alpher, Bethe, Gamow and Herman [77–79], and the discovery of the CMB radiation in
1965, predicted by Dicke, Peebles and Wilkinson [80] and accidentally observed in the same year
by Penzias and Wilson [81]. These discoveries marked the beginning of modern precision cosmol-
ogy, with the subsequent refinement of instruments to probe the Universe, such as electromagnetic
telescopes and GW detectors (interferometers, PTAs).

Further observations indicated the presence of non-luminous components in the Universe: dark
matter and dark energy. The first evidence of dark matter dates back to 1933, when Zwicky [82, 83]
found a discrepancy between the mass inferred from visible electromagnetic radiation and the one
derived from the average velocity dispersion of galaxies in the Coma cluster. Additional evidence
came in the late 1970s, when Rubin, Ford and Thonnard [84, 85] found a disagreement between the
mass distribution of spiral galaxies extracted using observed light distribution and the one estimated
from the circular velocity of stars and gas. This observation can be explained by a spherical halo of
dark matter extending beyond the visible galaxy. Since then, more evidence has emerged: visible
mass distribution is insufficient to explain gravitational lensing in galaxy clusters [86–89], including
the case of colliding clusters [90–92]; the star formation rate is consistent with observations when
performing large-scale N-body simulations of the Universe; and the amplitudes and peak positions
of the CMB power spectrum, together with Baryon Acoustic Oscillations (BAO), provide the most
precise measurements of dark matter abundance [1]. On the other hand, the first evidence of dark

4



2 COSMOLOGY, GRAVITATIONAL WAVES AND PARTICLE PHYSICS

energy came in 1998 from observations of Type Ia supernovae [93, 94], confirmed also by BAO mea-
surements. At the time of writing, the nature of dark matter and dark energy remains unknown.

These results have led to the formulation of the Standard Model of Cosmology, known as the
ΛCDM model, where Λ represents dark energy and CDM stands for cold dark matter. In this sec-
tion, after introducing the FLRW metric, the ΛCDM model and the thermodynamic properties of
the primordial plasma, we describe the most relevant events in the thermal history of the Universe,
following Refs. [95–97].

2.1.1 The ΛCDMmodel

Within the framework of GR, the geometry of spacetime is described by the metric gµν , which
allows measuring distances in curved spacetime by means of the invariant element

ds2 = gµνdx
µdxν . (2.1.1)

The dynamics of the spacetime geometry is determined by the distribution of matter and energy
within it, as described by the Einstein field equations

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (2.1.2)

where Gµν is the Einstein tensor, constructed non-linearly upon the metric gµν and its derivatives
through the Ricci tensor Rµν , the Ricci scalar R, and the Christoffel symbols Γαµν , defined as

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + ΓααλΓ

λ
µν − ΓανλΓ

λ
µα , (2.1.3)

R = gµνRµν , (2.1.4)

Γαµν =
1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν) . (2.1.5)

Finally, Tµν is the energy-momentum tensor, which describes the density and flux of energy and
momentum in spacetime. The Einstein field equations in Eq. (2.1.2), together with the metric in Eq.
(2.1.1), can be simplified by exploiting the symmetries of the system.

In the case of the Universe, numerous observations, such as the large-scale distribution of galax-
ies and the uniformity of the CMB radiation, which exhibits anisotropies of order 10−5 once the
dipole due to our relative motion is removed, suggest that the Universe is spatially homogeneous
and isotropic on scales larger than O(100 Mpc). This assumption is known as the cosmological prin-
ciple. Homogeneity implies that the properties of the Universe are the same at all points in space,
thus the metric depends only on time. Isotropy means that the Universe looks the same in all direc-
tions, so that the metric is diagonal and has equal spatial components1. The most general metric that
fulfils these criteria is the FLRW metric

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (2.1.6)

1Mathematically speaking, isotropy is the invariance under rotations, which results in three Killing vectors, and ho-
mogeneity is invariance under translations, which adds three more Killing vectors.
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2 COSMOLOGY, GRAVITATIONAL WAVES AND PARTICLE PHYSICS

where (r, θ, ϕ) are comoving spherical coordinates, a(t) is the cosmic scale factor, and k is the curva-
ture parameter, which, after a suitable rescaling, can take the values k = 0,+1,−1 for flat, closed,
and open Universes, respectively.

To be consistent with the symmetries of the metric, the energy-momentum tensor must also
share these properties. The simplest realisation is a perfect fluid with energy density ρ and pressure
p

Tµν = (ρ+ p)uµuν + pgµν , (2.1.7)

where uµ is the four-velocity of the fluid. The µ = 0 component of energy-momentum conservation,
∇µT

µν = 0, leads to the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 . (2.1.8)

Inserting the energy-momentum tensor for a perfect fluid in Eq. (2.1.7) inside Einstein’s equation in
Eq. (2.1.2) with the FLRW metric in Eq. (2.1.6), we obtain two independent differential equations for
the cosmic scale factor a(t), known as Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (2.1.9)

ä

a
= −4πG

3
(ρ+ 3p) . (2.1.10)

The two Friedmann equations in Eqs. (2.1.9) and (2.1.10), and the continuity equation in Eq. (2.1.8)
are not independent, as the continuity equation can be derived by differentiating the first Friedmann
equation in Eq. (2.1.9) with respect to time and subtracting the second Friedmann equation in Eq.
(2.1.10).

In order to solve these equations, we need to specify an equation of state, which relates the
pressure p to the energy density ρ. For a barotropic equation of state, characterised by a constant
time-independent parameter w

p = wρ , (2.1.11)

the continuity equation in Eq. (2.1.8) becomes

ρ̇+ 3
ȧ

a
(1 + w)ρ = 0 ⇒ ρ ∝ a−3(w+1) . (2.1.12)

Moreover, assuming a flat Universe with k = 0 and inserting the solution of the continuity equation
in Eq. (2.1.12) into the first Friedmann equation in Eq. (2.1.9), we find that, for w ̸= −1, the cosmic
scale factor a(t) of each component evolves as

ȧ ∝ a−
1+3w

2 ⇒ a(t) ∝ t
2

3(1+w) . (2.1.13)

For w = −1, the energy density is constant ρ = const and the cosmic scale factor a(t) evolves as

a(t) ∝ e
√

8πGρ
3

t . (2.1.14)
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According to the value of w in Eq. (2.1.11), we can distinguish different components of the Universe:

- w = 0 describes a set of collisionless non-relativistic particles called matter or dust. From Eq.
(2.1.12), the energy density of matter scales as ρ ∝ a−3, while from Eq. (2.1.13), the cosmic scale
factor evolves as a(t) ∝ t

2
3 . Examples of matter are baryons and dark matter.

- w = 1
3

describes a set of relativistic particles called radiation, consistent with the vanishing
trace of the energy-momentum tensor. From Eq. (2.1.12), the energy density of radiation scales
as ρ ∝ a−4, while from Eq. (2.1.13), the cosmic scale factor evolves as a(t) ∝ t

1
2 . Examples of

radiation are photons and neutrinos.

- w = −1describes vacuum energy or the cosmological constant. In this case, the energy density
is constant and the cosmic scale factor evolves exponentially as shown in Eq. (2.1.14).

From the different scaling of the energy density for these components, we can understand the domi-
nant component at different epochs of the Universe. Both matter and radiation dilute as the Universe
expands, but radiation dilutes faster. Hence, at very early times, the Universe was radiation domi-
nated, but eventually matter became the dominant component until it diluted sufficiently for vacuum
energy to prevail, as it does today. The evolution of the energy densities of the three different com-
ponents is plotted in Fig. 1.

Figure 1: The energy densities ρ of the components of the Universe over the current critical one ρcrit,0
as a function of the cosmic scale factor a(t). Figure taken from Ref. [97].

We introduce the Hubble parameter, which measures the expansion rate of the Universe

H =
ȧ

a
, (2.1.15)

and, for each component i of the Universe, we define the dimensionless density parameter

Ωi =
ρi
ρc
, (2.1.16)

where ρc = 3H2

8πG
is the critical density. The critical density is the energy density corresponding to a

flat Universe, i.e. the case k = 0 in the first Friedmann equation in Eq. (2.1.9). In terms of the Hubble

7
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parameter H in Eq. (2.1.15) and the density parameter Ω in Eq. (2.1.16), the first Friedmann equation
in Eq. (2.1.9) becomes

Ω− 1 =
k

a2H2
, (2.1.17)

where Ω =
∑

iΩi is the total density parameter. Since a2H2 > 0 in Eq. (2.1.17) is always positive,
the sign of the curvature parameter k is determined entirely by whether the density parameter Ω is
greater than, equal to or less than 1: if Ω > 1, then k > 0 and the Universe is closed; if Ω = 1, then
k = 0 and the Universe is flat; if Ω < 1, then k < 0 and the Universe is open.

Including the different components of the Universe, we can write the first Friedmann equation in
Eq. (2.1.9) as

H2 =
8πG

3

∑
i

ρi −
k

a2
= H2

0

(
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

)
, (2.1.18)

where the subscript 0 denotes the present-day value of the corresponding quantity, and we have
adopted the convention that the present cosmic scale factor is normalised to unity, a0 ≡ a(t0) = 1.
Observations of the CMB by the Planck telescope [1], in combination with Type Ia supernovae and
BAO, have allowed precise measurements of the energy content of the Universe [98], finding that it
is spatially flat

Ωk,0 = 0.0007± 0.0019 , (2.1.19)

and the density parameters are

ΩΛ,0 ≃ 0.686 , ΩDM,0 ≃ 0.266 , Ωb,0 ≃ 0.0494 , Ωγ,0 ≃ 5.38×10−5 , 0.0012 < Ων,0 < 0.003 .

(2.1.20)
Here ΩΛ,0 corresponds to dark energy, ΩDM,0 to dark matter, Ωb,0 to baryonic matter, Ωγ,0 to photons,
and Ων,0 to neutrinos, with the upper bound set by oscillation experiments and the lower bound by
CMB and BAO data.

There is an unresolved tension in the Hubble parameter today H0: indirect determinations from
CMB and BAO [1] yield H0 = (67.4 ± 0.53) km s−1 Mpc−1, while local measurements from stellar
redshift [99] indicate a higher value of H0 ≃ (73.2 ± 1.3) km s−1 Mpc−1. It is customary to express
the Hubble parameter today as

H0 = 100h km s−1Mpc−1 , (2.1.21)

where h = 0.674 using the Planck measurements [1].

2.1.2 Thermodynamics in the early Universe

Since the Universe is expanding, going backwards in time corresponds to a smaller cosmic scale
factor a(t), as shown in Eq. (2.1.13), while the temperatureT increases. In the Hot Big Bang model, the
early Universe is described as a hot thermal plasma of particles in thermal equilibrium, maintained
by rapid interactions. It is studied using the tools of statistical mechanics, following how particle
distributions change over time rather than the dynamics of individual particles. We introduce ther-
modynamic quantities to describe the thermal plasma: the number density n, the energy density ρ

8
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and the pressure p

n = g

∫
d3p

(2π)3
f(|p|) , (2.1.22)

ρ = g

∫
d3p

(2π)3
E(|p|)f(|p|) , (2.1.23)

p =
g

3

∫
d3p

(2π)3
|p|2
E(|p|)f(|p|) , (2.1.24)

where g is the number of degrees of freedom and f(|p|) is the distribution function, depending only
on the magnitude of the momentum |p| and not onx because of homogeneity or the full vectorp be-
cause of isotropy. The energy of a particle with momentum p and mass m is E(|p|) =

√
|p|2 +m2,

where we have neglected interaction energies among particles. The distribution function f(|p|) con-
trols how particles are distributed according to their momentum p and is determined by the Fermi-
Dirac or Bose-Einstein statistics

f(|p|) = 1

e
E(|p|)−µ

T ± 1
, (2.1.25)

where + (−) is for fermions (bosons) and µ is the chemical potential. At low temperatures, both
quantum distributions in Eq. (2.1.25) reduce to the classical Maxwell-Boltzmann distribution

f(|p|) = e−
E(|p|)−µ

T . (2.1.26)

For relativistic species, whose mass and chemical potential are much smaller than the tempera-
ture µ, m ≪ T , the thermodynamic quantities in Eqs. (2.1.22) (2.1.23) and (2.1.24) can be approxi-
mated as

n = g
ζ(3)

π2
T 3 ×

{
1 for bosons
3
4

for fermions
, (2.1.27)

ρ = g
π2

30
T 4 ×

{
1 for bosons
7
8

for fermions
, (2.1.28)

p =
ρ

3
, (2.1.29)

where ζ(3) ≃ 1.202. For non-relativistic species with temperature smaller than their mass T ≪ m

and energy given by E = m+ p2

2m
, the thermodynamic quantities in Eqs. (2.1.22) (2.1.23) and (2.1.24)

can be approximated as

n = g

(
mT

2π

)3/2

e−
m
T , (2.1.30)

ρ = mn+
3

2
nT ≃ mn , (2.1.31)

p = nT ≪ ρ , (2.1.32)

Comparing the relativistic limits in Eqs. (2.1.27) and (2.1.28) with the non-relativistic counterparts
in Eqs. (2.1.30) and (2.1.31), we see that non-relativistic species have number and energy densities
that are exponentially suppressed relative to the relativistic case. Consequently, we can neglect the
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contribution of non-relativistic species to the energy density, which can be written as

ρ =
∑
i

ρi = g∗(T )
π2

30
T 4 , (2.1.33)

where we have defined the effective number of relativistic degrees of freedom

g∗(T ) =
bosons∑
i

gi

(
Ti
T

)4

+
7

8

fermions∑
i

gi

(
Ti
T

)4

, (2.1.34)

and taken into account the possibility to have different temperatures for different species. The evo-
lution of the SM effective number of relativistic degrees of freedom g∗(T ) is illustrated in Fig. 2,
in which each arrow with a particle corresponds to the time when they decouple from the thermal
plasma or a PT.

Figure 2: The effective number of relativistic degrees of freedom g∗(T ) (solid) and the effective num-
ber of relativistic degrees of freedom for entropy g∗s(T ) (dotted) for the SM particle content as a
function of the temperature. Decoupling of particles and phase transitions are represented with an
arrow. Figure taken from Ref. [97].

For a flat Universe k = 0, the first Friedmann equation in Eq. (2.1.9) combined with the energy
density ρ in Eq. (2.1.33) relates the Hubble parameter H in Eq. (2.1.15) to the temperature T

H =

√
8πG

3
ρ =

√
π2g∗(T )

90m̄2
Pl
T 2 ≃ 1.66g1/2∗ (T )

T 2

m̄Pl
, (2.1.35)

where we have introduced the reduced Planck mass m̄Pl =
√

1
8πG

≃ 2.43× 1018 GeV, related to the

Planck mass mPl by mPl =
√
8πm̄Pl.

The entire Universe is a closed system, its total entropy is therefore conserved and can be used
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to track its evolution. The entropy density s is related to the energy density ρ and pressure p by2

s =
ρ+ p

T
. (2.1.36)

As with the energy density ρ in (2.1.33), the entropy density s is dominated by relativistic species,
which can be written as

s =
2π2

45
g∗s(T )T

3 , (2.1.37)

where we have defined the effective number of relativistic degrees of freedom for entropy

g∗s(T ) =
bosons∑
i

gi

(
Ti
T

)3

+
7

8

fermions∑
i

gi

(
Ti
T

)3

. (2.1.38)

The evolution of the SM relativistic degrees of freedom for entropy g∗s(T ) is illustrated in Fig. 2. It
only deviates from g∗(T ) after e± decoupling. Exploiting conservation of the total entropy

S =
2π2

45
g∗s(T )T

3a3 , (2.1.39)

we obtain a relation between the temperature T and the cosmic scale factor a

T ∝ g−1/3
∗s (T )a−1 . (2.1.40)

The factor g−1/3
∗s (T ) accounts for the entropy transferred to the plasma when a particle species be-

comes non-relativistic.

For a species to remain in equilibrium, its interactions must occur frequently. In particular, if its
interaction rateΓ exceeds the expansion rate of the UniverseH , then the species stays in equilibrium
and shares the common temperature of the plasma. We can distinguish different types of equilib-
rium:

- Kinetic equilibrium is maintained when elastic self-interactions (e.g. aa → aa) or elastic scat-
terings with other species (e.g. ab→ ab) redistribute kinetic energy without changing particle
numbers. Its loss is referred to as decoupling.

- Chemical equilibrium holds when number-changing interactions (e.g. aā→ bb̄ or ab→ cd) oc-
cur at equal rates in both directions, keeping the chemical potentials of the interacting species
in balance. Its loss is called freeze-out.

- Thermal equilibrium is achieved when all species share a common temperature, with no net
energy exchange. This requires that both kinetic and chemical equilibrium are satisfied.

In an expanding Universe, particles are not always in thermal equilibrium. A useful rule of thumb3

2This can be shown by using the first law of thermodynamics dU = TdS − pdV with the definitions of the density
quantities, dU = d(ρV ) and dS = d(sV ), so that dV (ρ+ p− Ts) + V dρ− TV ds = 0. Since dV is extensive while dρ
and ds are intensive, they vanish independently, leading to s = ρ+p

T .
3A more rigorous treatment involves the use of the Boltzmann equation L[f ] = C[f ], where L[f ] is the Liouville

operator, which relates the distribution function f of particles to geodesics, and C[f ] is the collision operator, which
relates f to the interactions among particles.
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to estimate whether a particle species is in equilibrium is to compare the expansion rate H of the
Universe with the interaction rate Γ

Γ ≃ H , (2.1.41)

where Γ = n⟨σv⟩ is the definition of the interaction rate, where ⟨σv⟩ is the thermal average of the
product of the cross section σ and the relative velocity v of the incoming particles. When Γ ≫ H ,
the interaction timescale is much shorter than the expansion timescale (tint ≪ texp), and interactions
efficiently maintain equilibrium despite the expansion of the Universe. However, as the Universe
expands and cools, the interaction rate decreases more rapidly than the expansion rate. Eventu-
ally, there will be a time when the interaction rate is comparable to the expansion rate Γ ∼ H or
tint ∼ texp: from this moment on, interactions are no longer frequent enough to maintain thermal
equilibrium, and the species falls out of equilibrium, with the decoupling temperature roughly given
by the particle mass.

2.1.3 Thermal history of the Universe

Equipped with the tools developed in the previous sections, we can now describe the thermal
history of the Universe, which is summarised in Table 1.

Event Temperature T
Planck scale 1.42× 1019 GeV

Inflation ?
Baryogenesis ?

EW phase transition 100 GeV
QCD phase transition 150 MeV
Neutrino decoupling 1 MeV
e+e− annihilation 500 keV

BBN 100 keV
Matter-radiation equality 0.75 eV

Recombination 0.26-0.33 eV
Photon decoupling 0.23-0.28 eV

Reionization 2.6-7.0 meV
Dark energy-matter equality 0.33 meV

Today 0.24 meV

Table 1: Thermal history of the Universe: timeline of key cosmological events with their approximate
temperatures.

Due to the limitations of GR and QFT, there is no fundamental theory to describe energies above
the Planck scale 1.42× 1019 GeV. This also prevents us from clarifying the nature of the initial singu-
larity, which appears if we extrapolate the cosmic scale factor a(t) backwards in time.

The first events after the Big Bang are hypothetical scenarios proposed to solve open problems in
physics: the horizon problem, which arises to explain why the CMB appears so homogeneous across
causally disconnected Hubble patches, and the flatness problem, which emerges to account for the
reason why the Universe appears to be so flat on large scales, a feature that would otherwise require
extreme fine-tuning. The leading explanation is an inflationary period in which the cosmic scale factor
a(t) increases exponentially fast, driven by an inflaton scalar field. After inflation ends, the inflaton
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decays, creating the thermal bath of SM particles. Another open problem is the observed baryon-
antibaryon asymmetry of the Universe, which cannot be attributed to asymmetric initial conditions,
because they would be washed out by inflation. In 1967, Sakharov [100] proposed three conditions
that need to be satisfied in order to have a dynamical baryogenesis: B violation, otherwise baryon
number would be conserved; C and CP violation, otherwise every baryon-producing process would
be exactly balanced by its conjugate; departure from equilibrium, otherwise Ḃ = 0.

Subsequently, two SSB PTs occurred: EWPT at T ∼ 100 GeV and QCD PT at T ∼ 150 MeV. In
the EWPT, the Higgs field acquires a VEV and gives mass to gauge bosons and fermions. In the QCD
PT, quarks and gluons, which are asymptotically free, become confined into hadrons (baryons and
mesons), and quarks form a non-zero chiral condensate. As the temperature dropped below their
rest masses, all massive species either froze out of equilibrium or became exponentially Boltzmann
suppressed.

Around the MeV scale, the thermal plasma consists of photons, neutrons, protons, electrons,
positrons, and neutrinos. Neutrinos are the first species to decouple. They remain in equilibrium
through weak interactions such as ν̄eνe ↔ e−e+ or e−ν̄e ↔ e−ν̄e, whose estimated interaction rate
is Γ ∼ G2

FT
5, where GF = 1.17 × 10−5 GeV−2 is the Fermi constant. Using the Hubble parameter

H in radiation dominated era in Eq. (2.1.35), which can be estimated asH ≃ T 2

mPl
, we can use the rule

of thumb in Eq. (2.1.41) Γ ∼ H to obtain the decoupling temperature

G2
FT

5 ≃ T 2

mPl
⇒ Tν ≃

(
mPl

G2
F

) 1
3

≃ 1 MeV . (2.1.42)

Below this temperature, neutrino species decouple from the thermal plasma. Their energy density
then scales as ρ ∝ a−4, and initially they inherit the same temperature as the photons. Shortly after
neutrino decoupling, when T ≲ me, electrons and positrons annihilate into photons. Their entropy
is transferred to photons but not to neutrinos, since they are no longer in thermal equilibrium. Using
entropy conservation in Eq. (2.1.40) and counting relativistic degrees of freedom in Eq. (2.1.34), before
e± annihilation g∗ = 2 + 4× 7

8
= 11

2
and after e± annihilation g∗ = 2, the temperature of neutrinos

is related to the temperature of photons by

Tν =

(
4

11

)1/3

Tγ . (2.1.43)

Inserting the value of Tγ ≃ 2.7 K inferred from the CMB, we find that Tν ≃ 1.95 K. No further rela-
tivistic species alter the photon temperature, so this ratio remains constant until neutrinos become
non-relativistic. Using the relation in Eq. (2.1.43), we can write the energy density of neutrinos as

ρν(T ) =
7π2

40
T 4
ν = Neff

7π2

120

(
4

11

)4/3

T 4
γ , (2.1.44)

where Neff is the effective number of neutrino species. In the ideal SM case, Neff = 3, but taking
into account that neutrino decoupling is not instantaneous, it can be partially reheated by e−e+ an-
nihilation, the distribution is not a perfect Fermi-Dirac one, and corrections arise from oscillations,
finite-temperature effects and the fact that electrons and positrons are not fully ultra-relativistic, the
effective number of neutrino species becomes Neff = 3.0440± 0.0002 [101].
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After that, BBN takes place: the formation of light nuclei such as hydrogen, deuterium, helium,
and lithium from the primordial plasma of protons and neutrons. Neutrons and protons are kept in
equilibrium by weak interactions, e.g. nνe ↔ p+e− and ne− ↔ p+ν̄e. Assuming negligible chemical
potentials for electrons and neutrinos, we have µn = µp, so the neutron-to-proton ratio follows the
non-relativistic expression in Eq. (2.1.30)

nn
np

=

(
mn

mp

)3/2

e−
mn−mp

T ≃ e−
Q
T , (2.1.45)

where the mass difference is Q = mn − mp ≃ 1.3 MeV. Thus, as T drops below the MeV scale,
neutrons become exponentially suppressed relative to protons. However, neutron freeze-out must
be taken into account, which computed using the rule of thumb in Eq. (2.1.41) Γ ≃ H gives Tfo ≃ 1.2

MeV4, and substituting this temperature in the neutron-to-proton ratio in Eq. (2.1.45) yields

nn
np

≃ 1

6
. (2.1.46)

Because direct pp ornn fusion is inefficient, the former due to the Coulomb barrier, the latter because
nn is unstable, BBN begins once deuterium D is formed through the reaction p+n ↔ Dγ, which is
delayed until the temperature drops below 0.1MeV due to the Boltzmann-tail of high energy photons
that cause deuterium to photodisintegrate. During this delay, free neutrons decay with lifetime τn ≃
880 s, so the neutron-to-proton ratio in Eq. (2.1.46) does not remain truly constant, but actually slowly
decreases to

nn
np

= e−
Q
T e−

t
τn ≃ 1

7
. (2.1.47)

The equilibrium abundance of deuterium can be estimated as

nD
nnnp

=
3

4

(
2πmD

mnmpT

)3/2

e−
B
T , (2.1.48)

whereB = mp+mn−mD ≃ 2.2 MeV is the deuterium binding energy. Introducing the baryon-to-
photon ratio η as

nb ≃ ηnγ = η
2ζ(3)

π2
T 3 , (2.1.49)

and approximating mD ≃ 2mp ≃ 2mn, the ratio of deuterium over protons in Eq. (2.1.48) becomes

nD
np

≃ η

(
T

mp

)3/2

e
B
T . (2.1.50)

Because η is small, the production of deuterium is delayed until the temperature drops below the
binding energy. Once deuterium survives, helium forms efficiently through a chain of 2-particle reac-
tions: n+p→ D+γ,D+p→ 3He+γ andD+3He → 4He+p. This is called deuterium bottleneck,

4Solving the Boltzmann equation, the freeze-out temperature of neutrons is Tfo = 0.8 MeV.
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since helium formation requires deuterium as an intermediate. The helium mass fraction is given by

Y =
4nHe

nn + np
=

2nn
nn + np

= 2
nn/np

1 + nn/np
, (2.1.51)

where we have used the fact that two neutrons go into one nucleus of 4He. Inserting the value of
the neutron-to-proton ratio of Eq. (2.1.47) into Eq. (2.1.51), we obtain Y ≃ 0.25, which is in agree-
ment with observations: low metallicities galaxies where star formation has just started give 75% of
hydrogen, 25% of helium and very little lithium.

The predicted helium abundance is sensitive to the details of BBN. In particular, the number of
relativistic degrees of freedom g∗, the number of neutrino species Neff, and the baryon-to-photon
ratio η at the time of BBN are crucial. This implies that BBN provides constraints on BSM physics. An
increase in g∗, which enters in the Hubble parameterH ∝ g

1/2
∗ , raises the freeze-out temperatureTfo,

which in turn increases the neutron-to-proton ratio at freeze-out in Eq. (2.1.45), and ultimately leads
to a larger helium fraction Y in Eq. (2.1.51). Moreover, the addition of a new relativistic component
decoupled from the thermal plasma, such as GWs, contributes to the energy density of the Universe
as

ρν + ρextra = Neff
7

8

(
4

11

)4/3

ργ ⇒ ρextra = ∆Neff
7

8

(
4

11

)4/3

ργ , (2.1.52)

where ∆Neff accounts for the additional relativistic degrees of freedom. Current observational con-
straints, combining BBN and CMB data [102], give

Neff = 2.941± 0.143 , (2.1.53)

which is consistent with the SM prediction, but it also leaves room for BSM contributions.
Because radiation and matter dilute differently, the matter-radiation equality temperature Teq is

defined as the temperature at which their energy densities coincide

ργ(Teq) = ρm(Teq) , (2.1.54)

which is given by Teq ≃ 0.8 eV.

At temperatures below 1 eV, the Universe becomes transparent to electromagnetic radiation,
since photons no longer interact efficiently with free electrons. Before this epoch, photons were
tightly coupled to the plasma via Compton scattering, but once the temperature decreases suffi-
ciently, free electrons and nuclei combine to form neutral atoms. This process, called recombination,
reduces the free electron density. Protons and photons are kept in thermal equilibrium through the
reaction e−p+ ↔ Hγ. Charge neutrality implies that ne = np, baryon number conservation that
nH + np = nB and chemical equilibrium that µp + µe = µH . Hence, using the non-relativistic
number densities n in Eq. (2.1.30), we obtain

nH = npne
gH
gpge

(
meT

2π

)− 3
2

e−
B
T , (2.1.55)

where B ≃ 13.6eV is the hydrogen binding energy and we have used the approximation mH ≃ mp.
We define the fractional ionization Xe = ne

nb
and use the baryon-to-photon ratio η in Eq. (2.1.49),
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ignoring all nuclei other than protons nb ≃ np + nH = ne + nH , to find the Saha equation

1−Xeq
e

(Xeq
e )2

=
2ζ(3)

π2
η

(
2πT

me

) 3
2

e
B
T . (2.1.56)

The recombination temperature Trec is defined byXeq
e = 0.1, which means that 90% of the electrons

are bound to protons, and it is given by Trec ≃ 0.3 eV. Meanwhile, photons are coupled to free
electrons through Thomson scattering e−γ ↔ e−γ, with an interaction rate Γ = neσT , where σT
is the Thomson cross-section. Photon decoupling occurs when Γ ∼ H in Eq. (2.1.41). Since this
epoch lies in matter domination, the decoupling temperature is Tdec ≃ 0.27 eV. The background
of relic photons is the CMB observed today: an almost perfect black body spectrum with average
temperature of T = 2.73 K and anisotropies of the order 10−5. Expanding these anisotropies in
spherical harmonics yields the angular power spectrum, from which precise information about the
age, expansion rate, and energy content of the Universe can be extracted.

After the surface of last scattering, the Universe remained dark until baryonic matter fell into po-
tential wells of dark matter and formed the first stars, which burned hydrogen and helium to form
elements up to iron. The emission of ionising photons reionised the surrounding gas, making the Uni-
verse partially opaque but still transparent to the CMB, in a process called reionization. Hierarchical
structure formation followed: stars, small galaxies, large galaxies, galaxy clusters, superclusters and
large voids. Eventually, the Universe became vacuum-dominated by dark energy, as it is today.

All the information discussed so far comes directly or indirectly from electromagnetic radiation,
with the surface of last scattering marking the earliest epoch directly observed. However, GWs can
provide information about much earlier times. To see this, we use the rule of thumb in Eq. (2.1.41)
Γ ∼ H and compare the interaction rate due to gravitational interaction Γ ≃ G2

NT
5 ≃ T 5

m4
Pl

with the
Hubble parameter H in radiation-dominated era in Eq. (2.1.35)

T 5

m4
Pl
≃ T 2

mPl
⇒ TGW ≃ mPl , (2.1.57)

which shows that GWs decoupled at temperatures close to the Planck scale.

2.2 Gravitational waves
The existence of wave solutions in the theory of GR was first predicted by Einstein himself in

1916 [4, 5]. The physical reality of GWs was debated for decades. Einstein himself was doubtful and,
together with Rosen, mistakenly argued in 1936 [103] that such solutions contained singularities,
later understood to be a coordinate artifact. It was only in 1957 that Pirani [104] clarified this issue by
showing that GWs would indeed move test masses. The first indirect confirmation of the existence
of GWs is due to Hulse and Taylor in 1974 [105, 106] through the observed orbital period decay of PSR
B1913+16, consistent with the cumulative shift of its periastron time predicted by GW emission. In the
1970s, Forward and Weiss [107, 108] proposed a laser-interferometric detector concept, inspired by
the Michelson-Morley experiment [109], while Sazhin and Detweiler suggested millisecond pulsars as
natural low-frequency detectors [110, 111]. A century later, the first direct detection of a GW produced
by a binary black hole merger was achieved in 2015 by the LIGO collaboration [3] and the first evidence
for a SGWB was found in the summer of 2023 by several PTA collaborations [6–9].
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GWs arise naturally in the linearised theory of GR, as outlined in the first part of this section.
Then, we review the energy density carried by GWs, before turning to the properties of a SGWB and
its detection with PTAs, following Refs. [95, 112–114].

2.2.1 Linearised theory and plane wave solutions

The linearised theory of GR consists of expanding small perturbationshµν around a flat-spacetime
background metric ηµν , i.e.

gµν = ηµν + hµν +O(h2) , |hµν | ≪ 1 , (2.2.1)

which means that the gravitational field is so weak that the magnitude of non-zero components of
hµν is small. Physically, it implies that there exists a reference frame where we can decompose the
metric gµν into Eq. (2.2.1), on a sufficiently large region of space. Linearisation consists of keeping
only terms linear in hµν and neglecting higher-order ones. Indices are raised and lowered with the
Minkowski metric ηµν , and the Christoffel symbols Γαµν in Eq. (2.1.5), the Ricci tensorRµν in Eq. (2.1.3)
and the Ricci scalar R in Eq. (2.1.4) become

Γαµν =
1

2
ηαβ (∂µhνβ + ∂νhµβ − ∂βhµν) +O(h2) , (2.2.2)

Rµν =
1

2

(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−□hµν

)
+O(h2) , (2.2.3)

R = ∂α∂βh
αβ −□h+O(h2) , (2.2.4)

where h = ηαβhαβ is the trace and □ = ηαβ∂α∂β is the flat-spacetime D’Alembertian operator. The
Einstein tensor Gµν in Eq. (2.1.2) is given by

Gµν =
1

2

(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−□hµν − ηµν∂α∂βh

αβ + ηµν□h
)
+O(h2) . (2.2.5)

It is convenient to introduce the trace-reversed metric perturbation

h̄µν = hµν −
1

2
ηµνh , (2.2.6)

called trace-reversed because h̄ = ηµν h̄µν = h − 2h = −h, so that the Einstein tensor Gµν in Eq.
(2.2.5) simplifies to

Gµν =
1

2

(
∂α∂µh̄

α
ν + ∂α∂ν h̄

α
µ −□h̄µν − ηµν∂α∂βh̄

αβ
)
+O(h2) , (2.2.7)

and Einstein’s equations in Eq. (2.1.2) now read

□h̄µν + ηµν∂α∂βh̄
αβ − ∂α∂µh̄

α
ν − ∂α∂ν h̄

α
µ = −16πGTµν . (2.2.8)

Since we work in the weak-field limit, the right-hand side of Einstein’s equations in Eq. (2.1.2) is
given by the first-order in hµν of the energy-momentum tensor Tµν . The conservation of the energy-
momentum tensor is then given by ∂µT µν = 0.
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The Einstein-Hilbert action is invariant under the gauge group of all possible coordinate transfor-
mations5 given by xµ → x′µ(x), where x′µ is an arbitrary diffeomorphism6. In fact, there may be
other coordinate systems in which the metric gµν can be written as in Eq. (2.2.1), but with different
perturbation metric hµν . Under this transformation, the metric transforms as

gµν(x) → g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) . (2.2.9)

Since gauge transformations correspond to coordinate redefinitions, choosing coordinates is equiv-
alent to fixing the gauge: get rid of spurious degrees of freedom and leave only physical ones. An
infinitesimal coordinate transformation can be written as

x′µ = xµ + ξµ(x) , (2.2.10)

where ξµ(x) is an arbitrary infinitesimal vector field and the derivatives ∂µξν are at most of order
hµν , in order to ensure that Eq. (2.2.1) is still valid. The gauge transformation of the perturbation
metric hµν is given by

h′µν = hµν − (∂µξν + ∂νξµ) , h̄′µν = h̄µν − (∂µξν + ∂νξµ) + ηµν∂
αξα . (2.2.11)

A convenient gauge choice is the Lorenz condition7

∂µh̄µν = ∂µhµν −
1

2
ηµν∂

µh = 0 , (2.2.12)

which, using Eq. (2.2.11) ξµ, translates into the condition

∂µh̄µν = □ξν . (2.2.13)

Since Eq. (2.2.13) is a wave equation for ξ, and the d’Alembert operator is invertible in flat spacetime,
it is always possible to find a solution and impose the Lorenz gauge condition. In this gauge, the
linearised Einstein tensor Gµν in Eq. (2.2.7) remarkably simplifies to

Gµν = −1

2
□h̄µν , (2.2.14)

and Einstein’s equations in Eq. (2.1.2) to

□h̄µν = −16πGTµν . (2.2.15)

Note that the symmetric perturbation metric hµν has 10 components, but imposing 4 gauge degrees
of freedom in Eq. (2.2.12), leaving 6 independent ones.

In vacuum, where the energy-momentum tensor T µν vanishes, Einstein’s equations in the Lorenz
5This is the principle of general covariance, which states that the laws of physics must take the same form in all

coordinate systems.
6A diffeomorphism is map which is invertible, differentiable and with differentiable inverse.
7This is analogous to the Lorenz gauge ∂µA

µ = 0 in electromagnetism.
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gauge in Eq. (2.2.15) reduce to
□h̄µν = 0 . (2.2.16)

However, the gauge is not completely fixed, since the Lorenz condition in Eq. (2.2.12) is not spoiled
by a further gauge transformation in Eq. (2.2.10), as long as □ξµ = 0. In particular, we can choose
ξ0 such that h̄ = 0 is traceless, so that h̄µν = hµν , and ξi such that h̄0i = 0 is purely spatial. As a
consequence, 0-component of the Lorenz gauge in Eq. (2.2.12) reads

0 = ∂0h00 + ∂ih0i = ∂0h00 , (2.2.17)

which means that h00 becomes automatically constant in time, which can be set to zero h00 = 0 since
we are interested in time-dependent propagating solutions, and for the j-components

0 = ∂0h0j + ∂ihij = ∂ihij , (2.2.18)

which implies that the spatial metric perturbation is transverse. We can summarise the full set of
conditions defining the Traceless-Transverse (TT) gauge, in the following way

h0µ = 0 , hii = 0 , ∂ihij = 0 , (2.2.19)

and the non-trivial Einstein’s equations in Eq. (2.2.16) become

□hTT
ij = 0 . (2.2.20)

where we have considered only the spatial components, since in the TT gauge these are the only dy-
namical fields. hµν is left with 2 physical degrees of freedom, because we have imposed 4 redundant
gauge conditions. Thus, the TT gauge is a convenient choice because it completely fixes the gauge
freedom and contains only physical degrees of freedom, and explicitly shows that wave solutions
arise from the linearised Einstein’s equations in Eq. (2.2.20).

A particular class of solutions of the wave equation in Eq. (2.2.20) is represented by plane waves

hTT
ij (x) = Re

(
Cije

ikµxµ
)
, (2.2.21)

where kµ = (ω,k) is the null wave vector, i.e. kµkµ = −ω2+ |k|2 = 0, showing that GWs propagate
at the speed of light, and Cij is the constant symmetric transverse traceless polarisation tensor, i.e.

Cijkj = 0 , Ci
i = 0 . (2.2.22)

The direction of the propagation of the GW is defined by the unit vector of the wave vector n̂ = k/|k|.
Without loss of generality, we choose n̂ along the ẑ-direction, so that

kµ = (ω, 0, 0, ω) , (2.2.23)

and, imposing the conditions in Eq. (2.2.22), the polarisation tensor Cij is left with only two compo-
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nents (h+, h×). The metric perturbation hTT
µν in Eq. (2.2.21) can then be written as

hTT
µν(t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos(ω(t− z)) , (2.2.24)

or in terms of the infinitesimal line element ds2 in Eq. (2.1.1)

ds2 =− dt2 + dz2 + (1 + h+ cos(ω(t− z))) dx2 + (1− h+ cos(ω(t− z))) dy2

+ 2h× cos(ω(t− z))dxdy .
(2.2.25)

Therefore, for a plane wave propagating in the z-direction, the GW is completely characterised by its
two polarisation amplitudes (h+, h×) and the frequency f .

The most general solution of the wave equation in Eq. (2.2.20) is a superposition of plane waves,
which in Fourier space can be written as

hTT
ij (x) =

∫
d3k

(2π)3
(
Aij(k)e

ikx + c.c.
)
. (2.2.26)

Using spherical coordinates for the wave vector k, withω = |k|, so that kµ = ω(1, k̂), or equivalently
in terms of the frequency f = ω

2π
as kµ = 2πf(1, k̂), the integration measure becomes d3k =

(2π)3f 2dfd2n̂ and the superposition of plane waves in Eq. (2.2.26) reads

hTT
ij (x) =

∫ ∞

0

df f 2

∫
d2n̂

(
Aij(f, n̂)e

−2πif(t−n̂·x) + c.c.
)
. (2.2.27)

The TT gauge conditions in Eq. (2.2.19) impose restrictions such as Ai
i(k) = 0 and kiAij(k) = 0. In

case of a superposition of waves with different propagation directions, hij(x) is no longer reducible
to a 2× 2 matrix, since contributions also arise in the third spatial direction. We introduce the polar-
ization tensors CA

ij (n̂) for A = +,× defined as

C+
ij (n̂) = ûiûj − v̂iv̂j , C×

ij (n̂) = ûiv̂j + v̂iûj , (2.2.28)

where û and v̂ are orthonormal vectors to n̂ and to each other. They are normalised such that

CA
ij (n̂)C

ij
B (n̂) = 2δAB . (2.2.29)

Therefore, in a generic frame, we can write

f 2Aij(f, n̂) =
∑

A=+,×

h̃A(f, n̂)C
A
ij (n̂) , (2.2.30)

and Eq. (2.2.26) becomes [112]

hTT
ij (t,x) =

∑
A=+,×

∫ ∞

−∞
df

∫
d2n̂ h̃A(f, n̂)C

A
ij (n̂)e

−2πif(t−n̂·x) . (2.2.31)
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In TT gauge, we see directly how test masses respond to GWs. Consider two test masses located at
(t, x1, 0, 0) and (t, x2, 0, 0), separated by a constant coordinate distanceL = x2−x1. Physical effects
are measured through proper, not coordinate, distances. In fact, the proper distance S between the
two masses oscillates in time

S =

∫ x2

x1

√
gxxdx =

∫ x2

x1

√
1 + h+ cos(ω(t− z))dx

= (x2 − x1) (1 + h+ cos(ωt))1/2 ≃ L

(
1 +

1

2
h+ cos(ωt)

)
,

where we have used the metric gµν in Eq. (2.2.25) and Taylor expanded for h+ ≪ 1. The relative
change in proper distance is then

δSx =
L

2
h+ cos(ωt) . (2.2.32)

In the TT gauge, the only non-vanishing component of the Riemann tensor is

Ri00j =
1

2
ḧTT
ij , (2.2.33)

so that, for slowly-moving test masses uµ = (1, 0, 0, 0), the geodesic deviation equation 8 reads as

S̈i = Ri
00jS

j =
1

2
ḧTT
ijS

j . (2.2.34)

To visualise the effect, consider a ring of test masses in the (x, y) plane, and see how it behaves for a
GW propagating in the ẑ-direction. Since the GW is transverse, if the test particle is at rest at z = 0,
it will remain at z = 0, so we can focus on the (x, y) plane. For the + polarisation, the plane wave
in Eq. (2.2.24) reads as

hTT
ij (t) =

1 0 0

0 −1 0

0 0 0

h+ sin(ωt) , (2.2.35)

where we have also chosen the origin of time such that hTT
ij (t = 0) = 0. Defining ξi(t) = (x0 +

δx(t), y0 + δy(t), 0) and using Eq. (2.2.34), we find

ξ̈i =

δẍ(t)δÿ(t)

0

 =
1

2
ḧijξ

j = −h+ω
2

2
sin(ωt)

1 0 0

0 −1 0

0 0 0

x0 + δx(t)

y0 + δy(t)

0

 . (2.2.36)

Neglecting the small corrections δx and δy, which are of order O(h+), we integrate Eq. (2.2.36) to
obtain

δx(t) =
h+x0
2

cos(ωt) , δy(t) = −h+y0
2

cos(ωt) . (2.2.37)

Similarly, for the × polarisation, we have

δx(t) =
h×y0
2

cos(ωt) , δy(t) =
h×x0
2

cos(ωt) . (2.2.38)

8The geodesic deviation equation describes how the separation vector ξµ between two infinitesimally close geodesics
evolves due to spacetime curvature D2ξµ

Dτ2 = −Rµ
νρσ ξ

ρ uν uσ.

21



2 COSMOLOGY, GRAVITATIONAL WAVES AND PARTICLE PHYSICS

Therefore, the proper distance between particles that are initially at rest in the (x, y) plane will
oscillate. The effect of the two polarizations of a GW on a ring is illustrated in Fig. 3.

ωt = 0.0π ωt = 0.5π ωt = 1.0π ωt = 1.5π ωt = 2.0π

ωt = 0.0π ωt = 0.5π ωt = 1.0π ωt = 1.5π ωt = 2.0π

Figure 3: Effect of a passing GW on a ring of test masses: + polarization (top) and × polarization
(bottom).

If the test masses are instead mirrors with a light beam bouncing between them, the oscillat-
ing proper distance modifies the round-trip time of the light. This is the working principle of GW
interferometers. In PTAs, the mirrors are replaced by pulsars and the Solar System barycenter.

2.2.2 Energy-momentum tensor and gravitational wave sources

Since GWs set in motion initially at rest test masses, conservation of energy requires that the
kinetic energy must come from the energy carried by the GWs. To compute the energy-momentum
tensor tµν , we split the metric into a generic curved background gµν(x) and a small perturbation
δgµν(x), such that |δgµν(x)| ≪ |gµν(x)|

gµν(x) = gµν(x) + δgµν(x) . (2.2.39)

In the general case, it is not possible to precisely distinguish a background from perturbations on
top of it. This procedure works only if there is a clear distinction between the high-frequency part
of the metric, corresponding to the wave part δgµν(x) from the low-frequency part, corresponding
to the background gµν(x). Then, we can apply a renormalisation procedure to integrate out short-
wavelength modes by spatially averaging in a volume defined by some intermediate length scale [112].
There are two situations where this splitting is possible:

- in cosmology, for GWs with wavelengths much smaller than the Hubble radius, since causality
implies only sub-Horizon modes to be produced with wavelengthλ = 1/f ≤ a0/(a∗H∗), which
the expansion of the Universe a0H0 ≪ a∗H∗ leads to λ≪ H−1

0 ;

- on Earth, where even though deviations in the gravitational field δg00 ∼ 10−9 of the Earth
exceed the characteristic strain amplitudes δgij ∼ 10−21, we can exploit the quasi-static nature
of Earth’s gravitational field compared to GWs.
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We decompose the Ricci tensor Rµν in Eq. (2.1.3) in powers of δg in the metric decomposition of Eq.
(2.2.39) such as Rµν = R

(1)
µν + R

(2)
µν +O(δg3) and find that the energy-momentum tensor tµν arises

from the quadratic part of the Ricci tensor R(2)
µν

tµν =
1

16πG
⟨∂µδgαβ∂µδgαβ⟩ , (2.2.40)

where the average ⟨. . .⟩ is over intermediate length scale λ ≪ l ≪ Lbg or intermediate time scale
1
f
≪ τ ≪ 1

fbg
. In the Lorenz gauge ∂µδgµν = 0, the energy-momentum tensor tµν depends only on

hTT
ij = δgij . In particular, the t00 component is the energy density ρ associated to GWs

ρGW = t00 =
1

32πG
⟨ḣTT

ij ḣ
TT
ij ⟩ =

1

16πG
⟨ḣ2+ + ḣ2×⟩ . (2.2.41)

Another consequence is that GWs propagate along null geodesics of the background metric, which
leads to optical phenomena like gravitational lensing, absorption, or scattering, even though gravita-
tional interaction is so weak that they have negligible effects.

Sources of GWs can be obtained by means of the Green’s function method, in which the solution
of linearised Lorenz gauged Einstein’s equations in Eq. (2.2.15) can be written as

hµν(x) = −16πG

∫
d4x′ G(x− x′)Tµν(x

′) , (2.2.42)

where G(x− x′) is the Green’s function of the D’Alembertian operator, which satisfies the equation
□xG(x− x′) = δ4(x− x′). Since the disturbance of the gravitational field at the point (t,x) can be
influenced only by sources at the point (tret,x − x′) on the past light cone, causality requires that
the Green’s function in Eq. (2.2.42) is the retarded one

G(x− x′) = − 1

4π|x− x′|δ(tret − t′) , (2.2.43)

where tret = t− |x− x′| is the retarded time. Hence, the solution in Eq. (2.2.42) becomes

hij(t,x) = 4G

∫
d3x′

Tij(tret, x
′)

|x− x′| , (2.2.44)

where we have considered only the spatial components of the metric perturbation, since they are the
only dynamical ones. At large distance from a non-relativistic slowly moving source, by geometrical
analysis, we can use the approximation |x−x′| = r− n̂ ·x′+O

(
1
r

)
, to write the energy-momentum

tensor as Tij(tret,x′) ≃ Tij(t− r,x′) and Eq. (2.2.44) as

hij(t,x) =
4G

r

∫
d3x′Tij(t− r,x′) . (2.2.45)

Using the energy-momentum conservation ∂µT µν = 0 and projecting onto the TT part, we obtain
the quadrupole formula

hTT
ij =

2G

r
Q̈ij(t− r) , (2.2.46)
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whereQij(t) =
∫
d3x′ρ(t,x′)xixj is the quadrupole moment of the source andQTT

ij = Qij− 1
3
δijQkk

is its TT part. Unlike in electromagnetism, where dipole radiation dominates, the leading contribu-
tion in gravity is quadrupolar. This is because monopole terms are fixed by mass conservation, and
dipole terms by momentum conservation, both of which forbid radiation. Thus, only time-varying
quadrupole (and higher multipoles) can radiate.

2.2.3 Stochastic gravitational wave backgrounds

There are several types of GW signals, classified by temporal behavior and physical origin. Nearly
monochromatic, continuous signals are emitted by rotating, non-axisymmetric neutron stars. Com-
pact binary coalescences from black holes or neutron stars feature the characteristic inspiral-merger-
ringdown sequence. Short-duration bursts arise from highly asymmetric core-collapse supernovae or
from cusps on cosmic strings. Finally, a SGWB from many unresolved sources can arise either from
early-Universe phenomena (quantum fluctuations during inflation, FOPTs and topological defects
such as cosmic strings and domain walls) or the incoherent superposition of astrophysical mergers
(supermassive black hole binaries), each too weak to be detected individually, but numerous enough
that every frequency bin is densely populated.

In the case of a SGWB, unlike for individual sources, the perturbation metric in Eq. (2.2.31) is no
longer a deterministic function but a random variable with a statistical distribution, whose variance
is related to the energy density ρ 9

As a consequence of causality, an early Universe source cannot generate correlations on scales
larger than the Hubble radius at the time of emission, implying that l∗ ≤ H−1

∗ or ∆t∗ ≤ H−1
∗ . There-

fore, the signal observed today is given by a superposition of many sources that are uncorrelated.
We can compare the correlation length scale l∗ of a GW signal, produced in the early Universe and
redshifted to today l0 = l∗

a0
a∗

, to the Hubble horizon today H−1
0 [114]

l0

H−1
0

≃ 1.3× 10−11

(
100

g∗(T∗)

)1/6(GeV
T∗

)
. (2.2.47)

For example, taking temperatures near the epoch of the EWPT, Eq. (2.2.47) shows that the correla-
tion length scale is extremely small compared to the Hubble horizon today. Furthermore, a causal
process at the same epoch consists of a superposition of independent signals emitted by at least
1024 uncorrelated regions [114]. This justifies the assumption that an early Universe source of a GW
signal would produce a SGWB, which in general is taken to be Gaussian, stationary, isotropic, and
unpolarised. Gaussianity, which is justified by the central limit theorem10, indicates that the statisti-
cal information is encoded by its mean, which is set to zero, and its variance, which is the two-point
correlator ⟨hA(t)hA′(t′)⟩. Since the typical timescale on which the SGWB changes substantially is of
the order of the age of the Universe, which is much larger than the timescale of the experiments,

9Ensemble averages are formally defined as averages over many realisations of the Universe. Since we do not have
copies of it, we can exploit the ergodic hypothesis: the ensemble average is replaced by an average over large portions
of spacetime. To satisfy the ergodic hypothesis, we need to have the same initial condition at every point in space, the
production mechanism operated within a causal horizon, and the Hubble sphere at that time was smaller than today’s.
All these requirements are satisfied in the early Universe.

10The central limit theorem states that the sum of many independent events produces a Gaussian stochastic process,
regardless of the probability distribution of the individual events.
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stationarity is reasonable and ⟨h̃∗A(f)h̃A′(f ′)⟩ ∝ δ(f −f ′). Isotropy is a consequence of the fact that
it is generated by processes that happen at the same time in different Hubble patches, analogously
with the CMB, and points to ⟨h̃∗A(f, n̂)h̃A′(f ′, n̂′)⟩ ∝ δ(ϕ− ϕ′)δ(cos θ− cos θ′), where (θ, ϕ) are the
polar angles defining n̂. Finally, unpolarised means ⟨h̃∗A(f, n̂)h̃A′(f ′, n̂′)⟩ ∝ δAA′ . Combining these
properties, we can write the two-point correlator as

⟨h̃∗A(f, n̂)h̃A′(f ′, n̂′)⟩ = 1

8π
δ(f − f ′)δ2(n̂, n̂′)δAA′Sh(f) , (2.2.48)

where we have introduced the two-sided spectral density Sh(f), independent of polarisation and
direction, which uniquely characterises the two-point correlator in Eq. (2.2.48) and allows us to per-
form a direct comparison with the noise in a detector. The normalization factor of 8π is chosen so
that Sh(f) is normalised by the solid angle and by an extra factor of 2 such that it is consistent with
the definition of one-sided noise spectral densities. Back in coordinate space, Eq. (2.2.48) reads as

⟨hij(t)hij(t)⟩ = 4

∫ ∞

0

df Sh(f) . (2.2.49)

Besides the spectral densitySh(f), the quantity that characterises the SGWB is the energy density
ρGW, written in terms of a dimensionless parameter Ω, normalised over the critical density of the
Universe ρcrit =

3H2
0

8πG
, as

ΩGW =
ρGW

ρcrit
. (2.2.50)

We define the SGWB spectrum as a function of frequency as

ΩGW(f) =
1

ρcrit

dρGW

d ln f
. (2.2.51)

Inserting the plane wave expansion of Eq. (2.2.31) into the energy-momentum tensor in Eq. (2.2.41)
and averaging with the two-point correlator in Eq. (2.2.48), we find that the SGWB spectrum ΩGW in
Eq. (2.2.51) is then given by

ΩGW(f) =
4π2

3H2
0

f 3Sh(f) . (2.2.52)

2.2.4 Pulsar timing arrays

The existence of neutron stars was first hypothesised by Landau, Baade, and Zwicky in the 1930s
[115, 116], and in the 1960s Pacini and Gold proposed that rapidly rotating neutron stars would emit
periodic electromagnetic pulses [117, 118], due to conservation of angular momentum: as their pro-
genitor stars contract after nuclear fusion ceases, they spin faster. The first identification of radio
sources with a very regular period of 1.337 s with the pulsar PSR J1921+2153 was made by Bell and
Hewish in 1967. In the following years, more pulsars were identified, with particular mention for the
Hulse-Taylor binary pulsar J1915+1606 which led to the first indirect discovery of GWs [105, 106].

Neutron stars have a strong dipolar magnetic field, whose axis is misaligned with their rotation
axis. Thus, a precessing magnetic dipole generates an electric field that accelerates charged particles
within the magnetosphere, made of a co-rotating ionized high-energy plasma, which expels beams of
electromagnetic radiation in the radio band, emitted along the open magnetic field lines. Therefore,
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an observer along the circle swept by the beam of radiation receives a pulse with periodicity equal
to the rotational period of the neutron star, analogous to a lighthouse. The signal is extremely stable
because of the huge moment of inertia. Furthermore, there is a population of millisecond pulsars,
which rotate faster and have more stable rotational periods, typically formed in binary systems where
a pulsar accretes mass from its companion and gains angular momentum. Due to the high stability of
the orbital period, these pulses can be predicted with extreme precision, accounting for higher time
derivatives of the period P , such as the spin-down Ṗ , the effects of the interstellar medium, Earth’s
proper motion, and the orbital motion of binary pulsars.

The phenomenon that GWs affect the arrival times of these pulsar signals, is known from the
1970s [110, 111] and in 1983, Hellings and Downs [119] provided a way to distinguish GWs from noise,
by correlating timing residuals from several pulsars and predicting a characteristic pattern, known as
the Hellings-Downs curve. This led to the concept of PTAs [120], in which they looked for a Hellings-
Downs correlation curve of a SGWB, that needs to be disentangled from clock errors or mismodeling
of the Solar System’s barycenter effects. Since the lowest detectable frequency is given by the inverse
time span of the arrival data f ≥ 1

T
: for a time span of T = 10 yr, the sensitivity reaches the nHz

band.

In the following, we study how GWs affect the periodicity of the pulsar signal. We place the
coordinate origin at the barycenter of the Solar System and identify the pulsar direction with x = n̂a,
where a label the pulsar. Using the null line element in TT gauge for a pulse in Eq. (2.2.25), the
observation time tobs of a pulse emitted at time tem at the distance da is given by [113]

tobs = tem + da +
nian

j
a

2

∫ tem+da

tem

dt′ hTT
ij (t

′,x0(t
′)) , (2.2.53)

where we have Taylor expanded for small
√
1 + hTT

ij and defined x0(t
′) = (tem + da − t′)n̂a. After a

rotational period of the pulsar t′em = tem + Ta, the observation time becomes

t′obs = tem + Ta + da +
nian

j
a

2

∫ tem+da

tem

dt′ hTT
ij (t

′ + Ta, (tem + da − t′)n̂a) . (2.2.54)

Thus, we can relate the two observation times in Eqs. (2.2.53) and (2.2.54) as

t′obs − tobs = Ta +∆Ta , (2.2.55)

where ∆Ta is the delay induced by the GW, given by comparing Eq. (2.2.55) with Eqs. (2.2.53) and
(2.2.54)

∆Ta =
nian

j
a

2

∫ tem+da

tem

dt′(hTT
ij (t

′ + Ta,x0(t
′))− hTT

ij (t
′,x0(t

′)))

≃ Ta
nian

j
a

2

∫ tem+da

tem

dt′
∂

∂t′
hTT
ij (t

′,x0(t
′)) ,

(2.2.56)

where we have Taylor expanded Ta since it is typically of order milliseconds, compared to observa-
tional times of order years. For a monochromatic GW along the direction n̂, written as hTT

ij (t,x) =
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Aij(n̂) cos(ωGWt− n̂ · x), the fractional frequency shift za = ∆Ta
Ta

becomes [113]

za(t) =
nian

j
a

2(1 + n̂ · n̂a)
(hTT

ij (t,x = 0)− hTT
ij (t− τa,xa)) , (2.2.57)

where τa = tobs − tem and xa = dan̂a. The timing residual of the a-th pulsar is defined by

Ra(t) =

∫ t

0

dt′za(t
′) . (2.2.58)

Using the plane wave expansion in Eq. (2.2.31), we write the shift za in Eq. (2.2.57) as

za(t) =
∑

A=+,×

∫ ∞

−∞
df

∫
d2n̂ h̃A(f, n̂)F

A
a (n̂)e

−2πift
(
1− e2πifτa(1+n̂·n̂a)

)
, (2.2.59)

where

FA
a (n̂) =

nian
j
aC

A
ij (n̂)

2(1 + n̂ · n̂a)
. (2.2.60)

For a SGWB, we compute the two-point correlator of the shifts

⟨za(t)zb(t)⟩ =
1

2

∫ ∞

0

df Sh(f)

∫
d2n̂

4π
Kab(t, n̂)

∑
A=+,×

FA
a (n̂)F

A
b (n̂) , (2.2.61)

where
Kab(f, n̂) = (1− e−2πifτa(1+n̂·n̂a))(1− e−2πifτb(1+n̂·n̂b)) . (2.2.62)

We can replace Kab(f, n̂) → 1 + δab, since the exponentials rapidly oscillate and give negligible
contributions to the integral. In fact, for the closest pulsar τa > 0.1 kpc and the minimum frequency
f > 1 nHz, we have fτa > 10, unless the GW is parallel to the direction of the pulsar. Furthermore,
by switching to spherical coordinates, the integral in Eq. (2.2.61) is evaluated to be [113]

C(θab) =

∫
d2n̂

4π
FA
a (n̂)F

A
b (n̂) = xab ln xab −

xab
6

+
1

3
, (2.2.63)

where xab = 1−cos θab
2

and θab is the relative angle between the two pulsars. Therefore, using Sh(f) =
Sh(−f), we can write the two-point correlator in Eq. (2.2.61) as

⟨za(t)zb(t)⟩ = C(θab)

∫ ∞

0

df Sh(f) . (2.2.64)

The expression in Eq. (2.2.63) is known as the Hellings-Downs curve, and it characterises the corre-
lation between the timing residuals of two pulsars due to a common SGWB. In Fig. 4, we report the
Bayesian reconstruction of angular correlations between pulsars in the NANOGrav 15-year analysis
from Ref. [6].
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Figure 4: Bayesian reconstruction of angular correlations between pulsars in the NANOGrav 15-year
analysis. Light blue violins are the marginal posterior densities with the Hellings-Downs curve as black
dashed line. Figure taken from Ref. [6].

2.3 The Standard Model of particle physics
The SM of Particle Physics describes three of the four known fundamental interactions in nature:

electromagnetic, weak and, strong. It is able to make astonishing predictions with unprecedented
levels of accuracy.

The SM is the result of the last century of progress in particle physics, with synergies between the-
oretical developments and experimental discoveries. The framework of QFT was first introduced by
Dirac in 1926 [121, 122], where he unified Quantum Mechanics with Special Relativity and developed
the idea of fermions, after the introduction of the photon by Einstein in 1905 [123] and the relativistic
wave equation for bosons by Klein and Gordon in 1926 [124, 125]. The principle of gauge invariance
was formulated by Weyl in 1929 [126] and weak interactions were first described by Fermi in 1934
[127]. Then, Quantum Electrodynamics (QED) was developed by Feynman, Schwinger and Tomon-
aga in the late 1940s [128–130] and non-abelian gauge theories by Yang and Mills in 1954 [131]. The
main ideas at the basis of the EW sector of the SM were developed in the 1960s. Electromagnetism
and weak interactions were unified by Glashow in 1961 [132]. The SSB mechanism were introduced
by Weinberg and Salam in 1967 [133, 134] to provide masses for the vector bosons without violating
gauge invariance, which was inspired by the Higgs mechanism [135–138] and the Nambu-Goldstone
theorem [139–141]. The renormalizability of the theory, using dimensional regularisation, was proven
by ’t Hooft and Veltman in 1971 [142–144]. On the other hand, the strong interactions were devel-
oped in the 1970s, when QCD, which is a non-abelian gauge theory with color triplet quarks and color
octet gluons, was proposed by Gell-Mann, Fritzsch and Leutwyler in 1973 [145, 146], and asymptotic
freedom was discovered by Gross, Wilczek and Politzer in 1973 [147, 148].

In this section, after describing the gauge group and the particle content of the SM, we focus on
the SSB mechanism, following Refs. [149, 150].
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2.3.1 Gauge group and particle content

At the heart of the SM, or in general of any physical theory, there is the concept of symmetry.
Naively, a symmetry is a transformation that leaves a physical system invariant [151]. In mathematical
language, symmetries are described by groups11.

In the SM, both the particle content and the interactions are completely determined by the sym-
metries: the Poincaré group and the gauge group. In fact, particles are irreducible representations12

of the Poincaré group, which represents the symmetries of spacetime: translations and Lorentz trans-
formations. Particles can be classified according to their spin: scalar particles (spin 0), fermions (spin
1/2), and vector bosons (spin 1). The spin s of a particle is related to its statistics, which deter-
mine how states occupy the phase space: bosons (integer spin) obey Bose-Einstein statistics, while
fermions (half-integer spin) obey Fermi-Dirac statistics, already introduced in Eq. (2.1.25). The latter
are subject to the Pauli exclusion principle. On the other hand, interactions are described by gauge or
local symmetries, in which transformation parameters depend on spacetime coordinates. For each
generator of the algebra, we introduce a gauge vector boson field of spin 1, which is the mediator of
the interaction. Gauge bosons transform in the adjoint representation, while matter fields transform
in the fundamental representation13.

The SM gauge group is not simple, but it is the product of three simple groups. Before EWSSB, it
is given by

GSM = SU(3)c × SU(2)L × U(1)Y , (2.3.1)

where SU(3)c is associated to the strong interaction, SU(2)L to the weak interaction and U(1)Y to
hypercharge. Each group has its own coupling, which determines the interaction strength. There are
8 gauge bosons from SU(3)c, Ga

µ, with a = 1, . . . , 8, which are the gluons, 3 gauge bosons from
SU(2)L,W i

µ, with i = 1, 2, 3, which are the weak bosons, and 1 gauge boson fromU(1)Y ,Bµ, which
is the hypercharge boson14

G = (8,1)0 , W = (1,3)0 , B = (1,1)0 . (2.3.2)

After the EWSSB, the SM gauge group in Eq. (2.3.1) becomes

GSM = SU(3)c × U(1)EM , (2.3.3)

where U(1)EM is the electromagnetic gauge group. Its gauge boson, the massless photonAµ, is gen-
erated by a linear combination of the SU(2)L and U(1)Y gauge bosons, while the other orthogonal

11A group G is a set of elements equipped with a binary operation · that satisfies three properties: closure, i.e.
∀g1, g2 ∈ G, g1 · g2 ∈ G; associativity, i.e. ∀g1, g2, g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3); the existence of an iden-
tity element e ∈ G such that ∀g ∈ G, e · g = g · e = g; and each element g ∈ G has an inverse g−1 ∈ G such that
g · g−1 = g−1 · g = e. A Lie group is a group that is also a differentiable manifold, which means that group elements are
labelled by continuous parameters.

12A representation of G is a map ρ : G → GL(V ), where GL(V ) is the group of invertible linear transformations
on a vector space V , such that ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G. A representation is irreducible if there are no
non-trivial invariant subspaces under the action of the group. The dimension of the representation is the dimension of
the vector space V on which the group acts.

13The fundamental representation is the representation of the group that is the smallest non-trivial representation,
i.e. it has dimension greater than 1. The adjoint representation is the representation of the group on its own algebra, i.e.
it has dimension equal to the number of generators of the group. Mathematically, it is defined by T a

bc = −ifa
bc, where

fa
bc are the structure constants.

14We use the notation (c, w)Y , where c, w and y are associated to SU(3)c, SU(2)L and U(1)Y , respectively.
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combinations correspond to three massive bosons.
The SM is a chiral theory, which means that left- and right-handed fields do not have the same

charges under the SM gauge group. Left-handed fermions are doublets of SU(2)L, while right-
handed fermions are singlets. Furthermore, we can divide the matter content into quarks and lep-
tons, which are triplets and singlets of SU(3)c, respectively. We can organise the SM matter content
for quarks as

Qi
L =

(
uiL
diL

)
= (3,2) 1

6
, uiR = (3,1) 2

3
, diR = (3,1)− 1

3
, (2.3.4)

while for leptons we have

LiL =

(
νiL
eiL

)
= (1,2)− 1

2
, eiR = (1,1)−1 . (2.3.5)

Here, the index i = 1, 2, 3 labels the three generations, since the SM containes 3 families of fermions,
which have exactly the same gauge interactions, but different masses.

The last ingredient of the SM is the Higgs boson, which is the only known fundamental scalar par-
ticle. It is a singlet under the SU(3)c group, doublet under the SU(2)L group, and has hypercharge
Y = 1

2

H =

(
H+

H0

)
= (1,2) 1

2
, (2.3.6)

where H+ is the charged component and H0 is the neutral component of the Higgs doublet. It
generates fermion and weak gauge boson masses through the mechanism of SSB. It was the last SM
particle to be discovered, in 2012 by the collaborations ATLAS [152] and CMS [153] at the Large Hadron
Collider (LHC).

2.3.2 Lagrangian

Within the framework of QFT, the dynamics of a system is described by a Lagrangian density L,
which is a function of the fields and their derivatives. It must satisfy the symmetries of the theory.
Thus, in the case of the SM, it must be Lorentz and gauge invariant, which can be accomplished by
requiring that all Lorentz indices are contracted and the sum of the charges under each gauge group
vanishes. It must also be renormalisable, meaning that divergences can be absorbed into a finite
number of parameters. Effectively, it translates into having terms with dimension less than or equal
to 4 in natural units.

The Lagrangian of the SM is given by

LSM =− 1

4
Ga
µνG

µνa − 1

4
W i
µνW

µνi − 1

4
BµνB

µν

− iQ̄i
L
/DQi

L − iūiR /Du
i
R − id̄iR /Dd

i
R − iL̄iL /DL

i
L − iēiR /De

i
R

+ (DµH)†(DµH)− V (|H|)
−
(
yiuQ̄

i
Lu

i
RH + yidQ̄

i
Ld

i
RH

† + yieL̄
i
Le

i
RH

† + h.c.
)
+ θ terms ,

(2.3.7)

where Dµ is the covariant derivative, which is defined as

Dµ = ∂µ − igsT
aGa

µ − ig2T
iW i

µ − ig1Y Bµ , (2.3.8)
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and gs, g2, and g1 are the strong, weak, and hypercharge coupling constants, respectively.
The first row of Eq. (2.3.7) contains the kinetic term of the gauge bosons and self-interaction

terms of non-abelian gauge groups. The field strength tensors are defined as

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (2.3.9)

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ϵ

ijkW j
µW

k
ν , (2.3.10)

Bµν = ∂µBν − ∂νBµ , (2.3.11)

where fabc and ϵijk are the structure constants15 of SU(3)c and SU(2)L, respectively.
The second row of Eq. (2.3.7) describes the kinetic term of the fermions and their interactions

with the gauge bosons. The covariant derivative ensures that the kinetic term of the fermions is
gauge invariant, since it transforms in the same way as the fermions under gauge transformations.

2.3.3 Spontaneous symmetry breaking

Due to gauge invariance, it is not possible to write an explicit mass term for the gauge bosons
or fermions in the Lagrangian, observe experimentally to be massive. Nevertheless, it is possible to
generate particle masses through the Higgs mechanism, which follows from the Goldstone theorem
and gauge invariance.

The Goldstone theorem states that if a global, continuous symmetry G is spontaneously broken
to H , then the number of massless Goldstone bosons is given by

dim(G/H) = dimG− dimH , (2.3.12)

where G/H is the coset space16. In particular, the generators T̃A of the unbroken symmetry group
H will annihilate the vacuum state ⟨ϕ⟩, i.e.

T̃A⟨ϕ⟩ = 0 . (2.3.13)

Each of the broken generators gives a zero mass eigenstate and a massless Goldstone boson.
The Higgs mechanism consists in introducing a scalar field H

H =

(
H+

H0

)
, (2.3.14)

which has a non-vanishing VEV that spontaneously breaks the EW gauge group SU(2)L × U(1)Y
down to U(1)EM. The VEV is given by the non-zero value of the minimum of the scalar field potential

V (H) = −µ2H†H + λ(H†H)2 , (2.3.15)

where µ2 > 0 and λ > 0, which is

|H|2 = µ2

2λ
=
v2

2
, (2.3.16)

15The structure constants are defined as [T a, T b] = ifabcT c for the SU(3)c group and [T i, T j ] = iϵijkT k for the
SU(2)L group, where T a and T i are the generators of the groups.

16The coset space G/H is the space of equivalence classes of G under the action of H .
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defining v =
√

µ2

λ
. The mechanism of SSB consists in choosing one of the minima of the potential in

Eq. (2.3.15) as the ground state of the theory, parameterised as

⟨H⟩ = 1√
2

(
0

v

)
. (2.3.17)

Using the Goldstone theorem and Eq. (2.3.13), we prove that not all the generators of the group
SU(2)L × U(1)Y are broken, but there is a linear combination of the hypercharge generator Y and
the third generator T 3 of SU(2)L that annihilate the VEV of the Higgs field in Eq. (2.3.17)

Q⟨H⟩ =
(
Y + T 3

)
⟨H⟩ =

(
1 0

0 0

)(
0
v√
2

)
= 0 , (2.3.18)

whereQ = Y +T 3 is the Gell-Mann-Nishijima relation to define the electric charge. This shows that
the electric charge is an unbroken generator (2.3.13) and that the photon remains massless.

Since the ground state of the theory is given by the VEV of the Higgs field in Eq. (2.3.17), we can
expand the radial fluctuations around it

H =
1√
2

(
0

v + h

)
, (2.3.19)

where h is the physical Higgs boson. In unitary gauge, the other three degrees of freedom of the
Higgs field in Eq. (2.3.14), which correspond to massless Goldstone bosons, are absorbed by the
gauge bosons W± and Z0, which become massive. To see this, we expand the kinetic term of the
Higgs field in the Lagrangian in Eq. (2.3.7), we substitute the Higgs field in Eq. (2.3.19) and keep only
quadratic terms in the gauge bosons, to obtain

(DµH)†(DµH) ⊃ v2

8

[
g22
(
(W 1

µ)
2 + (W 2

µ)
2
)
+
(
g2W

3
µ − g1Bµ

)2]
. (2.3.20)

Then, we diagonalise the mass matrix, by means of a rotation into mass eigenstates Z and Aµ

Zµ =
g2W

3
µ − g1Bµ√
g21 + g22

= W 3
µ cos θW −Bµ sin θW , (2.3.21)

Aµ =
g1W

3
µ + g2Bµ√
g21 + g22

= W 3
µ sin θW +Bµ cos θW , (2.3.22)

where the weak angle θW is defined as

tan θW =
g1
g2
, sin θW =

g1√
g21 + g22

, cos θW =
g2√
g21 + g22

. (2.3.23)

Since W 1
µ and W 2

µ do not carry electric charge, they are combined to form the charged W bosons

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (2.3.24)

Therefore, we substitute the expressions for the gauge bosons of Eqs. (2.3.21), (2.3.22) and (2.3.24)
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into the kinetic term of the Higgs field in Eq. (2.3.20), finding

(DµH)†(DµH) ⊃ g22v
2

4
W+
µ W

−µ +
(g21 + g22)v

2

4
Z2
µ = m2

WW
+
µ W

µ
− +

1

2
m2
ZZµZ

µ , (2.3.25)

and we identify the masses of the gauge bosons

mW =
g2v

2
, mZ =

√
g21 + g22v

2
=

mW

cos θW
, mA = 0 . (2.3.26)

The Higgs mechanism also gives mass to fermions, which can be found by substituting the Higgs
field of Eq. (2.3.19) into the Yukawa terms in the fourth row of Eq. (2.3.7)

LYukawa ⊃ −y
i
uv√
2
ūiRu

i
L − yidv√

2
d̄iRd

i
L − yiev√

2
ēiRe

i
L + h.c. , (2.3.27)

so that
mi
u =

yiuv√
2
, mi

d =
yidv√
2
, mi

e =
yiev√
2
, (2.3.28)

wheremi
u,mi

d andmi
e are the masses of the up-type quarks, down-type quarks and charged leptons,

respectively. In the SM, neutrinos are massless, even though there is experimental evidence for
neutrino oscillations, which implies that they must have a small mass.

Finally, the Higgs field mass can be obtained by substituting the Higgs field of Eq. (2.3.19) into the
potential in Eq. (2.3.15) and keeping only quadratic terms

V (|H|) ⊃ λv2h2 =
1

2
m2
hh

2 . (2.3.29)

2.4 Dark sectors
The SM has been proven to be a successful theory. However, in addition to the experimental

phenomena the SM cannot account for, including neutrino oscillations and masses, baryon asymme-
try, and dark matter, there are also a number of theoretical issues for which it does not provide an
answer.

While much attention has been given to the possibility that heavy new physics could solve some
of these open problems, another interesting explanation could come from hidden or light DSs. These
refer to the introduction of new fields, and related particles, which are not charged under the SM
gauge group but charged under new dark forces, hence the name dark. They have not been de-
tected so far because of their feeble interactions with SM particles. These models can range from
the simplest addition of a dark U(1) gauge vector field to more general models that include DSs with
several new states. The connection between the two sectors is possible through the inclusion in the
Lagrangian of portals, usually written in the form [154]

LDS =
∑
i

ciOSM
i ODS

i , (2.4.1)

where ci are couplings, while OSM
i and ODS

i are operators containing SM and DS fields, respectively.
The latter takes different forms according to the spin nature of the new particles. The most common
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lowest dimension portals are summarised in Table 2.

Particle Spin Portal
Dark scalar S 0 (scalar) (µS + λS2)H†H

Axion or axion-like particles a 0 (pseudo-scalar) aF̃µνF
µν/fa, (ψ̄γµγ5ψ)∂µa/fa

Heavy neutral lepton N 1/2 (fermion) yNLHN
Dark photon A′

µ 1 (vector) −ϵF ′
µνB

µν

Table 2: Dark sector particles, their spin, and their portal with the Standard Model.

These new particles can be considered only as mediators between the two sectors, or dark matter
candidates as well. One of the advantages of introducing such DS portals is that they reduce to a
parameter space with only a few free parameters, which are experimentally testable.

In this section, we focus on the vector and scalar portals, following Refs. [155, 156].

2.4.1 Dark photon

The dark photon17 portal is responsible for the kinetic mixing between a dark and a visible abelian
gauge vector boson [157]. The visible one can be identified as the SM photon or the hypercharge
boson, depending on whether EWSSB has occurred, while the dark photon arises from an additional
U(1)D gauge symmetry. The meaning of this operator is that the two gauge vector bosons can go
into each other as they propagate. The kinetic mixing between two abelian gauge groups is possible
since the field strength tensor is invariant under a transformation of that group, a feature that is not
possible for non-abelian gauge groups.

We begin by considering the massless case, since an explicit mass term for a gauge boson is for-
bidden by gauge invariance. The Lagrangian is given by

L = −1

4
F µν
a Faµν −

1

4
F µν
b Fbµν −

ϵ

2
F µν
a Fbµν + eJµA

µ
b + e′J ′

µA
µ
a , (2.4.2)

where F µν
i = ∂µAνi − ∂νAµi with i = a, b are the field strength tensors, ϵ is a dimensionless param-

eter that quantifies the strength of the mixing, Jµ and J ′
µ are the electromagnetic and dark currents

that couple to the gauge fields with coupling constants e and e′, respectively. The Lagrangian in Eq.
(2.4.2) is written in the gauge basis (Aµa , A

µ
b ) that appears to have a non-diagonal kinetic matrix, but

it is convenient to work in the physical basis, in which the kinetic matrix is diagonal and canonically
normalised with a factor of −1

4
in front of the field strength tensors Fµν . In the physical basis, fields

propagate independently, with mixing effects shifted entirely to the interaction terms. The relation
between the gauge basis (Aµa , A

µ
b ) and the physical basis (Aµ, A′

µ) is given by[
Aµa
Aµb

]
=

[
1√
1−ϵ2 0

− ϵ√
1−ϵ2 1

][
cos θ − sin θ

sin θ cos θ

] [
A′µ

Aµ

]
, (2.4.3)

where θ is an arbitrary angle. Hence, the kinetic part of the Lagrangian in Eq. (2.4.2) in the physical
17In the literature, it is also referred to as hidden, para-, secluded photon or U -boson.
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basis, obtained by the transformation in Eq. (2.4.3), is given by

Lkin = −1

4
FµνF

µν − 1

4
F ′
µνF

′µν , (2.4.4)

and the interaction part of the Lagrangian (2.4.2), in the physical basis, becomes

Lint =
(
e′ cos θ√
1− ϵ2

J ′
µ + e

(
sin θ − ϵ cos θ√

1− ϵ2

)
Jµ

)
A′µ

+

(
− e′ sin θ√

1− ϵ2
J ′
µ + e

(
cos θ +

ϵ sin θ√
1− ϵ2

)
Jµ

)
Aµ .

(2.4.5)

Note that the arbitrary angle θ is explicit in the Lagrangian, so we need to fix θ. Choosing sin θ = 0

leaves the SM photon couple only to SM current while the dark photon to both

Lint =
(

e′√
1− ϵ2

J ′
µ −

eϵ√
1− ϵ2

Jµ

)
A′µ + eJµA

µ . (2.4.6)

On the other hand, setting sin θ = ϵ gives the opposite situation

Lint = e′J ′
µA

′µ +

(
− e′ϵ√

1− ϵ2
J ′
µ +

e√
1− ϵ2

Jµ

)
Aµ . (2.4.7)

Consider now the massive case. A minimal approach, without introducing a dark scalar field to
give mass to the dark photon, is to consider the Stueckelberg mechanism [158], which adds mass
terms the Lagrangian in Eq. (2.4.2)

L ⊃ −1

2
m2
aA

µ
aAaµ −

1

2
m2
bA

µ
bAbµ −mambA

µ
aAbµ . (2.4.8)

Since the SM photon is massless, rotating to the physical basis and setting mA = 0 constrains the
angle θ to satisfy sin θ = 0, so that the interaction Lagrangian reduces to Eq. (2.4.6). The parameter
space for this model is only spanned by (ϵ,mA′) and the interaction with the SM matter is given by
the term

Lint ⊃ − eϵ√
1− ϵ2

JµA
′µ ≃ −eϵJµA′µ . (2.4.9)

On the experimental side, a massive dark photon can be produced through several processes
[45, 46, 155]. Examples include bremsstrahlung, e−Z → e−ZA′, where an electron scatters off a
nuclear target of atomic number Z; pair annihilation, e−e+ → γA′, involving an electron-positron
pair; meson decays, M → γA′, where M may be π0, η,K, or D; and Drell-Yan production, qq̄ →
A′ → l+l−/h+h−, where a quark-antiquark pair annihilates into a dark photon that subsequently
decays into either a lepton pair l+l− or a hadron pair h+h−.

Detection strategies depend on the nature of the final states. In visible decay channels, the dark
photon can appear as a resonance over the background in collider or beam-dump experiments. Al-
ternatively, invisible decays into undetectable dark matter particles can be probed through missing
momentum/energy signatures, providing indirect evidence of theA′

µ. Finally, the missing-mass tech-
nique allows the detection of invisible particles when the initial state is fully reconstructed.
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Another way to generate the dark photon mass is through the Higgs mechanism, by introducing
a dark scalar field S that acquires a VEV after SSB. Therefore, we extend the Lagrangian in Eq. (2.4.2)
with the kinetic term and potential of the dark scalar S

L ⊃ (DµS)
†(DµS)− V (S) , (2.4.10)

where Dµ = ∂µ + ig3T
αGα

µ + ig2T
aW a

µ + ig1Y Bµ + i(gmY + g′1Q
′)B′

µ is the covariant derivative.
gm accounts for the kinetic mixing. If the dark scalar S is charged only under the dark U(1)D gauge
group, the covariant derivative reduces to Dµ = ∂µ + ig′1Q

′B′
µ. Applying the rotation in Eq. (2.4.3)

with sin θ = 0 [
Aµa
Aµb

]
=

[
1√
1−ϵ2 0

− ϵ√
1−ϵ2 1

] [
A′µ

Aµ

]
, (2.4.11)

the kinetic term of the dark scalar S in Eq. (2.4.10) becomes

(DµS)
†DµS = (∂µS)

†(∂µS) +
g′1

2|S|2A′
µA

′µ

2(1− ϵ2)
+
g′1J

′
µA

′µ
√
1− ϵ2

. (2.4.12)

After SSB, when the dark scalar acquires a VEV S = vs√
2

, the second term in Eq. (2.4.12) yields the
squared mass of the dark photon

m2
A′ =

g′1
2v2s

1− ϵ2
. (2.4.13)

The parameter space of this model is spanned by (ϵ,mA′ , vs). In order to satisfy the experimental
constraints [155], the mixing parameter ϵ must be small, i.e. ϵ≪ 1, so that Eq. (2.4.13) reduces to

m2
A′ ≃ g′1

2
v2s . (2.4.14)

2.4.2 Dark scalar

In the scalar extension of the SM, the dark scalar field S, introduced via the Higgs mechanism to
give mass to the dark photon, can also interact with the Higgs boson

LHS =
1

2
λHS|H|2|S|2 , (2.4.15)

where λHS is the coupling between the Higgs and the dark scalar. The introduction of the term in Eq.
(2.4.15) has the implication that the mass matrix is not diagonal and is given by

M =

[
m2
h m2

sh

m2
sh m2

s

]
, (2.4.16)

where m2
sh = λHSvvS . Therefore, a rotation of the fields into the physical basis is needed to extract

the physical mass eigenstates

h = H cosα + S sinα , s = −H sinα + S cosα . (2.4.17)

Assuming the hierarchy vS ≪ vH and λHS ≪ 1, we can infer that the mixing angle is approximately
sinα ≃ λHSvS

λHvH
. The parameter space of this model is given by (ms, sinα). The mixed quartic coupling
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in Eq. (2.4.15) translates into mass mixing in Eq. (2.4.16), which, after diagonalisation, results in the
mixing between scalar fields. Dark scalars are under scrutiny in experimental searches [45, 46].
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3 Cosmological phase transitions
The theory of cosmological PTs took root in the second half of the 20th century. The effective

potential in QFT was first introduced by Euler, Heisenberg and Schwinger [159, 160]. It was then
applied to spontaneous symmetry breaking in the 1960s by Goldstone, Salam, S. Weinberg and Jona-
Lasinio [141, 161], generalised in the 1970s to one-loop by Coleman and E. Weinberg [162] and later
to higher-loop order by Jackiw, Iliopoulos, Itzykson and Martin [163, 164]. The generalisation to finite
temperature and the discovery of symmetry restoration was introduced in the 1970s by Kirzhnits,
Linde, Bernard, Dolan, Jackiw and S. Weinberg [165–169]. The false vacuum decay was first introduced
in QFT in 1974 by Kobzarev, Okun and Voloshin [170] and in 1977 by Coleman and Callan [29, 30], then
generalised for finite-temperature in late 1970s by Linde [31–33]. The breakdown of perturbation
theory at high temperatures was noted by Kirzhnits and Linde [171–173]. The concept of false vacuum
fraction is attributed to Guth, Tye and Weinberg from the 1980s [47, 174]. Supercooled PT was studied
by Witten [175] and by Hawking and Moss [50]. Finally, GWs from cosmological FOPTs were first
studied by Witten and Hogan [34, 35].

The main physical quantities necessary to describe cosmological FOPTs are built from the effective
potential and the false vacuum decay rate, which are reviewed in Secs. 3.1 and 3.2, respectively. Then,
we characterise the cosmological FOPT by means of the thermal parameters in Section 3.3 and the
expected SGWB spectrum in Section 3.4.

3.1 Effective potential
The most general form of the effective potential is written as a sum of different contributions.

Beginning with the tree-level potential from the Lagrangian, we need to add the effects of the in-
teractions with virtual loop particles as dictated by quantum mechanics and the interactions with
the thermal bath in the early Universe. In this section, we compute each of these building blocks,
following Refs. [149, 162, 176, 177].

3.1.1 Functional methods

The effective potential arises naturally from the path integral formalism of QFT, in which it is
useful to consider the presence of a classical external field.

Consider a theory described by a scalar field ϕ with a Lagrangian density L(ϕ, ∂µϕ) and a classi-
cal action S[ϕ] =

∫
d4x L(ϕ, ∂µϕ). In the path integral representation, correlation functions, i.e. the

vacuum-to-vacuum amplitude in the presence of an external source J(x), contain the essential infor-
mation needed to extract observables in QFT, such as cross sections and decay rates. The presence
of the source J(x) implies the appearance of vertices in Feynman diagrams with a single external
line attached. There are different generating functionals that can be introduced to obtain correlation
functions. We begin with the generating functional of correlation functions Z[J ], also known as the
partition function, defined as

Z[J ] = ⟨0out|0in⟩J =

∫
Dϕ eiS[ϕ]+i

∫
d4x J(x)ϕ(x) , (3.1.1)

where Dϕ is the path integral measure and a linear coupling of ϕ to an external source J(x) is added.
We can obtain correlation functions from the functional derivatives of the partition function. In fact,
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using Eq. (3.1.1), the n-point correlation function ⟨ϕ(x1) . . . ϕ(xn)⟩ reads

⟨ϕ(x1) . . . ϕ(xn)⟩ =
1

Z[0]

(
1

i

)n
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣
J=0

, (3.1.2)

where the overall normalisation of the path integral Z[0] = ⟨1⟩ is the sum of all bubble graphs, both
connected and disconnected.

To isolate only connected diagrams18, we define the generating functional of connected correla-
tion functions W [J ] as

Z[J ] = eiW [J ] , iW [J ] = lnZ[J ] . (3.1.3)

W [J ] removes disconnected diagrams and leaves only connected ones. Similarly to Eq. (3.1.2), the
n-point connected correlation functions ⟨ϕ(x1) . . . ϕ(xn)⟩c read

⟨ϕ(x1) . . . ϕ(xn)⟩c =
δniW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣
J=0

. (3.1.4)

From Eqs. (3.1.2) and (3.1.3), we obtain the connected one-point function in the presence of a non-
vanishing source J(x)

⟨ϕ(x)⟩c, J =
δW [J ]

δJ(x)
=

⟨0out|ϕ(x)|0in⟩J
⟨0out|0in⟩J

=

∫
Dϕ ϕ(x)eiS[ϕ]+i

∫
d4x J(x)ϕ(x)∫

Dϕ eiS[ϕ]+i
∫
d4x J(x)ϕ(x)

, (3.1.5)

which is called the classical or mean field, since it is a weighted average over all possible fluctuations.
If we set the source to zero J = 0, we obtain the VEV of the field ϕ(x)

φ(x) = ⟨ϕ(x)⟩c, J=0 . (3.1.6)

In order to respect the full Poincaré symmetry, it must be a constant

φ(x) = φcl = const . (3.1.7)

In fact, translation invariance forces it to be the same at all spacetime points, and Lorentz invariance
guarantees it cannot get any special direction, so it must be a single spacetime point-independent
number.

We introduce the generating functional of one-particle-irreducible (1PI)19 correlation functions,
also known as the effective action, as the Legendre transform of W [J ] in Eq. (3.1.3)

Γ[φ] = min
J

(
W [J ]−

∫
d4x J(x)φ(x)

)
. (3.1.8)

The minimality condition in its definition means that there is a relationφ = φ(J) between the source
18Connected diagrams are those with all connected internal lines. In other words, it cannot be split into two or more

disconnected parts.
191PI diagrams are those that cannot be disconnected by cutting a single internal line and have external lines ampu-

tated, i.e. without propagators associated with them.
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J(x) and the field φ(x), which is given by

δW [J ]

δJ(x)
− φ(x) = 0 , (3.1.9)

and, by inverting it to express J as a functional of φ, we obtain

Γ[φ] =W [J ]−
∫
d4x J(φ(x))φ(x) . (3.1.10)

Another property of the effective action is

δΓ[φ]

δφ(x)
= −J(x) , (3.1.11)

which implies that, in the absence of external sources, the vacuum of the theory is determined by
the condition

δΓ[φ]

δφ

∣∣∣
J=0

= 0 . (3.1.12)

Eq. (3.1.12) can be interpreted as an equation of motion, since its solution is the stable quantum state
of the theory, hence the name effective action. Similarly to Eq. (3.1.2), the n-point 1PI correlation
functions Γ(n)(x1, . . . , xn) read

Γ(n)(x1, . . . , xn) = ⟨ϕ(x1) . . . ϕ(xn)⟩1PI =
δnΓ[φ]

δφ(x1) . . . δφ(xn)

∣∣∣
φ=0

. (3.1.13)

We express the 1PI correlation functions as the coefficients of the Taylor expansion of Γ[φ] in Eq.
(3.1.10) in powers of the external source J(x)

Γ[φ] =
∞∑
n=0

1

n!

∫
d4x1 . . . d

4xn φ(x1) . . . φ(xn)Γ
(n)(x1, . . . , xn) . (3.1.14)

In momentum space, the Fourier transform of the 1PI correlation functions is

Γ(n)(x1, . . . xn) =

∫
d4p1
(2π)4

. . .
d4pn
(2π)4

eip1x1+...+ipnxnΓ̃(n)(p1, . . . , pn) . (3.1.15)

Then, we introduce the 1PI correlation function in momentum space Γ̃(n)(p1, . . . , pn) = (2π)4δ4(p1+

. . . + pn)Γ
(n)(p1, . . . , pn), in which the momentum conservation has been extracted out. Using the

definition of the delta function in momentum space δ4(p1 + . . . + pn) =
∫

d4x
(2π)4

e−ip1x−...−ipnx and
position space δ4(xi − x) =

∫
d4pi
(2π)4

eipi(xi−x), we insert Eq. (3.1.15) into Eq. (3.1.14) to obtain

Γ[φ] =
∞∑
n=0

1

n!

∫
d4x φn(x)Γ(n)(p1, . . . , pn) . (3.1.16)
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For a constant field φcl, we define the effective potential Veff(φcl) as

Γ[φcl] = −
∫
d4x Veff(φcl) = −V T Veff(φcl) , (3.1.17)

which follows from the fact that Γ is an extensive quantity and it is proportional to the volume of the
spacetime region over which the functional integral is taken, so that we can factor out the spacetime
volume V T . Then, it is possible to extract the effective potential Veff(φcl) from Eq. (3.1.16) as

Veff(φcl) = −
∞∑
n=0

1

n!
φnclΓ

(n)(0, . . . , 0) , (3.1.18)

where Γ(n)(pi = 0) is the sum of all 1PI n-point functions evaluated at zero external momenta.

3.1.2 One-loop effective potential

The effective action Γ encodes the complete set of physical predictions:

- its minimum corresponds to the vacuum state of the theory, whose location determines whether
the symmetries of the Lagrangian are preserved or spontaneously broken;

- its second derivative is the inverse of the propagator, whose poles give the particle masses;

- its higher derivatives yield one-particle-irreducible amplitudes, from which higher-point con-
nected amplitudes and the S-matrix are constructed.

Intuitively, the potential is the sum of non-derivative Lagrangian interactions involving only scalar
fields, with a negative sign in front. Its minima correspond to the classical vacua of the theory. The
most general renormalisable tree-level potential is given by [178]

V (ϕi) = V0 + tiϕi +
1

2
m2
ijϕiϕj +

1

3!
kijkϕiϕjϕk +

1

4!
λijklϕiϕjϕkϕl , (3.1.19)

where ϕi is a set ofN real scalar fields with i = 1, . . . N . The constant term V0, usually written as Λ4

and referred to as the cosmological constant, can be neglected in the absence of gravity, since only
energy differences matter. Since a constant shift of the field corresponds only to a reparametrisation,
it does not change the physics of the theory. This freedom is often used to redefine the field such
that the linear term is removed from the potential. For a given model, the Lagrangian must respect
further internal symmetries.

Stationary points of the tree-level potential in Eq. (3.1.19) are field locations where first deriva-
tives with respect to each field vanish, i.e. ∂Vtree(ϕi)

∂ϕi

∣∣∣
⟨ϕi⟩

= 0. Whether they are minima, maxima, or

saddle points can be investigated by looking at the Hessian matrix evaluated at stationary points ⟨ϕi⟩,
defined as Hij =

∂2Vtree(ϕi)
∂ϕi∂ϕj

∣∣∣
⟨ϕi⟩

. The scalar mass matrix is given by the Hessian at the minimum, i.e.

m2
ϕiϕj

= ∂2Vtree(ϕi)
∂ϕi∂ϕj

∣∣∣
⟨ϕi⟩

. If it is not diagonal, a rotation of fields is necessary in order to find physical

mass eigenstates, as shown in Sec. 2.4.2. The analysis of the potential in classical field theory fol-
lows a geometrical approach: we need to minimise the potential in order to find the vacuum state
of the theory, and then we study the stability of this vacuum by looking at the second derivative of
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the potential. In QFT, this approach is not spoiled, even though one could think that quantum cor-
rections would do so, but instead we only need to substitute the classical potential with the effective
potential, so that the minimisation condition follows from Eq. (3.1.12) and reads

∂Veff

∂φcl

∣∣∣
⟨ϕi⟩

= 0 . (3.1.20)

There are different ways to compute the one-loop contribution to the effective potential, using
Feynman diagrams à la Coleman in Ref. [162] or using functional methods à la Jackiw in Ref. [163]. In
the following, we use the Coleman’s approach.

Consider a massless real scalar field with quartic self-interaction

L =
1

2
∂µϕ∂

µϕ− λ

4!
ϕ4 . (3.1.21)

The zeroth-order, the effective potential is given by the tree-level potential

Vtree(φcl) =
λ

4!
φ4
cl . (3.1.22)

From Eq. (3.1.18), the effective potential is the infinite sum of all connected 1PI diagrams with exter-
nal classical fields, evaluated at zero external momentum. Since the only interactions have an even
number of legs, we can only have an even number of external legs. As illustrated in Fig. 5, the n-th
one-loop diagram has the following structure:

- a single loop, giving an integral
∫

d4p
(2π)4

;

- n propagators, each contributing with i
p2+iϵ

;

- n vertices, each contributing with − iλ
2

;

- 2n external legs, each contributing with a factor of φcl;

- a symmetry factor 1
2n

, from rotational ( 1
n

) and reflection (1
2

) symmetries;

- and an extra factor of i from the definition of the generating functional.

+ + + ...

Figure 5: One-loop Feynman diagrams contributing to the effective potential for a scalar field theory.

Putting everything together, the one-loop contribution to the effective potential is

V1-loop(φcl) =
∞∑
n=1

i

2n

∫
d4p

(2π)4

(
λφ2

cl/2

p2 + iϵ

)n
= − i

2

∫
d4p

(2π)4
ln

(
1− λφ2

cl/2

p2 + iϵ

)
, (3.1.23)
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where we have used the series expansion ln(1 − x) = −∑∞
n=1

xn

n
. Performing a Wick rotation

pE = (−ip0, p⃗) such that p2 = p20 − |p⃗|2 = −p2E , we obtain

V1-loop(φcl) =
1

2

∫
d4pE
(2π)4

ln

(
1 +

λφ2
cl/2

p2E

)
=

1

2

∫
d4pE
(2π)4

ln

(
p2E +

λφ2
cl

2

)
, (3.1.24)

where we have dropped φcl-independent terms, since they do not contribute to the effective poten-
tial. Noting that the field-dependent mass can be written asm2(φcl) =

d2Vtree(φcl)

dφ2
cl

=
λφ2

cl

2
, we rewrite

the one-loop effective potential in Eq. (3.1.24) as

V1-loop(φcl) =
1

2

∫
d4p

(2π)4
ln
(
p2 +m2(φcl)

)
. (3.1.25)

We generalise to the case of a fermion spin-1/2 field ψ

L = iψ̄ /∂ψ − (
y√
2
ϕψ̄ψ + h.c.) . (3.1.26)

Since the trace of an odd number of gamma matrices vanishes, only an even number of external legs
appear. As illustrated in Fig. 6, the 2n-th one-loop diagram has the following structure:

- a single loop, which gives an integral
∫

d4p
(2π)4

;

- 2n propagators, each contributing with a factor i/p

p2+iϵ
;

- 2n vertices, each contributing with a factor −iy;

- 2n external legs, each contributing with a factor φcl;

- a symmetry factor of 1
2n

, due to symmetry under rotation 1
n

and reflection 1
2

;

- a trace over fermionic loop with a minus sign;

- an extra factor i coming from the generating functional definition.

+ + + ...

Figure 6: One-loop diagrams contributing to the effective potential for a fermion theory.

Putting everything together, the one-loop contribution to the effective potential is

V1-loop(φcl) = −i
∑
n

1

2n
tr
∫

d4p

(2π)4

(
i/p (−iy)φcl/

√
2

p2 + iϵ

)2n

= −
∑
n

i

2n
tr
∫

d4p

(2π)4

(
p2y2φ2

cl/2

(p2 + iϵ)2

)n
,

(3.1.27)
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where we have added a trace over fermionic degrees of freedom and used the property /p2 = p2.
Hence, using the same procedure as in the scalar case and recognising the field-dependent mass
m2(φcl) =

y2φ2
cl

2
, the one-loop contribution to the effective potential is given by

V1-loop(φcl) = −g
2

∫
d4p

(2π)4
ln
(
p2 +m2(φcl)

)
, (3.1.28)

where we have computed the trace over the fermionic degrees of freedom, which gives g = 4(2) for
Dirac (Weyl) fermions.

Finally, we generalise to a gauge boson field Aµ

L = −1

4
FµνF

µν + (Dµϕ)
†Dµϕ . (3.1.29)

In Landau gauge, we do not require ghost-compensating terms. Derivative coupling diagrams vanish,
such as cubic ones, following from pµ∆

µν(p) = 0. As illustrated in Fig. 7, the n-th one-loop diagram
has the following structure:

- a single loop, giving an integral
∫

d4p
(2π)4

;

- n propagators, each contributing with −iηµν−
pµpν

p2

p2+iϵ
= − i∆µν

p2+iϵ
;

- n vertices, each contributing with 2ig2;

- 2n external legs, each contributing with φcl;

- a symmetry factor 1
2n

, from rotational ( 1
n

) and reflection (1
2

) symmetries;

- and an extra factor of i from the definition of the generating functional.

+ + + ...

Figure 7: One-loop diagrams contributing to the effective potential for a gauge boson theory.

Combining, the one-loop contribution to the effective potential is

V1-loop(φcl) = −i
∑
n

1

2n
tr
∫

d4p

(2π)4

(
−i∆

µν (2ig2)φ2
cl/2

p2 + iϵ

)n
= −

∑
n

itr∆µν

2n

∫
d4p

(2π)4

(
g2φ2

cl

p2 + iϵ

)n
,

(3.1.30)
where we have used the convolution property of the propagator ∆µα∆ ν

α = ∆µν . Hence, using the
same procedure as in the scalar case and recognising the field-dependent massm2(φcl) = g2φ2

cl, the
one-loop contribution to the effective potential is given by

V1-loop(φcl) =
3

2

∫
d4p

(2π)4
ln
(
p2 +m2(φcl)

)
, (3.1.31)
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where we have computed the trace over the Lorentz indices, i.e. tr∆µν = 3.
The scalar in Eq. (3.1.25), fermion in Eq. (3.1.28) and a gauge boson in Eq. (3.1.31) cases can be

condensed into a single expression

V1-loop(φcl) =
∑
i

(−1)2si+1ni
2

∫
d4p

(2π)4
ln
(
p2 +m2(φcl)

)
, (3.1.32)

where si is the spin and ni are the degrees of freedom of the i-th particle: ni = 1 for real scalars,
ni = 2 for complex scalars or Majorana fermions, ni = 3 for gauge bosons20 and ni = 4 for Dirac
fermions.

The general expression for the one-loop effective potential in Eq. (3.1.32) is ultraviolet divergent,
so to make sense out of it, we apply the renormalisation procedure of QFT. First, we need to make
it finite with regularisation, and then infinities are absorbed by appropriate counterterms with a
choice of the renormalisation conditions. Common regularisation methods include dimensional and
cut-off regularisations, while the most widely used renormalisation schemes are modified minimal
subtraction (MS) and on-shell renormalisation schemes.

In cut-off regularisation, we introduce a cut-off Λ in the momentum integrals, i.e. |p2| ≤ Λ2, and
the one-loop effective potential in Eq. (3.1.32) becomes

V1-loop(φcl) =
∑
i

(−1)2si+1ni

(
1

32π2
m2
i (φcl)Λ

2 +
1

64π2
m4
i (φcl)

(
ln
m2
i (φcl)

Λ2
− 1

2

))
. (3.1.33)

In dimensional regularisation [144, 179, 180], we treat the dimensionality of the space-time as
a continuous number D = 4 − 2ϵ, where ϵ is a small parameter, we introduce a mass scale µ to
maintain the right dimensionality and the effective potential in Eq. (3.1.32) yields

V1-loop(φcl) =
∑
i

(−1)2si+1ni

(
m4
i (φcl)

64π2

(
−
(
1

ϵ
− γE + ln 4π

)
+ ln

m2
i (φcl)

µ2
− 3

2

))
. (3.1.34)

In the on-shell renormalisation scheme [181], we apply renormalisation conditions such that the
minimum of the effective potential is not modified by the quantum corrections

dV1-loop(φcl)

dφcl

∣∣∣
φcl=v

= 0 ,
d2V1-loop(φcl)

dφ2
cl

∣∣∣
φcl=v

= 0 , (3.1.35)

and the one-loop effective potential reads

V1-loop(φcl) =
∑
i

(−1)2si+1ni

(
1

64π2

(
m4
i (φcl)

(
ln
m2
i (φcl)

m2
i (v)

− 3

2

)
+ 2m2

i (v)m
2
i (φcl)

))
.

(3.1.36)
In the MS scheme [182, 183] the renormalisation conditions are such that we subtract the diver-

20Even for massless gauge bosons, like the photon, you need to count 3 degrees of freedom, because they acquire a
thermal mass.
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gent terms21, and the one-loop effective potential is given by

V1-loop(φcl) =
∑
i

(−1)2si+1ni

(
1

64π2
m4
i (φcl)

(
ln
m2
i (φcl)

µ2
− 3

2

))
. (3.1.37)

3.1.3 Renormalisation group equation

In dimensional regularisation, the one-loop effective potential in Eq. (3.1.34) depends on a renor-
malisation scale µ. An appropriate choice is to keep the logarithms appearing from higher order cor-
rections small, thus avoiding large logarithms which can appear as multiplicative factors with each
power of the expansion parameter and maintaining perturbative control. Since the one-loop effec-
tive potential depends on the field-dependent masses, evaluating the potential at field values that
vary several orders of magnitude, while the renormalisation scale is kept fixed, can lead to large un-
certainties. The renormalisation scale µ is unphysical, since physical observables are independent of
its choice. This implies that a change in µ should be compensated by a change in the parameters of
the theory. In mathematical terms this translates into

dΓ[φcl]

dµ
=

(
µ
∂

∂µ
+ βi

∂

∂λi
− γφcl

∂

∂φcl

)
Γ[φcl] = 0 , (3.1.38)

where Γ is the effective action, βi are the beta functions of the couplings λi and γ is the anomalous
dimension of the field φcl. In terms of the effective potential, it reads

dVeff(φcl)

dµ
=

(
µ
∂

∂µ
+ βi

∂

∂λi
− γφcl

∂

∂φcl

)
Veff(φcl) = 0 , (3.1.39)

which is the Renormalisation Group Equation (RGE) or Callan-Symanzik equation. Its formal solution
is given by

Veff = Veff(µ, λi, φcl) = Veff(µ(t), λi(t), φcl(t)) , (3.1.40)

where
µ(t) = µ(0)et , φcl(t) = φcl(0)e

−
∫ t
0 dt

′γ(λi(t)) , βi(t) =
dλi(t)

dt
. (3.1.41)

The RGE in Eq. (3.1.39) can be solved numerically by integrating the beta functions and the anomalous
dimension, and then substituting them back into the one-loop effective potential.

3.1.4 Thermal field theory

The formalism of QFT is suitable to describe physics at zero-temperature, like in particle colliders.
However, in the early Universe, the temperature is not negligible and the thermal bath of particles
needs to be taken into account. Therefore, thermal field theory or finite temperature field theory,
which is the combination of QFT and thermodynamics, is the appropriate framework to use.

Consider the canonical ensemble, in which the system is in contact with a heat reservoir with fixed
temperature T , particle number N and volume V . Given a Hamiltonian H , the canonical density

21To be precise, it is MS scheme in which we subtract only the divergent part, in MS scheme, we subtract also constant
terms such as γE and 4π.
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operator is given by

ρ =
e−βH

tr e−βH
=

1

Z
e−βH , (3.1.42)

where β = 1
T

is the inverse temperature of the thermal bath and Z = tr e−βH is the partition
function. The density matrix in Eq. (3.1.42) is used to describe the equilibrium state of the system, by
means of the canonical average of an arbitrary operator O

⟨O⟩ = 1

Z
tr(Oρ) , (3.1.43)

satisfying the property ⟨1⟩ = 1. An important relation is the Kubo-Martin-Schwinger (KMS) condition
[184, 185], which states that bosonic (fermionic) field is symmetric (anti-symmetric) and cyclic in time,
with −iβ periodicity

⟨ϕ(y, t)ϕ(x, 0)⟩T = tr (ϕ(y, t)ϕ(x, 0)ρ) =
1

Z
tr
(
ϕ(y, t)ϕ(x, 0)e−βH

)
=

1

Z
tr
(
ϕ(y, t)ei(−iβH)ϕ(x, 0)e−i(−iβH)e−βH

)
=

1

Z
tr
(
ϕ(y, t)ϕ(x,−iβ)e−βH

)
=

1

Z
tr
(
ϕ(x,−iβ)e−βHϕ(y, t)

)
= ±⟨ϕ(y, 0)ϕ(x, t− iβ)⟩ ,

(3.1.44)
where we have used the canonical average in Eq. (3.1.43), the cyclicity property of the trace, the time
evolution ϕ(x, t) = eitHϕ(0,x)e−itH and the fact that fermionic fields anti-commute, while bosonic
fields commute. Performing a Wick rotation t → τ = −it, we identify the imaginary time τ with
the inverse temperature β22. At finite temperature, Fourier transforms are modified by replacing the
integral over time components with a discrete sum∫

d4p

(2π)4
f(p) → T

∞∑
n=−∞

∫
d3p

(2π)3
f(ωn,p) , (3.1.45)

where the Matsubara frequencies are given by

ωn =

{
2nπT for bosons
(2n+ 1)πT for fermions

. (3.1.46)

The role of the Matsubara sum is to add all contributions allowed by KMS relations in Eq. (3.1.44). In
perturbative theory, this implies that the Feynman rules must be modified in the following way:

- For each propagator, we have for bosons i
p2−m2 with pµ = (2niπβ−1,p) or for fermions i

/p−m
with pµ = ((2n+ 1)iπβ−1,p).

- For each loop integral, as in Eq. (3.1.45), we substitute the integral over d4p with the integral
over d3p and the sum over the Matsubara frequencies i

β

∑∞
n=−∞

∫
d3p
(2π)3

.

- For each vertex, −iβ(2π)3δ (∑i ωi) δ
3 (
∑

i pi) is given by Matsubara frequencies and momen-
tum conservation.

22This is called imaginary-time or Matsubara formalism, which has the advantage to describe the system in thermal
equilibrium but loses access to the dynamics. The alternative is the real-time formalism, which succeeds in describing
the out-of-equilibrium dynamics.
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3.1.5 Finite-temperature effective potential

For the scalar field theory in Eq. (3.1.21), using the diagrams in Fig. 5 with the finite-temperature
Feynman rules, the finite-temperature effective potential is given by

V1T(φcl, T ) =
1

2β

∞∑
n=−∞

∫
d3p

(2π)3
ln(ω2

n + ω2) , (3.1.47)

where ω2 = |p|2 + m2(φcl) and ωn = 2πnT are the Matsubara frequencies in Eq. (3.1.46). By
differentiating with respect to ω the integrand in Eq. (3.1.47)

f(ω) =
∞∑

n=−∞

ln(ω2
n + ω2) ⇒ ∂f(ω)

∂ω
=

∞∑
n=−∞

2ω

ω2
n + ω2

= 2β

(
ω

2
+

e−βω

1− e−βω

)
, (3.1.48)

and integrate back with respect to ω, Eq. (3.1.47) becomes

V1T(φcl, T ) =

∫
d3p

(2π)3

(
ω

2
+

1

β
ln(1− e−βω)

)
. (3.1.49)

Using the following identity

− i

2

∫ ∞

−∞

dx

2π
ln(−x2 + ω2 − iϵ) =

ω

2
+ const , (3.1.50)

which can be proved with the residue theorem or taking the derivative with respect to ω and inte-
grating back, the first term in the integrand of the effective potential in Eq. (3.1.49) can be written
as

V1T(φcl, T = 0) =
1

2

∫
d3p

(2π)3
ω =

1

2

∫
d4p

(2π)4
ln(p2 +m2(φcl)) , (3.1.51)

which is exactly the zero-temperature effective potential in Eq. (3.1.25). On the other hand, the
temperature-dependent part of the integral of the effective potential in Eq. (3.1.49) cannot be written
in a closed form, but, after switching to spherical coordinates

V1T(φcl, T ̸= 0) =
1

β

∫
d3p

(2π)3
ln(1− e−βω) =

1

2π2β

∫ ∞

0

dp p2 ln(1− e−βω) , (3.1.52)

and making a change of variable x = βp, we find

V1T(φcl, T ̸= 0) =
1

2π2β4

∫ ∞

0

dx x2 ln(1− e−
√
x2+β2m2(φcl)) =

1

2π2β4
Jb(m

2(φcl)β
2) , (3.1.53)

where the bosonic thermal function is defined as

Jb(m
2β2) =

∫ ∞

0

dx x2 ln(1− e−
√
x2+β2m2

) . (3.1.54)

The case with a gauge boson is treated in the same way, while for the fermionic case in Eq. (3.1.26),
using the finite-temperature Feynman rules for the diagrams in Fig. 6, the finite-temperature effec-
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tive potential is given by

V1T(φcl, T ) = − 1

2β

∞∑
n=−∞

∫
d3p

(2π)3
ln(ω2

n + ω2) , (3.1.55)

where ω = |p|2+m2(φcl) and ωn = (2n+1)πT are the Matsubara frequencies in Eq. (3.1.46). Using
the same procedure for the bosonic case, we obtain

V1T(φcl, T ) = −
∫

d3p

(2π)3

(
ω

2
+

1

β
ln(1 + e−βω)

)
, (3.1.56)

where the first term in the integrand is the zero-temperature effective potential in Eq. (3.1.28) and
the second term is the temperature-dependent part, which can be written as

V1T(φcl, T ̸= 0) = − g

β

∫
d3p

(2π)3
ln(1− e−βω) = − g

2π2β4
Jf (m

2(φcl)β
2) , (3.1.57)

where we introduced the number of degrees of freedom g and the fermionic thermal function is
defined as

Jf (m
2β2) =

∫ ∞

0

dx x2 ln(1 + e−
√
x2+β2m2

) . (3.1.58)

To summarise, the finite-temperature contributions to the effective potential are given by

V1T(φcl, T ) =
T 4

2π2

(∑
b

nbJb

(m2
b(χ)

T 2

)
−
∑
f

nfJf

(m2
f (χ)

T 2

))
. (3.1.59)

A useful expression is the high-temperature expansion for y ≪ 1 of the thermal functions in Eqs.
(3.1.54) and (3.1.58)

Jb(y) =

∫ ∞

0

dx x2 ln(1− e−
√
x2+y) ,≃ −π

4

45
+
π2

12
y − π

6
y

3
2 − 1

32
y2 ln

y

ab
, (3.1.60)

Jf (y) =

∫ ∞

0

dx x2 ln(1 + e−
√
x2+y) ,≃ 7π4

360
− π2

24
y − 1

32
y2 ln

y

af
, (3.1.61)

where ab = 16π2e3/2−2γE and af = π2e3/2−2γE . Note that in the bosonic expansion in Eq. (3.1.60), a
non-analytic term appears −π

6
x3/2, which is not present in the fermionic expansion in Eq. (3.1.61).

An important feature of the finite temperature effective potential at high temperature is that
its leading contribution in Eqs. (3.1.60) and (3.1.61) is given by φ2

clT
2, meaning that the symmetry is

restored [165, 166, 168, 169, 172, 186]: at sufficiently high temperatures, this temperature-dependent
mass term dominates over any other mass contribution, forcing the minimum of the potential to be
at φcl = 0. While at low temperatures, the effective potential has an absolute minimum at ⟨ϕ⟩ ̸= 0,
at high temperatures, the absolute minimum due to the φ2

clT
2 term is ⟨ϕ⟩ = 0. Therefore, the

symmetry breaking is not present anymore in the latter regime, because the vacuum of the theory
is at ⟨ϕ⟩ = 0 and the field has no VEV. We can understand the cosmological history of the Universe:
after the Big Bang, the Universe is in a symmetric phase ⟨ϕ⟩ = 0, however, as it expands and the
temperature decreases, the absolute minimum of the potential is no longer at ⟨ϕ⟩ = 0, but instead
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at ⟨ϕ⟩ ̸= 0. This means that the minimum at ϕ = 0 becomes metastable, and a PT can take place.

Depending on the shape of the effective potential as the temperature decreases, the transition
can proceed in different ways. If the PT is of second-order, the minimum of the effective potential
changes smoothly as the temperature decreases, and the transition proceeds continuously. In this
case, thermal fluctuations drive the scalar field to evolve homogeneously toward the new vacuum
state. Since the two phases are analytically connected, there is no discontinuity in the order pa-
rameter, and therefore no release of latent heat. On the other hand, if the PT is of first-order, the
effective potential develops two distinct minima, separated by a barrier. The system initially is in the
metastable false vacuum, and the transition to the true vacuum occurs discontinuously, with the or-
der parameter exhibiting a finite jump at the critical temperature. The process takes place through
the nucleation of bubbles of true vacuum within the false one, induced either by quantum tunneling
or thermal fluctuations.

3.1.6 Daisy resummation

Symmetry restoration at high temperature leads to a breakdown of perturbation theory, oth-
erwise temperature-dependent radiative corrections should not be able to restore the symmetry
broken by the temperature-independent tree-level potential. It is expected, given the presence of
another energy scale in the theory, namely the temperature T . The failure of perturbation theory is
linked to the appearance of infrared divergences for the zero Matsubara modes of bosonic degrees
of freedom, which is restored by the resummation of higher-order finite-temperature diagrams.

The T -dependence of a loop amplitude can be obtained from its superficial degree of divergence
D23: for D > 0, it goes as TD. This implies that, for a scalar theory with a quartic self-interacting
coupling λ, such as in Eq. (3.1.21), the diagram contributing to the self-energy on the left in Fig. 8 is
quadratically divergent and behaves as λT 2.

Furthermore, consider the daisy diagram, consisting of a main central loop andN −1 self-energy
diagrams attached to it, called petals, illustrated on the right in Fig. 8. Since each petal gives a contri-
bution of λT 2 and introducing the mass scale of the theorym, for a daisy diagrams withN−1 petals,
gives λN T 2N−1

m2N−3 = αN m3

T
, where we have introduced the effective coupling α = λT 2

m2 . The compe-
tition between the tree-level mass m and the thermal corrections T triggers the PT when they are
comparable m2 ∼ λT 2 or α ∼ 1, leading to a daisy diagrams of the order λ

3
2T 2. This implies that

daisy diagrams have the same values at each order in perturbation theory, as they do not depend on
the number N of loops, and do not recede with increasing loop order, which contradicts the usual
expectation of perturbation theory [177].

Effectively, following the Arnold-Espinosa procedure [187] to resum daisy diagram in the effective
potential, a new term needs to be included [188]

Vdaisy(φcl, T ) = −
∑
b

T

12π

(
(m2

b(φcl) + Π(T ))3/2 − (m2
b(φcl))

3/2
)
. (3.1.62)

Since the infrared divergence occurs only for zero Matsubara mode, this term must be added only
for scalar and longitudinal gauge vector bosons, since fermions do not have zero Matsubara modes
and transverse gauge bosons are protected by gauge symmetry.

23The superficial degree of divergence is given byD = 4L−2B−F , whereL is the number of loops, B is the number
of boson propagators and F is the number of fermion propagators.
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Figure 8: Self-energy one-loop diagram (left) and daisy diagram (right) for a scalar field theory.

To summarise, the effective potential at finite temperature can be expressed as a sum of different
contributions: the tree-level in Eq. (3.1.19), the one-loop in on-shell in Eq. (3.1.36) or MS scheme in
Eq. (3.1.37), the finite-temperature in Eq. (3.1.59) and the daisy in Eq. (3.1.62)

Veff(φcl, T ) = Vtree(φcl) + V1-loop(φcl) + V1T (φcl, T ) + Vdaisy(φcl, T ) . (3.1.63)

3.2 False vacuum decay
As seen in Sec. 3.1.5, the shape of the effective potential changes with the temperature, shifting

the position of the vacuum. Therefore, in the potential two vacua can appear: an absolute minimum,
the true vacuum, and a local minimum, the false vacuum. If the PT is first-order, there is a barrier
between the two states, making the false vacuum metastable. In this section, we derive the most
general expression for the false vacuum decay rate, i.e. the probability per unit time and volume for
the field to escape the barrier via quantum tunneling or thermal fluctuations, following Refs. [29–33,
178].

3.2.1 Tunneling in quantum mechanics

We begin with quantum tunneling in quantum mechanics. Consider a unit-mass particle in a one-
dimensional potential V (x), with HamiltonianH(x, p) = p2

2
+V (x). In classical mechanics, the only

allowed region for the particle motion is where the energy E is greater than the potential V (x), i.e.
E ≥ V (x). However, in quantum mechanics, there is a non-zero probability that the particle tunnels
through the potential in the classically-forbidden region with E < V (x). There are equivalent ways
to compute this probability, for example solving the time-independent Schrödinger equation, but we
will make use of the path integral representation, because it can be easily generalised to QFT .

In the path integral representation, the transition amplitude for the particle to start at (ti, qi) and
end at (tf , qf ) is given by24

⟨qi|e−
iĤT
ℏ |qf⟩ = N

∫ qf

qi

Dq e iS[q]
ℏ , (3.2.1)

where T = tf − ti > 0 is the time of the process, N is a normalisation factor, |qi⟩, |qf⟩ are position
eigenstates, Dq denotes the path integral measure, i.e. integration over all functions q(t) satisfying

24In this section, we restore ℏ.
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the boundary conditions q(ti) = qi and q(tf ) = qf , and the action is

S[q] =

∫ tf

ti

dt

(
1

2

(
dq

dt

)2

− V (q)

)
. (3.2.2)

It is convenient to perform a Wick rotation τ = it, where τ is the Euclidean imaginary time, to obtain
the Euclidean action SE from Eq. (3.2.2)

iS[q] = i

∫ tf

ti

dt

(
1

2

(
dq

dt

)2

− V (q)

)
= −

∫ τf

τi

dτ

(
1

2

(
dq

dτ

)2

+ V (q)

)
= −SE[q] , (3.2.3)

and write Eq. (3.2.1) as

⟨qi|e−
ĤT
ℏ |qf⟩ = N

∫ qf

qi

Dq e−
SE [q]

ℏ , (3.2.4)

where now T = τf − τi is the Euclidean time of the process, which turns oscillatory integrals into
convergent Gaussian ones. If we consider a complete set of eigenstates of the Hamiltonian Ĥ|n⟩ =
En|n⟩ such that ⟨n|m⟩ = δmn, we can insert the completeness relation

∑
n |n⟩⟨n| = 1 into the

left-hand side of Eq. (3.2.4) to write

⟨qi|e−
ĤT
ℏ |qf⟩ =

∑
n,m

⟨qi|n⟩⟨n|e−
ĤT
ℏ |m⟩⟨m|qf⟩ =

∑
n,m

e−
EmT

ℏ ⟨qi|n⟩⟨n|m⟩⟨m|qf⟩

=
∑
n

e−
EnT

ℏ ⟨qi|n⟩⟨n|qf⟩ ,
(3.2.5)

and, supposing ordered energy eigenvalues E0 < E1 ≤ E2 ≤ . . ., for large T , only the lowest-
energy eigenstate of the Hamiltonian E0 contributes, i.e. the ground state, since all the others are
exponentially suppressed

⟨qi|e−
ĤT
ℏ |qf⟩ T →∞−−−→ e−

E0T
ℏ ⟨qi|0⟩⟨0|qf⟩ . (3.2.6)

Looking at the right-handed side of Eq. (3.2.4), we expect that, in the semi-classical approximation
for small ℏ, the dominant contribution to the path integral comes from the path q̄ that minimises
the action S̄E = S̄E[q̄], since all other paths are exponentially suppressed, i.e. the solution of the
classical Euler-Lagrange equations of motion

δSE
δq̄

= −d
2q̄

dτ 2
+
dV (q̄)

dq
= 0 , (3.2.7)

which is Newton’s second law with an upturned potential V (q) → −V (q), and the Euclidean energy
is a constant of motion

E =
1

2

(
dq̄

dτ

)2

− V (q̄) . (3.2.8)

Therefore, the Euclidean trajectory is the motion of a classical particle in the inverted potential
−V (q). In particular, we are interested in the case in which the particle starts and ends at the same
position, i.e. qi = qf = 0, called the bounce solution, with boundary conditions q̄(τi) = q̄(τf ) = 0.
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Using the saddle-point approximation or method of the steepest descent25, we expand the Eu-
clidean action around the bounce solution SE ≃ S̄E + δSE , so that the path integral in Eq. (3.2.4)
becomes ∫

Dq e−
SE [q]

ℏ ≃
∫

Dq e−
S̄E−δSE

ℏ = e−
S̄E
ℏ

∫
Dq e−

δSE
ℏ = Ce−

S̄
ℏ , (3.2.9)

where C is defined to be
C =

∫
Dq e−

δSE
ℏ . (3.2.10)

Since the bounce solution q̄ is a minimum of the Euclidean action SE in Eq. (3.2.7), the first-order
variation vanishes and the prefactorC gets contributions only from the second-order variation, which
after integrating by parts, is given by

δSE =
1

2

∫
dτ δq

(
− d2

dτ 2
+
d2V (q̄)

dq2

)
δq =

1

2

∫
dτ δqM̂δq , (3.2.11)

where we have introduced the operator M̂ defined by

M̂ = − d2

dτ 2
+
d2V (q̄)

dq2
. (3.2.12)

Hence, we treat the prefactor in Eq. (3.2.10) as a Gaussian integral in the path integral representation
to obtain

C = (det M̂)−1/2 =
[
det(−∂2τ + V ′′(q̄))

]−1/2
=
∏
n

λ−1/2
n , (3.2.13)

where λn are the eigenvalues of M̂ subject to the boundary conditions. Using the saddle-point ap-
proximation of the path integral in Eq. (3.2.9) and the prefactor in Eq. (3.2.13), we can write the
transition amplitude in Eq. (3.2.4) as

⟨qi|e−
ĤT
ℏ |qf⟩ = N

∏
n

λ
− 1

2
n e−

S̄
ℏ (1 +O(ℏ)) = N

[
det(−∂2τ + V ′′(q̄))

]− 1
2 e−

S̄
ℏ (1 +O(ℏ)) . (3.2.14)

Note that, by time translation invariance, the center of the bounce, defined as the point where
dq
dτ

= 0, can be placed anywhere in time. This implies that the matrix M̂ is singular and has a zero
eigenvalue. To see this, consider the function ˙̄q and apply the operator M̂ to it

M̂ ˙̄q =

(
− d2

dτ 2
+
d2V

dq2

)
˙̄q = − d2

dτ 2
dq̄

dτ
+
d2V

dq2
dq̄

dτ
=

d

dτ

(
−d

2q̄

dτ 2
+
dV

dq

)
= 0 , (3.2.15)

where we have used the fact that derivatives commute and the equations of motion in Eq. (3.2.7).
From the imaginary part of the ground-state energy, the decay rate of an unstable state read [189]

Γ = −2
ImE0

ℏ
=

√
S̄

2πℏ

∣∣∣∣det′(−∂2t + V ′′(q̄))

det(−∂2t + ω2)

∣∣∣∣− 1
2

e−
S̄
ℏ (1 +O(ℏ)) , (3.2.16)

25The saddle-point approximation is used to approximate integrals of the form I =
∫
dx e−f(x), if we Taylor expand

around a minimum x0 such that f ′(x0) = 0, i.e. f(x) ≃ f(x0) +
1
2f

′′(x0)(x− x0)
2 + . . ., we approximate the integral

as I ≃ e−f(x0)
∫
dx e−

1
2 f

′′(x0)(x−x0)
2

= e−f(x0)
√

2π
f ′′(x0)

.
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where det′ denotes the determinant with the zero mode removed and the bounce solution is indeed
characterised by the fact that at τ → −∞ the particle is at rest in q = 0, at τ = 0, it reaches the
turning point, then it bounces back to q = 0 at τ → +∞, i.e.

lim
τ→±∞

q(τ) = 0 ,
dq

dτ

∣∣∣
τ=0

= 0 . (3.2.17)

3.2.2 Tunneling in quantum field theory

We now generalise the results in Eq. (3.2.16) to QFT. Consider a scalar field ϕ(x) inD-dimensional
spacetime with action

S[ϕ] =

∫
dDx

(
1

2
∂µϕ∂

µϕ− V (ϕ)

)
, (3.2.18)

where the potential V (ϕ) has two minima: a local minimum ϕf (false vacuum) and a global minimum
ϕt (true vacuum). By shifting the potential by a constant, we may set V (ϕf ) = 0. To ensure metasta-
bility, the true vacuum must satisfy V (ϕt) < 0. he role of the quantum-mechanical coordinate q is
now played by the scalar field ϕ(x). After a Wick rotation in Eq. (3.2.3), the action in Eq. (3.2.18)
becomes

SE[ϕ] =

∫
dDx

(
1

2

(
dϕ

dτ

)2

+
1

2
(∇ϕ)2 + V (ϕ)

)
, (3.2.19)

and the Euclidean equations of motion in Eq. (3.2.7) are given by

d2ϕ

dτ 2
+∇2ϕ =

dV (ϕ)

dϕ
, (3.2.20)

where ∇2 =
∑

i ∂
2
i is the spatial Laplace operator. The boundary conditions are the QFT analogue

of Eq. (3.2.17):, i.e. the field begins and ends at rest at the false vacuum at τ → ±∞

lim
τ→±∞

ϕ(τ,x) = ϕf , (3.2.21)

and it is at rest at the center of the bounce τ = 0

∂ϕ(τ,x)

∂τ

∣∣∣
τ=0

= 0 . (3.2.22)

Furthermore, because the action involves spatial derivatives, the field must approach the false vac-
uum at spatial infinity to ensure finiteness of the action

lim
|x|→∞

ϕ(τ,x) = ϕf . (3.2.23)

Since ϕ is invariant under D-dimensional Euclidean rotations, any non-trivial bounce solution
that minimises the action obeys an O(D) symmetry around a center of the bounce. By translation
symmetry, taking the center at τ = 0 and x = 0, the solution must be a function of

ρ =
√
τ 2 + |x|2 , (3.2.24)

i.e. ϕ = ϕ(ρ). We then write the equations of motion in Eq. (3.2.20) in terms of the radial coordinate
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ρ
d2ϕ

dρ2
+
D − 1

ρ

dϕ

dρ
=
dV

dϕ
. (3.2.25)

Furthermore, the boundary conditions in Eqs. (3.2.21), (3.2.22) and (3.2.23) become

dϕ(ρ)

dρ

∣∣∣
ρ=0

= 0 , lim
ρ→∞

ϕ(ρ) = ϕf . (3.2.26)

In terms of the radial coordinate ρ, the Euclidean action in Eq. (3.2.19) becomes

SE[ϕ] = SD−1

∫ ∞

0

dρ ρD−1

(
1

2

(
dϕ

dρ

)2

+ V (ϕ)

)
, (3.2.27)

where SD−1 is the surface area of a D − 1-sphere with unit radius

SD−1 =
2πD/2

Γ(D/2)
. (3.2.28)

In analogy with the previous section, if we interpret ϕ as a particle position and ρ as time, Eq.
(3.2.25) is the mechanical equation for a particle moving in an inverted potential −V and subject to
a damping force with friction coefficient η ∝ 1

ρ
. In the bounce solution, the particle starts at rest at

ρ = 0 with dϕ
dρ

= 0 and an initial condition

ϕ(ρ = 0) = ϕ0 , (3.2.29)

such that it ends up at the false vacuum ϕf at ρ→ ∞26.
For computational convenience, it is useful to write the action SE in Eq. (3.2.27) in terms of only

an integral of the potential

SE =
2

2−D
SV =

2

2−D
SD−1

∫ ∞

0

dρ ρD−1V (ϕ) . (3.2.30)

Let us set the dimension of the spacetime toD = 4. To obtain the explicit expression for the decay
rate, we need to understand the differences with the quantum mechanical case. First, in quantum
mechanics there is only time translation invariance, so only one zero eigenvalue with eigenfunction
proportional to q̇. However, in QFT there is also spatial translation invariance to be taken into account,
so we expect to have four eigenfunctions proportional to ∂µϕ with zero eigenvalues. Each of them
contributes with the same normalisation factor as in the quantum mechanical case, in which we

removed each zero-eigenvalue from the determinant and replaced it with a factor
(

S̄
2πℏ

) 1
2 , in this

case 4 of them. In addition, integrating over the center of the bounce gives a factor of the volume
V of 3-space together with the time T , which factors out. Therefore, looking at Eq. (3.2.16), we can
write the decay rate per unit volume as

Γ

V
=

(
S̄

2πℏ

)2

e−
S̄
ℏ

∣∣∣∣ det′(−∂2τ + V ′′(ϕ))

det(−∂2τ + V ′′(ϕf ))

∣∣∣∣− 1
2

(1 +O(ℏ)) . (3.2.31)

26Ref. [30] showed that a solution always exists via the undershoot-overshoot method.
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To summarise, you solve the Euclidean O(4)-symmetric equations of motion in Eq. (3.2.25) with
the boundary conditions in Eq. (3.2.26), and you find the bounce solution ϕ(ρ). The initial condition
ϕ0 in Eq. (3.2.29) is the value of the field at which the center of the bounce tunnels, from which it
will evolve classically and roll down to the true vacuum ϕt.

3.2.3 Tunneling at finite-temperature

As already argued in Subsec. 3.1.5, in the early Universe, the temperature is not negligible, so we
need to generalise the zero-temperature results in the case of finite temperature, in which the decay
rate at T ̸= 0 is formally equivalent to the one in QFT with periodicity β = 1

T
in the time direction

∑
⟨qi|e−βĤ |qf⟩ =

∫
q(τ)=q(τ+β)

Dq e−SE [q] . (3.2.32)

Thus, at finite temperature we apply the same formalism as at zero temperature to extract the imag-
inary part from the path integral, but restrict the Euclidean time direction to period β. Denoting R0

with the bubble size at T = 0, in the high-temperature regime at T ≫ R−1
0 , the solution is a cylinder

S1 × R3, whose time slices correspond to O(3)-symmetric bubble of size R(T ) ∼ 1
T

, so that the
action S4 at high temperatures is replaced by S3

T
, where S3(ϕ) is the action corresponding to the

O(3)-symmetric bubble. Hence, the decay rate per unit volume of the false vacuum is given by

Γ

V
= T

(
S3

2πT

) 3
2

e−
S3
T

∣∣∣∣ det′(−∂2τ + V ′′(ϕ))

det(−∂2τ + V ′′(ϕf ))

∣∣∣∣− 1
2

, (3.2.33)

with only three zero modes, so the prefactor
(
S3

2πT

) 1
2 appears three times and the prefactor T comes

from the fact that we are integrating over the time direction with periodicity β = 1
T

.
By means of dimensional analysis, we can approximate the functional determinants. At zero-

temperature, we have ∣∣∣∣ det′(−□+ V ′′(ϕ))

det(−□+ V ′′(ϕ+))

∣∣∣∣−1/2

∼ R−4
0 , (3.2.34)

where the relevant dimensional quantity is taken to be the radius of a critical bubble R0, whereas at
finite-temperature, we find ∣∣∣∣ det′(−□+ V ′′(ϕ))

det(−□+ V ′′(ϕ+))

∣∣∣∣−1/2

∼ T 3 , (3.2.35)

where the relevant dimensional quantity is taken to be the temperature T .
Therefore, in the zero-temperature case, the decay rate per unit volume of the false vacuum is

given by
Γ

V
≃ R−4

0

(
S4

2π

)2

e−S4 , (3.2.36)

where S4 is the 4-dimensional action

S4 = 4π2

∫ ∞

0

dρ ρ3

(
1

2

(
dϕ

dρ

)2

+ V (ϕ)

)
, (3.2.37)
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evaluated at the O(4)-symmetric bounce solution of the ordinary differential equation

d2ϕ

dρ2
+

3

ρ

dϕ

dρ
=
dV (ϕ)

dϕ
. (3.2.38)

In the finite-temperature case, the decay rate per unit volume of the false vacuum is given by

Γ

V
= T 4

(
S3

2πT

) 3
2

e−
S3
T , (3.2.39)

where S3 is the 3-dimensional action

S3 = 2π2

∫ ∞

0

dρ ρ2

(
1

2

(
dϕ

dρ

)2

+ V (ϕ)

)
, (3.2.40)

evaluated at the O(3)-symmetric bounce solution of the ordinary differential equation

d2ϕ

dρ2
+

2

ρ

dϕ

dρ
=
dV (ϕ)

dϕ
. (3.2.41)

Combining the two cases, we can write the decay rate per unit volume of the false vacuum as

Γ

V
≃ R−4

0

(
S4

2π

)2

e−S4 + T 4

(
S3

2πT

) 3
2

e−
S3
T . (3.2.42)

When it is not possible to find an analytical bounce solution, we rely on numerical methods. There
are several publicly available software packages. In Python, there is CosmoTransitions [190]. In
Mathematica, there are AnyBubble [191] and FindBounce [192]. In C++, there are BubbleProfiler
[193] and SimpleBounce [194, 195].

3.3 Thermal parameters
The effective potential studied in Sec. 3.1 and the false vacuum decay rate studied in Sec. 3.2 de-

pend on the microphysics. The bridge between the particle physics model and the predicted SGWB
spectrum is given by thermal parameters, which enter into lattice simulations or analytic approxima-
tions of GWs computations.

In this section, after describing the phenomenon of true vacuum bubble nucleation and how to
trace the evolution of the FOPT by means of the false vacuum fraction, we introduce these thermal
parameters, following Refs. [178]:

- a transition temperature T∗ that marks the stage of the FOPT when the production of GWs
takes place;

- the strength of the FOPT, which parametrises the vacuum energy density that is converted into
GWs,

- the characteristic timescale β, which measures the duration of the FOPT;

- the velocity of the bubble wall vw.
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3.3.1 Phase transition

In a FOPT, the bounce solution derived in Sec. 3.2 is directly related to the nucleation of bubbles.
In the boiling of a liquid, thermodynamic fluctuations continuously cause vapor bubbles to nucleate.
Bubbles that are large enough expand, whereas smaller ones shrink due to their surface tension.
Similarly, in a cosmological FOPT, bubbles of true vacuum nucleate within the false vacuum sea, and
if they are sufficiently large to be energetically favorable, they expand and convert portions of the
false vacuum into the true one. Bubbles form around the center of the bounce, where the field is at
rest, and they will propagate classically, with radius given by r = |x| =

√
R2

0 + t2, where R0 is the
initial radius and t is the time elapsed since nucleation, if interactions with the surrounding plasma
are negligible.

To measure the progress of the FOPT, we can quantify and track the evolution of the fraction of
the Universe that remains in the false vacuum phase, Pf (t), or equivalently the fraction converted
into the true vacuum, Pt(t) = 1− Pf (t), given by

Pf (t) = e−I(t) , (3.3.1)

where I(t) is the fractional extended volume of true vacuum bubbles at time t. Eq. (3.3.1) is known
as the Kolmogorov-Johnson-Mehl-Avrami-Korbel equation or JMAK equation [196–200].

The fractional extended volume I(t) in Eq. (3.3.1) can be computed following Ref. [178]. Starting
from the equivalence between the false vacuum fraction Pf and the probability of a random point
being in the false vacuum, consider bubbles of true vacuum in a fraction volume between V1 and V2,
and define Pf (V1,V2) as the probability of a random point not being inside at least one bubble. For
an infinitesimally increased volume range [V1,V2+dV ], since the two probabilities are independent,
we have

Pf (V1,V2 + dV) = Pf (V1,V2)Pf (V2,V2 + dV) . (3.3.2)

Given that the probability of a random point being inside true vacuum bubbles is the total volume
of bubbles multiplied by the infinitesimal volume, we obtain Pt(V2,V2 + dV) = n(V2)V2dV , where
n(V) is the distribution for the number density of bubbles. Pf = 1− Pt yields

Pf (V2,V2 + dV) = 1− n(V2)V2dV . (3.3.3)

Hence, inserting Eq. (3.3.3) into Eq. (3.3.2), we obtain the differential equation

1

Pf (V1,V2)

Pf (V1,V2 + dV)− Pf (V1,V2)

dV2

=
1

Pf (V1,V2)

dPf (V1,V2)

dV2

= −n(V2)V2 . (3.3.4)

We introduce the time t′ at which bubbles form, a sample time t and the volume V(t′, t). The latter
is a monotonically decreasing function of the nucleation time t′ given that bubble have grown since
nucleation. We take into account the beginning of the FOPT with the critical time tc, which is defined
by the fact that the moment after which the absolute minimum of the potential becomes the true
vacuum and the false vacuum becomes metastable. We can then integrate Eq. (3.3.4)∫ V(tc,t)

V(t,t)
dV ′d lnPf (V ′,V(tc, t))

dV ′ = −
∫ V(tc,t)

V(t,t)
dV ′n(V ′)V ′ , (3.3.5)
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which, using Pf (V ,V) = 1, gives the false vacuum fraction

Pf (t) = Pf (V(t, t),V(tc, t)) = exp

(
−
∫ V(tc,t)

V(t,t)
dV ′n(V ′)V ′

)
. (3.3.6)

The integral in the argument of the exponent in Eq. (3.3.6) can be performed over time by introducing
the Jacobian

Pf (t) = exp

(
−
∫ t

tc

dt′
∂V

∂t′
n(V(t′, t))V(t′, t)

)
. (3.3.7)

We define the total number of bubbles with volume V ′ ≤ V as N(V) =
∫ V
0
dV ′n(V ′) with corre-

sponding density n(V ′) = dN
dV

∣∣∣
V ′

, and the false vacuum decay rate Γ(t) = dN
dt

= dN
dV

∂V
∂t

. Finally,
taking into account the expansion of the Universe through the cosmic scale factor a(t), we obtain
the false vacuum fraction as in the JMAK equation in Eq. (3.3.1), with the explicit expression for the
fractional extended volume

Pf (t) = exp
(
−
∫ t

tc

dt′ Γ(t′)
a3(t′)

a3(t)
V (t′, t)

)
. (3.3.8)

The volume V (t′, t) in Eq. (3.3.8) can be estimated as a 3-dimensional spherical bubble with an initial
radius R0(t

′) that grows with a bubble wall velocity vw(t′, t′′)

V (t′, t) =
4π

3
R3(t′, t) , R(t′, t) =

a(t)

a(t′)
R0(t

′) +

∫ t

t′
dt′′ vw(t

′, t′′)
a(t)

a(t′′)
. (3.3.9)

Neglecting the initial bubble radius R0, which is justified for transitions below the Planck scale [201,
202], and assuming that bubbles quickly reach a constant terminal velocity, Eq. (3.3.9) becomes

V (t′, t) =
4π

3

(
vw

∫ t

t′
dt′′

a(t)

a(t′′)

)3
. (3.3.10)

The factor that accounts for the expansion of the Universe is given by integrating the Hubble param-
eter

a(t1)

a(t2)
= exp

(∫ t2

t1

dt′ H(t′)
)
. (3.3.11)

The last step is to find a relation between time t and temperature T , so that the integration
variable in the false vacuum fraction in Eq. (3.3.8), in the bubble volume in Eq. (3.3.10) and in the
expansion factor in Eq. (3.3.11) can be expressed in terms of the temperatureT . Entropy conservation
leads to the general expression [178]

dT

dt
= −3H(T )

V ′(ϕf (T ), T )

V ′′(ϕf (T ), T )
. (3.3.12)

This can be approximated by parameterising the effective potential near the false vacuum with the
bag equation of state [203]

V (ϕf (T ), T ) = aT 4 + b , (3.3.13)
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where a is the radiation contribution and b is the vacuum one. Using Eq. (3.3.13), Eq. (3.3.12) becomes

dT

dt
= −TH(T ) . (3.3.14)

Using Eq. (3.3.14), the volume V in Eq. (3.3.10) can be written as

V (T ′, T ) =
4π

3

(vw
T

∫ T ′

T

dT ′′

H(T ′′)

)3
, (3.3.15)

and the expansion factor in Eq. (3.3.11) as

a(t1)

a(t2)
=
T2
T1

. (3.3.16)

Finally, the false vacuum fraction in Eq. (3.3.8) is given by [178]

Pf (T ) = exp
(
− 4π

3
v3w

∫ Tc

T

dT ′ Γ(T ′)

T ′4H(T ′)

(∫ T ′

T

dT ′′

H(T ′′)

)3)
. (3.3.17)

3.3.2 Transition temperatures

The evolution of a FOPT can be characterised by identifying specific temperature milestones, each
marking a physically relevant stage of the transition [178].

The critical temperature Tc is defined as the temperature at which the two minima are degener-
ate, i.e. the effective potential evaluated at the true vacuum is equal to the one at the false vacuum.
For T > Tc, the false vacuum remains the absolute minimum of the effective potential, the bounce
action diverges, and the false vacuum decay rate in Eq. (3.2.42) vanishes. On the other hand, for
T < Tc, the true vacuum becomes the absolute minimum of the effective potential, transforming
the false vacuum into a metastable state and allowing for its decay.

The nucleation temperature Tn is defined as the temperature at which, on average, there is a
nucleated bubble per Hubble volume per Hubble time, given by the condition

1 = N(tn) =

∫ tn

tc

dt
Γ(T (t))

H3(t)
=

∫ Tc

Tn

dT

T

Γ(T )

H4(T )
, (3.3.18)

where we have used the bag relation from Eq. (3.3.14). An approximate value of Tn can be obtained
by neglecting the integral and requiring that the number of bubbles per Hubble spacetime volume
be of order one

Γ(Tn)

H4(Tn)
= 1 . (3.3.19)

This is justified by observing that the decay rate in Eq. (3.2.42) is dominated by the exponential
behaviour of the bounce action. Thus, the nucleation temperature Tn is interpreted as the onset of
the FOPT.

The percolation temperatureTp is defined as the temperature at which bubbles form a connected
cluster throughout the Universe. For uniformly spherical bubbles, percolation theory suggests that,
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in cosmological FOPTs, this occurs when Pt ≃ 0.29 [204–209], or, equivalently,

Pf (Tp) ≃ 0.71 , I(Tp) ≃ 0.34 , (3.3.20)

where Pf (Tp) is given by Eq. (3.3.17). Simulations show that GWs from FOPT are generated at the
percolation temperature Tp, since it is when bubbles are really colliding and permeating abundantly
the Universe.

In supercooled FOPTs, cosmic expansion is significant and may prevent the transition from com-
pleting. It is necessaary to ensure that the volume of the false vacuum monotonically decreases at
the percolation temperature Tp, otherwise, although bubbles continue to grow, so does the space
in the false vacuum between them, preventing them from meeting. The volume of false vacuum is
given by [210]

Vf (t) = a3(t)Pf (t) ⇒ dVf
dt

= Vf (t)
( d
dt

lnPf (t) + 3H(t)
)
. (3.3.21)

leading to the condition

1

Vf
dVf
dt

< 0 ⇒ d

dt
lnPf (t) < −3H(t) , (3.3.22)

or in terms of temperature via Eq. (3.3.14)

H(T )

(
3 + T

dI(T )

dT

) ∣∣∣
Tp
< 0 . (3.3.23)

For completeness, there is also another temperature, the reheating temperature Treh, which is
defined as the temperature at which the energy released during the FOPT reheats the plasma. It is
determined by the decay rate of the scalar field into radiation and it can be approximated by [211]

Treh = Tp(1 + α)
1
4 . (3.3.24)

3.3.3 Hydrodynamics and the transition strength

In order to determine the strength of the transition and how much energy is available to generate
GWs, a hydrodynamic analysis of the system composed of the scalar field and the thermal plasma is
required, studying the energy budget of the cosmological FOPT.

The effective potential is equal to the free energy density F and the negative of the pressure p

F = Veff , p = −F . (3.3.25)

so that, using thermodynamic relations, we can write the energy density ρ, enthalpy w = ρ+ p, and
entropy s as [212]

ρ = T
∂p

∂T
− p = V − T

∂V

∂T
, w = T

∂p

∂T
= −T ∂V

∂T
, s =

∂p

∂T
= −∂V

∂T
. (3.3.26)
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The energy-momentum tensor is given by the sum of contributions from the scalar field

T ϕµν = ∂µϕ∂νϕ− gµν

(
1

2
∂ρϕ∂

ρϕ− Veff(ϕ)

)
, (3.3.27)

and the thermal plasma, which can be described as a perfect relativistic fluid27,

T plasma
µν = wuµuν − gµνp , (3.3.28)

where uµ = γ(1, v) is the fluid four-velocity in the reference frame of the bubble center and γ =
1√

1−v2 is the Lorentz factor. Combining Eqs. (3.3.27) and (3.3.28), we obtain the total energy-momentum
tensor of the system

T µν = ∂µϕ∂νϕ− 1

2
gµν∂ρϕ∂ρϕ+ (ρ+ p)uµuν − gµνp , (3.3.29)

where we have absorbed the effective potential into the definition of the pressure, using Eq. (3.3.25).
Then, we can extract the total energy density by looking at the 00-component of the energy-momentum
tensor

T 00 = wγ2 +
1

2

∑
i

(
ϕ̇2 + (∇ϕ)2

)
− p = wγ2v2 +

1

2

∑
i

(
ϕ̇2 + (∇ϕ)2

)
+ ρ , (3.3.30)

where we have used p = w − ρ and γ2 − 1 = v2γ2. Using the trace anomaly θ, which defined as

θ =
1

4
gµνT plasma

µν =
1

4
(ρ− 3p) =

w

4
− p = Veff −

T

4

∂Veff

∂T
, (3.3.31)

Eq. (3.3.30) can be decomposed into

T 00 = wγ2v2 +
1

2

∑
i

(
ϕ̇2 + (∇ϕ)2

)
+

3

4
w + θ , (3.3.32)

where ρkin = wγ2v2 is the fluid kinetic energy density, ρQ = 3
4
w is the thermal energy density,

ρϕkin = 1
2
ϕ̇2 is the scalar field kinetic energy, ρϕgrad = 1

2
(∇ϕ)2 is the scalar field gradient energy and

ρθ = θ is the potential energy density available in the transition. Kinetic and gradient energies can
contribute to GW production, whereas the thermal energy only reheats the plasma and does not
generate GWs. The source tensor for GWs is given by the stress tensor

τij = τϕij + τ plasma
ij , (3.3.33)

where τϕij = ∂iϕ∂jϕ and τ plasma
ij = wγ2vivj .

To quantify the energy density released in GWs, we introduce the transition strength α, defined
as the trace anomaly between the false and true vacuum, i.e. ρvac = θf − θt, normalised over the

27The general expression of the energy-momentum of the plasma is given byTµν =
∑

i

∫
d3p

(2π)3Ei
pµpνfi(p, x), where

the sum is over the species i and fi(p, x) is the distribution function.
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radiation energy density ρrad28

α =
∆θ

ρrad

∣∣∣
T∗

=
1

ρrad
∆

(
Veff −

T

4

∂Veff

∂T

) ∣∣∣
T∗
, (3.3.34)

where ∆ indicates the difference of quantities evaluated at the false and true vacuum. This defini-
tion is justified by the fact that the first contribution ∆Veff is the difference in free energy density in
Eq. (3.3.25) and the second contribution ∂Veff

∂T
is related to the entropy change in Eq. (3.3.26). The

transition strength in Eq. (3.3.34) is evaluated at the transition temperature T∗.
The vacuum energy density converted into kinetic plasma energy can be parameterised by the

kinetic energy fraction
K =

ρkin

ρtot
, (3.3.35)

with ρtot = ρrad+ρvac. In fact, using the bag equation of state in Eq. (3.3.13), written asV = ϵ−aT 4 =

ρvac− 1
3
ρrad, we introduce the efficiency factor, which measures the efficiency of converting vacuum

energy into plasma kinetic energy,
κ =

ρkin

ρvac
, (3.3.36)

so that the kinetic energy fraction in Eq. (3.3.35) becomes

K = κ
ρvac

ρrad + ρvac
=

κα

1 + α
, (3.3.37)

where we have used α ≃ ρvac
ρrad

.
According to the value of the transition strength, FOPTs are commonly classified as weak α ∼

O(0.01), intermediate α ∼ O(0.1), or strong α ≳ O(1).

3.3.4 Inverse transition duration

The duration of the FOPT can be estimated by the bounce action S. Assuming that the transition
is fast enough to Taylor expand the bounce action around the transition time t∗ at first linear order

S(t) ≃ S(t∗)− β(t− t∗) , (3.3.38)

we can express the decay rate as
Γ(t) ∝ Γ(t∗)e

β(t−t∗) , (3.3.39)

where we have defined the inverse transition duration β defined as

β = −dS
dt

∣∣∣∣
t∗

≃ 1

Γ

dΓ

dt

∣∣∣∣
t∗

. (3.3.40)

Using the bag relation in Eq. (3.3.14), we can express the inverse transition duration β in Eq. (3.3.40)
over the Hubble parameter H as

β

H∗
= −T

Γ

dΓ

dT

∣∣∣∣
T∗

≃ −T d

dT

(
S(T )

T

) ∣∣∣∣
T∗

, (3.3.41)

28There are other definitions of the transition strength, substituting the trace anomaly with the energy density ρ, the
negative pressure -p or the latent heat q.
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where the approximation is justified by the fact that the decay rate is dominated by the exponential.
The characteristic length scale can be alternatively estimated without using the bounce action,

but introducing the mean bubble separation

R(t) = n(t)−1/3 , (3.3.42)

where n(t) is the bubble number density, defined as

n(t) =

∫ t

tc

dt′Γ(t′)Pf (t
′)
a3(t′)

a3(t)
= T 3

∫ Tc

T

dT ′

T ′4
Γ(T ′)

H(T ′)
e−I(T

′) . (3.3.43)

There is a relation between the inverse transition duration in Eq. (3.3.41) and the mean bubble sep-
aration in Eq. (3.3.42) which is given by

β

H∗
= (8π)1/3

max(vw, cs)

H∗R∗
, (3.3.44)

where cs = 1√
3

is the sound speed in the plasma and vw is the bubble wall velocity. Here, the subscript
∗ means evaluated at the transition temperature T∗.

3.3.5 Bubble wall velocity

The final parameter to determine is the bubble wall velocity vw, which depends on the transition
strength in Eq. (3.3.34) and is model-dependent, since it is determined by the interaction between
the bubble wall and the surrounding plasma. There are two competing contributions: the pressure
difference between the false and true vacuum ∆Veff, which drives the bubble to expand, and the
friction due to particle collisions in the thermal plasma against the bubble wall that slows it down. In
fact, particles changing their mass when crossing the wall result is an inward pressure [213–216].

The dominant contribution can be identified from the total pressure difference across the wall
[215–217]

∆ptot = ∆V − pLO − γpNLO . (3.3.45)

Here, pLO is the leading-order (LO) friction force associated with 1 → 1 scattering and pNLO is the next-
to-leading order (NLO) friction force associated with 1 → N splitting, for relativistic bubble walls, are
given by

pLO =
T 2

24

(∑
b

nb∆m
2
b +

1

2

∑
f

nf∆m
2
f

)
, pNLO = T 3

∑
b

nbg
2
b∆mb , (3.3.46)

where ∆m is the mass change across the wall. Note that Eq. (3.3.45) shows that pLO does not depend
on the Lorentz factor γ, but pNLO does, so the NLO becomes important only for relativistic bubbles.

A good estimate for the bubble wall velocity approaching vw → 1 is provided by the runaway
condition, for which bubble collisions happen during the accelerating stage, before the walls reach
terminal velocity, which occurs when

α > α∞ , (3.3.47)

where α is the transition strength and α∞ represents the weakest transition strength such that pLO
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is overcome, defined by

α∞ =
∆pLO

ρrad
=

T 2

24ρrad

(∑
b

nb∆m
2
b +

1

2

∑
f

nf∆m
2
f

)
. (3.3.48)

On the other hand, taking into account the NLO friction term, the bubble wall reaches a terminal
Lorentz factor γeq, defined by the condition ∆ptot = 0 in Eq. (3.3.45)

γeq =
∆V −∆pLO

∆pNLO
=
α− α∞

αeq
, (3.3.49)

where α∞ is given in Eq. (3.3.48) and we have defined

αeq =
∆pNLO
ρrad

=
T 3

ρrad

∑
b

nbg
2
b∆mb . (3.3.50)

The Lorentz factor γ∗ that the bubble wall would reach if the NLO friction term were neglected is

γ∗ =
2

3

R∗

R0

, (3.3.51)

where R∗ is given by (3.3.42) and R0 can be estimated using the thin-wall approximation [33]

R0 =

(
3S3

2π∆V

) 1
3

. (3.3.52)

As we will explain in Sec. 3.4, the main sources of GWs are bubble collisions, sound waves, and
turbulence. The efficiency factor for bubble collisions κcol, defined as the fraction of total energy
stored in the bubble wall [217]

κcol =


γeq
γ∗

(
1− α∞

α

(
γeq
γ∗

)2)
γ∗ > γeq

1− α∞
α

γ∗ ≤ γeq

. (3.3.53)

If γ∗ ≤ γeq, the terminal velocity due to friction terms is not reached and all the vacuum energy is
transferred to the bubble wall acceleration. Conversely, if γ∗ > γeq, after the bubble wall stops ac-
celerating, the remaining energy is transferred to the surrounding thermal plasma, generating sound
waves (and turbulence). The efficiency factor for sound waves is given by [216]

κsw =
α2

eff/α

0.73 + 0.083
√
αeff + αeff

, αeff = α(1− κcol) . (3.3.54)

3.4 Gravitational waves from first-order phase transitions
As shown in Sec. 2.2.2, GWs are sourced by a non-vanishing time-varying quadrupole moment,

since monopole and dipole radiation are forbidden by energy-momentum conservation. Thus, spher-
ically symmetric configurations do not radiate: anisotropy and inhomogeneity are necessary. Further-
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more, the weakness of the gravitational interaction implies that only highly energetic processes can
produce observable GWs. In the context of cosmological FOPT, these conditions are naturally ful-
filled by three different sources: bubble collisions, sound waves and magnetohydrodynamic (MHD)
turbulence.

The nucleation and expansion of single isolated spherical bubbles preserves isotropy and has a
vanishing quadrupole moment, so they cannot emit GWs. However, towards the completion of the
PT, the random process of nucleation occurs in different locations and at different times, allowing
a large number of bubbles to eventually collide, break spherical symmetry and convert the kinetic
energy stored in the bubble walls into GWs. Additionally, expanding bubbles interact with the sur-
rounding thermal plasma: bubble walls are slowed down due to friction effects discussed in Sec.
3.3.5, while simultaneously stirring the plasma and transferring energy to the it. This induces bulk
motions, which manifest as long-lived sound waves and turbulent flows, once non-linearities take
over.

In this section, after estimating the dependence of the SGWB spectrum on the thermal parame-
ters through dimensional analysis and computing the redshift factors that relate the SGWB spectrum
observed today with the one produced in the early Universe, we present the most up-to-date SGWB
spectrum templates.

3.4.1 Dimensional estimate and redshift

We begin by performing a dimensional analysis to determine how the SGWB depends on the
transition strength α, the inverse duration of the transition β, and the efficiency factor κ, following
Ref. [178].

As suggested by inserting Eq. (2.2.46) inside Eq. (2.2.41), the GW energy EGW is proportional to
the Newton’s constant G. In addition, it depends on the efficiency factor multiplied by the vacuum
energy density κρvac and the characteristic scale β−1, setting vw ≃ 1. Dimensional analysis gives

EGW ∼ Gκ2ρ2vacβ
−5 . (3.4.1)

On the other hand, the vacuum energy can be estimated by the vacuum energy density ρvac multiplied
by the volume

Evac ∼ ρvacβ
−3 . (3.4.2)

Therefore, the fraction of vacuum energy converted into GWs is given by the ratio of the energy of
GWs in Eq. (3.4.1) over the vacuum energy in Eq. (3.4.2)

EGW

Evac
∼ Gκ2ρvacβ

−2 = κ2
ρvac

ρvac + ρrad
Gρtotβ

−2 = κ2
α

α + 1

(
β

H

)−2

, (3.4.3)

where we have used H ∼ √
Gρtot, ρtot = ρvac + ρrad and α ≃ ρvac

ρrad
. The expression in Eq. (3.4.3) can

be used to estimate the SGWB spectrum. Using the definition in Eq. (2.2.51), we obtain

ΩGW =
1

ρtot

dρGW

d ln f
∼ ρvac

ρtot

EGW

Evac
g(fβ−1) ∼ κ2

(
α

1 + α

)2(
β

H

)−2

g(fβ−1) , (3.4.4)

where the dimensionless function g encodes the spectral shape and depends only on the combina-
tion fβ−1, since β−1 is the only relevant timescale. From Eq. (3.4.4), we observe that ΩGW ∝

(
β
H

)−2
,
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which implies that stronger supercooling, which decreases β
H

, enhances the amplitude of the SGWB.
This is a feature of the bubble collision SGWB spectrum, while, for long-lasting sources such as sound
waves and turbulence, the dependence is weaker as ΩGW ∝

(
β
H

)−1
[218]. Furthermore, we note that

ΩGW ∝
(

α
1+α

)2, which indicates that, for strong PT in which α ≫ 1, the SGWB spectrum is weakly
sensitive to α.

The SGWB spectrum estimated in Eq. (3.4.4) does not directly correspond to the signal observable
today. Since GWs decouple from the thermal plasma around the Planck scale, as shown in Eq. (2.1.57),
after production, they freely propagate throughout the cosmic history until today, but their spectrum
is continuously redshifted by the expansion of the Universe. To account for this, we compute the
redshift factors of the frequency f and the SGWB spectrum.

Using entropy conservation in Eq. (2.1.40), the ratio of the cosmic scale factor at two different
epochs with temperatures T1 and T2 is

a(T1)

a(T2)
=

(
g∗(T2)

g∗(T1)

) 1
3 T2
T1

, (3.4.5)

where we have used g∗ instead of g∗s, valid in the early Universe where all relativistic species are in
equilibrium with the plasma. Since frequencies redshift as f ∝ a−1, the frequency today at T0 ≃
2.725 K is related to the one at production at T∗ by [62]

f0 = H∗,0
f∗
H∗

=
a(T∗)

a(T0)
f∗ ≃ 1.65× 10−5

(
g∗(T∗)

100

) 1
6
(

T∗
100 GeV

)
f∗
H∗

Hz , (3.4.6)

where we have used Eq. (3.4.5). Here, the normalization to g∗(T) = 100 corresponds to the SM
value around the EW scale and the factor H∗ was introduced using Eq. (2.1.35). Eq. (3.4.6) shows
that the frequency of the SGWB spectrum can be directly linked to the temperature at which it was
generated: EW scale (T ∼ 100 GeV) transition yields a mHz signal, which will be tested by the LISA
collaboration [62, 218, 219], while nHz frequencies correspond to MeV temperatures, which are the
focus of this thesis.

Assuming a radiation-dominated epoch, the ratio of the Hubble parameter in Eq. (2.1.35) at two
different epochs with temperatures T1 and T2 is

H(T1)

H(T2)
=

(
g∗(T1)

g∗(T2)

) 1
2 T 2

1

T 2
2

. (3.4.7)

Since an energy density redshifts as ρgw ∝ a−4 and the critical density as ρc ∝ H2, looking at the
definition of the SGWB spectrum in Eq. (2.2.51), we can extract the overall redshift factor(

a(T1)

a(T2)

)4(
H(T1)

H(T2)

)2

, (3.4.8)

and the SGWB spectrum at T0 ≃ 2.725 K is related to the SGWB spectrum at production at T∗ by [62]

h2Ω0 = h2FGW,0Ω∗ =

(
a(T0)

a(T∗)

)4(
H(T0)

H(T∗)

)2

h2Ω∗ ≃ 1.64× 10−5

(
100

g∗(T∗)

) 1
3

Ω∗ , (3.4.9)
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where we have used Eqs. (3.4.5) and (3.4.7).

3.4.2 Templates

At the time of writing, the state-of-the-art templates for the SGWB spectrum from cosmological
PT are those of the LISA collaboration [62], collecting both analytic approximations and numerical
simulations. The SGWB spectrum from bubble collisions is modelled by a Broken Power Law (BPL),
while the contributions from sound waves and turbulence are described by Double Broken Power
Laws (DBPLs). All three sources are parametrised in terms of the thermal parameters: the transition
temperature T∗, which is identified with the percolation one Tp, the transition strength α, the transi-
tion inverse duration β and the bubble wall velocity, which is set to vw = 1. The redshift factors FGW

and H∗,0 are given in Eqs. (3.4.9) and (3.4.6), respectively.

In terms of the geometrical parameters θ⃗cosmo = (fp,Ωp) and the source-dependent exponents
(n1, n2, a1), the BPL is given by

ΩBPL
GW(f, θ⃗cosmo) = Ωp

(n1 − n2)
n1−n2

a1(
−n2

(
f
fp

)− n1a1
n1−n2 + n1

(
f
fp

)− n2a1
n1−n2

)n1−n2
a1

. (3.4.10)

Here, fp is the peak frequency, while Ωp is the amplitude at fp. At low frequencies f ≪ fp, the SGWB
spectrum in Eq. (3.4.10) increases as ΩGW ∝ fn1 , while at high frequencies f ≫ fp it decreases as
ΩGW ∝ fn2 . The parameter a1 describes the behaviour around fp.

The BPL in Eq. (3.4.10) describes the SGWB spectrum of bubble collisions, with source-dependent
exponents fixed as n1 = 2.4, n2 = −2.4, a1 = 1.2. The peak amplitude Ωp and the frequency fp in
terms of the thermal parameters are given by

h2Ωp = h2FGW,0AstrK
2

(
H∗

β

)2

, fp ≃ 0.11H∗,0
β

H∗
, (3.4.11)

whereAstr ≃ 0.05 and the fractional energy density isK = κcoll
α
α+1

, with κcoll the collision efficiency
fraction defined in Eq. (3.3.53).

In terms of the geometrical parameters θ⃗cosmo = (f1, f2,Ω2) and the source-dependent expo-
nents (n1, n2, n3, a1, a2), the DBPL is given by

ΩDBPL
GW (f, θ⃗cosmo) = ΩintS(f) = Ω2S2(f) , (3.4.12)

where the shape function S(f) is

S(f) = N

(
f

f1

)n1
(
1 +

(
f

f1

)a1)−n1+n2
a1

(
1 +

(
f

f2

)a2)−n2+n3
a2

. (3.4.13)

The SGWB spectrum in Eq. (3.4.12) grows asΩGW ∝ fn1 for f < f1, asΩGW ∝ fn2 for f1 < f < f2 and
asΩGW ∝ fn3 for f > f2. The parameters a1 and a2 describe the spectrum near the frequency breaks
f1 and f2, respectively. The normalization factor N is chosen such that S2(f2) = 1, i.e. S2(f) =
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S(f)/S(f2), although in principle it should be fixed by
∫∞
−∞ d ln f, S(f) = 1.

The DBPL in Eq. (3.4.12) describes the SGWB spectrum of both sound waves and turbulence con-
tributions. For sound waves, the source-dependent exponents are fixed as n1 = 3, n2 = 1, n3 = −3,
a1 = 2, a2 = 4. The frequency breaks f1 and f2 are given by

f1 ≃ 0.2H∗,0(H∗R∗)
−1 , f2 ≃ 0.5H∗,0∆

−1
w (H∗R∗)

−1 , (3.4.14)

where ∆w = ξshell
max(vw,cs)

, with sound speed cs = 1√
3

, bubble wall speed vw = 1 and dimensionless
sound shell thickness ξshell = |vw − cs|. The amplitude at the second frequency break Ω2 is given by

h2Ωint = h2FGW,0AswK
2(H∗τsw)(H∗R∗) , (3.4.15)

where Asw ≃ 0.11, τsw is the sound wave source duration and R∗ is the average bubble size related
to the inverse transition duration β by Eq. (3.3.44). The kinetic energy fraction is K ≃ 0.6κsw

α
1+α

,
where κsw is the sound wave efficiency fraction defined in Eq. (3.3.54). Ω2 and Ωint in Eq. (3.4.12) are
related by Ω2 ≃ 0.55Ωint. The prescription to compute the sound wave source duration τsw is [217]

τsw = min(H−1
∗ , R∗U

−1
f ) , (3.4.16)

where the root-mean-square fluid velocity is

U2
f ≃ 3

4

αeff

1 + αeff
κsw , (3.4.17)

with αeff defined in Eq. (3.3.54).
For MHD turbulence, the source-dependent exponents are fixed as n1 = 3, n2 = 1, n3 = −8

3
,

a1 = 4, a2 = 2.15. The frequency breaks f1 and f2 are given by

f1 ≃
√
3Ωs

2N H∗,0(H∗R∗)
−1 , f2 ≃ 2.2H∗,0(H∗R∗)

−1 , (3.4.18)

while the amplitude at the second frequency break Ω2 is given by

h2Ω2 = h2FGW,0AMHDΩ
2
s(H∗R∗)

2 . (3.4.19)

Here, Ωs ≃
4U2

f

3
with Uf given in Eq. (3.4.17), N ≃ 2, AMHD ≃ 4.37× 10−3, R∗ is the average bubble

size related to the inverse transition duration β by Eq. (3.3.44). For further details, see Ref [62].

4 Model-independent framework
A FOPT in classically scale-invariant or nearly-conformal models29 typically gives rise to a strong

SGWB, making this class of models of particular interest to explain the observed PTA signal, see e.g.
29Conformal symmetry refers to invariance under transformations that preserve angles but not necessarily distances.

This includes translations, Lorentz transformations, dilatations (scale transformations), and special conformal transforma-
tions [151, 220]. Scale invariance is a particular case of conformal invariance. Models exhibiting this feature are referred to
as conformal models, while the term nearly reflects the fact that this symmetry is broken perturbatively at the quantum
level.
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Refs. [51–61] for recent works.
This chapter presents a new semi-analytic, model-independent framework to study supercooled

FOPTs in classically scale-invariant models. Our approach builds upon and supersedes previous re-
sults developed in the literature, see Refs. [58–61], which we review in Sec. 4.1. The main idea is
to approximate the effective potential by a polynomial containing only quadratic, cubic and quartic
terms, and then exploiting analytic expressions to compute the bounce action S3. In Sec. 4.2, we
improve this framework by obtaining more accurate approximations for the polynomial coefficients
of the effective potential. We introduce a root-finding equation to compute the percolation tem-
perature Tp, which replaces the numerically expensive integrals required for its evaluation. Previous
results focused only on the nucleation temperature Tn, even though the percolation temperature
Tp determines when GWs are expected to be produced for supercooled FOPTs. Furthermore, Sec.
4.2 provides analytic expressions for the transition strength α and the inverse duration parameter β.
Finally, in Sec. 4.3, we apply our framework to phenomenological dark Abelian U(1)D extensions of
the SM: a minimal model, consisting of a dark scalar and a dark photon, and a non-minimal one, with
the addition of a dark fermion. A cosmological FOPT in these models is able to explain the PTA signal,
making interesting to study them from a semi-analytic point of view. We compare the approaches
developed in Sec. 4.1 and Sec. 4.2 against full numerical computations using CosmoTransitions

[190]. We validate our approach by overlapping posterior distributions over the NANOGrav 15-year
dataset, while also extracting physical insights on the parameter space of the models.

4.1 Established model-independent framework
In this section, we will write the general form of the effective potential for classically scale-invariant

models and go through the details of the approximations and methodologies introduced in Refs. [58–
61]. The aim is to understand FOPT semi-analytically by approximating the effective potential as a
polynomial in Subsec. 4.1.3 and then use the analytic expression for the bounce action S3 given in
Subsec. 4.1.4.

Consider the most general renormalisable Lagrangian, symmetric under the Lorentz group and a
gauge group G, containing an arbitrary number of gauge vector boson fields V A

µ , real scalar fields ϕa
and Weyl fermions ψi [59]

L = −1

4
FA
µνF

µνA + iψ̄i /Dψi −
1

2
(Y a

ijψiψjϕa + h.c.) +
1

2
DµϕaD

µϕa − Vtree(ϕa) , (4.1.1)

where covariant derivatives are given byDµϕa = ∂µϕa+iθ
A
abV

A
µ ϕb andDµψi = ∂µψi+it

A
ijV

A
µ ψj , with

θA and tA generators of the gauge group G in the scalar and fermion representations, respectively.
The gauge couplings are incorporated in the generators.

4.1.1 Classically scale-invariant effective potential

Scale invariance constrains the form of the tree-level potential Vtree(ϕa) in Eq. (4.1.1). In fact,
under a scale transformation, spacetime coordinates are rescaled as

x′µ = σxµ , (4.1.2)
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where σ is a constant scale factor. For the action to remain invariant under Eq. (4.1.2), the Lagrangian
must transform as

S ′ =

∫
dDx′ L′ =

∫
dDx σDL′ !

= S =

∫
dDx L ⇒ L → L′ = σ−DL . (4.1.3)

By requiring that the kinetic term Lkin = 1
2
∂µϕ∂

µϕ transforms as the Lagrangian in Eq. (4.1.3), we
derive the scaling dimension ∆ of the scalar field under a scale transformation ϕ→ ϕ′ = σ∆ϕ

L′
kin =

1

2
∂′µϕ

′∂′µϕ′ = σ2∆−21

2
∂µϕ∂

µϕ
!
= σ−DLkin = σ−D 1

2
∂µϕ∂

µϕ ⇒ ϕ→ ϕ′ = σ
2−D
2 ϕ .

(4.1.4)
Imposing that the tree-level potential Vtree(ϕa) transforms as the Lagrangian does in Eq. (4.1.3) and
using the scale transformation of the scalar field in Eq. (4.1.4), the allowed scalar field powers of the
tree-level potential are uniquely determined by the dimension D

V ′
tree = aϕ′N = aσ

2−D
2
NϕN

!
= σ−DVtree = aσ−DϕN ⇒ V = aϕ

2D
D−2 . (4.1.5)

Therefore, in D = 4 dimensions, scale invariance rescricts the tree-level potential to be quartic:
2D
D−2

= 4.
It can be shown that gauge bosons and fermions have scaling dimensions Aµ → A′

µ = σ−1Aµ
and ψ → ψ′ = σ−3/2ψ, respectively. Since scale invariance forbids any dimensionful parameter in
the Lagrangian, explicit mass terms are not allowed, such as mψψ̄ψ for fermions or mAAµA

µ for
gauge bosons. However, masses can be generated through the mechanism of SSB, explained in Sec.
2.3.3.

Generalising the result in Eq. (4.1.5) to a theory with an arbitrary number of real scalar fields ϕa,
the most general scale-invariant tree-level potential reads

Vtree(ϕ) =
λabcd
4!

ϕaϕbϕcϕd , (4.1.6)

where λabcd is the totally symmetric quartic coupling. Therefore, scale invariance allows only dimen-
sionless couplings in the tree-level potential, such as the quartic coupling in Eq. (4.1.6), and no mass
terms are allowed, such as the −µ2 coupling in the Higgs potential in Eq. (2.3.15) and the quadratic
coupling m2

ij in the most general expression of the tree-level potential in Eq. (3.1.19). Nevertheless,
this symmetry is irremediably broken perturbatively at the quantum level, whereby loop corrections
dynamically generate a mass scale, which is not present at the classical level. This mechanism is
called Radiative Symmetry Breaking (RSB) or dimensional transmutation.

The basic idea was first introduced in Ref. [221]. When the theory is renormalised to tame ultravi-
olet divergences, a renormalisation scale µ is introduced to regularise loop integrals. Consequently,
the bare quartic coupling becomes a µ-dependent quantity λabcd = λabcd(µ), and there may exist a
specific value µ̃ such that the tree-level potential in Eq. (4.1.6) develops a flat direction, i.e. a direction
in field space along which the potential vanishes. Let us parametrise such flat direction by ϕa = χνa,
where νa is a unit vector, i.e. νaνa = 1, and χ its magnitude, capturing the radial direction. In this
parametrisation, the multi-field tree-level potential in Eq. (4.1.6) can be rewritten in terms of a single
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scalar field χ as

Vtree(χ) =
λabcd(µ)

4!
νaνbνcνdχ

4 =
λχ(µ)

4
χ4 , λχ(µ) =

λabcd(µ)

3!
νaνbνcνd . (4.1.7)

To understand how quantum corrections lift this flat direction, we need the expression of the
one-loop effective potential. Requiring that the effective potential does not depend on the renor-
malisation scale µ, expressed by the RGE in Eq. (3.1.39) as

dVeff

d lnµ
= µ

dVeff

dµ
= 0 , (4.1.8)

at one-loop approximation Veff = Vtree + V1-loop, the effective potential is given by [59]

Veff(χ) =
λχ
4
χ4 +

βλχ
4

(
ln
χ

µ
+ as

)
χ4 , (4.1.9)

where βλχ = µdλχ
dµ

is the beta function of the quartic coupling λχ and as is a renormalisation scheme-
dependent constant.

At the renormalisation scale µ̃, where the quartic coupling vanishes along the flat directionλχ(µ̃) =
0, the effective potential in Eq. (4.1.9) becomes [59]

Veff(χ) =
β̃λχ
4

(
ln
χ

µ̃
+ as

)
χ4 , (4.1.10)

where β̃λχ = βλχ|µ=µ̃ is the beta function of the quartic coupling λχ at the scale µ̃ such that λχ(µ̃) =
0.

It is not necessary to compute the renormalisation scale µ̃, because it can be traded with the min-
imum of the effective potential χ0, which plays the role of the VEV. Imposing that the first derivative
of the one-loop effective potential in Eq. (4.1.10) vanishes, we obtain the stationary points

0 =
dVeff

dχ

∣∣∣
χ0

= β̃λχχ
3
0

(
ln
χ0

µ̃
+ as

)
+
β̃

4
χ3
0 ⇒ χ0 = 0 or χ0 = µ̃e−as−1/4 . (4.1.11)

The potential evaluated atχ0 = 0 isVeff(χ0 = 0) → 0, where we have used the limit limx→0 x
4 ln x =

0, whereas the potential evaluated at χ0 ̸= 0 is Veff(χ ̸= 0) = − β̃λχ
16
χ4
0. This means that the absolute

minimum of the effective potential is at non-vanishing field value χ0 ̸= 0 and the SSB mechanism
occurs. The second derivative of the one-loop effective potential in Eq. (4.1.10)

d2Veff

dχ2
= β̃λχχ

2

(
3 ln

χ

χ0

+ 1

)
,

d2Veff

dχ2

∣∣∣
χ0

= β̃λχχ
2
0 , (4.1.12)

implies that, as long as β̃λχ > 0, χ0 is an absolute minimum. Note that the effective potential is flat at
χ0 = 0, since also the second derivative vanishes there. From the second derivative of the one-loop
potential in Eq. (4.1.12), we can read the mass of the scalar field χ

m2
χ = β̃λχχ

2
0 . (4.1.13)
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Finally, the effective potential in Eq. (4.1.10) in terms of χ0 given by Eq. (4.1.11) becomes [59]

Veff(χ) =
β̃λχ
4

(
ln

χ

χ0

− 1

4

)
χ4 . (4.1.14)

In the scalar sector, the masses are given by elements of the Hessian matrix of the tree-level
potential in Eq. (4.1.6)

m2
ab(χ) =

∂2Vtree

∂ϕa∂ϕb
=

1

2
λabcdϕcϕd =

1

2
λabcdνcνdχ

2 . (4.1.15)

Since m2
ab is real and symmetric, it can be diagonalised and its eigenvalues ms(χ) are the field-

dependent masses of scalar particles. The potential is bounded from below only if all eigenvalues of
the scalar mass matrix are non-negative: a negative eigenvalue would define a field direction along
which the potential decreases boundlessly, contradicting the assumption that ϕ = 0 is a minimum
where the tree-level potential vanishes. In the fermion sector, we choose a fermion basis such that
µ = Y aϕa is diagonal

m2
f (χ) = µµ† = Y aY b†ϕaϕb = YνY

†
ν χ

2 , (4.1.16)

where we have defined Yν = Y aνa. Then m2
f (χ) is diagonal and the diagonal entries m2

f (χ) are the
field-dependent masses of fermionic particles, which are real and non-negative. In the gauge vector
boson sector, the mass matrix is given by

m2
AB(χ) = ϕT θAθBϕ = νT θAθBνχ2 . (4.1.17)

The generators θA are Hermitian, purely imaginary and antisymmetric, which implies thatm2
AB(χ) is

real, symmetric and positive definite, so that it can be diagonalised and its eigenvaluesmv(χ) are the
field-dependent masses of gauge vector boson particles. The fact that all squared masses of scalars
in Eq. (4.1.15), fermions in Eq. (4.1.16) and gauge bosons in Eq. (4.1.17) are positive ensures that the
effective potential is always real in RSB, which does not spoil perturbation theory. This is in contrast
to what happens in the Higgs mechanism, where the effective potential acquires an imaginary part
due to the fact that some squared masses become negative around the origin and thus the effective
potential is not guaranteed to be convex in perturbation theory.

Including thermal corrections in Eq. (3.1.59), the effective potential takes the form

Veff(χ, T ) =
β̃λχ
4

(
ln

χ

χ0

− 1

4

)
χ4 +

T 4

2π2

(∑
b

nbJb

(m2
b(χ)

T 2

)
−
∑
f

nfJf

(m2
f (χ)

T 2

))
, (4.1.18)

where nb and nf are the degrees of freedom of bosons and fermions, respectively. The thermal
functions Jb(x) and Jf (x) are given by Eqs. (3.1.60) and (3.1.61)

Jb(x) =

∫ ∞

0

dp p2 log
(
1− e−

√
p2+x

)
≃ −π

4

45
+
π2

12
x− π

6
x3/2 − x2

32
ln

(
x

ab

)
, (4.1.19)

Jf (x) =

∫ ∞

0

dp p2 log
(
1 + e−

√
p2+x

)
≃ 7π4

360
− π2

24
x− x2

32
ln

(
x

af

)
, (4.1.20)

where we have also written the high-temperature expansions, withab = 16π2e3/2−2γE , af = π2e3/2−2γE
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and γE is the Euler-Mascheroni constant.
For further convenience, we define the effective potential V̄eff, such that it vanishes at the false

vacuum V̄eff(χ = 0, T ) = 0

V̄eff(χ, T ) = Veff(χ, T )− Veff(0, T ) . (4.1.21)

4.1.2 First-order phase transition

An important feature is that PTs associated to RSB are always first-order [59]. This can be seen by
showing that the false vacuum is a local minimum. As illustrated by Eqs. (4.1.11) and (4.1.12), the first
three derivatives of the one-loop effective potential vanish at χ = 0, which means that it is very flat
around the origin χ = 0. The thermal functions in the high-temperature expansion of Eqs. (4.1.19)
and (4.1.20) have a positive term30 that goes as the square of the massesm2, which are proportional
to the square of the scalar field χ2. Since near the origin χ = 0, the quadratic part of the thermal
potential dominates over the almost flat one-loop effective potential, the origin becomes at least
metastable at non-vanishing temperatures: the false vacuum is a local minimum and a barrier is
present between the false and the true vacuum. Note that this would not happen for a non-RSB,
because the contribution of the negative quadratic term, e.g. the −µ2 term in the Higgs potential
in Eq. (2.3.15), may be dominant with respect to the positive quadratic thermal one, resulting in no
barrier around the false vacuum χ = 0.

Therefore, the absolute minimum of the effective potential is χ = 0 for T > Tc and χ ̸= 0 for
T < Tc, where Tc is the critical temperature introduced in Sec. 3.3.2. Assuming that the bounce so-
lution is dominated by time-independent thermal tunnelling, which can be justified by checking that
the Euclidean action for the time-dependent bounce is larger than the one of the time-independent
bounce, the false vacuum decay rate in Eq. (3.2.39) reads

Γ ≃ T 4
( S3

2πT

)3/2
e−

S3
T , (4.1.22)

where the 3-dimensional action S3 in Eq. (3.2.40) is

S3 = 4π

∫ ∞

0

dρ ρ2
(1
2

(
dχ

dρ

)2

+ V̄eff(χ, T )
)
= −8π

∫ ∞

0

dρ ρ2V̄eff(χ, T ) , (4.1.23)

where in the second passage we have used Eq. (3.2.30). The bounce solution corresponds to the
solution of the ordinary differential equation with suitable boundary conditions in Eq. (3.2.41)

d2χ

dρ2
+

2

ρ

dχ

dρ
=
dV̄eff

dχ
,

dχ

dρ
(0) = lim

ρ→∞
χ(ρ) = 0 . (4.1.24)

4.1.3 Supercooling expansion

The field values that give the dominant contributions to the bounce action S3 are those near
the potential barrier, where the tunneling probability is largest. Moreover, the tunneling path is
controlled by the barrier separating the false and true vacuum. Therefore, in order to compute the
bounce action S3, we need to track down the behaviour of these field values, neglecting those that

30The fermionic thermal function in Eq. (4.1.20) has a negative linear term, but the sign becomes positive once inserted
in the thermal potential in Eq. (4.1.18).
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are away from the metastable vacuum, e.g. near χ0. It is useful to define the barrier width χb =

χb(T ), which is the T -dependent field value at which the effective potential Veff is equal to its value
at the false vacuum χ = 0, i.e.

V̄eff(χb, T ) = 0 . (4.1.25)

Under the assumption of large supercooling T ≪ χ0, for field values near χb, the effective po-
tential in Eq. (4.1.18) can be approximated to a polynomial

V̄eff(χ, T ) ≃
m2(T )

2
χ2 − λ(T )

4
χ4 , (4.1.26)

where the quadratic m(T ) and the quartic λ(T ) coefficients are given by

m2(T ) =
g2T 2

12
, λ(T ) = β̃λχ ln

χ0

T
, (4.1.27)

and we have introduced the collective real non-negative coupling31

g2χ2 =
∑
b

nbm
2
b(χ) +

∑
f

nf
2
m2
f (χ) . (4.1.28)

The crucial approximation necessary to obtain Eq. (4.1.26) comes from the logarithmic part of the
one-loop effective potential in Eq. (4.1.14): the χ-dependent logarithmic term is substituted by a
T -dependent one

ln
χb
χ0

− 1

4
= ln

χb
T

− 1

4
+ ln

T

χ0

≃ ln
T

χ0

, (4.1.29)

where we have used the fact that in presence of large supercooling T ≪ χ0, the first two terms in
Eq. (4.1.29) are subleading compared to the third one. Note that there is a logarithmic dependence
on the ratio T

χ0
, so we need indeed very large supercooling to make this approximation work. We

introduce the collective thermal function JT to simplify the finite temperature effective potential in
Eq. (4.1.18)

JT

(
χ2

T 2

)
=
∑
b

nbJb

(
m2
b(χ)

T 2

)
−
∑
f

nfJf

(
m2
f (χ)

T 2

)
, (4.1.30)

approximate at leading order (LO) the thermal functions in Eq. (4.1.19) and (4.1.20)

Jb(x) ≃ Jb(0) +
π2

12
x , Jf (x) ≃ Jf (0)−

π2

24
x , (4.1.31)

and write the collective thermal function JT in Eq. (4.1.30) in terms of the collective coupling g in Eq.
(4.1.28)

JT

(
χ2

T 2

)
− JT (0) ≃

∑
b

nb
π2

12

m2
b(χ)

T 2
+
∑
f

nf
π2

24

m2
f (χ)

T 2
=
π2g2

12

χ2

T 2
. (4.1.32)

Then, we make use of the approximation of the one-loop contribution in Eq. (4.1.29) and the thermal
31Note that in Ref. [59], there is a difference in the prefactor of fermion masses nf

2 , due to a different convention to
define the thermal contributions in Eq. (4.1.18).
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one in Eq. (4.1.32), to obtain the polynomial potential in Eq. (4.1.26)

V̄eff(χ, T ) =
β̃λχ
4

(
ln

χ

χ0

− 1

4

)
χ4 +

T 4

2π2

(
JT

(
χ2

T 2

)
− JT (0)

)
≃ − β̃λχ

4
ln
χ0

T
χ4 +

g2T 2

24
χ2 =

m2(T )

2
χ2 − λ(T )

4
χ4 ,

(4.1.33)

where we have used the definitions of the coefficients in Eq. (4.1.27). To check that the approximation
for the one-loop contribution in Eq. (4.1.29) is valid, we make an estimate of the barrier widthχb over
temperature T . In fact, using the definition of χb in Eq. (4.1.25) with the approximated polynomial
potential in Eq. (4.1.26)

V̄eff(χb, T ) ≃
m2(T )

2
χ2
b −

λ(T )

4
χ4
b = 0 , (4.1.34)

leads to
χ2
b ≃

2m2(T )

λ(T )
,

χ2
b

T 2
≃ g2

6β̃λχ ln
χ0

T

, (4.1.35)

where we have again used the definitions of the coefficients in Eq. (4.1.27). The expression of the
barrier width over temperature in Eq. (4.1.35) shows that the ratio is only logarithmically suppressed
in the presence of large supercooling T ≪ χ0, validating the approximation since in Eq. (4.1.29) the
ratio T

χ0
directly appears. The main advantage of this approximation is that, for relevant values of the

scalar field χ, the effective action can be parametrised by only three quantities: χ0, β̃λχ and g. Since
the arguments of the collective thermal function in Eq. (4.1.30) are the square masses of the fields
over the square temperature, we can introduce a quantity to check if the LO approximation of the
thermal functions in Eqs. (4.1.19) and (4.1.20) is valid

ϵ = g2
χ2
b

T 2
≃ g4

6β̃λχ ln
χ0

T

, (4.1.36)

where we have used the expression in Eq. (4.1.35). Thus, ϵ≪ 1 is an internal consistency check.
We can improve this approximation by considering the next-to-leading (NLO) order in the thermal

functions JT , which leads to an addition of a cubic term in the polynomial effective potential in Eq.
(4.1.26)

V̄eff(χ, T ) ≃
m2(T )

2
χ2 − λ(T )

4
χ4 − k(T )

3
χ3 , (4.1.37)

where m2(T ) and λ(T ) are given by Eq. (4.1.27),

k(T ) =
g̃3T

4π
, (4.1.38)

and we introduced another collective real non-negative coupling

g̃3χ3 =
∑
b

nbm
3
b(χ) . (4.1.39)

The procedure to obtain this approximated potential in Eq. (4.1.37) is the same as in Eq. (4.1.26). We

76



4 MODEL-INDEPENDENT FRAMEWORK

approximate the thermal functions in Eqs. (4.1.19) and (4.1.20) at NLO

Jb(x) ≃ Jb(0) +
π2

12
x− π

6
x3/2 , Jf (x) ≃ Jf (0)−

π2

24
x , (4.1.40)

and write the collective thermal function JT in Eq. (4.1.30) in terms of the collective couplings g and
g̃ in Eqs. (4.1.28) and (4.1.39)

JT

(
χ2

T 2

)
− JT (0) ≃

∑
b

nb
π2

12

m2
b(χ)

T 2
+
∑
f

nf
π2

24

m2
f (χ)

T 2
−
∑
b

nb
π

6

m3
b(χ)

T 3

=
π2g2

12

χ2

T 2
− π

6
g̃3
χ3

T 3
.

(4.1.41)

Then, we make use of the approximation of the one-loop contribution in Eq. (4.1.29) and the thermal
one in Eq. (4.1.41), to obtain the polynomial potential in Eq. (4.1.37)

V̄eff(χ, T ) =
β̃λχ
4

(
ln

χ

χ0

− 1

4

)
χ4 +

T 4

2π2

(
JT

(
χ2

T 2

)
− JT (0)

)
= − β̃λχ

4
ln
χ0

T
χ4 +

g2T 2

24
χ2 − g̃3T

12π
χ3 =

m2(T )

2
χ2 − k(T )

3
χ3 − λ(T )

4
χ4 ,

(4.1.42)

where we have used the definitions of the coefficients in Eqs. (4.1.27) and (4.1.38). We can improve
the estimate of the barrier width over temperature, using the definition of χb in Eq. (4.1.25) with the
approximated polynomial potential in Eq. (4.1.37)

V̄eff(χb, T ) ≃
m2(T )

2
χ2
b −

k(T )

3
χ3
b −

λ(T )

4
χ4
b = 0 , (4.1.43)

leading to

χb ≃
2k(T )

3λ(T )

(√
1 +

9λ(T )m2(T )

2k2(T )
− 1

)
,

χb
T

≃ g̃3

6πβ̃λχ ln
χ0

T

√1 +
6π2g2β̃λχ ln

χ0

T

g̃6
− 1


(4.1.44)

where we have again used the definitions of the coefficients in Eqs. (4.1.27) and (4.1.38), and consid-
ered only the positive solution. The parameter ϵ can be defined in the same way as in Eq. (4.1.36) but
using the cubic term in the effective potential in Eq. (4.1.37)

ϵ = g2
χ2
b

T 2
= g2

(
g̃3

6πβ̃λχ ln
χ0

T

)2
√1 +

6π2g2β̃λχ ln
χ0

T

g̃6
− 1

2

. (4.1.45)

where we have used the expression in Eq. (4.1.44).

4.1.4 Analytic bounce action

For polynomial potentials such as those in Eq. (4.1.37), we can use expressions present in the
literature, see e.g. Refs [222–226]. In particular, we need a bounce action S3 for a polynomial po-
tential with a negative quartic coefficient, which is provided by Ref. [58]. In fact, it is possible to
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write the bounce action in terms of only one free parameter, after appropriate field and coordinate
transformations, and obtain an analytic expression by fitting it with a suitable expression.

We begin with the D-dimensional bounce action in Eq. (3.2.27)

SD =
2π

D
2

Γ(D
2
)

∫
dr rD−1

(
Zχ
2

(
dχ

dr

)2

+ Veff(χ)

)
, (4.1.46)

where Zχ = 1 is canonically normalised. We rescale the integration variable r = Lρ and the field
χ = ξφ, so that

SD = ξ2LD−2S̃D , Veff(χ) = ξ2L−2Ṽeff(χ) , (4.1.47)

where S̃D is the dimensionless action and Ṽeff is the dimensionless effective potential. In particular,
for a polynomial potential such as in Eq. (4.1.37), we identify

ξ =
m2(T )

k(T )
, L =

1

m(T )
, (4.1.48)

to obtain a dimensionless potential

Ṽeff(χ, T ) =
1

2
φ2 − 1

3
φ3 − λ̃(T )

4
φ4 , (4.1.49)

where we have defined32

λ̃(T ) =
λ(T )m2(T )

k2(T )
. (4.1.50)

Note that λ̃ ∈ [−λ̃c,∞] where λ̃c = λ̃(Tc) is evaluated at the critical temperature Tc. For weakly
coupled theories, the 3-dimensional thermal bounce action dominates and we can perform a one-
parameter fit over λ̃. We identify three limiting cases and fit the intermediate region: the thin-wall
approximation λ̃ → λ̃c = −2/9, where the two potential vacua are degenerate; the limit λ̃ → ∞,
where the potential has a negative quartic with a vanishing cubic term [227], referred to as the BP
case, and the limit λ̃→ 0, where the quartic interaction term vanishes and the cubic dominates

Sthin
3 (T ) ≃ 32πm3(T )

729k2(T )

1

(λ̃(T ) + 2
9
)2
, SBP

3 (T ) ≃ 6πm(T )

λ(T )
, Scubic

3 (T ) ≃ 27πm3(T )

2k2(T )
. (4.1.51)

Requiring smoothness at the transition point λ̃ = 0 and normalising over the thin wall approximation
for λ̃ < 0 and over the cubic approximation for λ̃ > 0

B+
3 =

S̃3

S̃thin
3

, B−
3 =

S̃3

S̃BP
3

, (4.1.52)

32We use the nomenclature of Ref. [59] in which the quartic coefficient λ̃ is negative, opposite to the one in Ref. [58]
in which κ is positive. The two are just related by a sign λ̃ = −κ.
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we obtain
243

16
B+

3 (λ̃) = 1 + 38.23

(
λ̃+

2

9

)
+ 115.26

(
λ̃+

2

9

)2

+ 58.07
√

−λ̃
(
λ̃+

2

9

)2

− 229.07λ̃

(
λ̃+

2

9

)2

,

(4.1.53)

B−
3 (λ̃) =

9λ̃

4

1 + e
− 1√

λ̃

1 + 9
2
λ̃

. (4.1.54)

Therefore, the ratio of the bounce action S3 over the temperature T is given by

F (T ) =
S3(T )

T
=


27πm3(T )

2k2T
F+(λ̃(T )) if λ̃(T ) > 0,

32πm3(T )

729k2T
F−(λ̃(T )) if λ̃(T ) < 0,

, (4.1.55)

where we have defined the dimensionless functions F±(λ̃) as

F+(λ̃) =
1 + e

− 1√
λ̃

1 + 9
2
λ̃

, (4.1.56)

F−(λ̃) =
1 + 38.23

(
λ̃+ 2

9

)
+ 115.26

(
λ̃+ 2

9

)2
+ 58.07

√
−λ̃
(
λ̃+ 2

9

)2
− 229.07λ̃

(
λ̃+ 2

9

)2
(λ̃+ 2

9
)2

.

(4.1.57)
Note that the prefactor ratio m3(T )

k2(T )T
does not depend on T , so only F±(λ̃(T )) are T -dependent. The

functions F±, presented in Eqs. (4.1.56) and (4.1.57), are empirical fits to numerical bounce solutions,
that smoothly interpolate between regimes where analytic results are known.

4.2 Revisited model-independent framework
The approach developed in Sec. 4.1 is based on the assumption that, with large enough super-

cooling T ≪ χ0, the field-dependent logarithmic term in the one-loop effective potential can be
rewritten in terms of a T -dependent logarithm in Eq. (4.1.29) and the finite-temperature contribu-
tion can be expanded in the high-temperature limit up to cubic order in Eqs. (4.1.19) and (4.1.20), so
that the effective potential can be approximated as a polynomial in Eq. (4.1.37) for small field values
χ≪ χ0. In this section, we propose a novel method that does not rely on the approximation made in
Eq. (4.1.29) and extend the high-temperature expansion in Eqs. (4.1.19) and (4.1.20) to the logarithmic
order. In this way, the effective potential can still be approximated by the polynomial in Eq. (4.1.37)
with a different quartic coefficient and better precision. Furthermore, we focus on the thermal pa-
rameters. In particular, together with analytical expressions for the transition strength α and inverse
transition duration β, we compute the integral in the expression for the percolation temperature Tp
in Eq. (3.3.17) to find an analytic solution in terms of the bounce action S3 and its derivatives. In this
way, the percolation temperature Tp can be simply computed with a root-finding equation.
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4.2.1 Classically scale-invariant effective potential

We begin by explicitly justifying the effective potential provided in Eq. (4.1.18), starting from the
most general effective potential depending on a single scalar field χ in a classically scale-invariant
theory, including both the one-loop in Eq. (3.1.37), with the MS scheme at a generic energy scale µ,
and thermal contributions in Eq. (3.1.59)

Veff(χ, T ) =
λ

4
χ4 +

T 4

2π2

(∑
b

nbJb

(
m2
b(χ)

T 2

)
−
∑
f

nfJf

(
m2
f (χ)

T 2

))

+
1

64π2

(∑
b

nbm
4
b(χ)

(
ln
m2
b(χ)

µ2
− cb

)
−
∑
f

nfm
4
f (χ)

(
ln
m2
f (χ)

µ2
− cf

))
,

(4.2.1)
where cb = 3

2

(
5
6

)
for scalar (gauge boson) fields and cf = 3

2
for fermionic fields. The scalar field χ

may be the only scalar field in the theory or the flat direction in a multi-field scenario, as explained
in Sec. 4.1.

Since we are interested in the effective potential for small field values near the barrier, we ex-
pand the thermal functions Jb and Jf in the high-temperature limit in Eqs. (4.1.19) and (4.1.20) to
logarithmic terms, and express the high-temperature expanded effective potential in Eq. (4.2.1) as

Veff(χ, T ) =
λ

4
χ4 +

T 2

24

(∑
b

nbm
2
b(χ) +

1

2

∑
f

nfm
2
f (χ)

)
− T

12π
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3
b(χ)

+
1

64π2

(∑
b

nbm
4
b(χ)

(
ln
abT

2

µ2
− cb

)
−
∑
f

nfm
4
f (χ)

(
ln
afT

2

µ2
− cf

))
.

(4.2.2)

Note that all χ-dependent logarithms cancel between the one-loop and the finite-temperature con-
tributions, yet the potential remainsµ-dependent. In a classically scale-invariant theory, field-dependent
masses mb and mf are proportional to the scalar field χ, so that we introduce the couplings gb and
gf defined as

mb(χ) = gbχ , mf (χ) = gfχ , (4.2.3)

to obtain an explicit polynomial form of the effective potential in Eq. (4.2.2)

Veff(χ, T ) =

[
λ

4
+

1

64π2

(∑
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nbg
4
b

(
ln
abT

2

µ2
− cb

)
−
∑
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nfg
4
f

(
ln
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2
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))]
χ4

+
T 2

24

(∑
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nbg
2
b +

1

2

∑
f

nfg
2
f

)
χ2 − T

12π

(∑
b

nbg
3
b

)
χ3 .

(4.2.4)

In contrast with the method introduced in Sec. 4.1, Eq. (4.2.4) shows explicitly that, in order to find a
polynomial potential without field-independent terms, we do not approximate the one-loop effective
potential as in Eq. (4.1.29) but we rely only on the high-temperature expansion, retaining terms up
to logarithmic order rather than truncating at cubic order.
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It is convenient to define collective couplings that depend only on the parameters of the model33

g22 =
∑
b

nbg
2
b +

1

2

∑
f

nfg
2
f , g3 =

∑
b

nbg
3
b , (4.2.5)

together with another collective coupling that depends on the renormalisation scale µ and on the
temperature T

g4(T, µ) = −
(∑

b

nbg
4
b

(
ln
abT

2

µ2
− cb

)
−
∑
f

nfg
4
f

(
ln
afT

2

µ2
− cf

))
, (4.2.6)

which allows us to simplify the polynomial effective potential in Eq. (4.2.4) as

Veff(χ, T ) = −
(
−λ
4
+
g4(T, µ)

64π2

)
χ4 +

g22T
2

24
χ2 − g3T

12π
χ3 . (4.2.7)

Then, we extract the coefficients m(T ), k(T ) and λ(T ) to write Eq. (4.2.7) as Eq. (4.1.37)

m2(T ) =
g22T

2

12
, k(T ) =

g3T

4π
, λ(T ) = −λ+

g4(T, µ)

16π2
. (4.2.8)

We deal with the renormalisation scaleµ as proposed in Sec. 4.1, by choosing the renormalisation
scale µ = µ̃ such that the quartic coupling vanishes, i.e λ(µ̃) = 0, so that λ(T ) in Eq. (4.2.8) and
g4(T, µ) in Eq. (4.2.6) becomes

λ(T ) =
g4(T, µ̃)

16π2
, g4(T, µ̃) = −
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nbg
4
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4
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))
.

(4.2.9)
For later convenience, consider the µ-dependent terms of the effective potential in Eq. (4.2.1)

Veff(χ, T ) ⊃
λ(µ)

4
χ4 − 1

64π2

(
2
∑
b

nbg
4
bχ

4 lnµ− 2
∑
f

nfg
4
fχ

4 lnµ

)
, (4.2.10)

and apply the RGE in Eq. (4.1.8) for the effective potential

µ
dVeff(χ, T )

dµ
=
χ4

4

(
βλχ − 1

16π2

(
2
∑
b

nbg
4
b − 2

∑
f

nfg
4
f

))
= 0 , (4.2.11)

where we have used the definition of the beta function of the quartic coupling βλχ = µdλ
dµ

. Eq. (4.2.11)
implies a relation between the beta function of the quartic coupling β̃λχ , at the renormalisation scale
µ̃ such that the quartic coupling vanishes, and the couplings gb and gf in Eq. (4.2.3)

β̃λχ =
1

16π2

(
2
∑
b

nbg
4
b − 2

∑
f

nfg
4
f

)
. (4.2.12)

33Note that these collective couplings are similar to the ones introduced in Sec. 4.1 in Eqs.(4.1.28) and (4.1.39), with a
different notation: g has become g2 and g̃3 has become g3.
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Consider the zero temperature effective potential in Eq. (4.2.1) at the renormalisation scale µ̃
where the quartic coupling vanishes

Veff(χ, T = 0) =
χ4
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)]
, (4.2.13)

and trade the renormalisation scale µ̃ for the VEV of the scalar field χ0, by imposing that χ0 is a
stationary point of the zero-temperature effective potential
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(4.2.14)

Using the expression for the beta function in Eq. (4.2.12), we can rewrite the condition in Eq. (4.2.14)
as

β̃λχ
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. (4.2.15)

Finally, substituting back the two expression of the beta function in Eqs. (4.2.12) and (4.2.15) into the
effective potential at zero temperature in Eq. (4.2.13), we obtain
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(4.2.16)

Thus, the full effective potential reads

Veff(χ, T ) =
β̃
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χ4
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+
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T 2
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. (4.2.17)

which is in agreement with the result in Sec. 4.1 in Eq. (4.1.18).
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The quartic coefficient λ(T ) in Eq. (4.2.9) becomes

λ(T ) =
1

32π2

(∑
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b ln
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4
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4
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)
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32π2
. (4.2.18)

where we have used the two expressions of the beta function in Eq. (4.2.12) and in Eq. (4.2.15) and
we have obtained the expression for the collective coupling g4(T ) in Eq. (4.2.6)

g4(T ) =

(∑
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b ln
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4
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4
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)
. (4.2.19)

Furthermore, we extract the T -independent parts of this coefficient in Eq. (4.2.19) and define
new collective couplings

g′4 =
∑
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4
b ln
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)
, (4.2.20)

so that the quartic coefficient λ(T ) in Eq. (4.2.18) can be written as

λ(T ) =
g4(T )

32π2
=
g′4 − g′′4 ln

T
χ0

32π2
. (4.2.21)

To summarise, for field values near the barrier, we can approximate the effective potential as a
polynomial of the form of Eq. (4.1.37)

V (χ, T ) =
m2(T )

2
χ2 − k(T )

3
χ3 − λ(T )

4
χ4 , (4.2.22)

with the coefficients given by Eqs. (4.2.8) and (4.2.21)
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, (4.2.23)

in terms of the collective couplings in Eqs. (4.2.5), (4.2.19) and (4.2.20)
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(4.2.24)
It is convenient to compute the fit parameter λ̃(T ) for the analytic bounce action S3 in terms of

the collective couplings in Eq. (4.2.24), which from the definition in Eq. (4.1.50) reads

λ̃(T ) =
λ(T )m2(T )

k2(T )
=
g22g

′
4

24g23
− g22g

′′
4
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ln
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, (4.2.25)
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which is a function of the temperature T and the collective couplings g2, g3, g′4 and g′′4 , and we have
defined the two coefficients

l1 =
g22g

′
4

24g23
, l2 =

g22g
′′
4

24g23
. (4.2.26)

Note that the quadratic m2(T ) and the cubic k(T ) coefficients are always positive, so the only one
that can change sign is λ(T ). In terms of the collective couplings, this means that the quartic coupling
g4(T ) also changes sign, which happens when

g′4 − g′′4 ln
T

χ0

> 0 ⇒
{
T < χ0e

g′4/g
′′
4 if g′4g′′4 > 0

T > χ0e
g′4/g

′′
4 otherwise

. (4.2.27)

This condition sets which of the two expressions for the piecewise bounce action in Eq. (4.1.55) should
be used.

4.2.2 Semi-analytic nucleation temperature

In the remainder of the section, equipped with the expressions for the effective potential in Eq.
(4.2.22) and the bounce action in Eq. (4.1.55), we compute the thermal parameters necessary to
describe the FOPT, using the false vacuum decay rate provided in Eq. (4.1.22)

Γ(T ) ≃ T 4

(
F (T )

2π

) 3
2

e−F (T ) , (4.2.28)

where as in Eq. (4.1.55) we have defined

F (T ) =
S3(T )

T
. (4.2.29)

We begin with the nucleation temperature Tn, given by the condition Eq. (3.3.19)

Γ(Tn) = H4(Tn) , (4.2.30)

which, after taking the logarithm on both sides and using the expression for the false vacuum decay
rate in Eq. (4.2.28), becomes

F (Tn) +
3

2
ln
F (Tn)

2π
= 4 lnTn − 4 lnH(Tn) . (4.2.31)

The Hubble parameter H(T ) can be expressed in terms of the energy density ρ(T ), by means of
the Friedmann equation in Eq. (2.1.9) in a flat universe k = 0 as

H2(T ) =
ρ(T )

3m̄2
pl
, (4.2.32)

where m̄pl =
√

1
8πG

is the reduced Planck mass. The energy density ρ(T ) of the Universe at temper-
ature T is the sum of the contributions from the thermal plasma, dominated by radiation, and from
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the vacuum, which is given by the effective potential difference between the false and true vacuum

H2(T ) =
∆Veff

3m̄2
pl
+
π2g∗(T )T

4

90m̄2
pl

. (4.2.33)

Given that the vacuum contribution is independent of the temperature, while the radiation contribu-
tion is proportional to T 4, as the Universe cools and temperature decreases, there exists an equality
temperature Tv, at which the Universe passes from a radiation-dominated to a vacuum-dominated
phase. Tv can be computed by equating the two contributions

∆Veff =
π2g∗(Tv)T

4
v

30
⇒ Tv =

(
30∆Veff

π2g∗(Tv)

) 1
4

. (4.2.34)

In a supercooled FOPT, the relevant temperatures for the nucleation of bubbles are smaller than
the equality temperature Tv [33], so we can neglect the radiation contribution and approximate the
Hubble parameter in Eq. (4.2.33) as

H2(T ) ≃ ∆Veff

3m̄2
pl
. (4.2.35)

At these temperatures, the effective potential difference ∆Veff is given by the zero-temperature con-
tribution in Eq. (4.2.17)

∆Veff = Veff(0, T = 0)− Veff(χ0, T = 0) = −Veff(χ0, T = 0) =
β̃λχχ

4
0

16
, (4.2.36)

and the Hubble parameter in Eq. (4.2.35) becomes

H2(T ) ≃ β̃λχχ
4
0

48m̄2
pl
. (4.2.37)

Thus, the nucleation condition in Eq. (4.2.31) reads

F (Tn) +
3

2
ln
F (Tn)

2π
= 4 lnTn − 4 ln

√
β̃λχχ

2
0

4
√
3m̄pl

. (4.2.38)

4.2.3 Semi-analytic percolation temperature

The transition temperature that enters the SGWB spectrum is the temperature at which GW pro-
duction occurs. For fast transitions, the nucleation temperature is a good approximation, which is
not the case for supercooled FOPT, in which the nucleation temperature Tn and the percolation tem-
perature Tp can be very different. Motivated by this, we study the percolation temperature Tp, which
is defined by the condition in Eq. (3.3.20)

Pf (Tp) = e−I(Tp) ≃ 0.71 , I(Tp) ≃ 0.34 , (4.2.39)
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where Pf (T ) is the probability that a point in the Universe remains in the false vacuum and I(T ) is
the fractional extended volume, introduced in Sec. 3.3.1 and given by Eq. (3.3.17)

I(T ) =
4π

3

∫ Tc

T

dT ′ Γ(T ′)

T ′4H(T ′)

(∫ T ′

T

dT ′′

H(T ′′)

)3

. (4.2.40)

In writing the integral in Eq. (4.2.40), we assumed that the bubble wall velocity is vw ≃ 1 and the bag
relation dT

dt
= −TH(T ) holds. To justify the latter, we consider the only non-vanishing contribution

of the effective potential at the false vacuum χ = 0

Veff(χ, T ) ⊃
π2T 4

90
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)
, (4.2.41)

compute its first and second derivatives

∂Veff(χ, T )

∂T
=

4π2T 3

90

(∑
f

7nf
8

−
∑
b

nb

)
,
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)
,

(4.2.42)
and plug them into the most general expression for the Jacobian in Eq. (3.3.12)

dT

dt
= −3H(T )

V ′′(χ, T )

V ′(χ, T )

∣∣∣
χ=0

= −TH(T ) , (4.2.43)

which is the same as the bag model in Eq. (3.3.14).
We simplify the integral in Eq. (4.2.40) by splitting it into two parts: one for the radiation-

dominated era and one for the vacuum-dominated era, separated by the equality temperature Tv
in Eq. (4.2.34). For the he vacuum-dominated epoch, we approximate the Hubble parameter H to
be constant as in Eq. (4.2.37), to obtain

I(T ) ≃ 4π

3

∫ Tc

Tv

dT ′ Γ(T ′)

T ′4H(T ′)

(∫ T ′
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′)

T ′4 (T ′ − T )
3
,

(4.2.44)

where the inner integral in the second term has been evaluated. For supercooled FOPT, in radiation
dominated era for T ′ ∈ [Tv, Tc], the false-vacuum decay rate is sufficiently suppressed that the first
integral in Eq. (4.2.44) can be neglected, so that

I(T ) ≃ 4π

3

1

H4

∫ Tv

T

dT ′ e−F (T ′)

(
F (T ′)

2π

) 3
2

(T ′ − T )
3
, (4.2.45)

where we have used the expression for the nucleation rate in Eq. (4.2.28) and F (T ) given in Eq.
(4.2.29).

Note that the integral in Eq. (4.2.45) is dominated by the exponential factor e−F (T ′), except for
the regions near T ′ = T , where the effects of the factor (T ′ − T )3 start to become relevant. This
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means that the prefactor
(
F (T )
2π

) 3
2 is a subleading contribution, which only rescales the integral by a

finite factor since it never vanishes, and can be taken outside the integral in Eq. (4.2.45), evaluated
at T ′ = T

I(T ) ≃ 4π

3

1

H4

(
F (T )

2π

) 3
2
∫ Tv

T

dT ′ e−F (T ′) (T ′ − T )
3
. (4.2.46)

Furthermore, at temperatures near T , the integrand is dominated by the factor (T ′ − T )3, mak-
ing it go to zero as T ′ → T , while at temperatures near Tv, the integrand is dominated by the
exponential factor e−F (T ′). This implies that in the intermediate region, there exists a temperature
such that the integrand is peaked around it, which we denote as T ′ = Tpeak. In other words, there is
an intermediate temperature Tpeak such that

- for T < Tpeak, (T ′ − T )3 dominates;

- for T > Tpeak, e−F (T ′) dominates.

This is the typical situation where the saddle-point approximation applies , see footnote 25. We
rewrite the integrand of Eq. (4.2.46) as an exponential

e−F (T ′) (T ′ − T )
3
= e−F (T ′)+3 ln(T ′−T ) = e−G(T ′,T ) , (4.2.47)

where we have defined the auxiliary function

G(T ′, T ) = F (T ′)− 3 ln(T ′ − T ) . (4.2.48)

We then determine the temperature where the auxiliary function in Eq. (4.2.48) has a minimum by
solving the stationary condition

dG(T ′, T )

dT ′

∣∣∣
T ′=Tpeak

= F ′(Tpeak)−
3

Tpeak − T
= 0 ⇒ F ′(Tpeak) =

3

Tpeak − T
, (4.2.49)

and we expand the auxiliary function G in Eq. (4.2.48) around its minimum T ′ = Tpeak

G(T ′, T ) ≃ G(Tpeak, T ) +
1

2
G′′(Tpeak, T )(T

′ − Tpeak)
2 , (4.2.50)

so that the integral in Eq. (4.2.46) becomes a Gaussian integral

I(T ) ≃ 4π

3

e−G(Tpeak,T )

H4

(
F (T )

2π

) 3
2
∫ Tv

T

dT ′ e−
1
2
G′′(Tpeak,T )(T

′−Tpeak)
2

. (4.2.51)

We make a change of variable x = T ′ − Tpeak in the integral in Eq. (4.2.51) to obtain

I(T ) ≃ 4π

3

e−G(Tpeak,T )

H4

(
F (T )

2π

) 3
2
∫ Tv−Tpeak

T−Tpeak

dx e−
1
2
G′′(Tpeak,T )x

2

. (4.2.52)

Since the integrand is sharply peaked around the temperature T ′ = Tpeak, we extend the domain of
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integration from [T − Tpeak, Tv − Tpeak] to [−∞,∞] and we integrate

I(T ) ≃ 4π

3

e−G(Tpeak,T )

H4

(
F (T )

2π

) 3
2

√
2π

G′′(Tpeak, T )
, (4.2.53)

where we have used the Gaussian integral
∫∞
−∞ dx e−

1
2
ax2 =

√
2π
a

. Finally, plugging the expression
for the integral in Eq. (4.2.53) into the percolation condition in Eq. (4.2.39) yields

4π

3H4
e−G(Tpeak,T )

(
F (T )

2π

) 3
2

√
2π

G′′(Tpeak, T )
≃ 0.34 , (4.2.54)

which after taking the logarithm on both sides gives

ln
2

3H4
−G(Tpeak, T ) +

3

2
lnF (T )− 1

2
lnG′′(Tpeak, T ) ≃ ln 0.34 . (4.2.55)

Substituting back the definition of the auxiliary function G in Eq. (4.2.48)

ln
2

3H4
− F (Tpeak) + 3 ln(Tpeak − T ) +

3

2
lnF (T )− 1

2
ln

(
F ′′(Tpeak) +

3

(Tpeak − T )2

)
≃ ln 0.34 .

(4.2.56)
Using the Gaussian approximation, we have traded the computation of the original double integral
in Eq. (4.2.40) for the search of the root of an equation and Tpeak. Therefore, the computation of
the percolation temperature is much simplified: you compute the peak temperature Tpeak using the
condition in Eq. (4.2.49) and then you solve Eq. (4.2.56), which depends only on the derivatives of
F (T ) with no integral involved.

For fast transitions and less supercooling, we can simplify further the expression for the integral in
Eq. (4.2.56). In this case, the relevant temperatures will be close to the lower bound T of the integral
in Eq. (4.2.46) and we can approximate it by expanding the function F (T ′) as a linear function of T ′

around T
F (T ′) ≃ F (T ) + F ′(T )(T ′ − T ) , (4.2.57)

so that the integral in Eq. (4.2.46) becomes

I(T ) ≃ 4π

3

e−F (T )

H4

(
F (T )

2π

) 3
2
∫ Tv

T

dT ′ e−F
′(T )(T ′−T ) (T ′ − T )

3
. (4.2.58)

We make a change of variable x = T ′ − T in the integral in Eq. (4.2.58) to find

I(T ) ≃ 4π

3

e−F (T )

H4

(
F (T )

2π

) 3
2
∫ Tv−T

0

dx e−F
′(T )xx3 , (4.2.59)

and we extend the domain of integration to [0,∞] since the integrand is exponentially suppressed
for large x. We compute the integral using the Feynman technique∫ ∞

0

dx e−bxx3 = − ∂3

∂b3

∫ ∞

0

dx e−bx =
∂3

∂b3
e−bx

b

∣∣∣∞
0

= − ∂3

∂b3
1

b
=

6

b4
, (4.2.60)
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to obtain the final expression for the integral in Eq. (4.2.59) after recognising b = F ′(T ) in Eq. (4.2.60)

I(T ) ≃ 4π

3

6e−F (T )

H4F ′(T )4

(
F (T )

2π

) 3
2

. (4.2.61)

Finally, plugging the expression for the integral in Eq. (4.2.61) into the percolation condition in Eq.
(4.2.39) yields

8π

H4

e−F (T )

F ′(T )4

(
F (T )

2π

) 3
2

≃ 0.34 , (4.2.62)

which after taking the logarithm on both sides gives

ln
8π

H4
− F (T ) +

3

2
ln
F (T )

2π
− 4 lnF ′(T ) ≃ ln 0.34 . (4.2.63)

The linear approximation in Eq. (4.2.63) is simpler than the Gaussian one in Eq. (4.2.56), since there
is no need to compute any intermediate peak temperature Tpeak in Eq. (4.2.49). However, its use is
more restricted, because the assumption of linear expansion in Eq. (4.2.57) is satisfied only for less
supercooled PTs

In any case, the only quantities that enter in both approximations of the percolation condition
are the bounce action F (T ) and its second derivative F ′′(T ) or first derivative F ′(T ) with respect to
temperature. Their expression can be computed analytically from the fit bounce action in Eq. (4.1.55).

As shown in Sec. 3.3.2, for the PT to complete without being prevented by the expansion of the
Universe, Eq. (3.3.23) needs to be satisfied at the percolation temperature Tp

T
dI(T )

dT
< −3 , (4.2.64)

where we have assumed a constant Hubble parameter H . For the Gaussian approximation of the
integral I(T ) given by Eq. (4.2.53), Eq. (4.2.64) reads

I(T )T

(
−G′(Tpeak, T ) +

3

2

F ′(T )

F (T )
− 1

2

G′′′(Tpeak, T )

G′′(Tpeak, T )

)
< −3 , (4.2.65)

whereas for the linear approximation of the integral I(T ) given by Eq. (4.2.61), the condition becomes

I(T )T

(
−F ′(T ) +

3

2

F ′(T )

F (T )
− 4

F ′(T )

)
< −3 . (4.2.66)

4.2.4 Analytic thermal parameters

The final step in order to obtain the SGWB spectrum is to compute the transition strength α and
the inverse duration β, since the bubble wall velocity is set to vw ≃ 1, as the runaway condition
α > α∞ in Eq. (3.3.47) is expected to be satisfied.
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The general expression for the transition strength α is given by Eq. (3.3.34)

α =
1

ρrad
∆

(
V̄eff −

T

4

dV̄eff

dT

) ∣∣∣
Tp
, (4.2.67)

where∆means the difference between the effective potential at the false vacuumχ = 0 and the true
vacuum χ = ⟨χ⟩ at the percolation temperature Tp. However, for supercooled FOPT, the derivative
with respect to the temperatureT of the effective potential is small, so we approximate the transition
strength by

α =
∆Veff

ρrad

∣∣∣
Tp
. (4.2.68)

Furthermore, using the expression for the effective potential difference in Eq. (4.2.36) given by the
zero-temperature one-loop contributions, we rewrite the transition strength in Eq. (4.2.68) as

α =
30β̃λχχ

4
0

16π2g∗(Tp)T 4
p

, (4.2.69)

where we have substituted the expression for the radiation energy density in Eq. (2.1.33). The transi-
tion is expected to be strong, meaning α ≫ 1 and a negligible contribution to the SGWB spectrum,
since it enters with the ratio α

α+1
as discussed in Sec. 3.4.2.

Therefore, the only relevant thermal parameter is the inverse transition duration β, which is de-
fined in Eq. (3.3.41) as

β

H∗
= −T

Γ

dΓ

dT

∣∣∣
Tp
, (4.2.70)

and can be rewritten using the false vacuum decay rate in Eq. (4.2.28) as

β

H∗
= T

dF (T )

dT
− 3

2
T
d

dT
lnF (T )− 4

∣∣∣
T=Tp

. (4.2.71)

Finally, the SGWB spectrum is given by the sum of the three contributions: bubble collisions,
sound waves, and turbulence

h2Ωtot(f) ≃ h2Ωbubble(f) + h2Ωsound(f) + h2Ωturb(f) . (4.2.72)

The explicit expressions for each term are discussed in Sec. 3.4.2.

4.3 Dark U(1)D models
The most relevant results of Sec. 4.2 are the revisited model-independent approach to write the

effective potential as a polynomial in Eq. (4.2.22) with coefficients in Eq. (4.2.23), built upon the
previous results of Sec. 4.1, and the semi-analytic method to compute the percolation temperature
Tp, both in the linear approximation in Eq. (4.2.63) and in the Gaussian one in Eq. (4.2.56). The latter
has not appeared previously in the literature.

In this section, we apply both the established framework of Sec. 4.1 and the revisited one of Sec.
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4.2 to phenomenological dark U(1) extensions of the SM that can explain the PTA signal. We first
consider a minimal model containing a dark scalar and a dark photon: the dark scalar drives the PT,
while the dark photon is required to make it first order. We compare the effective potential Veff, the
bounce action S3, and the nucleation temperature Tn obtained with the established and revisited
approaches to the results of a full numerical analysis, where the effective potential is computed from
its exact non-approximated expression and the bounce action is evaluated using CosmoTransitions
[190]. Next, focusing on the revisited approach, we study the percolation temperature Tp, the transi-
tion strength α, and the inverse duration β, and we validate our framework by showing the posterior
distributions over the NANOGrav 15-year dataset. We draw physical insights about how the parame-
ters of the model influence the PT. Finally, we extend the model by adding a dark fermion and analyze
the effect of its Yukawa coupling.

4.3.1 Minimal U(1)D model

Consider an extension of the Standard Model gauge group by a dark abelian U(1)D and extend
the particle content with the associated gauge vector boson, referred to as the dark photon A′

µ, and
a dark scalar S, with a classically scale-invariant potential. The Lagrangian is given by

L = LSM − 1

4
F ′
µνF

′µν + (DµS)
†DµS − λχ|S|4 , (4.3.1)

where the covariant derivative is
Dµ = DSM

µ + ig′1Q
′A′

µ . (4.3.2)

The new fields are taken such that they are singlets of the SM gauge group. For simplicity, we assume
thatQ′ = 1. This model was studied in Sec. 2.4.1, in which, after diagonalisation of the kinetic mixing
between the dark photon and the SM one, we found that the field-dependent dark photon mass is
given by Eq. (2.4.14)

m2
A′(χ) ≃ g′1

2
χ2 . (4.3.3)

We identify χ with the magnitude of the real component of the dark scalar, χ =
√
2|S|, which

is the flat direction for RSB. The one-loop β function for the quartic self-interaction coupling of χ is
computed using pyr@te [228, 229]

(16π2)βλχ = 20λ2χ + 6g′1
4 − 12g′1

2
λχ , (4.3.4)

which, evaluated at the energy scale µ̃ in which the quartic coupling vanishes λχ = 0, becomes

(16π2)β̃λχ = 6g′1
4
. (4.3.5)

Note that Eq. (4.3.5) is in agreement with the expression for the one-loop beta function for the quartic
self-interaction coupling of the scalar field χ found in Eq. (4.2.12). Therefore, the field-dependent
masses of the DS particles read

m2
A(χ) = g′1

2
χ2 , m2

S(χ) = β̃λχχ
2 =

6g′41
16π2

χ2 . (4.3.6)

This model has been studied using the established approach in Ref. [61]. It relies on the quadratic
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collective coupling in Eq. (4.1.28) and the cubic collective coupling in Eq. (4.1.39)

g2 = 3g′1
2
, g̃3 = 3g′1

3
, (4.3.7)

which are used to write the coefficients of the polynomial effective potential in Eq. (4.1.37) by means
of Eq. (4.1.38) and Eq. (4.1.27)

m2(T ) =
g2T 2

12
=
g′1

2T 2

4
, k(T ) =

g̃3T

4π
=

3g′1
3T

4π
, λ(T ) = β̃λχ ln

χ0

T
. (4.3.8)

On the other hand, the revisited approach we propose here relies on the square, cubic and quartic
collective couplings in Eq. (4.2.24)

g22 = 3g′1
2
, g3 = 3g′1

3
, g4(T ) = 3g′1

4
ln
g′1

4χ4
0e

a2bT
4
, (4.3.9)

which are used to write the coefficients of the polynomial effective potential in Eq. (4.2.22) by means
of Eq. (4.2.23)

m2(T ) =
g22T

2

12
=
g′1

2T 2

4
, k(T ) =

g3T

4π
=

3g′1
3T

4π
, λ(T ) =

g4(T )

32π2
=

3g′1
4

32π2
ln
g′1

4χ4
0e

a2bT
4
. (4.3.10)

Note that the square and cubic coefficients in Eq. (4.3.9) are the same as in the established one in
Eq. (4.3.7), while the quartic collective couplings in Eqs. (4.3.8) and (4.3.10) are different.

Effective potential. In Sec. 4.1, we argued that the relevant field values of the effective potential
to compute the bounce action are those near the barrier. Therefore, a first qualitative analysis can be
performed by tracking the behaviour of the approximations of the effective potential for field values
near the barrier, which we parametrised by the barrier width χb defined in Eq. (4.1.25). We compare
the full effective potential in Eq. (4.2.17)

Vfull(χ, T ) =
β̃

4
χ4

(
ln

χ

χ0

− 1

4

)
+ 3

T 4

2π2
JB

(
g′1

2χ2

T 2

)
, (4.3.11)

where the thermal function is given by Eq. (4.1.19), against its approximations: the established poly-
nomial potential in Eq. (4.1.37) with coefficients in Eq. (4.3.8)

VEstablished(χ, T ) =
g′1

2T 2

8
χ2 − g′1

3T

4π
χ3 − β̃λχ

4
ln
χ0

T
χ4 , (4.3.12)

and the revisited polynomial potential in Eq. (4.2.22) with coefficients in Eq. (4.3.9)

VRevisited(χ, T ) =
g′1

2T 2

8
χ2 − g′1

3T

4π
χ3 − 3g′1

4

128π2
ln
g′1

4χ4
0e

a2bT
4
χ4 . (4.3.13)

We take the nucleation temperature Tn as a reference, computed numerically with the full potential
(4.3.11) using CosmoTransitions, and the same gauge couplings g′1 present in Fig. 1 of [61], which
are g = 0.81, 0.9 or equivalently g′1 = 0.47, 0.52, fixing the VEV to χ0 = 1 GeV.

The plot of the three potentials in Eqs. (4.3.11), (4.3.12) and (4.3.9) at field valuesχ ∈ [0, χb] in Fig.
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9 shows a slight disagreement for the established approach (green), while the revisited one (orange)
is in very good agreement, when compared to the full potential (blue). In fact, not only the barrier
width χb is poorly reproduced, but also the height of the barrier has a similar misbehaviour for the
established approach. Instead, these arguments do not hold for the revisited one, suggesting that
the revisited model-independent framework is better suited to describe the effective potential.
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Figure 9: The effective potential for the established, revisited and full approaches, at small field values
χ ∈ [0, χb].

To understand from where this discrepancy comes from, we investigate the different contribu-
tions to the effective potential by separating the one-loop and the finite-temperature parts. Regard-
ing the former, we compare the one-loop potential computed using the approximation in Eq. (4.1.29)
against the full χ-dependent logarithmic one in Eq. (4.1.14)

Vone-loop(χ, T ) =
β̃λχ
4
χ4

(
ln

χ

χ0

− 1

4

)
, V approx

one-loop(χ, T ) =
β̃λχ
4
χ4 ln

T

χ0

. (4.3.14)

To scrutinize the finite-temperature part, we compare the full thermal potential in Eq. (4.3.11)

V1T(χ, T ) = 3
T 4

2π2
JB

(
g′1

2χ2

T 2

)
, (4.3.15)

against the LO, NLO and NNLO approximations of the high-temperature expansion in Eq. (4.1.19) valid
for small field values, i.e. up to quadratic, cubic and logarithmic terms, respectively

V quadratic
1T (χ, T ) = 3

T 4

2π2

(
π2

12

g′1
2χ2

T 2

)
, V cubic

1T (χ, T ) = 3
T 4

2π2

(
π2

12

g′1
2χ2

T 2
− π

6

(
g′1

2χ2

T 2

)3/2
)
,

V log
1T (χ, T ) = 3

T 4

2π2

(
π2

12

g′1
2χ2

T 2
− π

6

(
g′1

2χ2

T 2

)3/2

− 1

32

(
g′1

2χ2

T 2

)2

ln

(
g′1

2χ2

abT 2

))
.

(4.3.16)
In order to compute the bounce action in Eq. (4.1.23), one needs to integrate the effective potential
over the field values χ ∈ [0, χe], where χe is the escape field value where the field tunnels, i.e.
the initial condition of the bounce differential equation in Eq. (3.2.29), which is typically larger than
the barrier width χb. Therefore, a better range to plot the effective potential is χ ∈ [0, χe] rather
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than χ ∈ [0, χb]. We take again the nucleation temperature Tn as a reference and the parameters
fixed to (χ0, g

′
1) = (1 GeV, 0.47), where the largest supercooling is expected. The left plot of Fig. 10

shows that the approximated one-loop potential (red) starts to deviate from the full χ-dependent
logarithmic one (blue). The right plot of Fig. 10 is of more interest. It shows that the LO quadratic
(red) and NLO cubic (orange) do not capture the shape of the thermal integral (blue), while the NNLO
logarithmic approximation (green) does so with great accuracy, even near the escape field value χe.
Consequently, we argue that the mismatch between the established approach and the full numerical
potential in Fig. 9 is due to the fact that the approximated one-loop contribution in Eq. (4.1.29)
is slightly inaccurate, but mostly the thermal part up to cubic terms underestimates its numerical
counterpart. Conversely, the revisited model-independent framework is able to accomplish this task,
since the one-loop contribution is not approximated and the thermal part is well approximated up
to logarithmic terms.
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Figure 10: The different approximations for the one-loop (left) and the thermal (right) effective po-
tentials, at small field values χ ∈ [0, χe].

Nucleation temperature. To make our analysis quantitative, we compute the value of the barrier
widthχb and the bounce actionS3, keeping in mind that the former reflects the pure behaviour of the
effective potential, while the latter introduces another source of error, because we compute the full
effective potential with the shooting method in CosmoTransitions, whereas for the established and
revisited approaches we use the fit action in Eq. (4.1.55). The results in Fig. 11 reveal that an error in
the barrier widthχb translates into a larger error in the bounce actionS3 for the established approach,
while the revisited one shows only a small deviation. Both quantities are evaluated again at the
nucleation temperature Tn computed with the full potential in Eq. (4.3.11) using CosmoTransitions,
and plotted as a function of the gauge coupling g′1 in the range of values g′1 ∈ [0.47, 0.52]. The VEV is
fixed at χ0 = 1.

A small error in the bounce action S3 translates into a larger error in the nucleation temperature
Tn, since it enters exponentially in the false vacuum decay rate in Eq. (4.2.28). Computing the nu-
cleation temperature Tn using the nucleation condition in Eq. (4.2.38), we find that the established
approach differs by orders of magnitude from the full numerical result, while the revisited one is in
very good agreement with it. This is shown in the left plot of Fig. 12, where the nucleation temper-
ature Tn is plotted as a function of the gauge coupling g′1 at fixed VEV χ0 = 1. In the right plot of
Fig. 12, we reproduce the lower plot in Fig. 2 of Ref. [61], proving that the established approach fails
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Figure 11: The barrier width χb (left) and the bounce action S3 (right) as a function of the gauge cou-
pling g′1 for the established, revisited and full approaches. In the bottom panel, the percent relative
errors are shown with respect to the full one.

to reproduce the nucleation temperature Tn, while the revisited one manages to do so with great
accuracy.

10−6

10−5

10−4

10−3

T
n

[G
eV

]

χ0 = 1.0 GeV

Full

Established

Revisited

0.47 0.48 0.49 0.50 0.51 0.52
g′1

102

104

E
rr

or
[%

] 1.0
1.5

2.0
2.5

3.0
3.5

4.0

4.5

5.0

χ0
[G

eV
]

0.47

0.48

0.49

0.50

0.51

0.52

g ′
1

−6

−5

−4

−3

−2

log
1
0 (T

n
[G

eV
])

Full

Established

Revisited

Figure 12: The nucleation temperature Tn as a function of the gauge coupling g′1 at fixed (left) and as
a function (right) of the VEV χ0, for the established, revisited and full approaches. In the bottom left
panel, the percent relative errors are shown with respect to the full one.

Therefore, we conclude that, in order to obtain reliable results within a reasonable percent-level
error, one needs to trace the effective potential at field values near the barrierχb and the escape field
value χe. However, as mentioned before, another source of error can be inherent to the fit action, so
we check that indeed there is an intrinsic few percent error in the bounce action in Eq. (4.1.55) com-
pared to the one computed using CosmoTransitions for the same polynomial effective potential in
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Eq. (4.2.22). The results in the left plot of Fig. 13 show that there is an oscillatory behaviour in the
error, which remains at the few-percent level but must always be taken into account when using the
fit action in Eq. (4.1.55) to compute the bounce action S3. We also compute the quantity λ̃, defined
in Eq. (4.1.50), which is the fit parameter used in Ref. [58] to compute the fit action in Eq. (4.1.55), in
the right plot of Fig. 13 to illustrate the correlation between the error from using the fit action and
the value of λ̃. Note that λ̃ changes sign at gauge coupling values g′1 ≃ 0.8, so for fast transitions
with small supercooling, Tn always lies in the region λ̃(Tn) < 0 and does not cross zero.
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Figure 13: The bounce action S3 (left) computed using CosmoTransitions and the fit action, and
the fit parameter λ̃ (right), for the revisited approach, as a function of the gauge coupling g′1. In the
bottom left panel, the percent relative errors are shown with respect to the numerical one.

Percolation temperature. The established framework in Refs. [58–61] uses the nucleation tem-
perature Tn and does not provide any semi-analytic method to compute the percolation tempera-
ture Tp, which is better suited for supercooled FOPT as it is the moment when GWs production is
expected. On the other hand, the revisited framework provides a simple equation to evaluate the
percolation temperature Tp. Therefore, we continue our analysis by considering only the revisited
framework. Since it does not rely on large supercooling approximations, we extend the range of the
gauge coupling to g′1 ∈ [0.47, 0.9]. First, to validate the accuracy of the implemented methods and
neglect the error that comes from using the fit action rather than the numerical shooting method,
we compare the percolation temperature Tp computed using the linear method in Eq. (4.2.56) and
the Gaussian method in Eq. (4.2.63) against the one computed using the full integral in Eq. (4.2.45),
always using the fit bounce action (4.1.55). The results in the left plot of Fig. 14 show that both meth-
ods are able to compute the percolation temperature Tp with percent-level accuracy, which means
that both methods are accurate enough to substitute the full integral in Eq. (4.2.45). However, for
large supercooling, the Gaussian method is more accurate than the linear one, as expected, since the
latter is more appropriate for fast transitions. In the following, we will use the Gaussian method in
Eq. (4.2.56) to compute the percolation temperature Tp, which is compared in the right plot of Fig. 14
against the one computed using the full integral in Eq. (4.2.45) with the numerical action computed
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using CosmoTransitions. This tcaptures both sources of error coming from the use of the fit action
in Eq. (4.1.55) and the Gaussian method in Eq. (4.2.63). Putting it all together, we conclude that the
main source of error in computing the percolation temperature Tp is given by the fit action, with only
few percent to be attributed to the Gaussian approximation.
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Figure 14: The percolation temperature Tp as a function of the gauge coupling g′1, for the integral,
Gaussian or integral methods (left) or for the revisited and full approaches (right). In the bottom
panel, the percent relative errors are shown with respect to the integral method (left) or the full one
(right).

In the left plot of Fig. 15, we compare the percolation temperature Tp and the nucleation temper-
ature Tn, computed with the full numerical method, to highlight their difference. Furthermore, the
ratio Tn

Tp
shown in the right plot of Fig. 15 confirms that our efforts to develop a semi-analytic method

to obtain the percolation temperature Tp are justified.

Thermal parameters. Equipped with the percolation temperature Tp, we compute the thermal
parameters that describe the PT, i.e. the transition strength α and the inverse transition duration
β/H , using the expressions in Eqs. (4.2.69) and (4.2.71), respectively. The results in the left plot
of Fig. 16 show that the transition strength α is large, α ≫ 1, which means that the PT is strong,
even when the error in the revisited approach is significant. This implies that we can safely neglect
the contribution to α in the computation of the SGWB spectrum. The large errors at small gauge
couplings arise from the fourth power of the percolation temperature, which enters the denominator
in the definition of α. On the other hand, the inverse transition duration β/H in the right plot of Fig.
16 shows good agreement, except for the region in which the fit parameter λ̃ changes sign, as shown
in the right plot of Fig. 13. The bump at gauge coupling near g′1 ≃ 0.8 can be explained by the fact
that in the computation of the inverse transition duration β/H , the first derivative of the bounce
action is present. Thus, the fit action in Eq. (4.1.55) is continuous at λ̃ = 0, but its derivative is not
sufficiently smooth.

SGWB spectrum. We validate the revisited approach by computing the Bayesian posterior dis-
tribution over the NANOGrav 15-years dataset using the package PTArcade [230]. The results in
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Figure 15: The percolation temperature Tp and the nucleation temperature Tn (left) and their ratio
Tn
Tp

(right) as a function of the gauge coupling g′1, for the revisited and full approaches.
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Figure 16: The transition strengthα (left) and the inverse transition duration β/H (right) as a function
of the gauge coupling g′1, for the revisited and full approaches. In the bottom left panel, the percent
relative errors are shown with respect to the full one.

the left plot of Fig. 17 show that the 68% and 95% confidence regions overlap and are mutually
consistent. In the right plot of Fig. 17, we compare the SGWB spectrum obtained with the revis-
ited approach against the one obtained with the full numerical results, for the best-fit parameters
(χ0[GeV], g′1) = (0.79, 0.68). The masses of the DS particles in Eq. (4.3.6) are

mA = g′1χ0 = 0.537 GeV , mS =

√
6g′21
4π

χ0 = 0.071 GeV . (4.3.17)
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An important advantage of the revisited framework is that the time required to compute the pos-
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Figure 17: Bayesian posterior distribution over the NANOGrav dataset as a function of the gauge
coupling g′1 and the VEV χ0 (left) and the SGWB spectrum h2ΩGW (right) of best-fit parameters as a
function of the frequency f .

terior distributions using the Markov chain Monte Carlo algorithm in PTArcade: from days for the
full numerical approach with the numerical integration of Eq. (3.3.17) to minutes with the revisited
framework.

Physical insights. The framework developed in this chapter, not only simplifies the computation
allowing for a faster estimate of the SGWB spectrum, but also provides some physical insights as
well. Looking at the percolation temperature Tp and the peak frequency fpeak of bubble collision
SGWB spectrum in Fig. 18 for the range of values g′1 ∈ [0.47, 0.9] and χ0 ∈ [0.1, 1], we observe that
there is only a mild dependence on the VEV χ0, but a strong dependence on the gauge coupling g′1,
since the smaller g′1 corresponds to stronger supercooling, leading to lower Tp and, consequently, a
lower fpeak. We can justify this behaviour by looking at the revisited polynomial effective potential in
Eq. (4.2.22) and the fit bounce action in Eq. (4.1.55) in terms of the revisited collective couplings in Eq.
(4.2.24). In fact, the dependence on the VEV χ0 of the coefficients in Eq. (4.3.10) is only logarithmic
in the quartic one

λ(T ) =
3g′1

4

32π2
ln
g′1

4χ4
0e

a2bT
4
, (4.3.18)

which means that the impact of the VEV χ0 is visible only with orders of magnitude changes.
On the other hand, the dependence on the gauge coupling g′1 is more significant, as it appears in

all the coefficients. To make this analysis quantitative, we first estimate how the parameter λ̃ in Eq.
(4.1.50) changes as the parameters vary. With the collective couplings in Eq. (4.2.24)

g22 = 3g′1
2
, g3 = 3g′1

3
, g′4 = 3g′1

4
ln
g′1

4e

a2b
, g′′4 = 12g′1

4
, (4.3.19)
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Figure 18: Values of the percolation temperature Tp (left) and the peak frequency fpeak (right) as a
function of the gauge coupling g′1 and the VEV χ0.

and (4.2.26)

l1 =
g22g

′
4

24g23
=

1

24
ln
g′1

4e

a2b
, l2 =

g22g
′′
4

24g23
=

1

6
, (4.3.20)

we obtain the dependence of λ̃ in Eq. (4.2.25) on the gauge coupling g′1 and the VEV χ0

λ̃ =
1

24
ln
g′1

4e

a2b
− 1

6
ln
T

χ0

. (4.3.21)

This means that the dependence of λ̃ in the parameters is only logarithmic, which is nearly constant
and can therefore be neglected. Then, we estimate the effective potential at two relevant points: the
barrier width χb and the barrier height Veff(χt). The former is computed using the definition in Eq.
(4.1.25)

Veff(χb, T ) =
m(T )2

2
χ2
b −

k(T )

3
χ3
b −

λ(T )

4
χ4
b = 0 ⇒ χb =

2k(T )

3λ(T )

(√
1 +

9

2
λ̃(T )− 1

)
,

(4.3.22)
which implies that, at fixed T , the barrier width in Eq. (4.3.22) roughly goes as

χb ∝
k(T )

λ(T )
∝ 1

g′1
, (4.3.23)

where we have substituted in Eq. (4.3.10) and again neglected the logarithmic contribution. The
relation in Eq. (4.3.23) shows that the barrier width χb is inversely proportional to the gauge coupling
g′1, which means that the smaller the gauge coupling, the larger the barrier width. Regarding the
barrier height, we determine it by taking the first derivative of the polynomial effective potential in
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Eq. (4.2.22) to find the location of the maximum χt

dVeff

dχ

∣∣∣
χt

= m2(T )χ− k(T )χ2 − λ(T )χ3 = 0 ⇒ χt =
k(T )

2λ(T )

(√
1 + 4λ̃(T )− 1

)
, (4.3.24)

which implies that, under the same consideration as before, the location of the maximumχt behaves
as

χt ∝
k(T )

λ(T )
∝ 1

g′1
. (4.3.25)

Note that the ratio between the barrier width χb in Eq. (4.3.23) and the barrier height χt in Eq.
(4.3.25) is almost constant. Furthermore, we substitute in Eq. (4.3.25) back into the polynomial
effective potential in Eq. (4.2.22) to find that the height of the barrier mildly depends on the gauge
coupling g′1

Veff(χt) =
m2(T )

2
χ2
t −

k(T )

3
χ3
t −

λ(T )

4
χ4
t ≃ constant . (4.3.26)

Physically, this implies that small gauge couplings g′1 tend to delay or suppress nucleation, since tun-
neling occurs through a broader barrier, while large couplings make the transition faster. This is ex-
plicitly seen by showing that the ratio between the bounce action S3 and the temperature T given
in Eq. (4.1.55) is proportional to

S3

T
∝ m3(T )

Tk2(T )
∝ 1

g′1
3 , (4.3.27)

which implies that the false vacuum decay rate Γ, given by Eq. (4.2.28), increases as the gauge cou-
pling g′1 increases, because it is dominated by the exponentially sensitive to S3

T
, meaning a less su-

percooled FOPT.

4.3.2 Non-minimal U(1)D model

One of the strengths of the revisited model-independent framework is that it can be applied to
more complicated models than the minimal one, and it also provides physical insights.

We extend the minimalU(1)D model with the addition of a fermion, which is phenomenologically
interesting for dark matter. With respect to the minimal one, the Lagrangian in Eq. (4.3.1) of the non-
minimal U(1)D model takes the form

L = LSM− 1

4
F ′
µνF

′µν+(DµS)
†DµS−λχ|S|4+iN̄R /DNR+iN̄L /DNL−(ySN̄LNR+h.c.) . (4.3.28)

In order to respect gauge invariance of the Yukawa term and to keep the model anomaly-free, we
set QL = 1/2 and QR = −1/2 for the left-handed and right-handed components of the fermion N ,
respectively. The charge of the scalar field S is set to QS = 1.

As in the minimal U(1) model, we identify χ with the magnitude of the real part of the scalar
field S, i.e. χ =

√
2|S|. The one-loop β function for the quartic self-interaction coupling of χ is

(16π2)βλχ = 20λ2χ + 6g′1
4 − 12g′1

2
λχ + 4λχy

2 − 2y4 , (4.3.29)

which, evaluated at the energy scale µ̃ where the quartic coupling vanishes λχ = 0, becomes

(16π2)β̃λχ = 6g′1
4 − 2y4 , (4.3.30)
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which agrees with Eq. (4.2.12). An additional feature we need to ensure is that the one-loop beta
function is positive. This condition imposes a relation between the gauge coupling g′1 and the Yukawa
coupling y

β̃λχ > 0 , 6g′41 − 2y4 > 0 , y < 31/4g′1 ≃ 1.31g′1 . (4.3.31)

After SSB, the field-dependent masses of the DS particles read

m2
A′(χ) = g′1

2
χ2 , m2

S(χ) = β̃λχχ
2 =

6g′41 − 2y4

16π2
χ2 , m2

N(χ) =
y2

2
χ2 . (4.3.32)

Using the revisited model-independent framework, we write the quadratic, cubic and, quartic
collective couplings in Eq. (4.2.24)

g22 = 3g′1
2
+ y2 , g3 = 3g′1

3
, g4(T ) = 3g′1

4
ln
g′1

4χ4
0e

a2bT
4

− y4 ln
y4χ4

0e

4a2fT
4
, (4.3.33)

which are used to write the coefficients of the polynomial effective potential in Eq. (4.2.22) by means
of Eq. (4.2.23)

m2(T ) =
g22T

2

12
=
T 2

12

(
3g′1

2
+ y2

)
, k(T ) =

g3T

4π
=

3g′1
3T

4π
,

λ(T ) =
g4(T )

32π2
=

3g′1
4

32π2
ln
g′1

4χ4
0e

a2bT
4

− y4

32π2
ln
y4χ4

0e

4a2fT
4
.

(4.3.34)

SGWB spectrum. We compute the Bayesian posterior distribution over the NANOGrav dataset
using the package PTArcade [230]. The results in the left plot of Fig. 19 show that the introduction
of the Yukawa coupling changes the 68% and 95% confidence regions, compared to the previous
analysis in the left plot of Fig. 17. In the right plot of Fig. 19, we compute the SGWB spectrum
obtained with the revisited approach for the best-fit parameters (χ0, g

′
1, y) = (0.70 GeV, 0.75, 0.62).

The masses of the DS particles in Eq. (4.3.35) are

mA′(χ) = g′1χ0 = 0.525GeV , mS =

√
6g′41 − 2y4

4π
χ0 = 0.071GeV , mN =

y√
2
χ0 = 0.307GeV .

(4.3.35)

Physical insights. Looking at the percolation temperature Tp and the peak frequency fpeak of
the SGWB spectrum from bubble collisions in Fig. 20 for the range of values g′1 ∈ [0.47, 0.9] and
y ∈ [0.1, 1], at fixed χ0 = 1 GeV since there is only a mild dependence on it, we appreciate the
same behaviour as in the minimal model, the larger the gauge coupling g′1, the smaller the super-
cooling. The white region indicates that the beta function does not satisfy the positivity condition in
Eq. (4.3.31) or excessive supercooling. Furthermore, we can see that for very small Yukawa coupling
y, there is almost no difference compared to the minimal model, as it enters with the second or fourth
power in the polynomial potential coefficients in Eq. (4.3.33). However, the larger the Yukawa cou-
pling y, the more the supercooling. As we did for the minimal model, we can justify this behaviour by
looking at the revisited polynomial effective potential in Eq. (4.2.22). The gauge coupling g′1 appears
in all the coefficients, while the Yukawa coupling y only enters in the quartic and quadratic terms,
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Figure 19: Bayesian posterior distribution over the NANOGrav dataset as a function of the gauge
coupling g′1 and the Yukawa coupling y (left) and the SGWB spectrum h2ΩGW (right) of the best-fit
parameters as a function of the frequency f .
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Figure 20: Values of the percolation temperature Tp (left) and the peak frequency fpeak (right) as a
function of the gauge coupling g′1 and the Yukawa coupling y.

but not in the cubic one in Eq. (4.3.33).
We start by investigating λ̃(T ), by computing the collective couplings in Eq. (4.2.24)

g22 = 3g′1
2
+ y2 , g3 = 3g′1

3
, g′4 = 3g′1

4
ln
g′1

4e

a2b
− y4 ln

y4e

4a2f
, g′′4 = 12g′1

4 − 4y4 , (4.3.36)
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and (4.2.26)

l1 =
3g′1

2 + y2

72g′1
2 ln

(
g′1

4e

a2b

)
− (3g′1

2 + y2)y4

216g′1
6 ln

(
y4e

4a2f

)
, l2 =

3g′1
2 + y2

18g′1
2 − (3g′1

2 + y2) y4

54g′1
6 .

(4.3.37)
Hence, λ̃(T ) in Eq. (4.2.25) is not almost constant but, at fixed g′1, the minus signs in front of the
terms contributing to the fourth power of y makes it decrease as the Yukawa coupling y increases.
With this result, we compute the barrier width χb in Eq. (4.3.22) at fixed gauge coupling g′1

χb =
2k(T )

3λ(T )

(√
1 +

9

2
λ̃(T )− 1

)
. (4.3.38)

The prefactor in Eq. (4.3.38) goes roughly as k(T )
λ(T )

∼ g′1
3

3g′1
4−y4 , neglecting the logarithmic contribution,

and shows that, at fixed gauge coupling g′1, the barrier width χb increases as the Yukawa coupling y
decreases, together with the fact that also λ̃ is small with large y. The stronger fourth-power depen-
dence on the Yukawa coupling y has a more significant impact on the barrier width χb compared to
the gauge coupling g′1 and both the percolation temperature and the peak frequency decrease more
rapidly with increasing y. The same considerations apply for the barrier height χt using the definition
in Eq. (4.3.24). Physically, this implies that large Yukawa coupling y tends to delay or suppress nucle-
ation, since tunneling occurs through a broader barrier, explicitly seen in the prefactor of the ratio
between the bounce action S3 and the temperature T given in Eq. (4.1.55). In fact, the prefactor
going as m3(T )

Tk2(T )
∼ (3g′1

3+y2)3/2

g′1
6 , and the fact that also the λ̃-dependent part of the fit action in Eq.

(4.1.55) increases, imply that the Yukawa coupling y plays the opposite role compared to the gauge
coupling g′1. While increasing g′1 leads to a decrease in the bounce action S3, increasing y has the
opposite effect, enhancing S3. This means that the decay rate Γ given by (4.2.28) decreases as the
Yukawa coupling y increases, meaning a more supercooled PT.
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5 Conclusions
Motivated by the compelling evidence for a Stochastic Gravitational Wave Background (SGWB)

in various Pulsar Timing Array (PTA) datasets, and the possibility that this signal has a cosmological
First-Order Phase Transition (FOPT) origin, this thesis focused on the development of a novel semi-
analytic, model-independent framework to study classically scale-invariant explanations, featuring
Radiative Symmetry Breaking (RSB).

In chapter 2, we described the necessary ingredients from three different branches of physics that
set the stage for understanding FOPT. First, we studied the thermal history of the Universe using the
tools of cosmology, such as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric and theΛCDM
model, and thermodynamics, understanding the necessary conditions for a species to be in thermal
equilibrium in the early Universe. We discussed the theory of Gravitational Wavess (GWs), in the
linearised theory, shifting focus on the properties of a SGWB and its detection using PTAs, obtain-
ing the famous Hellings-Downs correlation pattern. We reviewed the Standard Model (SM) with the
mechanism of Spontaneous Symmetry Breaking (SSB) and introduced Dark Sector (DS) as Beyond the
Standard Model (BSM) candidates. In chapter 3, we investigated the theory of cosmological Phase
Transition (PT), starting with the computation of all the contributions to the effective potential, in-
cluding the one-loop and finite-temperature ones, and the false vacuum decay, including quantum
tunneling and thermal fluctuations. We discussed the nucleation of bubbles and how to track the
progress of the phase transition, obtaining explicitly the false vacuum fraction. Finally, we defined
the relevant thermal parameters that characterise a FOPT and how they enter the SGWB spectrum,
as provided by the most recent results in the literature.

The main results of this thesis lie in chapter 4, where we constructed the new framework in detail.
The motivation for a semi-analytic approach comes from the possibility of avoiding a full numerical
analysis to compute the SGWB spectrum, but also to provide valuable insights into the parameter
space of the particle physics model.

We began by reviewing the established approach, which was developed in Refs. [58–61], that
relies on truncating the high-temperature expansion of the finite-temperature contribution at cubic
order and approximating the one-loop contribution by substituting the field-dependent part with
a temperature-dependent one, which is valid in the regime of large supercooling. In this way, the
effective potential can be written as a polynomial, for small field values near the barrier, where tun-
neling of the scalar field is most probable. In this case, the coefficients of the polynomial are given
directly by the Lagrangian parameters of the model, namely the Vacuum Expectation Value (VEV) of
the scalar field χ0 and collective couplings determined by the particle-mass couplings. For this kind
of potentials, the bounce action S3 can be obtained analytically. After the review of previous liter-
ature, we proposed a revisited method to write down the effective potential as a polynomial. Our
proposal only relies on the high-temperature expansion of the thermal part of the effective potential.
It naturally translates into a polynomial potential when extending one order beyond what previous
literature did, i.e. including the logarithmic term in the expansion of the thermal functions. This
result supersedes the previous approach, avoiding unnecessary approximations.

Furthermore, the established approach provided only the nucleation temperature Tn. Instead,
motivated by the fact that the relevant temperature for the production of GWs during the PT is the
percolation temperature Tp, we derived two straightforward root-finding equations to evaluate it:
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under the assumption of a vacuum-dominated transition, we analytically computed the integral ap-
pearing in the false vacuum fraction, without specifying the expression for the decay rate, by applying
a Gaussian approximation in the general case or by providing a simpler expression derived from a lin-
ear expansion of the bounce action S3, valid only for less supercooling. In fact, the general procedure
to compute the percolation temperature Tp is numerically expensive: it is the solution of an equation
with a double integral coming from the false vacuum fraction, in which the percolation temperature
we search for is in the lower integration limit. Thus, our proposal avoids the numerical integrals
and reduces to a root-finding equation. Finally, we provided analytical expressions for the remaining
thermal parameters, namely the transition strength α and the inverse transition duration β.

To validate but also illustrate our approach, we applied it to phenomenological models, consisting
of dark U(1)D extensions of the SM, both in the minimal form, comprising a dark scalar, responsible
for the FOPT, and a dark photon, necessary to have a first-order PT, and in the non-minimal form,
including also a dark fermion. These models have been shown to explain the PTA signal, making them
an interesting class to which test our semi-analytic approach. Focusing on the minimal model, whose
parameter space is spanned by the VEV χ0 of the scalar field and the gauge coupling g′1, we showed
that the approach proposed in this thesis is able to reproduce the results of a full numerical analysis,
conducted in parallel using the most general form of the effective potential, and CosmoTransitions

to compute the bounce action S3 using the shooting method, with greater precision than the estab-
lished method. Furthermore, we found that the posterior distributions over the North American
Nanohertz Observatory for Gravitational Waves (NANOGrav) 15-year dataset of our approach essen-
tially overlaps the full numerical one. This demonstrates once again the validity of our framework,
while also remarking that a FOPT in U(1)D model is able to explain the PTA signal. We highlight that
the time required to obtain the results with our approach is much shorter than that required for a
full numerical analysis. We reduced the evaluation time for each point in the parameter space from
several minutes to a fraction of a second, cutting the time to obtain the best-fit parameters from days
to minutes.

Additionally, in contrast to the numerical analysis, our approach allows for physical insights into
the dependence of the SGWB spectrum on the Lagrangian parameters. We can justify the mild de-
pendence on the VEV of the scalar field χ0 by looking at the logarithmic dependence on the quartic
coefficient of the polynomial potential. Moreover, we observe that decreasing the gauge coupling
g′1 or increasing the Yukawa coupling y leads to large supercooling, which occurs when the onset of
the PT is delayed such that a period of vacuum-dominated epoch is triggered, enhancing the SGWB
spectrum and making it observable today. The dependence of the SGWB spectrum on the param-
eters can be understood by looking at their contribution to the barrier width χb or the ratio of the
bounce action S3 over the temperature T , which exponentially governs the false vacuum decay rate.

The success of this approach allows to extend its applicability to different models, modifying the
particle content and the gauge group or testing different energy scales. On the other hand, further
refinements of the methods introduced in this thesis are possible.

In Sec. 3.1.6, we argued that daisy resummation could improve the behavior of the effective po-
tential in the high-temperature regime, but this term is included neither in the established approach
nor in the revisited one, as it has been argued that it is unnecessary in Ref. [59]. A possible way to
introduce daisy terms in the polynomial potential would be through its high-temperature expansion.

In Sec. (3.1.2), we showed that on-shell renormalisation conditions lead to a different one-loop
effective potential. Furthermore, an alternative renormalisation scale µ can be applied to the MS
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effective potential, with a natural choice being µ proportional to the energy scale of the theory, such
as the temperature T . A possible extension of this work is to study how the effective potential, and
consequently the PT, behaves under on-shell renormalisation conditions, which leads to a similar
polynomial potential with a different quadratic coefficient, or under variations of the renormalisation
scale µ.

By developing a novel semi-analytic, model-independent framework for supercooled FOPTs, con-
necting microscopic couplings to macroscopic signals of GWs in DS models, such as the SGWB re-
cently reported in PTAs, this thesis contributes to the quest for fundamental physics: a reminder
that, though we know so little about the Universe, each step is necessary, even if it is small.
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