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Abstract

Visual Place Recognition (VPR) refers to the task of identifying the geographic or semantic
location depicted in a generic image. This problem is a particularly crucial component for
Simultaneous Localization and Mapping (SLAM) in autonomous robotics in an environment
in which GPS is not available, as it allows the loop closure algorithm for path correction.
However, the practical use of VPR systems is constrained by conventional metrics used for
model evaluation, generalization across changing conditions, and the impossibility of complete
model retraining on resource-constrained devices.

This work deals with the limitations of standard ranking metrics in VPR by introducing
an evaluation methodology based on the analysis of cosine similarity distributions, focusing
on Average Precision (AP) to take into account the model’s discriminative ability; finally, it
proposes and validates a model-agnostic improvement for a continual learning strategy, where
the proposed intelligent memory management system improves performance with minimal
retraining epochs.
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Sommario

Con Visual Place Recognition (VPR) ci si riferisce al compito di identificare la posizione
geografica o semantica rappresentata in un’immagine qualsiasi. Si tratta di una componente
particolarmente importante per la localizzazione e la mappatura simultanea (SLAM) nella
navigazione autonoma in un ambiente in cui il GPS non sia disponibile, in quanto consente ad
un algoritmo di loop closure di correggere gli errori accumulati nella rilevazione del percorso.
L’uso pratico dei sistemi VPR è però condizionato dalle metriche di valutazione degli at-
tuali modelli, dalla generalizzazione in condizioni mutevoli e dall’impossibilità di riaddestrare
completamente i modelli su dispostivi con risorse limitate a disposizione.

Questo lavoro affronta i limiti delle metriche di ranking standard usate nel VPR, intro-
ducendo una metodologia di valutazione basata sull’analisi delle distribuzioni di cosine sim-
ilarity e utilizzando l’Average Precision (AP) per tenere conto della capacità discriminativa
del modello; infine, propone e poi convalida un miglioramento dei modelli di apprendimento
continuo, in cui un nuovo sistema intelligente di gestione della memoria migliora le prestazioni
con un basso numero di epoche di retraining.
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Introduction

Visual Place Recognition (VPR) refers to the task of identifying the geographic or semantic
location depicted in a generic image. While VPR can be applied in various domains, the
main field for which it is used is autonomous navigation, as it allows autonomous robots to
recognize previously visited places from visual input alone. This is a necessary component of
the Simultaneous Localization and Mapping (SLAM) algorithm when GPS is not available,
as it enables a cornerstone of SLAM: the loop closure algorithm, which corrects the drift that
the robot accumulates when moving, when it recognizes the same place twice.

Motivation

This thesis is motivated by the need to develop and evaluate VPR systems that can adapt
to diverse environments, with an emphasis on the SLAM task. Rather than simply ranking
architectures, this work focuses on testing how different VPR algorithms and models perform,
adapt, understand, and generalize across different datasets and conditions. Moreover, while
many deep learning-based VPR models have demonstrated high performance in offline batch
learning, on a real robotic platform, it is often computationally infeasible to store and retrain
the entire history of observed data each time the environment is revisited. It is therefore
necessary to have efficient continual learning strategies that can update the VPR model with
new information without suffering from catastrophic forgetting, all without exceeding the
hardware constraints of the robot.

Furthermore, the success of a VPR system within a SLAM framework depends not just on
its ability to rank a correct match well, but mainly on its capacity to discriminate between
true re-visitations and visually similar but distinct locations (perceptual aliasing). A high
rate of false positives can lead to inaccurate mapping and catastrophic failures in localization.
This motivates the use of metrics that are different from standard retrieval metrics, reflecting
more accurately the discriminative ability of the learned descriptor extractor.

Problem Statement

This thesis addresses three problems in the domain of Visual Place Recognition:

1. Evaluating Foundational VPR Architectures: Many architectures and models
have been proposed in the VPR field, but there is not yet a study to evaluate, rank, and
understand the decisions taken by those models on different datasets and environments.
This thesis analyzes the foundational VPR architectures to date by evaluating them
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Introduction

on multiple datasets, as well as testing their generalization and using explainability
techniques to analyze the decisions taken. Furthermore, an analysis of the decision
quality as a separation of descriptors is performed on all tests.

2. Limitations of Standard VPR Metrics: Conventional metrics for VPR, such as
Recall@K (R@K) and Average Precision@K (AP@K), evaluate the ranking performance
of a model on the first k elements. However, they do not comprehensively capture its
ability to find a threshold between descriptors of the same or different places. This work
proposes that a direct analysis of the distribution of descriptor similarities is necessary for
a complete evaluation. The problem is to identify and validate a metric that effectively
quantifies this discriminative capability, avoiding the existing statistical and classification
measures that are not adapted to the imbalanced nature of the VPR task.

3. Efficient Continual Learning for VPR: Standard approaches for updating VPR
models in changing environments often require extensive retraining, which is imprac-
tical for autonomous robots with limited computational resources. A model-agnostic
framework that allows for rapid adaptation using only a limited memory of past expe-
riences and current observations is thus needed. This work investigates memory storing
techniques as a solution to make sure that the data kept for training are maximally
informative, therefore improving generalization even with limited training epochs.

Thesis Outline

This thesis is structured with multiple chapters. It first establishes the necessary background,
then details the proposed methodologies, and finally presents the experimental validation of
these approaches.

• Chapter 1: Background gives an overview of the foundational concepts necessary
to understand this work. It begins with an introduction to SLAM, then passes to the
foundation of Neural Networks, with a focus on Convolutional Neural Networks and
Visual Transformers. The chapter concludes with formal introductions to Continual
Learning and Visual Place Recognition.

• Chapter 2: Methodology details instead the technical approach of this thesis. It
describes the specific backbones and aggregators used to build the VPR models, the
state-of-the-art continual learning models for VPR, the most used metrics for Visual
Place Recognition, and the explainability techniques used during the tests.

• Chapter 3: Datasets contains a presentation of some classic VPR datasets for training
and testing the models. These include standard VPR benchmarks like Tokyo-24/7 and
GSV-Cities, as well as datasets designed for specific challenges such as indoor scenes,
dynamic conditions, and continual learning.

• Chapter 4: Experiments reports the set of experiments conducted to compare ar-
chitectures, analyze the proposed metrics, and check the improvement brought by the
proposed method. The results are divided into two main sections: Batch Learning, which
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Introduction

establishes baseline performance, metrics, and cosine similarity separation, and Online
Learning, which tests the effectiveness of the proposed continual learning framework.

• Chapter 5: Conclusions summarizes the key findings of this research, emphasizing
the contributions made in addressing the problem statement, and discusses potential
directions for future work.
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Chapter 1

Background

1.1 Introduction to SLAM

The Simultaneous Localization and Mapping (SLAM) problem consists of the challenge of
allowing a mobile robot to explore an unfamiliar environment, build an accurate map of its
surroundings in real time, and determine its position within that map [1]. SLAM couples two
interdependent tasks:

• Mapping: the robot incrementally constructs a representation of the environment using
onboard sensors.

• Localization: the robot continuously estimates its pose relative to the evolving map.

Because mapping relies on knowing the robot’s position and localization depends on having a
map, SLAM must solve both together—a non-trivial problem that must take into account all
the uncertainties of the sensors.

At each time step, the robot acquires new sensor measurements (e.g., laser scans, camera
images, depth data), compares them against previous observations, and uses this comparison
both to infer its motion and to enrich and improve the map. However, sensor noise and
motion uncertainty accumulate over time, so without corrective mechanisms, the map and
pose estimates drift. Depending on the sensors and algorithms chosen, SLAM systems draw
on techniques from computer vision, graph theory, information theory, and other fields. [2]

1.1.1 Key Concepts

Odometry Odometry refers to the estimation of motion over time using sensor data [3].
Common variants include:

• Wheel odometry: Using wheel-encoder counts.

• Visual odometry: Tracking features across camera frames.

• LiDAR odometry: Registering successive laser scans.

• Inertial odometry: Integrating accelerometer and gyroscope readings.
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1.1. Introduction to SLAM

Although odometry provides short-term motion estimates, it does not build a globally con-
sistent map by itself. Instead, odometry typically serves as an input to the SLAM process,
which uses these incremental motions along with loop closures, landmark detection, and global
optimizations to maintain consistency. Simply using odometry data would result in a drift,
an inevitable sum of small errors made by the sensors. [2]

Landmarks Landmarks are distinctive features of the environment that the robot can detect
and recognize from different angles and poses. In visual SLAM, for example, “keypoints”
or descriptors—highly discriminative image points that remain stable across viewpoints and
positions, as in Fig. 1.1—are used to identify landmarks. During the exploration phase,
landmarks are detected and added to the map. Because consistently re-observing the same
landmarks reduces uncertainty, robust landmark detection is essential to achieve both an
accurate localization and the ability to detect when the robot has returned to a previously
visited area. [2]

Figure 1.1: Landmarks being observed at different positions along the robot’s trajectory.
Figure courtesy: Time Bailey (DWB06)

Data Association Data association is the process of matching the observations of the cur-
rent sensor to the features in the existing map—e.g., identifying the same landmark when
seen twice (see Fig. 1.2). In the short term, recognizing the same landmark in successive
frames supports motion estimation; in the long term, identifying a previously mapped loca-
tion—known as loop closure—allows the system to correct the accumulated drift. However,
real-world environments can be ambiguous (long, featureless corridors) or dynamic (moving
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Chapter 1. Background

objects, changing lighting), making reliable data association one of SLAM’s most difficult
challenges. [2]

Figure 1.2: Association of similar points in different images.

Loop Closure Detection Loop closure detection determines whether the robot has re-
turned to a previously visited spot by analyzing its sensor data. Since incremental motion
estimates invariably drift due to noise, successfully detecting and enforcing loop closures allows
the SLAM back-end to realign the map and correct the robot’s pose, dramatically improving
global consistency (see Fig. 1.3). [4]
When operating in areas where GPS is unreliable or unavailable (such as indoors, in cluttered
urban canyons, or even in space explorations), robots cannot depend on external localization
alone. SLAM gives autonomous systems the ability to navigate unknown areas, generate maps
for tasks such as route planning, and adapt to dynamic environments. Moreover, by recogniz-
ing when it revisits the same place, the robot acquires a robust topological understanding of
its surroundings, far beyond what odometry alone can offer.
However, misidentifications can have dire consequences: with false negative (missed loop), the
robot fails to recognize a known place, allowing drift to persist; with a false positive (spurious
loop), instead, the robot incorrectly merges a new location with an existing map feature, lead-
ing to catastrophic map distortions. Thus, robust loop closure detection—heavily dependent
on accurate data association—is essential for any long-term autonomous navigation system.
[2]
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Figure 1.3: Illustration of loop closure detection showing the estimated path before (left, with
drift) versus after (right, drift corrected) the loop closure realigns the map. [4]

1.1.2 Lifelong SLAM

Lifelong SLAM refers to long-term mapping and localization capable of managing changing
environments to support extended robot autonomy. It remains an active research area, as
practical, general-purpose solutions have yet to be finalized. Two key properties define Lifelong
SLAM:

Robustness Robustness is the system’s ability to handle failures in both software (algo-
rithms) and hardware (sensors) over long navigations. Data association is the main challenge:
fixed sets of visual landmarks may prove unreliable in the real world because of evolving set-
tings. Failures can manifest with missed associations—preventing loop closure—or incorrect
matches, causing mislocalization. To achieve robustness, SLAM frameworks must either main-
tain highly accurate data association or implement reversible processes that detect and undo
incorrect associations, thus restoring map consistency. [2]

Scalability Scalability describes the system’s capacity to map large-scale environments over
time without performance degradation. In lifelong scenarios, the map size (landmarks, poses,
graph size) grows without boundaries, increasing memory usage and matching costs. Ap-
proaches to improve scalability include compact map representations, efficient optimization
algorithms, parallel computation, and intelligent memory management (e.g., deciding when
to update or discard outdated map information and when to load or unload map segments).
Designing strategies for selective forgetting and online map loading is critical to sustaining
real-time performance as the environment evolves. [2]
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Chapter 1. Background

1.1.3 Brief Mathematical Introduction

Moving through the environment and sensing landmarks, the robot at each time step t updates
its state and acquires observations. These quantities are formalized as follows:

• xt: the robot’s state (pose), combining position and orientation.

• ut: the control input applied at t− 1, which drives the robot from xt−1 to xt.

• zt: the observation vector of sensor measurements; the ith landmark’s measurement is
zit.

• m: the map, whose ith landmark resides at location mi.

Let

X0:t = {x0, . . . ,xt}, U1:t = {u1, . . . ,ut}, Z0:t = {z0, . . . , zt}

denote the histories of poses, controls, and observations up to time t.
In 3D SLAM, poses and controls live in the Special Euclidean group SE(3), i.e.

SE(3) =

{
T =

(
R t

0 1

)∣∣∣∣∣R ∈ SO(3), t ∈ R3

}
,

where SO(3) = {R ∈ R3×3 | RR⊤ = I, detR = 1}. For planar (2D) SLAM, we similarly use
SE(2).

x0 is fixed at the map origin. Each control ut is the relative transformation from xt−1 to
xt. Hence

xt = x0 ◦ u1 ◦ u2 ◦ · · · ◦ ut,

where “◦” denotes group composition. Finally, the map m may be represented as a set of
landmark coordinates {mi} or in other formats depending on the sensors and estimation
method employed. [2]
For further reading, [5] is suggested.

1.2 Introduction to Convolutional Neural Networks

1.2.1 Artificial Neural Networks

The idea of artificial neurons dates back to 1943 when McCulloch and Pitts[6] proposed a
simplified mathematical model of a biological neuron. In the following decades, perceptrons
[7] introduced the first trainable models, but various limitations halted early enthusiasm. The
field was revitalized in the 1980s with the development of the backpropagation algorithm,
allowing multilayer networks to be trained effectively. Since then, neural networks have been
widely used on many tasks and have become the central tool in modern machine learning.
Artificial Neural Networks (ANNs) consist of interconnected neurons, each computing

y = σ
(
w⊤x+ b

)
, (1.1)
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1.2. Introduction to Convolutional Neural Networks

where x is the input, w the weight vector, b a bias, and σ(·) a nonlinear activation (e.g.
ReLU or sigmoid). Neurons are arranged in an input layer, one or more hidden layers, and
an output layer, forming a feed-forward topology (see Fig. 1.4). When multiple hidden layers
are stacked, we refer to the result as deep learning. [8]

Input 1

Input 2

Input 3

Input 4

Output

Figure 1.4: A simple three-layered feed-forward neural network (FNN) composed of an input
layer, a hidden layer, and an output layer. This structure is the basis of several common ANN
architectures.

Learning Paradigms

• Supervised learning: Training on labeled pairs (x, y), minimizing a loss function so
predictions matching targets.

• Unsupervised learning: Learning from unlabeled data; models optimize internal cri-
teria.

• Self-supervised learning: Learning useful representations by solving pretext tasks
where labels are automatically generated from the data itself; supervision is derived
from structure or augmentation of inputs.

Most image recognition tasks use supervised learning to train ANNs for classification or re-
gression.

When training a neural network, the goal is to update its internal parameters—weights
and biases—so that it improves at the task it is learning. After making a prediction, the
model compares it with the true one using a loss function. Then, using backpropagation, it
computes how much each weight and bias contributed to the error. These values are then
corrected in the direction that reduces the loss, step by step, through gradient descent. Over
time, this process should tune the network to perform better on the given task. [8]

10



Chapter 1. Background

1.2.2 Convolutional Neural Networks (CNNs)

CNNs were first introduced by LeCun et al. in the late 1980s and early 1990s, most notably with
the LeNet [9] architecture for handwritten digit recognition. These models were inspired by the
visual cortex and designed to exploit the spatial structure of images. However, widespread
adoption only came later, with increased computational power, large labeled datasets, and
GPU acceleration. A key turning point was AlexNet [10], which dramatically outperformed
other methods in the ImageNet competition and brought CNNs to the spotlight of computer
vision.

Motivation for Convolutional Networks

Fully connected ANNs scale poorly with image size. For a 28 × 28 grayscale image, a single
hidden neuron requires 28× 28 = 784 weights. For a 64× 64× 3 color image, that jumps to
64× 64× 3 = 12,288 weights per neuron—before adding more layers. Large networks become
computationally expensive, memory-hungry, and prone to overfitting since many parameters
must be estimated from limited data. [8]

Convolutional Networks

CNNs introduce two key ideas that exploit image structure:

• Local receptive fields: Each convolutional neuron connects only to a small patch (e.g.,
3× 3 or 5× 5) of the previous layer, reducing parameters.

• Weight sharing: The same convolutional filter (kernel) is applied across all spatial
locations, achieving translation invariance.

A convolutional layer with C filters transforms an H ×W × D input into an H ′ ×W ′ × C
feature map tensor, where each channel encodes one learned pattern (see Fig. 1.5). Following
convolutions, pooling layers (e.g., 2× 2 max-pooling) downsample spatial dimensions, further
reducing the computation and introducing robustness to small translations. [8]

Overfitting and Regularization

Deep networks with many parameters risk overfitting, learning noise instead of general features,
or even learning entire parts of the training set. Strategies to mitigate overfitting include:

• Architectural constraints: Local connectivity and weight sharing in CNNs drastically
limit parameter counts.

• Pooling: Reduces feature map size and filters out minor variations.

• Dropout, weight decay, data augmentation: common regularization techniques
during training.
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1.2. Introduction to Convolutional Neural Networks

Figure 1.5: An example of 2-D convolution without kernel flipping. Boxes with arrows are
drawn to indicate how the upper-left element of the output tensor is formed by applying the
kernel to the corresponding upper-left region of the input tensor. [11]

Overall CNN Architecture

A typical CNN for image classification or retrieval consists of

1. Convolutional + activation: Filters scan the input to detect local features, followed
by nonlinearities (e.g., ReLU).

2. Pooling: Spatial downsampling (max- or average-pooling) to build invariance and
shrink data size.

3. (Repeated blocks): Stacking multiple conv–pool blocks to learn hierarchical represen-
tations.

4. Fully connected or global pooling: Collapse spatial dimensions to produce final
descriptors or class scores.

Fig. 1.6 illustrates a simple five-layer CNN for MNIST digit classification. By combining local
connectivity, shared weights, and pooling, CNNs achieve efficient and scalable feature learning
that outperforms traditional ANNs on high-dimensional visual data. [8]

For further reading, [11] is suggested.
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Chapter 1. Background

Figure 1.6: A simple CNN architecture composed of five layers. [8]

1.3 Brief introduction to Visual Transformers

Transformers were introduced in the seminal paper “Attention Is All You Need” by Vaswani
et al. (2017) [12], in the context of Natural Language Processing (NLP). At the time, the
dominant models were limited in their parallel computing power and long-term modeling.
Transformers solved these limitations by relying entirely on a mechanism called self-attention,
which allows the model to weigh the relevance of each element in the input sequence with re-
spect to all others, regardless of distance or position. This change enabled both parallel
computation and improved performance on long-range dependencies. For instance, in ma-
chine translation, a word at the end of a sentence could directly attend to the word at the
beginning without being blocked by sequential steps.

Transformer Encoder-Decoder Architecture

Transformers use stacked encoder and decoder blocks, each composed of Multi-Head Self-
Attention (MHSA) and feed-forward sublayers. Given an input sequence, the encoder applies
six identical layers of MHSA where each token serves simultaneously as query, key, and value.
It also applies a position-wise Multilayer Perceptron (MLP), allowing each token to attend
globally across the sequence. The decoder mirrors this stack but adds a masked MHSA in
each layer to prevent future token leakage, followed by cross-attention to encoder outputs. [13]

Basic Attention The core of the transformer is the attention mechanism, which allows
each token to pay attention dynamically to all others in the input sequence. Given a token
embedding, the model computes how relevant each other token is to it, assigning a higher
weight to more informative ones.

To do so, the input sequence is linearly projected into three spaces:

13



1.3. Brief introduction to Visual Transformers

• Queries Q ∈ Rn×dk ,

• Keys K ∈ Rn×dk ,

• Values V ∈ Rn×dv ,

where n is the sequence length. The attention output is then computed as a weighted sum
over the values:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V. (1.2)

The softmax function turns the similarity scores QK⊤ into probabilities, allowing the
model to focus selectively on different tokens. The division by

√
dk scales the dot product,

preventing large values from pushing the softmax into saturation, which would damage the
learning phase.

Multi-Head Attention. Rather than computing a single attention function, the model runs
multiple heads in parallel. Each head learns a different projection and attends to different
parts of the sequence. The outputs of the h heads are concatenated and projected back:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O.

Figure 1.7: A transformer model structure. [13]
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Chapter 1. Background

1.3.1 Visual Transformers

Despite their origin in NLP, given the amazing results they achieved, the transformer architec-
ture began to spread to different domains of machine learning. In vision, early attempts like
the 2018 Image Transformer [14] adapted attention to handling small image patches but did
not yet rival convolutional approaches. Only in 2020 did the Vision Transformer (ViT) [15]
demonstrate that pure self-attention could rival CNNs on large-scale image classification. A
ViT divides each input image (e.g., 224×224) into non-overlapping patches (e.g., 16×16), flat-
tens, and linearly projects them into a sequence of tokens. Then, it adds learnable positional
embeddings and processes them through stacked transformer encoder blocks. By replacing
convolutions with global self-attention, ViT captures long-range dependencies and outputs
highly generalized feature representations. [13]

Figure 1.8: A Visual Transformer model structure: the image is fragmented into many patches,
which are then fed to the attention-based transformer encoder. [13]

1.4 Introduction to Continual Learning

Continual learning (CL) is the ability of an artificial system to learn from data that comes as
a stream over time and to adapt to new tasks or environments without forgetting past knowl-
edge. In other words, a continual learner should be able to accumulate knowledge, apply it
across different contexts, and update itself on the fly, much like biological systems do. [16]

While this sounds intuitive, current deep learning models are far from achieving it, as they do
not have a memory for seen data. Unlike humans, who can adapt, retain, and store knowledge
even in the face of changing environments, most neural networks forget almost everything they
have learned when exposed to new data. This phenomenon is called catastrophic forgetting.
This is largely due to how gradient descent works: optimizing for a new task typically means
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overwriting the parameters learned from previous ones.
As soon as this issue was recognized, the community began developing methods to counter
it. Over the years, CL has evolved into a research field of its own to design systems that can
learn continuously, generalize across tasks, and selectively forget what is no longer useful. [16]

Requirements A continual learning system must be able to acquire new concepts over
time, preserve relevant knowledge while discarding what is no longer relevant, and reuse (i.e.,
transfer) its experience across tasks.

Biological agents achieve this balance naturally—humans learn sequentially, adapt to sud-
den distribution shifts, and rarely suffer a catastrophic loss of past knowledge. Gradient-based
neural networks, in contrast, are highly plastic: when optimized on new data, they tend to
overwrite earlier memories. Addressing this interference has driven much of the recent progress
in continual (a.k.a. lifelong or incremental) learning.

An autonomous robot, an always-on speech assistant, or any embodied agent deployed in
the wild cannot afford to retrain from scratch each time its environment changes. Instead, it
must learn on the fly under strict resource budgets—limited labels, bounded memory, finite
compute power. In short, it must resolve the classic stability–plasticity dilemma: remain
plastic enough to absorb novelty, yet stable enough to protect prior skills. [16]

Practical requirements A realistic continual learning module, therefore, should:

• Learn with few (or zero) labels: Mirror the curiosity and self-supervision of biolog-
ical learners.

• Operate without task boundaries: Infer shifts autonomously rather than rely on
external signals.

• Handle unforeseen situations: Generalize past the set of conditions seen during
development.

• Ingest streaming sensory data: Update online instead of in large, pre-shuffled
batches.

• Respect tight resource budgets: Function under fixed memory, energy, and compute
constraints.

• Forget well: Forget outdated or misleading information in a controlled manner—an
ability mostly ignored in current literature, yet commonplace in humans.

1.5 Introduction to Visual Place Recognition

Visual Place Recognition (VPR) refers to the task of identifying the geographic or semantic
location depicted in an image (or sequence of images). Often formulated as an image re-
trieval problem, VPR relies on a database of reference images, each annotated with a location
identifier (e.g., landmark name or GPS coordinate) [17]. Given a query image to localize, the
system performs an encoding step, where each image (database and query) is transformed into
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a fixed-length feature vector via descriptors or deep networks; a similarity search, which com-
pares the query vector against all database vectors using a distance metric (usually Euclidean
or cosine) to retrieve top matches; and then a post-processing operation, refining of the initial
matches through geometric verification, spatial filtering, or learning-based re-ranking. This
step is optional and not always implemented.

Figure 1.9: Three-stage VPR pipeline: (1) feature encoding computed offline for database and
online for query, (2) similarity search retrieves top-K matches, (3) (optional) post-processing
refines results. [17]

Related Fields

While VPR has been typically framed as an image retrieval problem for SLAM, it also inter-
sects with several other areas, each offering mutual insights:

• Image Retrieval: Like general image retrieval, VPR involves matching visual content
across databases. However, the goal in VPR is not just to find semantically similar
images but to locate the exact place, often under varying conditions like day vs. night.
This makes VPR more constrained and sensitive to perceptual aliasing, where different
places may look alike. [18]

• Video Retrieval: Sequence-based VPR methods relate closely to video retrieval, where
individual frame matches are aggregated across time. New approaches now represent
entire sequences directly, improving robustness to appearance changes and temporal
variation. [19]

• Landmark Recognition: Landmark recognition focuses on classifying images into
specific, named landmarks. VPR, by contrast, targets ordinary, potentially unnamed
locations. Despite this, advances in landmark retrieval—such as descriptor learning and
large-scale matching—are proving useful for VPR as well. [20]

• Overlap Detection: VPR assumes partial visual overlap between query and database
images. This links it to the task of visual overlap detection, which has led to new
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ground truth definitions and evaluation strategies. Overlap-based metrics (e.g., normal-
ized surface overlap) can even be used as supervision signals when GPS is unavailable.
[21]

1.5.1 Describing Places

Before deep learning, VPR relied on hand-crafted image descriptors, specifically designed
algorithms that extract informative patterns from the image. These features usually capture
edges, textures, corners, or other local structures that a human would consider relevant for
visual understanding.

They typically fall into two main categories, as shown in Fig. 1.12:

• Global descriptors: The image is encoded as a whole.

• Local descriptors: Features are extracted from multiple keypoints or regions and
aggregated into a single representation.

Examples of hand-crafted features: Two classic examples of hand-crafted feature extrac-
tors are Histogram of Oriented Gradients (HOG)[22] and Scale-Invariant Feature
Transform (SIFT)[23]. They both produce descriptors of an image, but while HOG fo-
cuses on capturing local edge directions (see Fig. 1.10), SIFT detects and describes distinctive
keypoints, remaining robust to scale and rotation (see Fig. 1.11).

Input image Histogram of Oriented Gradients

Figure 1.10: HOG encodes local gradients in fixed grids.

Local Descriptor Aggregation

Local descriptors are extracted around salient image patches or keypoints. Each patch is
described using local texture and gradient information—SIFT being a classic example [24].
To a scale, costly descriptor-to-descriptor matching is avoided, aggregation strategies group
these features into compact global vectors, allowing fast image retrieval via vector similarity.
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Original vs Transformed
(all matches)

Original vs Transformed
(subset of matches)

Figure 1.11: SIFT detects and describes scale and rotation-invariant keypoints.

Figure 1.12: Local vs. global descriptors: (a) salient keypoint detection and description; (b)
grid-based global encoding.
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Visual Vocabulary Construction The first step is to generate a codebook by clustering
descriptor samples (e.g., k-means) into visual words, and then each descriptor is assigned to
its nearest word to form sparse histograms (Bag-of-Words); finally, weighting and retrieval
are achieved by applying TF–IDF or binary weighting and computing cosine similarity. With
inverted indices, the time required is sub-linear.
These methods follow a two-step paradigm:

1. Embedding step: Each local descriptor is mapped into a higher-dimensional space to
enhance distinctiveness and suppress false positives;

2. Aggregation step: The embedded vectors are pooled into one fixed-length image de-
scriptor.

For example, the Vector of Locally Aggregated Descriptors (VLAD) [25] embedding discards
matches between features assigned to different centroids in the codebook.

Global Scene Descriptors

Global descriptors (e.g., HOG) encode the whole image rapidly. They are lower-cost and
illumination-invariant but less robust to viewpoint and occlusion. These hand-crafted tech-
niques laid the foundation for convolutional representations.

1.5.2 Deep Learned Representations

Convolutional Neural Networks (CNNs) are specialized for processing grid-like data such as
images. Since the breakthrough of deep CNNs in visual tasks [26], they have been shown to
produce transferable image representations [27]. In image retrieval, NN-derived features now
outperform hand-crafted methods.

Fully Connected Representations

Early works [27] used activations from a network’s final fully connected (FC) layer, pre-trained
on ImageNet as global image descriptors. Training specifically for retrieval with triplet loss
further improved performance [28]. However, FC networks lack robustness to occlusions and
translation, require fixed input sizes and many parameters, and remain computationally heavy
when extracted from sub-patches.

Convolutional Representations

Rather than using FC outputs, convolutional feature maps form an H×W×C tensor capturing
local patterns. Naively flattening these maps does not fully leverage spatial structure, so two
main strategies emerged:

Aggregated Representations Treat the H×W grid of C-dimensional descriptors like dense
local features. Apply embedding and pooling inspired by hand-crafted methods:

• VLAD/Fisher Vectors/ASMK (Aggregated Selective Match Kernels): Embed
each descriptor then aggregate into a single vector [25, 29, 30];
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• NetVLAD: Differentiable VLAD layer for end-to-end learning [18];

• CNN+Fisher: Joint training of CNN and Fisher Vector module [31].

Pooled Representations Summarize convolutional maps with simple pooling:

• MAC (Maximum Activations of Convolutions): Max-pool each feature map [32];

• SPoC (Sum-Pooled Convolutional features): Sum-pool then whiten descriptors
[33];

• R-MAC (Regional Maximum Activations of Convolutions): Aggregate regional
max-pooled vectors over multiple scales [34];

• GeM (Generalized Mean Pooling): Parametric generalized-mean pooling, learnable
and subsumes MAC/SPoC [35].

These CNN-based descriptors use the CNN as a backbone to extract features and then
combine them with pooling or aggregation that preserves spatial information.

Visual Transformer Backbones

While CNNs remain the dominant architecture for visual representation learning, transformer-
based models have recently emerged as a strong alternative. Visual Transformers (ViTs) [15]
discard convolutions in favor of global self-attention, modeling long-range dependencies across
image patches. Instead of scanning local neighborhoods, ViTs split an image into fixed-size
patches, flatten and embed each, and process them as a sequence using transformer layers.
This global context allows ViTs to capture semantic structure better and as a whole com-
pared to CNNs. Pretrained ViTs yield powerful features that transfer well to downstream
tasks, including retrieval [36, 37]. Their representations are spatially aware, flexible in input
resolution, and tailored for token-level aggregation. Although computationally more demand-
ing, ViT-based backbones are now outperforming CNNs on most image retrieval benchmarks.
When used as a backbone, paired with an aggregator and a re-ranking algorithm, these models
achieve incredible results on VPR tasks, such as the 100% recall rate on Tokyo 24/7. [38]
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Methodology

Problem Formulation

Visual Place Recognition can be cast as an image retrieval task. Let

DB = {Ii}Ni=1, Q = {Ij}Mj=1

be the database of reference images and the query set, respectively. The goal is to find all
pairs (i, j) such that Ii ∈ DB and Ij ∈ Q depict the same place. For each image I a descriptor
f = ϕ(I) ∈ RD is extracted, where ϕ is a learned or hand-crafted feature extractor: descriptors
of the same place lie close in RD, while those of different places lie far apart. The similarity
matrix, which indicates the similarity between any two descriptors, is S ∈ RN×M with entries

sij = sim
(
ϕ(Ii), ϕ(Ij)

)
where sim may be cosine similarity or negative Euclidean distance. The retrieval step for each
query j, ranks all database images i by descending sij and selects the top-K; i.e. the predicted
matches are

{(i, j) | Ii ∈ DB, Ij ∈ Q, i ∈ argtopK
i′∈DB si′j}.

VPR performance is classically evaluated by how accurately these top-K lists recover the true
matching pairs. [39]

Feature extractors

As specified above, the feature extractors may be hand-crafted or learned. This thesis focuses
on learned feature extractors; therefore, the following section will cover this type. Learned
feature extractors are obtained by two main components: backbones and aggregators. The
backbone component is the one that takes care of extracting the important features from the
image, while the aggregator selects and aggregates the extracted features for the task.
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2.1 Backbones

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have long been the preferred backbones for VPR tasks.
By stacking convolutional filters and pooling operations, CNNs gradually build hierarchical
feature maps that capture edges, textures, and increasingly more detailed scene patterns.
Off-the-shelf architectures such as VGG and ResNet serve as feature extractors: the usual
procedure is to remove the final classifier, pool the last convolutional activations (or use instead
the penultimate fully connected layers), and use the resulting vector as the image descriptor
ϕ(I). These descriptors, when compared via cosine similarity or learned embeddings, return
strong place matches even under moderate viewpoint and illumination changes.

VGG

VGG [40] stands for Visual Geometry Group, and it is a CNN that uses a uniform stack of
small 3 × 3 convolutions layers, each followed by ReLU activations and periodic 2 × 2 max-
pooling to halve spatial resolution. After five convolutional blocks, three large, fully connected
layers collapse the feature maps into a 4096-dimensional vector (see Fig. 2.1). VGG models
are usually composed of either 16 or 19 layers. The model ends with a series of fully connected
layers followed by a softmax for classification. The number of layers is capped at 19 because
VGG and similar architectures share a significant issue: the weights of a neural network are
updated through the backpropagation algorithm, which makes a minor change to each weight
so that the loss of the model decreases. It does so by updating each weight so that it takes a
step in the direction along which the loss decreases, according to the gradient of the weight,
which can be found using the chain rule. However, as the gradient keeps flowing backward
to the initial layers, the value of the gradient keeps becoming smaller and smaller, sometimes
even vanishing. This problem is referred to as the vanishing gradient.

ResNet

ResNet [41] introduced identity-skip connections to ease the training of very deep nets to solve
the vanishing gradient problem. A residual block computes

y = σ
(
x+ F(x)

)
, F(x) = W2 σ

(
W1 x+ b1

)
+ b2,

where W1,W2 are 1 × 1 and 3 × 3 (or vice versa) convolutions, x is the input and σ is the
activation function, usually a ReLU (see Fig. 2.2). Stacking these blocks yields networks of
50+ layers that learn features at multiple scales. For VPR, one uses the output of the final
global-pooled layer (e.g., a 2048-D vector) as the image descriptor ϕ(I). The residual design
improves gradient flow and yields more discriminative embeddings than plain CNNs.
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Figure 2.1: VGG classic model structure for classification: a stack of a series of convolutions
followed by max pooling. The model ends with a series of fully connected layers followed by
a softmax for classification. In a VPR task, we would remove the last softmax layer.

Figure 2.2: A classic ResNet block: the output of the block is a ReLU of both the skip
connection (the input before being passed to the function) and the elaborated input by the
intermediate layers.
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2.1.2 Visual Transformers

More recently, Vision Transformers (ViTs) have emerged as powerful alternatives to CNNs as
backbones. ViTs break images into patch tokens, add positional embeddings, and apply global
self-attention to model global relationships across the entire scene, rather than only within
local neighborhoods. The models are trained either with supervised labels or self-supervised
objectives (e.g., DINOv2), and they produce descriptors that excel at capturing long-range
spatial patterns, making them particularly effective in challenging VPR scenarios such as
significant viewpoint shifts or dynamic environments. Most ViT models can be used as foun-
dation models [42]: as foundation models, ViTs serve as the universal backbone, and they can
be plugged in as task-specific heads or with or without fine-tuning to achieve state-of-the-art
results with minimal labeled data. In practice, a ViT backbone yields a fixed-length class-token
embedding, which, like a CNN’s pooled feature, can be directly used for retrieval or handled
by the aggregator.

DINO and DINOv2

Until 2020, Visual Transformers barely reached the same performance as CNNs while still
being computationally more demanding, requiring more training data, and without any unique
properties striking out from their features [36]. The breakthrough was achieved by switching
from supervised to self-supervised learning: the attention mechanism was able to focus by
itself on the most important part of the images, even in a complex environment (see Fig. 2.3).
The first model to take this approach was the DINO model (DIstillation with NO labels).

Self-Supervised Learning via Knowledge Distillation

DINO frames self-supervision as a form of online knowledge distillation between a student
network gθs and a teacher gθt (see Fig 2.4), where the teacher’s weights θt are an exponential
moving average (EMA) of the student’s:

θt ← λ θt + (1− λ) θs, λ∈ [0.996, 1]. (2.1)

Given an image x, two global crops xg
1, x

g
2 and several smaller local crops xℓ are generated. The

student and teacher each produce a class token embedding, projected by separate MultiLayer
Perceptron (MLP) heads into K prototype logits. After softmax with temperatures τs, τt,
distributions Ps and Pt are obtained by centering on the teacher outputs. The core loss aligns
every student view x′ to each teacher global view x:

min
θs

∑
x∈{xg

1,x
g
2}

∑
x′ ̸=x

H
(
Pt(x), Ps(x

′)
)
, (2.2)

where H(a, b) = −
∑

a log b. No negative pairs, queues, or predictors are required—DINO’s
momentum teacher and multi-crop cross-entropy are enough to yield rich and invariant ViT
features for many different tasks, including VPR.
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Figure 2.3: Self-attention from a Vision Transformer with 8 × 8 patches trained with no
supervision. The self-attention of the [CLS] (starter) token on the heads of the last layer
is highlighted. This token is not attached to any label or supervision. These maps show
that the model automatically learns class-specific features, leading to unsupervised object
segmentations. [36]

Figure 2.4: The model passes two different random transformations of an input image to
the student and teacher networks. Both networks have the same architecture but different
parameters. The output of the teacher network is centered with a mean computed over the
batch. Each network outputs a K-dimensional feature that is normalized with a temperature
softmax over the feature dimension. A stop-gradient (sg) operator is applied to the teacher to
propagate gradients only through the student. [36]
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DINOv2 improvements

DINOv2 [37] builds on the original DINO framework by vastly improving data efficiency and
feature quality through a stronger ViT backbone and enhanced self-supervision. Instead of
relying solely on the dual-crop image-level objective of DINO, DINOv2 combines both image
and patch-level losses—specifically, the DINO and iBOT [43] objectives—while also maintain-
ing the Sinkhorn-Knopp [44] centering scheme and incorporating a KoLeo [45] regularizer for
improved feature distribution.

The image-level objective compares features extracted from different views (crops) of the
same image via a student–teacher setup. Both networks process the image using their own
ViT backbone and produce class tokens. The student output is passed through an MLP head
and converted into a probability vector ps ∈ RK via softmax. The teacher does the same, and
its output is normalized using centering with Sinkhorn-Knopp to obtain pt. The DINO loss is
then defined as a cross-entropy between these two distributions:

LDINO = −
K∑
k=1

(pt)k log(ps)k (2.3)

Simultaneously, DINOv2 applies a patch-level objective inspired by iBOT. Some patches
are randomly masked in the student’s input while the teacher sees the full image. The class
probabilities ps,i, pt,i ∈ RK′

for patch position i are obtained via softmax from the corre-
sponding tokens, and the loss compares each unmasked patch using the same cross-entropy
formulation:

LiBOT = −
M∑
i=1

K′∑
k=1

(pt,i)k log(ps,i)k

where M is the number of visible (unmasked) patches and K ′ is the number of patch-level
prototypes.

At scale, DINOv2 uses separate MLP heads for the image- and patch-level tasks, as untied
heads yield better performance than sharing weights.

To further enhance representation uniformity, DINOv2 introduces the KoLeo regularizer
based on the Kozachenko–Leonenko differential entropy estimator. This term encourages
feature vectors to be well-distributed in the embedding space. Given n ℓ2-normalized feature
vectors (x1, . . . , xn), the loss is defined as:

LKoLeo = −
1

n

n∑
i=1

log(dn,i), where dn,i = min
j ̸=i
∥xi − xj∥2 (2.4)

where dn,i is the distance between xi and its closest neighbor among the other vectors.
Finally, to improve fine detail capture—essential for pixel-level downstream tasks like seg-

mentation—DINOv2 performs a short fine-tuning phase at higher resolution (518×518). This
resolution upscale applied only at the end of training helps recover small object features with-
out the heavy computational burden of training entirely at high resolution.

These improvements result in descriptors that are more discriminative and robust, partic-
ularly in challenging scenarios involving viewpoint shifts or appearance changes. [37]
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SWIN

Swin Transformer[46]—short for “Shifted Window” Transformer—is a hierarchical Vision
Transformer designed for efficiency and locality. It first embeds the image into non-overlapping
patches and then processes them through stages that progressively reduce spatial resolution,
just like a CNN’s feature pyramid. Within each stage, self-attention is computed only inside
fixed-size windows (e.g., 7×7), dramatically cutting the quadratic cost of global attention. To
allow information to flow across window boundaries, consecutive layers “shift” the window
grid by a fixed offset so that each token eventually attends to neighbors in adjacent windows
(see Fig. 2.5). For VPR, features from the last stage (e.g., a 1024-D vector) are used directly
or further aggregated to form ϕ(I).

Figure 2.5: An illustration of the shifted window approach for computing self-attention in
the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning
scheme is adopted, and self-attention is computed within each window. In the next layer, l
+ 1 (right), the window partitioning is shifted, resulting in new windows. The self-attention
computation in the new windows crosses the boundaries of the previous windows in layer l,
providing connections among them. [46]

2.2 Aggregators

Image Vector Representations

Image-level representations can be built by aggregating local descriptors into a fixed-size vec-
tor. The prototypes of aggregators- such as BoF, VLAD, and Fisher Kernel -were static and
unable to ”learn” anything from the data. The state of the art now requires instead a few
final layers on the Neural Network to learn the correct parameters for the aggregation step,
as in GeM and NetVLAD.

Bag of Features (BoF) Local descriptors are clustered into k visual words using k-means.
Each descriptor is assigned to its nearest centroid, and an image is represented as a k-
dimensional histogram counting assignment. Normalization (typically ℓ2) and IDF reweighting
improve discriminability. Variants such as soft assignment further improve the quantization
step.

Fisher Kernel Fisher Vectors generalize BoF by modeling the distribution of descriptors
with a Gaussian Mixture Model (GMM). An image is encoded by the gradient of the log-
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likelihood of its descriptors with respect to the GMM parameters. FVs capture higher-order
statistics and often outperform BoFs with fewer visual words. [29]

VLAD VLAD (Vector of Locally Aggregated Descriptors) bridges BoF and Fisher by re-
taining local residuals while discarding probabilistic modeling. After computing a k-means
codebook c1, . . . , ck, each descriptor x is assigned to its nearest centroid ci=NN(x). VLAD
accumulates residuals x− ci for each ci:

vi,j =
∑

x | NN(x)=ci

xj − ci,j

The final vector v is ℓ2-normalized. Despite its simplicity, VLAD yields strong performance
even with small k (16 ≤ k ≤ 256). [25]

2.2.1 Generalized-Mean Pooling (GeM)

Fully convolutional CNNs are used by discarding the fully connected layers from standard
architectures such as ResNet or VGG. Given an input image, the network produces a 3D
tensor Xc ∈ RW×H×C , where C is the number of channels in the final convolutional layer.
Each feature map Xc is a spatial activation map of size W ×H, for c ∈ {1...C}. [35]

GeM pooling. A global pooling layer aggregates each Xc into a scalar using generalized-
mean pooling:

f (g) = [f
(g)
1 . . . f(g)c . . . f

(g)
C ]⊤, f(g)c =

(
1

|Xc|
∑
x∈Xc

xpc

) 1
pc

.

The resulting descriptor is f and is subsequently ℓ2-normalized. Max pooling and average
pooling are recovered as edge cases for pc →∞ and pc = 1, respectively. The pooling exponent
pc can be fixed or optimized during training. Either a shared or per-channel configuration is
supported.

Larger values of pc produce sharper, more localized responses, enhancing spatial selectivity
and descriptor discriminability (see Fig. 2.6).

Whitening. A discriminative whitening step is optionally applied after training to improve
descriptor separability. In this step, PCA is applied to a transformation of the feature space
based on intra-class and inter-class statistics, resulting in a linear projection matrix. De-
scriptors are centered, projected, and re-normalized. This whitening is performed offline as a
post-processing operation. [35]
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Figure 2.6: Visualization of Xpc projected on the original image for three different values of
p. Case p = 1 corresponds to SPoC, and larger p corresponds to GeM before the summation.
Examples shown use the off-the-shelf VGG. [35]

2.2.2 NetVLAD: Differentiable VLAD Pooling

Standard image–retrieval pipelines first extract local descriptors and then aggregate them in
an order-less fashion, providing robustness to translation, partial occlusion, and viewpoint
changes. NetVLAD embeds this two-step process in a fully differentiable CNN layer, allowing
for end-to-end training. [18]

Local-descriptor stage. The backbone CNN is truncated at the last convolutional layer.
For an input image, the truncated network outputs a tensorX ∈ RH×W×C , which is interpreted
as N = H ×W local descriptors {xi}Ni=1 with dimensionality C.

VLAD aggregation. Classic VLAD pools these descriptors around a codebook {ck}Kk=1

(“visual words”). With hard assignment, the (k, c) element of the VLAD matrix V ∈ RK×C is

Vk,c =
N∑
i=1

ak(xi)
(
x
(c)
i − c

(c)
k

)
, ak(xi) =

{
1 if k = argmink′ ∥xi − ck′∥2
0 otherwise

(2.5)

where x
(c)
i and c

(c)
k denote the c-th component of descriptor xi and cluster center ck, respec-

tively. The matrix is intra-normalized and then ℓ2-normalized after vectorization.

Differentiable soft assignment. The hard assignment in Eq. 2.5 contains non-differentiable
argmin operations, making it unsuitable for end-to-end training via backpropagation. NetVLAD
addresses this by replacing it with a learnable soft assignment.

The starting point is to assign descriptors to clusters based on their proximity, weighted
by a parameter α that controls the assignment softness:

ãk(xi) =
exp(−α∥xi − ck∥22)∑K

k′=1 exp(−α∥xi − ck′∥22)
.

As α→∞, this formulation recovers the original hard assignment. By expanding the squared
norm ∥xi − ck∥22 = ∥xi∥22 − 2c⊤k xi + ∥ck∥22, the term exp(−α∥xi∥22) cancels from the numerator
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and denominator. This yields a simplified and more general form:

ãk(xi) =
exp(w⊤

k xi + bk)∑K
k′=1 exp(w

⊤
k′xi + bk′)

, (2.6)

where the new parameters are related to the old ones by wk = 2αck and bk = −α∥ck∥22. This
soft-assignment mechanism can be efficiently implemented as a 1×1 convolution (with weights
wk and biases bk) applied to the local descriptors, followed by a softmax activation across the
cluster dimension. [18]

NetVLAD layer and learnable parameters. Substituting the soft assignment ãk(xi)
from Eq. 2.6 into the VLAD formulation yields the final NetVLAD pooling layer:

Vk,c =
N∑
i=1

ãk(xi)
(
x
(c)
i − c

(c)
k

)
, ∀ k ∈ [1, K], c ∈ [1, C]. (2.7)

NetVLAD decouples the parameters, treating {wk, bk, ck} as three independent sets that are
optimized jointly with the backbone network. This allows for greater flexibility and differen-
tiability than the original VLAD, where the assignments are strictly tied to the cluster centers
ck and are not updatable with the network.

Normalization and output. The resulting (K ×C) NetVLAD matrix is subjected to two
sequential normalization steps. First, it is intra-normalized by applying ℓ2-normalization to
each of its K vectors representing a visual word. Second, the entire matrix is flattened into
a single vector and ℓ2-normalized again to produce the final, compact image descriptor ready
for similarity search. The resulting operation can be seen in Fig. 2.7, as the clusters move
instead of staying fixed.

Implementation. The NetVLAD equation can be expressed as a small directed acyclic
graph (DAG) of standard CNN layers: a 1×1 convolution (wk, bk), a channel-wise softmax,
a residual computation (xi − ck), a weighted sum, and two normalization steps (Fig. 2.8).
The resulting layer faithfully mimics VLAD while remaining fully differentiable and trainable
end-to-end.
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Figure 2.7: Benefits of supervised VLAD. Red and green circles are local descriptors
from two different images assigned to the same cluster. Under the VLAD encoding, their
contribution to the similarity score between the two images is the scalar product (as final
VLAD vectors are ℓ2-normalized) between the corresponding residuals, where a residual vector
is computed as the difference between the descriptor and the cluster’s anchor point. The
anchor point ck can be interpreted as the origin of a new coordinate system local to the
specific cluster k. In standard VLAD, the anchor is chosen as the cluster center (×) in order
to evenly distribute the residuals across the database. However, in a supervised setting where
the two descriptors are known to belong to images that should not match, it is possible to
learn a better anchor (⋆), which causes the scalar product between the new residuals to be
small. [18]

Figure 2.8: CNN architecture with the NetVLAD layer. The layer can be imple-
mented using standard CNN layers (convolutions, softmax, ℓ2-normalization) and one easy-to-
implement aggregation layer to perform aggregation in equation (2.7) (“VLAD core”), joined
up in a directed acyclic graph. Parameters are shown in brackets. [18]
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2.3 Continual Learning

In Visual Place Recognition, environments are rarely static—seasons change, objects move,
and lighting shifts. Systems deployed in the real world must deal with this evolving visual
landscape. In some cases, training a model and hoping it will generalize enough to work on all
the situations is not enough. That is where continual learning comes in. The idea is simple:
allow the model to keep learning over time, adapting to new situations without forgetting
what it already knows.

2.3.1 AirLoop

AirLoop [47] is a model proposed in 2022, and it addresses the challenge of continual loop
closure detection by allowing deep models to learn from new environments while preserving
previously acquired knowledge. Traditional CNN-based methods perform well when trained
offline on big datasets, but do not generalize to novel environments over time when applied
to dynamic environments. Simply fine-tuning the model on new data leads to catastrophic
forgetting, while retraining from scratch on all past data may be infeasible, especially on
power-constrained devices.

To mitigate this, AirLoop integrates a lifelong learning framework specifically designed for
visual SLAM. The method relies on two key components:

• Relational Memory Aware Synapses (RMAS): an extension of MAS that preserves
not just parameter values but their impact on descriptor similarity, ensuring that the
structure of the learned feature space is retained over time. The importance Ωi of a
parameter θi is estimated from past tasks by:

Ωi = E(I1,I2)

[(
∂sim(ϕ(I1), ϕ(I2))

∂θi

)2
]
, (2.8)

therefore, the RMAS penalty becomes:

LRMAS =
∑
i

Ωi(θi − θ∗i )
2, (2.9)

where θ∗ are the parameter values after learning the previous task.

• Relational Knowledge Distillation (RKD): a distillation mechanism that penal-
izes changes in pairwise similarity relationships between image descriptors, helping to
maintain relational consistency across sequential tasks. Instead of preserving absolute
predictions, RKD preserves relative similarities between pairs. Let sij = sim(ϕ(Ii), ϕ(Ij))
denote the cosine similarity under the previous model and ŝij under the current one. The
RKD loss is:

LRKD =
∑
(i,j)

(sij − ŝij)
2 . (2.10)

A key concept is the introduction of a fixed-size, similarity-aware memory buffer. This
buffer stores a subset of past descriptors along with similarity labels, allowing the use of
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contrastive learning via triplet sampling online. Despite the streaming setup, this buffer,
whose capacity is of a fixed predefined size, as commonly happens in continual learning setups,
allows for continual access to informative positive and negative samples.
AirLoop learns using a triplet loss:

Ltriplet = max(0, ∥f̄q − f̄p∥22 − ∥f̄q − f̄n∥22 +m), (2.11)

where f̄q is the normalized descriptor of a query image, f̄p a positive (same place), and f̄n a
negative (different place), and m is a margin.

The training objective is a combination of standard triplet loss and the two regularization
terms:

L = Ltriplet + λ1LRMAS + λ2LRKD, (2.12)

where λ1 and λ2 control the influence of the respective terms.
Descriptors are extracted using a VGG-19 backbone followed by a GeM pooling layer,

producing compact 1024-dimensional embeddings. The compact global descriptor f = ϕ(I) ∈
RD for an image I is then normalized as f̄ := f/∥f∥2 and used for similarity-based retrieval.
AirLoop is trained sequentially, one environment at a time, with no access to past data,
making it suitable for real-world robotics where memory and computing are limited. Results on
TartanAir, Nordland, and Oxford RobotCar datasets show that AirLoop outperforms baseline
continual learning methods in most metrics, demonstrating its robustness to environmental
drift. [47]

2.3.2 VIPeR: Visual Incremental Place Recognition

VIPeR [48] improves upon AirLoop by simultaneously re-designing the three pillars of a con-
tinual VPR system—metric learning, memory management, and regularisation. Figure 2.9
illustrates its main working paradigm. Its contributions are:

• Adaptive–Mining Triplet Loss, which dynamically modulates sampling difficulty
during training;

• Multi-stage Memory Bank, which separates short- and long-term rehearsal to curb
both overfitting and forgetting;

• Probabilistic Knowledge Distillation (PKD), which aligns pairwise-similarity dis-
tributions rather than single logits.

Notation: Superscripts “anc”, “pos”, and “neg” mark anchor, positive, and negative sam-
ples, respectively. Epoch index is k, the margin is δ > 0, thresholds for difficulty adaptation
are Td (too difficult) and Te (too easy).

Adaptive–Mining Triplet Loss

Given a triplet
(
Ianc, Ipos, Ineg

)
, similarity between anchor and positive sap and similarity

between anchor and negative sar are computed as such:

sap = sim
(
ϕ(Ianc), ϕ(Ipos)

)
, san = sim

(
ϕ(Ianc), ϕ(Ineg)

)
.
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Figure 2.9: VIPeR accompanies the place recognition model with a multi-stage memory bank
for rehearsal, adaptive mining, relational memory aware synapses (RMAS), and probabilistic
knowledge distillation (PKD) for regularization. [48]

The change in triplet loss across epochs, ∆L(k)
triplet =

∣∣L(k)
triplet − L

(k−1)
triplet

∣∣, determines the mining
regime:

(
i, j
)
=


easier samples, ∆Ltriplet > Td,

harder samples, ∆Ltriplet < Te,

keep current, otherwise.

The resulting loss is
Lada = max

{
san − sap + δ, 0

}
(2.13)

Multi-stage Memory Bank

The Multi-stage Memory Bank is divided into three stages: Sensory, Working, and Long-
Term. Images pass from the sensory in a FIFO order and are then promoted to working and
long-term memory based on a probability threshold.

Stage Capacity (l⋆) Lifetime Role

Sensory (Msn) lsn a few steps most-recent context
Working (Mwk) lwk current env. on-line rehearsal
Long-Term(Mlt) llt all envs. global rehearsal

WhenMwk overflows, newly arriving descriptors are promoted intoMlt with probability
p = lwk/nseen, where nseen is the number of frames processed in the current environment.

Probabilistic Knowledge Distillation (PKD)

For each mini-batch, a similarity matrix H t
uv = ft(Iu)·ft(Iv)/

√
d, is formed and the correspond-

ing teacher matrix H t−1 is computed with the frozen model ft−1. Their softmax-normalized
distributions P t and P t−1 are aligned via Kullback–Leibler divergence:

LPKD =
∑

u,v
P t−1
uv log

P t−1
uv

P t
uv

(2.14)
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NetVLAD and DINOv2

To reduce reliance on hand-crafted pooling and to leverage large-scale self-supervised repre-
sentations, VIPeR optionally switches its back-end from the GeM aggregator to NetVLAD,
fed by descriptors extracted from either VGG-19 or DINOv2:

• Local features x ∈ RH×W×C are obtained from a frozen DINOv2 ViT; they capture
generic semantics robustly across domains.

• NetVLAD clusters those features into K centres and returns a d=K×C vector which
replaces the GeM descriptor in all equations above (no change is required to the loss
functions).

• Fine-tuning with DINOv2 will only happen to the NetVLAD layer and the final linear
projector, leaving the ViT backbone untouched; this keeps the memory footprint iden-
tical to the GeM variant while giving a ∼15% average-recall boost. Similar results are
obtained with VGG-19 and NetVLAD; in this case, VGG is unfrozen and fine-tuned.

Final Objective

L = Lada + λ1 LRMAS + λ2 LPKD (2.15)

where λ1, λ2≥0 balance rehearsal and distillation terms. LRMAS is identical to that of AirLoop,
now evaluated over the multi-stage memory samples.

2.4 Metrics

Good metrics are crucial for evaluating the performance of ranking and classification models.
Below are the standard metrics used in VPR tasks for evaluating ordered lists of results.

2.4.1 F1 and Fβ Score

Precision and Recall are two core metrics in binary classification tasks:

• Precision: The ratio of correctly predicted positive samples to all predicted positives:

Precision =
True Positives

True Positives + False Positives
. (2.16)

It reflects how many of the retrieved results are relevant.

• Recall: The ratio of correctly predicted positive samples to all actual positives:

Recall =
True Positives

True Positives + False Negatives
. (2.17)

It reflects how many of the relevant results are successfully retrieved.
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F1-score. The F1-score is the harmonic mean of precision and recall. It is used when both
false positives and false negatives are considered equally costly:

F1 =
2 · Precision · Recall
Precision + Recall

. (2.18)

This metric is practical in imbalanced datasets, where accuracy alone may be misleading.

Fβ-score. A more general form is the Fβ-score, which introduces a weight β > 0 to control
the trade-off between precision and recall:

Fβ = (1 + β2) · Precision · Recall
β2 · Precision + Recall

. (2.19)

• β = 1 recovers the F1 score.

• β > 1 gives more weight to recall (penalizing false negatives).

• β < 1 gives more weight to precision (penalizing false positives).

Fβ is useful when task-specific needs dictate favoring one type of error over the other.

2.4.2 Recall@K

Recall at K, denoted as Recall@K (or R@K), measures the fraction of relevant items that
are successfully retrieved in the top-K recommendations. It answers the question: ”Out of all
the items that are relevant, how many did we find in the top K suggestions?”

This metric is used when the user is not expected to look past the first few results. It is
defined as:

Recall@K =
Number of relevant items in the top K

Total number of relevant items
(2.20)

For a given user, if five images are of the same place in the entire dataset, and the network
suggests three of those images in its top ten list (i.e., K=10), the Recall@10 would be:

Recall@10 =
3

5
= 0.6 = 60%

2.4.3 AP@K (Average Precision at K)

Average Precision at K (AP@K) is a single-number summary of the quality of a ranked
list of results of length K. It is the average of the precision values calculated at the position
of each relevant item in the list. Unlike Recall@K, AP@K rewards models that place relevant
items higher up in the ranking.

The formula for Average Precision@K is:

AP@K =
1

R

K∑
k=1

P (k) · rel(k) (2.21)

where:
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• K is the cutoff length of the ranked list;

• R = min(# relevant items, K) is the number of relevant items up to position K;

• P (k) is the precision at rank k, i.e., the proportion of relevant items among the top k;

• rel(k) ∈ {0, 1} is an indicator function equal to 1 if the item at rank k is relevant, 0
otherwise.

Essentially, the algorithm iterates through the ranked list, and every time it encounters a
relevant item, it calculates the precision at that point and then averages these precision scores
over the total number of relevant items.

For example, if there are three relevant items and our model returns a ranked list [Relevant,
Irrelevant, Relevant, Relevant, Irrelevant]:

• At rank 1 (Relevant): P (1) = 1/1 = 1.0

• At rank 2 (Irrelevant): No calculation needed since rel(2) = 0

• At rank 3 (Relevant): P (3) = 2/3 ≈ 0.67

• At rank 4 (Relevant): P (4) = 3/4 = 0.75

• At rank 5 (Irrelevant): No calculation needed since rel(5) = 0

The AP@5 would be the average of the precision scores at relevant positions: AP@5 =
1.0+0.67+0.75

3
≈ 0.81

2.4.4 Recall@100P (Recall at 100% Precision)

Recall at 100% Precision, often denoted as Recall@100P (or R@100P), is a diagnostic
metric that evaluates recall at the strictest possible decision threshold. It answers the practical
question: ”If we adjust our confidence threshold to the point where we make absolutely zero
false-positive errors, what fraction of the total relevant items are we able to find?”

This metric is not defined by a static formula but by a procedure based on the model’s
ranked scores. It is the maximum recall achievable at a precision of 1.0.

Recall@100P = Recall at a threshold T where Precision(T ) = 1.0 (2.22)

This metric is exceptionally useful in operational scenarios where false positives are extremely
costly (e.g., medical diagnosis, financial fraud detection, or, in this case, strict loop-closure),
and the goal is to define a ”safe” threshold of confidence or similarity to only obtain true
positives.
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2.4.5 Average Precision (for Classification)

When applied to binary classification, the Average Precision (AP) score summarizes a
model’s performance across all classification thresholds. It is computed as the weighted sum
of precisions at each threshold, where the weight is the increase in recall from the previous
threshold:

AP =
∑
n

(Rn −Rn−1)Pn (2.23)

where:

• Pn and Rn are the precision and recall at the n-th threshold;

• Thresholds are defined by the decision scores at each prediction;

• The summation is taken over all points where recall increases (i.e., each time a positive
sample is encountered).

This formulation is used by libraries such as scikit-learn in the average precision score

function. Note that it does not rely on interpolation and is distinct from computing the area
under the precision-recall curve via the trapezoidal rule, which tends to be overly optimistic.

Unlike AP@K, this metric considers the complete ranked list of predictions and is especially
appropriate for imbalanced datasets, where precision-recall analysis offers more informative
insights than ROC curves.

Notation: Given that AP@K can be confused with AP (Average Precision for Classifi-
cation), from this point forward, Average Precision for Classification will be referred to as
Average Precision Score (APS)

2.5 Explainability

Explainability (or interpretability) refers to the degree to which a human can understand the
cause of a decision made by a machine learning model. This is particularly important in
computer vision, where models often make decisions based on subtle patterns that are not
immediately obvious to human observers. In this section, LIME and Occlusion Sensitivity are
reported because they are the standard for Computer Vision tasks, but other methodologies
exist, such as SHAP and LEMNA. Other XAI (eXplainable AI) methods, thought for Com-
puter Vision models, have not been tested and are thus not reported, such as Grad-CAM.
[49]

2.5.1 LIME (Local Interpretable Model-Agnostic Explanations)

LIME [50] is a technique that approximates any black box machine learning model with a
local and interpretable model to explain each prediction. LIME is one of the few methods
that work for tabular data, text, and images.

For image classification, LIME works by:

• Generating perturbed versions of the input image by turning superpixels on or off
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• Getting predictions from the black box model for these perturbed images

• Training a simple, interpretable model (e.g., linear regression) on these perturbed sam-
ples

• Using the interpretable model’s coefficients to identify which superpixels are most im-
portant for the prediction

The key advantage of LIME is its model-agnostic nature, meaning it can explain any
classifier regardless of its internal architecture. An example of its work, shown by highlighting
the relevant areas, can be seen in Fig. 2.10.

2.5.2 Occlusion Sensitivity

Occlusion sensitivity [51] is a straightforward approach to understanding which regions of an
image are important for a model’s prediction. The method systematically occludes (masks or
removes) different parts of the input image and observes how the model’s confidence in its
prediction changes.

The process works by:

• Sliding a patch (usually gray or black) across the entire image

• Recording the model’s prediction confidence at each position of the occluding patch

• Creating a sensitivity map where each pixel’s value represents how much the prediction
confidence drops when that region is occluded

Regions that cause a more substantial drop in confidence when occluded are considered the
most important for the model’s decision. While computationally expensive due to the need for
multiple forward passes, occlusion sensitivity is relatively simple to implement, and it produces
intuitive and reliable explanations that directly measure the causal impact of different image
regions on the model’s output. An example of its work, shown with the classic heatmap, can
be seen in Fig. 2.10.

Comparing to image: 00032.jpg

LIME (Similarity Explanation)

Occlusion Heatmap

0.04

0.03

0.02

0.01

0.00

0.01

0.02

Similarity to "00032.jpg"

Figure 2.10: Example of LIME and Occlusion Sensitivity explanations of images classification.
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Datasets

Visual place recognition requires diverse and challenging datasets to evaluate the robustness
of algorithms under various conditions. This chapter presents six datasets, each addressing
different aspects of the visual place recognition challenge: seasonal variations, a wide vari-
ety of places and architectural styles, anonymized 360-degree images, illumination changes,
computer-generated images and indoor environments.

3.1 Nordland

The Nordland [52] dataset captures the same railway journey during different seasons. The
dataset is designed for place recognition across seasons, showing extreme appearance changes,
from the snow in winter to the flowering trees in spring. This seasonal variation creates extreme
changes in the visual appearance of identical geographical locations. The images are organized
in folders, already split into test and train sets, and split again for each season. Each season
folder contains section folders in which images extracted from the video are enumerated and
ordered by the time the picture was taken.

This dataset is one of the oldest, having been published in 2013, but it is still used for
training and testing in the state of the art (e.g., in VIPeR citeviper).

Figure 3.1: Frames extracted from the Nordland dataset and from the same place in spring,
summer, fall, and winter. [53]

3.2 GSV-Cities

The GSV-Cities [54] dataset is a large-scale dataset with a wide variety of perceptual changes
over 14 years, covering 40 cities spread across all continents. This dataset provides highly
accurate ground truth, allowing for straightforward mini-batches. All of the 530,000 images
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are obtained from Google Street View Time Machine. The images are divided into more than
62,000 different places, each containing from 4 to 20 images and each at least 100 meters away
from any other place in the dataset (see Fig. 3.2). The images are organized in folders, one for
each city, and each city has a corresponding CSV file that contains information on the spatial
location of all the images, as well as the place they belong to and the period when the photo
was taken. The authors of the paper suggest using this dataset for training a general-purpose
model and testing it on other datasets, as it should generalize well enough on multiple tasks,
given the sizable number of highly different images and places.

Figure 3.2: Three examples of places in GSV-Cities. Each place is depicted by a set of images
(here, six in a row) representing the same physical location. As such, they are indexed by the
same ID. The number of images depicting one place in GSV-Cities varies from 4 to 20. [54]

3.3 NYC-Indoor-VPR

The NYC-Indoor-VPR [55] dataset is a collection of over 36,000 images compiled from 13 dis-
tinct crowded scenes in New York City taken under varying lighting conditions with appearance
changes, with each scene having multiple revisits across a year. This dataset comprises images
from different crowded scenes in New York City, taken under varying lighting conditions with
seasonal and appearance changes.

The dataset is composed of images recorded in New York City from April 2022 to April
2023, with footage captured using hand-held Insta360 One X2 spherical cameras, generating
videos with a resolution of 1920x960. Afterward, people and cars are segmented and removed,
as can be seen from Fig. 3.3. The recorded images are of 13 different floors/scenes within the six
buildings. The chosen buildings are the Oculus, New York University Silver Center for Arts and
Science, Elmer Holmes Bobst Library, Morton Williams Supermarket, and the Metropolitan
Museum of Art. These settings represent a broad range of indoor spaces, including shopping
malls, teaching buildings, libraries, supermarkets, and museums.

To establish ground truth for this dataset, a semi-automatic annotation approach is used.
The dataset thus contains annotations that divide images into scenes, but they do not corre-
spond exactly to different ”places” as the division is merely spatial. On the one hand, this may
create difficult situations where images a human would consider the same place are labeled as
different places; on the other hand, the models are forced to learn how to recognize the same

44



Chapter 3. Datasets

place without having any liberty from a perspective or partial overlap.

The dataset’s long-term nature, spanning an entire year, allows an evaluation of how
well algorithms handle gradual changes in indoor environments, such as seasonal decorations,
lighting variations, and crowd dynamics in public indoor spaces.

Figure 3.3: Trajectories annotated by the semi-automatic method and example images of 12
scenes in NYC-Indoor-VPR. [55]

3.4 Tokyo-24/7

The Tokyo-24/7 [56] dataset consists of 375 distinct query locations taken at day/evening/night
(see Fig. 3.4) for a total of 1125 query images, all with their corresponding coordinates. The
authors suggest the use of Google Street View, given the coordinates, to expand the database.
In this thesis, only the query images will be used. This dataset addresses the problem of visual
place recognition for situations where the scene undergoes a significant change in appearance,
for example, due to illumination (day/night), the number of people, and structural modifi-
cations over time, such as different parts of the same building being lit and advertisements
changing. Each place in the query set is captured at different times of day: daytime, sunset,
and night, with corresponding database street-view images at close-by positions and longi-
tude and latitude coordinates. The 1125 images are captured by Apple iPhone 5s and Sony
Xperia smartphones. These images are taken at 125 distinct locations, facing three different
directions, yielding 375 distinct ”places”, each with three pictures taken at different times
of the day. This temporal diversity makes Tokyo 24/7 a standard benchmark for evaluating
algorithms’ robustness to the lighting changes that occur throughout a 24-hour cycle.
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Figure 3.4: The first few query images of Tokyo-24/7 with midday, sunset, and night for each
place.

3.5 TartanAir

TartanAir [57] is a dataset for robot navigation tasks, with data collected in photo-realistic
simulation environments with the presence of moving objects, changing light, and various
weather conditions. By collecting data in simulations, the dataset provides multi-modal sensor
data and precise ground truth labels such as stereo RGB images.

A special goal of the dataset is to focus on challenging environments with changing light
conditions, adverse weather, and dynamic objects, where state-of-the-art SLAM algorithms
struggle in tracking camera pose and constantly get lost in some sequences.

The simulation-based nature of TartanAir allows for perfect ground truth data, which is
often difficult to obtain in real-world scenarios. This enables precise evaluation of algorithmic
performance and provides researchers with a controlled environment to test specific hypotheses
about visual place recognition under various challenging conditions.
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Figure 3.5: Examples of images under different conditions from the TartainAir dataset. [57]

3.6 OpenLORIS-Scene

The OpenLORIS-Scene [58] dataset is designed for lifelong SLAM and continual learning in
robotics. The dataset aims to help evaluate SLAM and scene understanding algorithms for
real-world deployment by providing visual, inertial, and odometry data recorded with real
robots in real scenes and ground-truth robot trajectories acquired by a motion capture system
or high-resolution LiDARs.

The data were collected by a wheeled robot moving at human walking speed or slower.
The primary sensors include a RealSense D435i camera and a RealSense T265 camera, both
mounted at a fixed height of about 1m. The color images and depth images from D435i are
recommended for monocular/RGB-D algorithms, while the dual fisheye images from T265
are recommended for stereo algorithms. Both provide IMU measurements with hardware syn-
chronization with corresponding images. Odometry data from wheel encoders is also provided.
The ground-truth trajectory of the robot is obtained by an OptiTrack motion capture sys-
tem for the office scene and from offline LiDAR SLAM based on the Hokuyo laser scans for
other scenes. Each picture taken is thus paired through the timestamp to odometry data (see
Fig. 3.6). Using specific tools1, it is possible to extract loop-closure images that belong to the
same place.

1https://github.com/scumatteo/loop-closure-inspector
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Figure 3.6: Examples of color images in the OpenLORIS-Scene datasets. The upper and lower
images in each column show approximately the same place in different data sequences, but
the scene has been changed. [58]
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Experiments

This thesis has three primary objectives: first, to compare and select the most suitable archi-
tectures for various batch learning scenarios; second, to select or define a metric for evaluating
the quality of extracted embeddings, and third, to advance the state of the art in online learn-
ing contexts. All experiments were conducted on the raptor-08 server, made available for this
research by the Department of Computer Science and Engineering (DISI) of the University of
Bologna, Cesena campus. The server is equipped with an NVIDIA RTX A4000 GPU (16GB),
an Intel® Xeon® W5-3423 CPU, 64 GB of DDR5 4400 MT/s RAM (4x16 GB), and a 1 TB
NVMe Gen4 SSD.

Notation: All the metrics reported are formatted as percentages, rounded to one decimal
place.

4.1 Batch Learning

In the batch learning scenarios, multiple datasets representing different VPR tasks were used
to train and test multiple combinations of backbones and aggregators. After the training, an
evaluation with the mainstream metrics of Recall@K and AP@K was performed, as well as a
qualitative study with explainability.
The innovative part of the study is the analysis of the distribution of cosine similarity of
descriptors, obtained by calculating for each query its cosine similarity with all the DB el-
ements and creating two distributions of embeddings, one composed of the cosine similarity
with descriptors from the same place, the other instead composed of different cosine similarity
of embeddings of images from different places. This is done because the model should not only
rank images well, as it is measured by Recall@K and AP@K, but it should also be able to dis-
criminate well between same-place images and different-place images. As the distributions are
highly imbalanced (the same place images are always far less than the different place images),
a metric that takes this into account was necessary. The problem of evaluating loop closure
is not a new one, and a few metrics have already been proposed, but the cosine distributions
have never been analyzed in the VPR context before.
The first attempts were made by trying to measure the distance between distributions with
specific statistical metrics, such as Wasserstein Distance and Jensen-Shannon Distance. Nei-
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ther of these metrics was perfectly tailored for this task because they gave equal importance
to the two distributions, while the positive one is the one that we mainly want to discriminate.
In particular, Wasserstein Distance was unable to perform well enough on multiple occasions,
as it did not take into account relative shift but only absolute distance, and this was unaccept-
able in some cases with GeM as the aggregator, as sometimes it spread the cosine similarities
on a small range of values. Afterward, other classification metrics such as ROC AUC and
Overlap coefficient were tested, but both gave too much emphasis to the true negatives (the
well-predicted different places). In this case, the only images we are interested in are the true
positives (same place, well predicted), the false positives (different place, wrongly predicted
as the same), and the false negatives (same place, wrongly predicted as different). With these
premises, the most obvious metric is the F1-score, which takes just these factors into account.
The problem with the F1-score is that it is threshold-dependent and does not evaluate the
overall performance of the model.
The other two viable options at this point are the Recall at 100% Precision, which checks the
recall while having zero false positives (100% precision), and that has already been used by
previous work on VPR tasks [48]; and the Average Precision Score. While Recall@100P is
the mainstream metric on many benchmarks, including the ones used in the Online Learning
section, it does not take the general behavior of the model into account, and it risks selecting
a highly specialized model: a model could be tuned to excel only at that single point of 100%
precision while generalizing poorly. The Average Precision Score instead considers the entire
performance of the model, even if it is not restricted to 0% false positives.
For a SLAM algorithm, false positives may be filtered out by an excessive distance from the
view or other parameters; thus, the proposed metric to evaluate the ”distance” between de-
scriptors and the one that will be used in this section is the Average Precision Score. Still,
the Recall at 100% Precision is also reported in the results table to give a comprehensive idea
of the performance of the model under strict requirements.

Warning: the following sections contain plots with different values on the y-axis. The plots
were not merged because of the large disparity between y values, but this may lead to similar
visual trends while the values are different.

4.1.1 Tokyo-24/7

The initial experiments were conducted on the Tokyo-24/7 [56] dataset, using only the provided
query images. The primary goal was to evaluate and compare the performance of different
model architectures in a Visual Place Recognition task under the illumination changes that
happen during a complete day-night cycle.

Experiment Setup

The methodology is as follows: the 1125 query images are organized into 375 triplets, with
each triplet containing images of the same location at different hours of the day: midday,
sunset, and night. These locations are then split into training and test sets at a 3:1 ratio.
Each model architecture, composed of a backbone and an aggregator, is trained for 10 epochs
using a triplet loss function with a margin of 0.3 and with an ADAM optimizer with a learning
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rate of 1× 10−4. The loss is then calculated between an anchor image, a positive image (from
the same place at a different time), and a negative image (from a different place). When
NetVLAD was used as an aggregator, the best results were achieved with a number of clusters
equal to 32 (16, 64, 96, and 128 were also tested).

After training, feature descriptors are extracted for each image in the test set. During
this inference stage, the process is timed to estimate the computational time cost per im-
age. Afterward, a cosine similarity matrix is generated by L2-normalizing the embeddings
and multiplying the resulting matrix by its transpose. For quantitative evaluation, Recall@K
and a ”strict” Recall@K metric, where all the two images belonging to a place must be cor-
rectly retrieved, are calculated and plotted. A general plot of the cosine similarity value of
correct and wrong images rescaled on density is also calculated to check the degree of sep-
aration between the two. The ideal situation is when the two distributions do not overlap,
so that we can choose a threshold to decide when an image is in the same place. Afterward,
the F1-score on various thresholds is calculated, and the one that maximizes the F1-score is
selected. The Average Precision Score is also calculated to emphasize true positives, false
negatives, and false positives only, excluding true negatives from the metrics, as they do not
particularly concern this task. For completeness, Recall at 100% Precision is measured as
well. Finally, for qualitative analysis, LIME and occlusion sensitivity algorithms are used to
generate explainability maps. These maps highlight the image regions most critical to the
model’s descriptor-matching process.
For this first experiment, given the excellent results achieved by DINOv2 -another ViT foun-
dation model is used as a backbone to compare results: SwinV2, version large window12 192,
pre-trained on ImageNet 22k.
When using a VGG backbone, VGG19 was used, as similar but slightly worse results were
obtained with a VGG16. The identical process was applied for ResNet50 and ResNet18. The
DINOv2 version used is the base one. Both DINOv2 and SWINv2, when used as a backbone,
are frozen; VGG and NetVLAD are instead retrained.

Results

GeM With GeM as the aggregator, relatively good results were reached. The performance,
on average, is still worse than NetVLAD, and, in some cases, it collapses the embeddings
extracted from the backbone and averages them to a narrow embedding space. More on this
will be discussed in the Conclusions section.
In Fig. 4.1, it is possible to see the performance of VGG19 when GeM is applied as an
aggregator. The results are quite good, but they are still inferior to the NetVLAD version
(see Fig. 4.5) and to the corresponding DINOv2 GeM results (see Fig. 4.3). ResNet50 results
instead (Fig. 4.2) outperform the NetVLAD ones (Fig. 4.6), but while the Recall is acceptable,
the Strict Recall has quite a lower performance. The SwinV2 results—which are visible in
Fig. 4.4—are underwhelming, reaffirming the specialness of DINO as a ViT foundation model.
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Figure 4.1: VGG19 + GeM performance on Tokyo-24/7 test set.
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Figure 4.2: ResNet50 + GeM performance on Tokyo-24/7 test set.
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Figure 4.3: DINOv2 + GeM performance on Tokyo-24/7 test set.
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Figure 4.4: SwinV2 + GeM performance on Tokyo-24/7 test set.

NetVLAD With NetVLAD as an aggregator and the number of clusters set to 32, the best
results overall were reached. The combination of a general-purpose model and a few images
allows the model to reach almost 100% of the recall rate in a small image range. NetVLAD
results as the best aggregator for both Recall and Strict Recall for VGG19 (Fig. 4.5), DINOv2
(Fig. 4.7), and SWIN (Fig. 4.8). For ResNet50, the results as plotted in Fig. 4.6 are good
but are still outperformed by GeM ones. The accuracy achieved by combining DINOv2 and
NetVLAD is excellent; without even using a reranking algorithm, almost 100% of accuracy is
reached quickly for both Recall and Strict Recall metrics. These results are also in the final
comparison Table 4.1, where this architecture dominates with all the best scores on almost all
metrics.
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Figure 4.5: VGG19 + NetVLAD performance on Tokyo-24/7 test set.

53



4.1. Batch Learning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Re
ca

ll@
k

Recall@k

(a) Recall@K

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.5

0.6

0.7

0.8

0.9

St
ric

t R
ec

al
l@

k 
(A

ll 
Vi

ew
s R

et
rie

ve
d)

Strict Recall@k

(b) Strict Recall@K

Figure 4.6: ResNet50 + NetVLAD performance on Tokyo-24/7 test set.
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Figure 4.7: DINOv2 + NetVLAD performance on Tokyo-24/7 test set.
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Figure 4.8: SwinV2 + NetVLAD performance on Tokyo-24/7 test set.

54



Chapter 4. Experiments

Qualitative Results and Explainability For each of the possible architecture combina-
tions, a qualitative study with explainability has been applied to give a better understanding
of the influence on the decisions taken by the model. Two test images, one at midday and
one at sunset, are selected, and the top 5 similar embeddings are retrieved and then shown,
marking on top of each image both the cosine similarity and a boolean that indicates whether
it is the same place or not.
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VGG + GeM behaves perfectly on the selected images, even though the third image se-
lected has a similarity score that is quite high in the second case. According to the explain-
ability of the decisions taken, this architecture seems to focus on the trees or on the bigger
elements in the images.
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Figure 4.9: VGG19 GeM examples and explainability.
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VGG + NetVLAD also behaves perfectly on the selected images, still with the third image
selected with a high similarity score in the second case. According to the explainability of the
decisions taken, this architecture seems to focus less on the bigger elements in the images and
more on details such as building structure and so on. This is in line with how VLAD works
with respect to GeM, allowing a better focus on more element types.
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Figure 4.10: VGG19 NetVLAD example and explainability.
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ResNet50 + GeM perfectly selects the first images and has too high similarity on the
first case instead of on the second, in contrast to VGG. According to the explainability of the
decisions taken, this architecture seems to focus on building parts and road elements instead
of trees, as VGG19 and GeM did.
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Figure 4.11: ResNet50 GeM example and explainability.
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ResNet50 + NetVLAD As it is possible to see from the plots above, NetVLAD performs
worse than GeM on ResNet. Not only is the similarity quite low in general, as well as almost
uniform, but in the second case, the second most similar image was also retrieved wrongly.
By the explainability, it is possible to observe the fact that the architecture is still considered
important, but for the image misclassified, the big tree above was a deciding factor.
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Figure 4.12: ResNet50 NetVLAD example and explainability.
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DINOv2 + GeM DINOv2 and GeM also commit the same mistake on the second batch
of retrieved images as ResNet50 and NetVLAD. In general, the results are good, but the
similarity is squashed on a very high number (this will be analyzed in more detail below).
By the explainability, it is possible to observe the fact that the architecture is still considered
important, but for the image misclassified, the big tree above was a deciding factor. This
model seems to take into account various factors when extracting embeddings, among which
are also the light lamp and the sidewalls. Probably, this is also one of the reasons for the
misclassification in the second case.
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Figure 4.13: DINOv2 GeM example and explainability.
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DINOv2 + NetVLAD DINOv2 and NetVLAD also commit the same mistake as they did
with GeM. It seems like this backbone has some problems with light changes, as the similarity
between images with the same light is far higher than that of images with different light. The
explainability results are similar, with the exception of a few different points of emphasis on
the heatmap and the LIME selection.
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Figure 4.14: DINOv2 NetVLAD example and explainability.
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SwinV2 + GeM As it happened with DINO, GeM seems to squish similarity towards 0.99
with frozen networks. As the metrics plots above already show, this model does not perform
well. Most of the images are not in the same place and do not have the same illumination
conditions. The explainability lets us see a good emphasis on big objects and architecture,
but without a good embedding extraction.
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Figure 4.15: SwinV2 GeM example and explainability.
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SwinV2 + NetVLAD the embeddings have now spread apart from 0.99, but the results
are still bad and have the same problem as the previous model. While the main focus is still
on big objects such as trees and light lamps, considerable importance is given to unimportant
elements for place recognition, such as cars and people.
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Figure 4.16: SwinV2 NetVLAD example and explainability.

Conclusions

Before analyzing the final results, a few plots are needed to show the embedding distribution
while using different architectures. An important metric to analyze how well the model works
for a VPR task is how well we can fix a threshold that, given a reference image and a query
image, calculates cosine similarity, allowing us to separate the correct same-place embeddings
from the different-place ones. The plots below show with the same backbone how aggregators
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distribute embeddings into space as a probability distribution, and a black dashed line is drawn
as the optimal threshold that maximizes the F1-score. To do this, for each embedding, all
the cosine similarities are taken, and the distribution of the same place and different places is
then normalized (as integral equals 1) and plotted. The final F1-score calculated is reported in
Table 4.1, as well as the Average Precision Score and the Recall at 100% Precision. A crucial
fact to keep in account is that the distributions are normalized to integrate to 1 for probability
reasons, but they are actually imbalanced: a small red area corresponds to a larger number
of images than a green one. The red area represents a distribution of 78,678 images, while
the green ones are just 564 images. While VGG19 (Fig. 4.17) and ResNet50 (Fig. 4.18) plots
have standard values, DINO (Fig. 4.19) and Swin (Fig. 4.20) with GeM as the aggregator
have values squashed near 0.99. While this seems quite strange from a conceptual point of
view, all the images have high values of cosine similarity if the precision is kept high enough.
Therefore, it is possible to see how there is still a widespread distribution, just concentrated
on high numbers. In this case, GeM behaves like a max-pool, where dominant features oppress
the other ones, leading to nearly identical vectors.
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Figure 4.17: VGG19 encoding cosine similarity mean with GeM (left) and NetVLAD (right).
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Figure 4.18: ResNet50 encoding cosine similarity mean with GeM (left) and NetVLAD (right).
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(a) DINOv2 + GeM
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Figure 4.19: DINOv2 encoding cosine similarity mean with GeM (left) and NetVLAD (right).
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Figure 4.20: SwinV2 encoding cosine similarity mean with GeM (left) and NetVLAD (right).

The overall performance is reported in Table 4.1: the best scores for each column are
written in bold, with DINOv2 with NetVLAD dominating for almost all the metrics, as well
as for the degree of embeddings separation given by the F1 metric. As for time taken for
inference, ResNet50 and VGG19 are the fastest, as expected from CNNs. DINOv2 is three
to five times slower but still competitive, with just 6 milliseconds of inference time. Given
all the results above, it is clear how, while DINOv2 still dominates in terms of metrics and
score, VGG19 with NetVLAD is an alternative that is viable. It is three times faster, the
results are just four percentage points inferior to DINOv2’s, and the F1-score, as well as the
Average Precision Score, are the second best overall, even surpassing DINOv2 with GeM.
VGG19 with NetVLAD separates better the largest amount of descriptors, as it achieves the
best Recall@100Precision score. Furthermore, from the qualitative analysis, VGG’s ability
to adapt to light changes while still having competitive scores is amazing. Obviously, given
the right resources, fine-tuning DINOv2 would probably be able to achieve better results and
adapt to drastic light changes. These experiments also confirm the dominance of DINOv2 as
a foundation model, as SWIN transformers failed to meet expectations with their parameters
frozen.
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As concerns aggregators, NetVLAD resulted as the best for most architectures, even though
ResNet50 seems to favor GeM, from what emerges from the results. The fact that NetVLAD
surpasses GeM in most cases is expected, as it does not do a simple learnable pooling as GeM
does, but learns for a number of codebooks that are optimal for place description.

Table 4.1: Performance comparison across architectures and aggregators on Tokyo 24/7.
SR@K stands for Strict Recall@K, R@K for Recall@K, Time is the mean and standard de-
viation of inference time of the model once the image is loaded on the GPU in milliseconds,
and F1 is the maximum F1-score achieved by trying various thresholds when applied to the
distribution of embeddings. APS instead stands for Average Precision Score, and it is a metric
used in classification to check how well the precision and recall are embodied by the model.
R@100P indicates the Recall at 100% Precision.

Backbone Aggregator R@1 R@5 SR@2 SR@10 Time (µ/σ) F1 APS R@100P

VGG19 GeM 90.8 96.5 68.8 88.3 2.17 / 0.01 69.1 72.7 28.4

VGG19 NetVLAD 91.8 96.1 74.8 88.7 2.18 / 0.01 73.8 78.0 34.4

ResNet50 GeM 87.2 95.7 53.9 81.5 1.18 / 0.01 67.3 70.2 16.3

ResNet50 NetVLAD 80.1 94.0 45.7 80.5 1.18 / 0.01 62.1 64.8 9.6

DINOv2 GeM 93.6 98.9 70.0 92.9 6.23 / 0.10 69.7 73.4 31.2

DINOv2 NetVLAD 96.5 99.2 84.0 96.8 6.38 / 0.07 78.9 82.8 33.0

SwinV2 GeM 54.2 72.0 8.2 30.1 8.89 / 0.04 24.6 15.4 1.8

SwinV2 NetVLAD 65.6 80.1 19.5 44.0 8.95 / 0.03 30.9 20.8 1.8

4.1.2 GSV-Cities

The second main battery of experiments was conducted on the GSV-Cities[54] dataset, using
more than 500k images and 64k places. The primary goal was to evaluate and compare
the performance of different model architectures in a Visual Place Recognition task with far
more samples than before, as well as handling season and weather changes. The illumination
changes, in this case, are the exception and not the norm.

Experiment Setup

The methodology is as follows: the more than 64k places are split into training and test sets
at an 85:15 ratio. Each model architecture, composed of a backbone and an aggregator, is
trained for 10 epochs using a triplet loss function with a margin of 0.3 and with an ADAM
optimizer with a learning rate of 1 × 10−4. The loss is then calculated between an anchor
image, a positive image (from the same place at a different time), and a negative image (from
a different place). When NetVLAD was used as an aggregator, the best results were achieved
with a number of clusters equal to 96 (64 and 128 were also tested).

After training, feature descriptors are extracted for each image in the test set. During this
inference stage, the process is timed to estimate the computational cost per image. Afterward,
a cosine similarity matrix is generated by L2-normalizing the embeddings and multiplying
the resulting matrix by its transpose. For quantitative evaluation, Recall@K and Average
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Performance@K metrics are calculated and plotted. A general plot of the cosine similarity
value of correct and wrong images rescaled on density is also calculated to check the degree
of separation between the two. Given the sizable number of test images, these statistics are
done on a subset of relevant proportions randomly chosen (1/4 of the total), and the Average
Precision Score and Recall at 100% Precision are calculated. Finally, for qualitative analysis,
LIME and occlusion sensitivity algorithms are used to generate explainability maps. These
maps highlight the image regions most critical to the model’s descriptor-matching process.

Results

Given the results obtained in the previous case, SwinV2 transformers were not used as a
backbone in this case, and while ResNet was tested, the performance was subpar, so the
results are not shown. Still, DINOv2 and VGG19 results are shown below.

GeM With GeM as the aggregator, DINOv2 managed to reach high scores, as seen in
Fig. 4.22, while VGG19 has an average score, far worse than DINO (see Fig. 4.21), but still
better than the NetVLAD version (see Fig. 4.23). The optimal generalization on the about
10k different places of the test set with DINO was expected, as it is trained to be able to
generalize in every situation. VGG, instead, is struggling to keep up with the generalization
task, as even the R@1 is just around 75%.

NetVLAD with NetVLAD as the aggregator, better results are reached by DINOv2 (see
Fig. 4.24), outshining its previous version with GeM, reaching even scores above 95%. VGG19
performs worse than with GeM, just as ResNet did on the previous dataset.
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Figure 4.21: VGG19 + GeM performance on GSV-Cities test set.
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Figure 4.22: DINOv2 + GeM performance on GSV-Cities test set.
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Figure 4.23: VGG19 + NetVLAD performance on GSV-Cities test set.
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Figure 4.24: DINOv2 + NetVLAD performance on GSV-Cities test set.
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Qualitative Results and Explainability For each of the possible architecture combina-
tions, a qualitative study with explainability has been applied to give a better understanding
of the influence on the decisions taken by the model. Two test images, one from Bangkok
(a road) and one from Boston (a square with a red building), are selected, and the five top
similar embeddings are retrieved and then shown, marking on top of each image both the
cosine similarity and a boolean that indicates whether it is the same place or not.
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VGG + GeM behaves quite well on the selected images, even though the gap between
similarity scores is not as high as it could be. According to the explainability of the decisions
taken, this architecture seems to focus on the trees or, in the first case, on the sky and on the
building, while in the second case, it manages to recognize the picturesque red house as an
important landmark.

Query
Rank 1 True
Sim: 0.81

Rank 2 True
Sim: 0.79

Rank 3 False
Sim: 0.78

Rank 4 False
Sim: 0.76

Rank 5 False
Sim: 0.76

Query
Rank 1 True
Sim: 0.82

Rank 2 True
Sim: 0.81

Rank 3 False
Sim: 0.79

Rank 4 False
Sim: 0.77

Rank 5 False
Sim: 0.77

Comparing to image:

LIME (Similarity Explanation)

Occlusion Heatmap

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Similarity to "Bangkok_0000002_2011_09_567_13.71514742762685_100.4858264116832_s-6BnWlLnaMfiWbqynxRpw.jpg"

Comparing to image:

LIME (Similarity Explanation)

Occlusion Heatmap

0.02

0.00

0.02

0.04

0.06

0.08

Similarity to "Boston_0008215_2020_11_325_42.39191366295917_-71.1100039542032_Ox7-Bp9qCRvfFgI14mxg2g.jpg"

Figure 4.25: VGG19 GeM examples and explainability.

70



Chapter 4. Experiments

VGG + NetVLAD does not perform very well overall, and in this particular case, it seems
to focus on the wrong things. In the first batch, the focus is on the sky, a terrible choice for a
VPR algorithm. In the second batch, a quite difficult image was recognized correctly, but all
the others were wrong, so the result cannot be overall positive.
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Figure 4.26: VGG19 NetVLAD example and explainability.
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DINOv2 + GeM with GeM, the frequency of the right images is high, not as good as
NetVLAD, but still quite high. The cosine similarities are again squashed towards 0.98,
but this, as before, is not a problem in the final distribution. The explainability, this time,
emphasizes buildings and special markings as the pattern on the square of the second query.
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Figure 4.27: DINOv2 NetVLAD example and explainability.
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DINOv2 + NetVLAD In this case, DINOv2 manages to find the right place in the first
five images. The explainability shows a certain focus both on bigger landmarks, buildings,
and ample empty spaces, and on finer details, such as the power lines in the second query.

Query
Rank 1 True
Sim: 0.69

Rank 2 True
Sim: 0.65

Rank 3 True
Sim: 0.65

Rank 4 True
Sim: 0.64

Rank 5 True
Sim: 0.61

Query
Rank 1 True
Sim: 0.64

Rank 2 True
Sim: 0.63

Rank 3 True
Sim: 0.59

Rank 4 False
Sim: 0.57

Rank 5 True
Sim: 0.56

Comparing to image:

LIME (Similarity Explanation)

Occlusion Heatmap

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Similarity to "Bangkok_0000002_2011_09_567_13.71514742762685_100.4858264116832_s-6BnWlLnaMfiWbqynxRpw.jpg"

Comparing to image:

LIME (Similarity Explanation)

Occlusion Heatmap

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Similarity to "Boston_0008215_2020_11_325_42.39191366295917_-71.1100039542032_Ox7-Bp9qCRvfFgI14mxg2g.jpg"

Figure 4.28: DINOv2 NetVLAD example and explainability.

Conclusions

Before analyzing the final results, a few plots are needed to show the embedding distribution
while using different architectures. Just as it was analyzed in the previous case, the plots
below show with the same backbone how aggregators distribute embeddings into space as a
probability distribution. The process is similar to the one used on Tokyo’s dataset, but uses a
random but representative amount of images as a query (1/4 of the 79474 images present). In
this case, the optimal F1-score was not calculated, but the Average Precision Score is instead
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computed and reported in Table 4.2, along with the R@100P. A crucial fact to keep in account
is that the distributions are normalized to integrate to 1 for probability reasons, but they are
actually very imbalanced: a small red area corresponds to a far bigger number of images than a
green one. The red area represents a distribution of 197,337,503 images, while the green one is
just 21,275 images. While VGG (Fig. 4.39) plots have normal values with a large overlap area
(reflected by the metrics calculated before), DINOv2 (Fig. 4.40) with GeM as the aggregator
has values squashed near 0.98. This time, even when keeping the precision high enough, the
overlap area is far greater than the one on NetVLAD.
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Figure 4.29: VGG19 encoding cosine similarity mean with GeM (left) and NetVLAD (right).
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Figure 4.30: DINOv2 encoding cosine similarity mean with GeM (left) and NetVLAD (right).

The overall performance is reported in Table 4.2: the best scores for each column are
written in bold, with DINOv2 with NetVLAD dominating for almost all the metrics, as well
as for the degree of embeddings separation given by the Average Performance Score. As for
the time taken for inference, VGG19 is the fastest, as expected from a CNN. DINOv2 is about
four times slower but still competitive, with just 6 milliseconds of inference time. Unlike what
happened with Tokyo-24/7, VGG19 is not a competitive option against DINOv2. Not only
were the samples far more, but they were also heterogeneous and very different in multiple
settings. VGG19 did not manage to generalize well enough to achieve competitive results.
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As for what concerns aggregators, GeM works well for the CNN, but with DINOv2, it
fails to achieve good results on the Average Performance Score. This means that NetVLAD
would be the preferred one in a SLAM case when corrections are possible: if strict loop closure
without any correction of false positives is needed, then the one with the best, even if very
low, Recall at 100% Precision is DINOv2 with GeM.

Table 4.2: Performance comparison across architectures and aggregators on GSV-Cities. R@K
stands for Recall@K, AP@K stands for Average Precision (used in VPR) at k, Time is the
mean and standard deviation of inference time of the model once the image is loaded on the
GPU in milliseconds, and APS instead stands for Average Precision Score, while R@100P
stands for Recall at 100% Precision. R@1 and AP@1 are equivalent.

Backbone Aggregator R@1 R@5 AP@3 AP@5 Time (µ/σ) APS R@100P

VGG19 GeM 75.8 86.4 61.4 51.7 2.15 / 0.01 18.4 0.0

VGG19 NetVLAD 69.4 82.6 54.0 44.5 2.15 / 0.01 11.9 < 0.1

DINOv2 GeM 91.1 95.9 81.3 72.1 6.97 / 0.07 35.9 2.6

DINOv2 NetVLAD 97.4 98.8 93.9 89.7 7.42 / 0.07 70.7 1.0

4.1.3 Generalization

Before passing to the indoor VPR section, a few comments on generalization are needed. The
models trained on Tokyo-24/7, probably also because of the low number of images available, do
not perform very well on the GSV-Cities test set, with a significant loss of performance. The
exception is DINO, which not only performs well, but the version with NetVLAD aggregator
trained on Tokyo-24/7 outperforms the native version with DINO and GeM on all metrics
but the R@100P, as it is visible in Table 4.3. The models trained on GSV-Cities instead have
excellent results on the Tokyo-24/7 dataset (Table 4.4). VGG19 has scores comparable to the
ResNet trained specifically on Tokyo, while DINOv2 with the NetVLAD model outperforms
the best DINOv2 model trained on Tokyo for all metrics, APS, and R@100P included. DINOv2
with GeM on GSV also has high scores, comparable to the one that VGG19 with NetVLAD
trained on Tokyo has, but it does not seem to generalize as well as NetVLAD does. The
idea to train models on big datasets and try to use them as general-purpose tools is not new
and is the one that GSV’s paper [54] authors thought of, but it is great to see it working on
those two datasets. DINOv2 trained on a large enough dataset enables the creation of a truly
general-purpose VPR model that may be trained once on enough data and then used on all
the relevant occasions without needing retraining or fine-tuning.
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Table 4.3: Performance comparison across architectures on GSV-Cities. R@K stands for
Recall@K, AP@K stands for Average Precision (used in VPR) at k, APS instead stands for
Average Precision Score, and R@100P for Recall at 100% Precision. R@1 and AP@1 are
equivalent.

Backbone Aggregator Training R@1 R@5 AP@5 APS R@100P

VGG19 GeM Tokyo 48.7 62.4 25.9 2.4 < 0.1

VGG19 GeM GSV 75.8 86.4 51.7 18.4 0.0

VGG19 NetVLAD32 Tokyo 45.0 59.1 23.2 0.5 0.0

VGG19 NetVLAD96 GSV 69.4 82.6 44.5 12.0 < 0.1

DINOv2 GeM Tokyo 90.2 95.3 71.6 36.4 2.3

DINOv2 GeM GSV 91.1 95.9 72.1 35.9 2.6

DINOv2 NetVLAD32 Tokyo 92.6 96.7 76.4 47.6 0.6

DINOv2 NetVLAD96 GSV 97.4 98.8 89.7 70.7 1.0

Table 4.4: Performance comparison across architectures on Tokyo 24/7. SR@K stands for
Strict Recall@K, R@K for Recall@K, and F1 is the maximum F1-score achieved by trying
various thresholds when applied to the distribution of embeddings. APS instead stands for
Average Precision Score and R@100P for Recall at 100% Precision.

Backbone Aggregator Training R@1 R@5 SR@2 SR@10 F1 APS R@100P

VGG19 GeM GSV 85.1 94.3 58.9 79.8 67.8 69.8 19.5

VGG19 GeM Tokyo 90.8 96.5 68.8 88.3 69.1 72.7 28.4

VGG19 NetVLAD96 GSV 73.4 81.6 33.0 58.2 49.7 46.0 9.9

VGG19 NetVLAD32 Tokyo 91.8 96.1 74.8 88.7 73.8 78.0 34.4

DINOv2 GeM GSV 93.3 98.9 69.1 91.8 69.3 72.8 30.1

DINOv2 GeM Tokyo 93.6 98.9 70.0 92.9 69.7 73.4 31.2

DINOv2 NetVLAD96 GSV 96.8 99.3 89.0 97.2 82.1 87.5 45.7

DINOv2 NetVLAD32 Tokyo 96.5 99.2 84.0 96.8 78.9 82.8 33.0

Indoor

After seeing the success of these architectures on Outdoor VPR, a few tests were run in Indoor
VPR scenarios. Indoor VPR is an often overlooked problem, and there are not many datasets
adapted for this task.

4.1.4 OpenLoris-Scene Test

The OpenLoris-Scene [58] is a dataset containing the outputs of sensors mounted on a robot
that moves along a specific path in an indoor space. It did not come with specific places
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divided, so a few of them were mined with a tool that takes into account the position and
orientation of the robot at each step and tries to find images that represent ”places”. This
means that not only must the images be far enough from each other, but also that the orien-
tation of the robot when taking the picture must not overlap as much as possible. In this way,
from the office dataset, only five pairs of different places were mined. This was considered an
acceptable amount, as the scope of this test was to check if the DINOv2 model can perform
optimally in indoor environments without fine-tuning.
Taken the DINOv2 model with NetVLAD trained on Tokyo-24/7, the Recall@1 is 100% on
these few images. No place was mismatched, and all the correct places have a cosine similarity
above 0.80, while the different places always have a cosine similarity below 0.80. This means
that, in this small example, the APS and R@100P are both 100%, and that a threshold can
be chosen to completely divide the same place and different place images. This experiment is
not enough to draw a meaningful conclusion, but this was just a test to understand if DINOv2
could perform well in indoor environments.
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Figure 4.31: A few queries of OpenLoris-Scene office with their embeddings extracted and
ranked by the DINOv2 with NetVLAD model. Every image retrieved at Rank 1 is the correct
one.

4.1.5 NYC-Indoor-VPR

Given the preliminary results obtained above, a more challenging problem was tackled with the
NYC-Indoor-VPR[55] dataset. This dataset is particularly challenging for three main reasons:
first of all, the images are taken with a 360° camera and are thus highly distorted; secondly,
the place labeling is not always accurate, or at least it does not correspond to the definition of
place that we used until now, as it considers as different places also images that have the same
subjects but are a few meters apart; thirdly the dataset is anonymized by removing from the
images the people and leaving blank pixels in their place. The results given these conditions
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are suboptimal, but this was expected, as the authors of the paper have achieved very low
recall rates. The process used by them is more advanced, so their scores are also higher than
the ones that will be reported below.

Experiment Setup

The dataset this time was already split into train, validation, and test. Moreover, a CSV
file containing information on each image, with its spatial position, file path, and place, was
provided. In this case, ”hard mining” of triplets was used, as instead of sampling a random
positive and negative for each anchor, negatives are images near spatially but not belonging to
the same place (see Fig. 4.32). Afterward, the model plus aggregator is trained for 10 epochs
using a triplet loss function with a margin of 0.3 and with an ADAM optimizer with a learning
rate of 1× 10−4. When NetVLAD was used as an aggregator, the best results were achieved
with a number of clusters equal to 96 (32, 64, and 128 were also tested).

Anchor Positive Negative

Anchor Positive Negative

Figure 4.32: An example of hard triplets mined for training from the NYC-Indoor-VPR
dataset.

After training, the validation set is cleaned for places with singleton images, and feature
descriptors are extracted for each valid image left. A cosine similarity matrix is generated by
L2-normalizing the embeddings and multiplying the resulting matrix by its transpose. For
quantitative evaluation, Recall@K and Average Performance@K metrics are calculated and
plotted. A general plot of the cosine similarity value of correct and wrong images rescaled on
density is also calculated to check the degree of separation between the two. F1 best score,
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Average Precision Score, and Recall at 100% Precision are calculated. Finally, for qualitative
analysis, LIME and occlusion sensitivity algorithms are used to generate explainability maps.

Results

As it is possible to see from the figure above (Fig. 4.32), it is very challenging for a human as
well to distinguish the same place images from the examples, both because of the distortion
and because of the noise from anonymization. The results are indeed low in general, having
scores around 5 to 10% on Recall@1. VGG19 performs worse than DINOv2, while GeM
improves VGG19 performance against NetVLAD but cannot reach the results achieved by
NetVLAD with DINOv2 once again, as it is possible to see from Fig. 4.33 and Fig. 4.34
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Figure 4.33: AP@K and Recall@K of VGG19 with GeM (left) and NetVLAD (right) on NYC-
Indoor-VPR validation set.
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Figure 4.34: AP@K and Recall@K of DINOv2 with GeM (left) and NetVLAD (right) on
NYC-Indoor-VPR validation set.

Qualitative results and Explainability For each of the possible architecture combina-
tions, a qualitative study with explainability has been applied to give a better understanding
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of the influence on the decisions taken by the model. One test image is selected, and the 5
top similar embeddings are retrieved and then shown, marking on top of each image both the
cosine similarity and an ’X’ mark or ”OK” word that indicates whether it is the same place
or not.

VGG + GeM does not recall even one right image. At least the images recalled are
very similar, but due to the strict place marking, they are not the same. According to the
explainability of the decisions taken, excessive focus is given to the blank spaces that represent
anonymized people. This is a problem and probably also one of the leading reasons for the
low scores the model achieved.
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Figure 4.35: VGG19 GeM example and explainability.

VGG + NetVLAD as it is possible to see in this section’s Conclusions, NetVLAD collapses
images into embeddings very near to 1.0, 0.8, and a few more values. This still did not find
the same place, and the focus still seems to be on people at a specific point of the ceiling,
without taking anything else into account.
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Figure 4.36: VGG19 NetVLAD example and explainability.

DINOv2 + GeM also does not recall even one right image. On the bright side, from the
explainability, it seems to focus on places instead of people: DINOv2, as usual, generalizes
better.
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Figure 4.37: DINOv2 GeM example and explainability.

DINOv2 + NetVLAD is the first one to get at least one image right. The focus seems
similar to that of GeM but with less emphasis on the ceiling and more on the central part of
the image.
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Figure 4.38: DINOv2 NetVLAD example and explainability.

Conclusions

As usual, before the final results, here are a few plots of the distributions of cosine similarity
between embeddings calculated between the DB and query images. As the models did not
perform well, we expect a large overlap area on all the images, especially considering that
the red images are far more than the green ones, even if they were normalized (14,918,738
to 1,888). As expected, the best F1-score is pushed on the right, so much so that the results
reported in Table 4.5 are low values. The behavior of VGG with NetVLAD is peculiar: it
collapses embedding similarity in a few specific points, such as 1.0 or 0.8.
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Figure 4.39: VGG19 encoding cosine similarity mean with GeM (left) and NetVLAD (right).
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Figure 4.40: DINOv2 encoding cosine similarity mean with GeM (left) and NetVLAD (right).

The overall results cannot be called good. Some of them give hope for a future break-
through, as the fact that DINOv2 and NetVLAD can still achieve results that are far above
the others. Still, it is clear that 360° images, as well as anonymized ones, are a new field
of study that will need new architectures to tackle the challenges they offer. In Table 4.5, a
general summary is reported, where DINOv2 dominance is once again emphasized. VGG19
with NetVLAD this time not only failed on the recall metrics but also on the cosine separation
metrics, such as F1-score and APS. GeM with DINOv2 is the only model that managed to
classify 0.1% of the right images without having false positives. The result is abysmal, but
it is better than the 0.0% that all the other models achieved. As usual, VGG is about three
times faster than DINOv2.

Table 4.5: Performance comparison across architectures and aggregators on GSV-Cities. R@K
stands for Recall@K, AP@K stands for Average Precision (used in VPR) at k, Time is the
mean and standard deviation of inference time of the model once the image is loaded on the
GPU in milliseconds, F1 is the best F1-score calculated on various threshold, APS for Average
Precision Score, and R@100P for Recall at 100% Precision. R@1 and AP@1 are equivalent.

Backbone Aggregator R@1 R@5 AP@5 AP@10 Time (µ/σ) F1 APS R@100P

VGG19 GeM 5.5 14.0 8.6 9.2 1.4 / 0.1 3.8 0.5 0.0
VGG19 NetVLAD 4.3 10.8 6.8 7.2 1.7 / 0.1 0.1 0.2 0.0
DINOv2 GeM 14.5 32.5 21.2 22.0 4.3 / 0.1 4.9 1.2 0.1
DINOv2 NetVLAD 16.6 37.1 24.2 24.9 4.5 / 0.1 7.0 1.5 0.0
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4.2 Online Learning

In the online learning case, the aim was to improve the latest model available: VIPeR [48].
VIPeR’s pipeline is reported in Figure 4.41: the main improvements it implements compared
to AirLoop are a multi-stage memory bank, new losses, and adaptive triplets mining.

Figure 4.41: VIPeR accompanies the place recognition model with a multi-stage memory bank
for rehearsal, adaptive mining, relational memory aware synapses (RMAS), and probabilistic
knowledge distillation (PKD) for regularization. [48]

Both the adaptive triplet mining and the new losses are well thought out and use state-
of-the-art techniques, which are difficult to improve with limited time and resources. The
memory bank, instead, uses a probabilistic approach in which all images are substituted
based on a probability given by a hyperparameter chosen before starting the training of the
model. The base memory functions promote from sensory memory to current (working) with a
random factor and from current (working) to eternal (long-term) with another random factor
of replacement of λ, set to 0.5 in these experiments to balance retention and adaptation.
Thus, two main approaches were tried to improve the model: a diversity-based approach
selects which images to maintain based on their diversity according to the internal relevance
metric; a global descriptor-based approach tries to keep in memory images that have very
different global descriptors. The idea in both cases is to allow the memory to store not just
random images but rather to keep images relevant to fully describe the environment seen by
the model. This means retaining the embeddings that cover the largest amount of latent space,
which should help the neural network generalize better. For further details on the code, the
algorithms are reported in Appendix A.

Experiment Setup

The VIPeR model has a public GitHub repository; the baseline code is derived from AirLoop
[47], with modified sections for memory, lifelong losses, and triplet sampling. All the tests were
conducted by editing the functions for storing images in the working and eternal memory in
the memory file. The losses file was also modified to pass the global descriptor to memory
when needed. Because of time and memory constraints, all tests were made on the Nordland
dataset with VGG as a backbone. DINOv2 was not tested, as it is not retrained and the
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intelligent method would hel only the aggregator.
The Nordland dataset contains images for each of the four seasons, and the models are trained
and tested on each of them, starting from spring and ending with winter. In the joint training
case, the seasons are mixed to check the overall performance of the model on the dataset, while
in the sequential training case, starting from spring to winter, the model sees all the images
of each season sequentially. Joint training is used to evaluate the upper limit of the method,
while sequential training represents a real-life example where pictures are taken following a
linear temporal sequence. At the end of the training, the model weights are saved and then
used to evaluate the performance as Recall@100Precision and Average Precision Score for
each season. The following section reports the average performance across all seasons. All
the models were trained with the same seed for three epochs, which is the equivalent of doing
three laps across all seasons in this case.

Results

First of all, joint training was used to test the baseline and the edited versions of VIPeR. As
reported in Table 4.6, the results of the first epoch metrics are similar and have no meaningful
gap between the base model performance and the modified one. On the third epoch, both
diversity and global descriptor memories show a performance that is two percentage points
better than the baseline version. With GeM as the aggregator, the diversity increases the
performance with respect to the baseline and global descriptor one, while with NetVLAD, the
global descriptor-based memory excels.

Table 4.6: Performance comparison of VIPeR joint training with VGG as a backbone and
different aggregators on Nordland with the base VIPeR version, with diversity memory, and
with global descriptor memory. E1 and E3 stand for epochs 1 and 3, respectively, while
R@100P stands for Recall@100Precision, and APS stands for Average Precision Score. Both
R@100P and APS are the averages of the model performance across the four seasons in
Nordland.

Version Aggregator E1 R@100P E1 APS E3 R@100P E3 APS

Base GeM 58.6 72.9 60.3 74.9

Diversity GeM 60.2 74.3 62.8 77.2

Global Descriptor GeM 58.0 72.5 61.5 76.0

Base NetVLAD 69.4 82.8 71.7 84.5

Diversity NetVLAD 69.1 82.7 72.7 85.3

Global Descriptor NetVLAD 69.8 83.0 73.5 86.0

After the joint training test, a sequential training that simulates a real-life environment
situation was employed. The models used for evaluation are trained sequentially on all four
seasons, with winter being the last season seen. The results are reported in Table 4.7, in
which, in the first epoch, the base NetVLAD model chose the images well, as it dominates
with the best results. In the third epoch, both with GeM and with NetVLAD, the edited
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memories surpass the baseline one by about three percentage points both in mean R@100P
and in mean APS.

Table 4.7: Performance comparison of full cycle VIPeR sequential training with VGG as a
backbone and different aggregators on Nordland with the base VIPeR version, with diversity
memory, and with global descriptor memory. E1 and E3 stand for epochs 1 and 3, respectively,
while R@100P stands for Recall@100Precision, and APS stands for Average Precision Score.
Both R@100P and APS are the averages of the model performance across the four seasons in
Nordland.

Version Aggregator E1 R@100P E1 APS E3 R@100P E3 APS

Base GeM 62.6 76.9 66.2 80.5

Diversity GeM 65.0 78.6 67.2 80.8

Global Descriptor GeM 65.4 78.8 67.8 81.2

Base NetVLAD 64.6 78.5 65.0 79.0

Diversity NetVLAD 62.1 76.2 68.9 81.9

Global Descriptor NetVLAD 64.4 78.6 69.6 82.5

Conclusions

While the improvement on the first epoch is limited, on multiple epochs, the edited memory
versions outperform the base random memory: global descriptor-based memory and NetVLAD
yield the best results on the third epoch, both in the joint and in the sequential training case.
The improvement brought by the edited memory is from two to three percentage points; it
is significant as it is model-agnostic, and it generalizes with all backbones and aggregators
tested. To further improve VIPeR, apart from structural modification, such as the memory
one tested above, a more advanced aggregator and backbone can be plugged in to obtain
higher performance scores. A single test was also made with ConvAP [54], a state-of-the-art
aggregator, and it achieved even better results. This was not comprehensively tested in this
thesis, as it is not really a structural improvement to the model, but just using more advanced
components in a framework that already works.
On real robotic platforms, where it is not possible to redo the training on the whole dataset
every time, having a good performance increase with only the data in memory and the current
data, trained as the robot drives, for only three epochs, can be a good starting point and a
good compromise to be able to apply these methods on real-life scenarios.
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Conclusions

This thesis investigated the domain of Visual Place Recognition (VPR) with three primary
objectives: to conduct a comprehensive evaluation of foundational VPR architectures, to
propose and validate metrics that take into account embedding separation when assessing
model performance, and to improve the state-of-the-art continual learning framework for VPR.

5.1 Summary of Contributions

This thesis addressed the three core problems outlined in the Introduction, obtaining the
following contributions:

1. Evaluating Foundational VPR Architectures: This work evaluated multiple com-
binations of backbones and aggregators across various benchmarks. From the results, it
is clear that the DINOv2 backbone paired with a NetVLAD aggregator achieves
the best performance in most cases, not only in standard retrieval metrics but also in
the proposed descriptor separation analysis. From the explainability results, the focus
in images of the DINOv2 model is the most impressive one, often marking as important
the same segments that a human would. Furthermore, the experiments confirmed that
training on large-scale datasets allows models to generalize well, as models trained on
GSV-Cities generalized well on the Tokyo-24/7 dataset, excelling also in unseen envi-
ronments.

2. Limitations of Standard VPR Metrics: To deal with the limitations of standard
VPR metrics, this thesis proposed a methodology centered on the analysis of cosine sim-
ilarity distributions. By visualizing the separation between ”same-place” and ”different-
place” descriptors and quantifying it with metrics often used on SLAM problems, such as
the Average Precision Score (APS) and Recall at 100% Precision (R@100P),
this work evaluates the model’s discriminative capability, and not only its ranking qual-
ity. Although R@100P is already quite widespread in the VPR environment, the use
of APS is not, but this thesis shows that it is the one that best represents the overall
performance of the model.

3. Efficient Continual Learning for VPR: To improve the best available model to date
for online learning VPR, this research proposed and validated an intelligent memory
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storing strategy. The tests show that storing the most informative images, rather
than random ones, achieves a performance improvement of two to three per-
centage points when training for only a few epochs. This model-agnostic improvement is
a practical compromise for real-world scenarios, improving continual adaptation without
the infeasible requirement of retraining on the entire dataset.

5.2 Discussion of Key Findings

The experimental results show several key findings. The dominance of DINOv2 across nearly
all tests without any retraining emphasizes the power of the Visual Transformer foundation
model to create visual feature extractors that are also effective for VPR tasks. While com-
putationally more expensive than traditional CNNs like VGG19, its excellent performance
and generalization capabilities justify its use in most applications. On some datasets, how-
ever, VGG19 with NetVLAD achieved remarkable results, especially on R@100P, becoming a
viable, faster alternative.

Regarding aggregators, NetVLAD was consistently the superior choice for Transformer-
based backbones, learning a more descriptive global embedding than the simpler pooling
mechanism of GeM. The analysis of cosine similarity distributions provided a visual and
quantitative confirmation of this, showing a wider separation between positive and negative
pairs for NetVLAD. Still, on challenging datasets such as GSV-Cities and NYC-Indoor-VPR,
GeM is the one that managed to achieve better scores on R@100P, even if with small values.
On CNN instead, GeM and NetVLAD alternate as the best aggregators, based on the type
of dataset and backbone. GeM has a better average performance, but NetVLAD manages to
achieve the best results when fine-tuning the cluster size.

Focusing on metrics instead, apart from the two usual recall metrics, two more were se-
lected: Average Performance Score (APS) and Recall at 100% Precision (R@100P). While
R@100P is commonly used in SLAM contests as it evaluates the quality of a threshold with-
out false positives, it does not take into account the possible correction and filtering that a
SLAM algorithm can run to exclude false positives. All the tests still contain it, as it is an im-
portant metric; the preferred one is the Average Precision Score, which takes into account the
Recall and Precision on different thresholds and the overall performance of the model. This
metric is better suited to evaluate different architectures’ performance for VPR problems; in
the experiments on large datasets, the R@100P is hard to improve, achieving scores that are
less than 5%, while the APS manages to get over 70%. The APS often reflects the ranking
performance as well, while R@100P is a strict metric that leaves no room for error. Some
works [59, 60] have proposed to use the Area Under the Precision-Recall Curve, but while the
metric is very similar, it is slightly more optimistic than the APS, and was thus discarded.

On the online learning side, memory modification with intelligent storing is performed as
well as the random one on a single epoch, and better on multiple epochs. As this edit is
model-agnostic, this improvement will work with all backbones and aggregators—as long as
they are retrained—thus demonstrating the effectiveness of this approach.
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5.3 Limitations of the Study

Despite the comprehensive coverage of the experiments, this work has several limitations that
should be taken into account:

• The evaluations were primarily conducted with frozen backbones when using Visual
Transformers. As previously noted, fine-tuning these powerful models, particularly DI-
NOv2, could potentially raise the performance gains and improve adaptation to specific
domains.

• The performance on challenging indoor and 360° datasets (NYC-Indoor) remained low
across all tested architectures. This is a new challenge that may not be solvable with
current standard models and requires dedicated architectural designs.

• No re-ranking algorithms were tested, even if the state of the art on batch learning uses
them to achieve the best possible results.

• Some promising state-of-the-art components, such as the ConvAP aggregator, were only
tested cursorily and not integrated into the comparative analysis.

5.4 Future Work

The findings and limitations of this thesis open a few paths for future research:

• Analyzing Fine-Tuning and Re-ranking Foundation Models for VPR: A dedi-
cated study on the effects of fine-tuning models like DINOv2 on VPR-specific datasets,
along with re-ranking, could improve performance in the challenging indoor and urban
datasets where they currently falter.

• Architectural Innovation for 360° and Anonymization: Future work should focus
on developing backbones, aggregators, or losses specifically designed to handle the geo-
metric distortions of 360° fisheye lenses or the feature-poor nature of anonymized indoor
environments.

• Analysis of Cosine Similarity Distributions: Further statistical analysis of cosine
similarity distributions may bring up interesting conclusions that are not evident from
the metrics used now. Testing a more elaborate distribution distance than the one tested
in this work may show optimal results for the thresholding task.

• Online Learning Model Improvement Strategies: Research could explore more
advanced memory management techniques, with surprise-based or hybrid criteria, to
create an even more efficient and robust memory buffer for continual learning. The
lifelong losses and sampling parts are also model-agnostic, and further research may
bring a generalized improvement.
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Appendix A

Pseudocode of Various Memory
Versions in Continual Learning

The main functions edited are the StoreCurrent and StoreEternal functions, which respec-
tively promote memory from sensory to working and from working to long-term. StoreEternal
function is called at the end of each epoch, while the StoreCurrent one is called by the memory
buffer, which is itself called whenever new data is pushed to the memory. Every memory has
a separate maximum of images it can keep, called cap; the class also stores the numbers of
steps taken since the beginning of the epoch.
Three memory update strategies were tested:

• Base: images are replaced randomly with probability proportional to memory capacity
and steps. This is the original VIPeR approach and is reported as Algorithm 1.

• Diversity-based: least diverse images (based on internal offset difference) are replaced.
The offset metric is dataset-specific, and it’s decided when creating the loader. The
algorithm is reported as Algorithm 2.

• Global descriptor-based: images most similar to new embeddings (via cosine similar-
ity) are replaced to maximize coverage of latent space. This instead is model-agnostic,
but it requires an edit in the loss class to pass the global descriptor calculated to the
memory class. The only part reported is the edited memory in Algorithm 3.

The replacement factor λ was set to 0.5 in all experiments to balance both memory stability
and adaptation.
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Algorithm 1 Base Memory Strategy (Random Sampling)

1: procedure StoreCurrent(batch)
2: L← number of new images
3: if current num + L ≤ current cap then
4: Store new images at available slots
5: else
6: p← current cap/steps
7: if random() < p then
8: Randomly sample L slots from current memory
9: Overwrite them with new images
10: end if
11: end if
12: end procedure
13: procedure StoreEternal
14: if eternal memory is empty then
15: Sample eternal cap random items from current memory
16: Copy to the eternal memory
17: else
18: λ← 0.5
19: Sample λ · eternal cap random current items
20: Replace λ · eternal cap random eternal items
21: end if
22: end procedure
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Algorithm 2 Diversity-Based Memory Strategy

1: procedure StoreCurrent(batch)
2: L← number of new images
3: if current num + L ≤ current cap then
4: Store directly at the end of current memory
5: else
6: Compute pairwise difference matrix of ’offset’ feature
7: Compute diversity score as the sum of absolute differences
8: Rank items by redundancy (lower = more redundant)
9: Replace L lowest-scoring items with new images
10: end if
11: end procedure
12: procedure StoreEternal
13: if eternal memory is empty then
14: Fill eternal memory with random samples from current memory
15: else
16: λ← 0.5
17: k ← λ · eternal cap
18: Randomly sample k new items from current memory
19: Rank eternal items by redundancy (based on offset similarity)
20: Replace k most redundant eternal entries with new ones
21: end if
22: end procedure
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Algorithm 3 Global Descriptor-Based Memory Strategy

1: procedure StoreCurrent(batch)
2: for all image x in batch do
3: if space available in current memory then
4: Store x directly
5: else if x has valid GD (not NaN) then
6: Compute cosine similarity with all GDs in memory
7: Identify the most similar item
8: Replace it with x
9: else

10: Replace a random memory slot with x
11: end if
12: end for
13: end procedure
14: procedure StoreEternal
15: if eternal memory is empty then
16: Select top eternal cap entries from current memory based on GD norm
17: Fill eternal memory
18: else
19: λ← 0.5
20: k ← min(λ · eternal cap, current num)
21: Select top-k entries from current memory with highest GD norms
22: Replace k random entries in eternal memory
23: end if
24: end procedure
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