Hyperparameter tuning of BoloGAN: a CWGAN-GP model for fast simulation of the calorimeter of the ATLAS experiment

Abdullah, Muhammad Wisal (2025) Hyperparameter tuning of BoloGAN: a CWGAN-GP model for fast simulation of the calorimeter of the ATLAS experiment. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (2MB)

Abstract

The analysis of current high energy experiments at the LHC requires simultaneous comparisons with simulations for the purposes of event reconstruction, background estimation and detector design and optimization, etc. Geant4 is the traditional simulation toolkit and has been widely used to carry these simulations. It has problems related to computational expense and slow speed. For fast simulation, Generative Models are being employed to approximate detector responses and event generation. BoloGAN is a fast simulation technique built using a conditional Wasserstein GAN. The aim of this thesis is to tune the hyperparameters of the model using random search based on the validation metric of reduced chi squares between Geant4 data and generated energy distributions by simulating the ATLAS calorimeter, on HPC systems. The tuning will be executed on LXBATCH at CERN remotely. This is done in view to optimize the performance of the model, to improve the detector response simulation, helping in the recostruction of the physics object in the events collected by the ATLAS experiment.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Abdullah, Muhammad Wisal
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Generative Adversarial Networks,High Performance Computing,ATLAS,High Energy Physics
Data di discussione della Tesi
27 Marzo 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^