Fornaini, Matteo
(2025)
Foundation and Frontiers in Visual Place Recognition: Advancing Architecture Evaluation and Adaptive Memory Learning.
[Laurea], Università di Bologna, Corso di Studio in
Informatica [L-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (6MB)
|
Abstract
Visual Place Recognition (VPR) refers to the task of identifying the geographic or semantic location depicted in a generic image. This problem is a particularly crucial component for Simultaneous Localization and Mapping (SLAM) in autonomous robotics in an environment in which GPS is not available, as it allows the loop closure algorithm for path correction. However, the practical use of VPR systems is constrained by conventional metrics used for model evaluation, generalization across changing conditions, and the impossibility of complete model retraining on resource-constrained devices.
This work deals with the limitations of standard ranking metrics in VPR by introducing an evaluation methodology based on the analysis of cosine similarity distributions, focusing on Average Precision (AP) to take into account the model's discriminative ability; finally, it proposes and validates a model-agnostic improvement for a continual learning strategy, where the proposed intelligent memory management system improves performance with minimal retraining epochs.
Abstract
Visual Place Recognition (VPR) refers to the task of identifying the geographic or semantic location depicted in a generic image. This problem is a particularly crucial component for Simultaneous Localization and Mapping (SLAM) in autonomous robotics in an environment in which GPS is not available, as it allows the loop closure algorithm for path correction. However, the practical use of VPR systems is constrained by conventional metrics used for model evaluation, generalization across changing conditions, and the impossibility of complete model retraining on resource-constrained devices.
This work deals with the limitations of standard ranking metrics in VPR by introducing an evaluation methodology based on the analysis of cosine similarity distributions, focusing on Average Precision (AP) to take into account the model's discriminative ability; finally, it proposes and validates a model-agnostic improvement for a continual learning strategy, where the proposed intelligent memory management system improves performance with minimal retraining epochs.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Fornaini, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
deep learning,visual place recognition,computer vision,continual learning,vpr,artificial intelligence,SLAM,loop-closure,loop closure detection
Data di discussione della Tesi
15 Luglio 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Fornaini, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
deep learning,visual place recognition,computer vision,continual learning,vpr,artificial intelligence,SLAM,loop-closure,loop closure detection
Data di discussione della Tesi
15 Luglio 2025
URI
Statistica sui download
Gestione del documento: