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Abstract

The analysis of current high energy experiments at the LHC requires simultaneous comparisons
with simulations for the purposes of event reconstruction, background estimation and detector
design and optimization, etc. Geant4 is the traditional simulation toolkit and has been widely
used to carry these simulations. It has problems related to computational expense and slow
speed. For fast simulation, Generative Models are being employed to approximate detector
responses and event generation. BoloGAN is a fast simulation technique built using a conditional
Wasserstein GAN. The aim of this thesis is to tune the hyperparameters of the model using
random search based on the validation metric of reduced chi squares between Geant4 data and
generated energy distributions by simulating the ATLAS calorimeter, on HPC systems. The
tuning will be executed on LXBATCH at CERN remotely. This is done in view to optimize
the performance of the model, to improve the detector response simulation, helping in the
recostruction of the physics object in the events collected by the ATLAS experiment.

The structure of this thesis is the following: an introduction to detector simulation is
presented in Chapter 1 along with an broad overview and context of the project. Chapter 2 and
Chapter 3 describe GANs and WGANs. Chapter 4 describes the hypothesis testing to compare
Geant4 and BoloGAN, while Chapter 5 focuses on the optimization of hyperparameters. The
results and analysis are finally demonstrated in Chapter 6 and Chapter 7.
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Summary

Le analisi degli esperimenti di Fisica delle Alte Energie presso l’acceleratore LHC richiedono
un continuo confronto con le simulazioni ai fini della ricostruzione dell’evento, della stima del
background e della progettazione e ottimizzazione del rivelatore. Tradizionalmente, il toolkit
di simulazione Geant4 è ampiamente utilizzato per eseguire tali simulazioni. Attualmente,
Geant4 presenta alcuni problemi legati al consumo delle risprse computazionali e alla bassa
velocità di esecuzione. Per una simulazione rapida, possono essere utilizzati modelli generativi
per approssimare le risposte dei rilevatori e la generazione di eventi. BoloGAN è una tecnica
di simulazione veloce sviluppata utilizzando un rete neurale GAN-Wasserstein condizionale.
Lo scopo di questa tesi è quello di ottimizzare gli iperparametri del modello utilizzando una
grid-search basata sulla confronto basato su una validazione del chi-quadrato ridotto tra le
distribuzioni di energia generata simulando su sistemi HPC il calorimetro di ATLAS con Geant
e con Bologan. L’ottimizzazione è eseguita su LXBATCH al CERN. Lo scopo del lavoro è di
ottimizzare le prestazioni del modello, per migliorare la simulazione della risposta del rivelatore,
aiutando nella ricostruzione fisica degli eventi raccolti dall’esperimento ATLAS.
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1
Introduction

The Large Hadron Collider (LHC) at CERN is the world’s most powerful particle accelerator,
designed to collide protons at extremely high energies to explore fundamental physics. The
ATLAS experiment is one of the four major detectors at the LHC, built to study a wide range
of physics phenomena, including the Higgs boson, dark matter, and new particles beyond the
Standard Model. ATLAS relies on accurate simulations to interpret the vast amounts of data
generated by particle collisions. Geant4 is a toolkit for simulating the passage of particles through
matter and is widely used in high-energy physics experiments, including ATLAS. At ATLAS,
Geant4 is used to model the detailed interactions of particles with the detector’s components,
such as the Inner Detector, Calorimeters, and Muon Spectrometer. Geant4 provides a high
level of accuracy but is computationally expensive, making it challenging to use for large-scale
simulations. To address the computational cost of full Geant4 simulations, fast simulation
tools like Atlfast and FastCaloSim were developed. These tools use parameterized models
or precomputed shower libraries to approximate the detector response, significantly reducing
the time and resources required for simulations. Fast simulations are particularly useful for
generating large datasets for physics analysis, detector optimization, and machine learning
applications. However these simulations lack in accuracy, Generative Adversarial Networks
(GANs) are a class of machine learning models that have been adapted for fast simulation
in high-energy physics. GANs can learn the complex patterns of particle showers and energy
deposits from full Geant4 simulations and generate synthetic data that mimics the real detector
response. GAN-based fast simulations offer several advantages namely speed, accuracy, and
flexibility.

Simulations based on first principles serve as a crucial bridge between theory and experiment,
playing a central role in the success of these facilities’ physics programs. As the LHC enters
future data-taking runs, the volume of generated data will significantly increase, necessitating a
corresponding rise in the number of simulated events required for accurate and sensitive analyses.
Consequently, the computational resources needed to produce these simulations will also grow.

Figure 1.4 illustrates the projected CPU requirements for the two general-purpose experiments,
ATLAS ATLAS Collaboration et al. (2008) and CMS CMS Collaboration et al. (2008), with
similar challenges faced by other experiments such as LHCb LHC Collaboration et al. (2008). A
substantial fraction of CPU consumption is dedicated to simulation, particularly in modeling
detector responses, with calorimeter simulations being especially demanding. These detectors
pose significant computational challenges due to the need to track numerous secondary particles
generated in extensive showers as primary particles interact with dense materials.

State-of-the-art physics-based simulations rely on Geant4 Agostinelli et al. (2003), which
represents a major computational bottleneck. Projections indicate that simulation demands will
surpass the available computing resources, potentially exceeding the computing budgets of both
current and future experiments.
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1.1. CERN AND LHC CHAPTER 1. INTRODUCTION

Figure 1.1. ATLAS detector layout ATLAS Collaboration (2023)

1.1 CERN and LHC

The Large Hadron Collider (LHC) stands as the world’s most powerful and extensive particle
accelerator. It began operations on September 10, 2008, and continues to be the most recent
addition to CERN’s accelerator facilities. The LHC features a 27-kilometer ring equipped with
superconducting magnets and various accelerating structures designed to increase the energy of
particles as they travel through the system.

Within the accelerator, two beams of high-energy particles travel at nearly the speed of light
before being directed to collide. These beams move in opposite directions through separate beam
pipes—tubes maintained at ultrahigh vacuum. They are steered around the accelerator ring by
a powerful magnetic field generated by superconducting electromagnets. These electromagnets
are constructed from coils of specialized electric cable that operate in a superconducting state,
allowing electricity to flow without resistance or energy loss. To achieve this, the magnets must
be cooled to -271.3°C—a temperature even colder than outer space. Consequently, much of the
accelerator is linked to a distribution system of liquid helium, which cools the magnets, along
with other essential supply services.

The Large Hadron Collider (LHC) utilizes thousands of magnets of various types and sizes
to guide the beams around the accelerator. This includes 1,232 dipole magnets, each 15 meters
long, which are responsible for bending the beams, and 392 quadrupole magnets, ranging from
5 to 7 meters in length, which focus the beams. Just before collision, an additional type of
magnet is employed to "squeeze" the particles closer together, thereby increasing the likelihood
of collisions. Given the minuscule size of the particles, achieving a collision is comparable to
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1.2. ATLAS CHAPTER 1. INTRODUCTION

firing two needles from 10 kilometers apart with such precision that they meet exactly halfway.
All the controls for the accelerator, including its services and technical infrastructure, are

centralized under one roof at the CERN Control Centre. From this location, the beams within the
LHC are directed to collide at four specific points around the accelerator ring, which correspond
to the positions of the four particle detectors: ATLAS, CMS, ALICE, and LHCb.

1.2 ATLAS: General Features and structure of detector

The ATLAS Detector (A Toroidal LHC Apparatus) is one of the four major experiments at the
Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. It
is a general-purpose particle detector designed to explore a wide range of physics phenomena,
including the search for the Higgs boson, dark matter, extra dimensions, and other new physics
beyond the Standard Model. The ATLAS detector is one of the largest and most complex
scientific instruments ever built.

The ATLAS detector is composed of several layers, each designed to detect different types of
particles and measure their properties. The detector is cylindrical in shape and is divided into
several subsystems. Inner Detector ’s purpose is to track the paths of charged particles close to the
collision point. It tracks charged particles and measures their momentum. Calorimeter measures
the energy of particles by absorbing them. It has two components the electromagnetic calorimeter
(EMcal) and hadronic calorimeter (Hcal). EMcal measures the energy of photons and electrons,
and Hcal measures the energy of hadrons (e.g. protons, neutrons, pions). Muon Spectrometer
detects and measures muons (through their momenta and trajectory), only charged particles
that can penetrate the calorimeters. The magnet system bends the paths of charged particles to
measure their momentum. The Trigger and Data Acquisition System selects interesting collision
events from the billions of collisions per second and records the data.

There are two flavors of calorimeters: electromagnetic and hadronic. Electromagnetic
calorimeters are designed to stop electrons and photons ,which have shallower and narrower
showers compared with protons, neutrons,and charged pions. Hadronic calorimeters are thicker
and deeper in order to capture penetrating radiation that forms irregular showers from nuclear
interactions. In this first application of GANs to along longitudinally segmented calorimeter, we
choose to focus only on electromagnetic showers. In addition to already providing the capability
to simulate electrons and photons,the electromagnetic shower contains all of the new challenges
described.

1.3 Detector Simulation at ATLAS

Detector simulation at the ATLAS experiment is a sophisticated and essential process that
enables physicists to model and interpret the behavior of particles produced in high-energy
proton-proton collisions at the Large Hadron Collider (LHC). The simulation workflow begins
with event generation, where tools like Pythia or Herwig simulate the initial collisions and produce
primary particles. These particles are then tracked through a detailed model of the ATLAS
detector using Geant4, which simulates their interactions with detector materials, including

3



1.3. DETECTOR SIMULATION CHAPTER 1. INTRODUCTION

energy deposits in the calorimeters and hits in the muon spectrometer. For faster simulations,
tools like Atlfast and FastCaloSim provide parameterized approximations of the calorimeter
response. The simulated energy deposits are digitized to mimic the detector’s electronic readout,
and the ATLAS trigger system is simulated to select events of interest. The resulting simulated
data is used for physics analysis, detector optimization, and training machine learning algorithms.
Detector simulation plays a crucial role in ATLAS’s research program, from the discovery of
the Higgs boson to ongoing searches for new physics beyond the Standard Model. Despite
challenges such as computational cost and the complexity of accurately modeling the detector,
simulations are indispensable for interpreting experimental data, testing theoretical predictions,
and advancing our understanding of the fundamental nature of the universe.

Geant4 calorimeter simulation

Geant4 is a comprehensive toolkit designed for simulating the passage of particles or radiation
through matter. Applications developed with Geant4 can model any experimental setup,
detector configuration, or radiation source, capturing specific physical quantities resulting from
the interactions of primary and secondary particles with the materials in the setup. The toolkit
provides complete functionality for all aspects of particle transport simulation, enabling users to
create detailed geometric models with defined shapes and materials, locate points and navigate
particle tracks within these models, and apply physics interactions to simulate particle-matter
effects and generate secondary particles. It also allows users to record selected information
as tallies or hits, which can be used to simulate detector responses, visualize the geometry of
the setup and particle trajectories, and interact with the application through an extensible
command-line or graphical user interface. Geant4 includes an extensive library of physics
processes covering electromagnetic, strong, and weak interactions of particles within matter,
supporting a wide energy range from milli-electron volts (meV) for thermal neutrons, electron
volts (eV) for electrons, and typically kilo-electron volts (keV) for hadrons, up to hundreds of
GeV—and in some cases, even extending to 100 tera-electron volts (TeV). This makes Geant4
a powerful and versatile tool for simulating particle interactions across a broad spectrum of
energies and applications.

Several terms used within GEANT4 have meanings that differ slightly from their general
usage. While these terms are defined in other documentation, they are briefly reviewed here for
clarity and convenience. An event consists of the decay or interaction of a primary particle and
a target, and all subsequent interactions, produced particles and four-vectors. G4Event objects
encapsulate primary vertices and particles, and they may also include hits, digitizations, and
trajectories. A trajectory is defined as a series of track snapshots that capture the particle’s
path as it moves through the simulated environment. A run comprises of a series of events.
A step is defined by two endpoints that mark the boundaries of the fundamental unit of
propagation in space or time. The distance between these points is determined by a combination
of transportation and physics processes, and it can be constrained to a fixed size by the user
when smaller step lengths are required. The G4Step object stores the changes in track properties
that occur between these two endpoints. Allison et al. (2016)

4
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Figure 1.2. Geant4 Full simulation vs Fast simulationATLAS Collaboration (2023)
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1.3. DETECTOR SIMULATION CHAPTER 1. INTRODUCTION

Fast calorimeter simulation: AtlFast and FastCaloSim

Over the past decade, ATLAS has developed and utilized tools to replace the most CPU-intensive
component of simulation—calorimeter shower simulation—with faster simulation methods.
AtlFast3 is the next generation of high-accuracy fast simulation in ATLAS. AtlFast3 combines
parameterized approaches with machine-learning techniques and is deployed to address current
and future computing challenges, as well as the simulation needs of the ATLAS experiment. With
highly accurate performance and significantly improved modeling of substructure within jets,
AtlFast3 can simulate large numbers of events for a wide range of physics processes. AtlFast3 is
already in production for Run 3. Depending on particle type and energy, AtlFast3 employs the
fast simulation system returning the most accurate simulation with respect to Geant4 (image
below Performance: 3-15 times faster than Geant4 (depending on the process). It combines two
fast simulation systems: - FastCaloSim, based on parametrisations; - FastCaloGAN, based on
GANs (Generative Adversarial Networks).

The aim of the FastCaloSim package is to provide a parametrized simulation of the particle
energy response and of the energy distribution in the ATLAS calorimeter and hence reduce the
calorimeter simulation time to a few seconds per event. The parametrization is based on the
Geant 4 simulations of single photons, electrons and charged pions in a fine grid of simulated
particle energies and directions.

The fast simulation of showers in the calorimeter can be broken down into several components:
the total shower energy, the distribution of energy between calorimeter layers, the average lateral
development of showers within a layer, the uncorrelated energy fluctuations in individual showers
compared to average showers, and, for hadronic showers, the correlated fluctuations between
longitudinal and lateral energy distributions. The energy deposited in the calorimeter depends
on the particle’s kinetic energy (Ekin), which is used as the basis for parameterization unless
specified otherwise. Here, Ekin is defined as the particle’s total energy minus its mass. For
antiprotons and antineutrons, the rest mass is added instead of subtracted, as their annihilation
results in additional energy deposition in the calorimeter. The simulation of the total shower
energy and its longitudinal distribution across calorimeter layers, including correlations, provides
an approximate representation of jets, electrons, photons, and τ -leptons, though it tends to
overestimate reconstruction and identification efficiencies. The simulation of the average lateral
energy spread is crucial for the accurate reconstruction and identification of physics objects. To
optimize computational speed, AtlFast3 employs a simplified geometry for the calorimeter cells
, where each cell is assigned to a longitudinal sampling layer. The detector geometry consists
of concentric cylinders with particles propagating along the z-axis. In this model, cells are
represented as cuboids: in η, ϕ, and r for the barrel layers; in η, ϕ, and z for the endcap layers
up to |η| < 3.2; and in x, y, and z for the forward calorimeter layers. η is the Pseudorapidity
which is a measure of the angle of a particle’s trajectory relative to the beam axis. Its invariance
under Lorentz boosts and uniform coverage in solid angle make it a practical coordinate for
high-energy physics experiments.

η = − ln
(

tan
(

θ

2

))
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Where θ is the polar angle measured from the beam axis (z-axis). ϕ is the azimuthal angle that
describes the angular position of a particle or energy deposit around the beam axis. It is used
together with η to define the position of particles or energy deposits in the calorimeter. the
angle measured in the plane perpendicular to the beam axis (z-axis). The radial distance is the
distance from the beam axis (z-axis) to a point in the x-y plane. z is the longitudinal position
along the beam axis.

For the case of CaloChallenge, the detector geometry is composed of concentric cylinders,
with particles propagating along the z-axis. The detector is segmented along the z-axis into
discrete layers. Each layer is further divided into bins along the radial direction (r), and some
layers also include bins in the angular direction (α). The number of layers, as well as the number
of bins in r and α, is specified in the binning.xml files and is read by the HighLevelFeatures

class of helper functions. The coordinates ∆ϕ and ∆η correspond to the x- and y-axes in
cylindrical coordinates.

The image below provides a 3D view of a geometry with 3 layers, where each layer contains
3 radial bins and 6 angular bins. The right image shows the front view of the geometry, as seen
along the z-axis.

Figure 1.3. Schematic view of the voxelization in all datasets. Along the direction of the
incoming particle (z), the volume is segmented in Nz layers. Each layer has Nr radial and Nα

angular bins. Left: 3-dimensional view. Right: Front view.Krause et al. (2022a)

This simplification requires emulating the accordion structure of the ATLAS liquid-argon
electromagnetic calorimeter. By improving the average shower energy distribution and incorpo-
rating corrections for the accordion structure, AtlFast3 achieves reconstruction and identification
efficiencies comparable to those of the Geant4 simulation, particularly for electrons and photons.
The spatial energy deposits in each layer in the Geant4 datasets are grouped into volumes called
‘voxels’ for parameterization of FastCaloSimV2 and FastCaloGAN. Only layers with a significant
amount of energy, referred to as ‘relevant layers’, are considered in the parameterization. In
FastCaloSimV2, only layers with energy fractions larger than 0.1% are used; this procedure is
performed for each sample independently. In FastCaloGAN, all samples in the same η slice are
processed with the same number of voxels. The relevant layers are determined using only the 1

7
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TeV energy point and have an energy fraction larger than 0.1%. In addition, a layer with less
energy is considered relevant if it is in front of a relevant layer.

Figure 1.4. ATLAS CPU hours taken by activities ATLAS Collaboration et al. (2020)

As shown in the figure 1.5 is a properly structured schema for both the detailed (full)
simulation and the fast simulation

ATLAS Computing Resources

The simulation of particle interactions within the detectors, essential for analyzing data collected
during LHC Run 2, consumes approximately 40% of the computing resources allocated to the
ATLAS experiment. Run 2, the second data-taking phase of the LHC, spanned from 2015 to
2018.

The intricate accordion-shaped geometry of the ATLAS electromagnetic calorimeter results
in a computationally demanding simulation of shower development when employing the Geant4
toolkit (G4)

In fact, approximately 80% of the total simulation time for a typical sample of top and anti-
top quark pair (tt̄) production is dedicated to modeling the development of showers. As a result,
fast simulation approaches for calorimeter systems are essential to reduce the computational
demands of the ATLAS experiment and to facilitate the generation of the large numbers of
simulated events required for precision physics analyses.

8
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Figure 1.5. Schema of detailed full simulation (left) vs Schema of the possible configu ration of
the fast simulation (right).Zaborowska (2017)

Figure 1.6. Projected evolution of compute usageATLAS Collaboration & Di Girolamo (2022)
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Figure 1.7. Configuration of the tools that constitute the AtlFast3 version used for Run 3
ATLAS Collaboration % (2024)

Figure 1.8. Event cross Section in a computer generated image of the ATLAS detector Pequenao
(2008)
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Deep Learning Solutions: Achieving accuracy

One possible approach to simulate the calorimeter response involves using deep learning tech-
niques. Specifically, recent research Paganini et al. (2017) has demonstrated that Generative
Adversarial Networks (GANs) can be effectively employed to efficiently simulate particle showers.
The document Krause et al. (2022a) presents various generative models used for fast simulation
in the context of the CaloChallenge 2022, a community challenge focused on fast calorimeter
simulation. The generative models discussed include Generative Adversarial Networks (GANs),
Normalizing Flow-based models, Diffusion-based models, Variational Autoencoders (VAEs), and
Conditional Flow Matching-based models.

Generative Adversarial Networks (GANs) include models such as BoloGANKrause et al.
(2022b), a derivative model of FastCaloGAN, developed at the University of Bologna.

CaloShowerGAN, an evolution of FastCaloGAN optimized for better performance with
photons and pions, using multiple GANs for different energy ranges and extensive preprocessing
and hyperparameter tuning.

1.4 Calochallenge

CaloChallenge 2022 was a community-driven initiative aimed at advancing the development of fast
calorimeter simulation techniques using machine learning, particularly Generative Adversarial
Networks (GANs) and other deep learning models. The challenge focused on improving the
speed and accuracy of simulating particle showers in calorimeters, which are critical components
of high-energy physics experiments like those at the Large Hadron Collider (LHC). Participants
were provided with datasets generated using detailed Monte Carlo simulations of particle showers
in calorimeters. The datasets included energy deposits in calorimeter cells, labeled by particle
type, energy, and incident angle. Submissions were evaluated based on accuracy, speed and
generalization.

The challenge provides three datasets, categorized by difficulty levels: easy, medium, and
hard. The difficulty is determined by the dimensionality of the calorimeter showers, specifically
the number of layers and the number of voxels within each layer. For the purpose of this
thesis the dataset 1 (easy) is used with 533 voxels for pions and 368 for photons.The dataset in
CaloChallenge is stored in one or more .hdf5 files, created using Python’s h5py module with
gzip compression. Each file contains two HDF5 datasets: incident_energies with the shape
(num_events, 1) and showers with the shape (num_events, num_voxels). incident_energies
stores the energy of the incoming particle for each event, measured in MeV, whereas showers
stores the energy depositions in the calorimeter for each event. The energy deposits (in MeV)
are flattened into a 1D array for each event. For the purpose of this thesis,

The dataset is derived from the ATLAS open datasets Faucci Giannelli et al. (2023) and
includes simulations of single photons and single charged pions, which are generated at the
surface of the ATLAS calorimeter system and directed towards the center of the detector. The
particle interactions within the calorimeters were simulated using the official ATLAS software,
which is based on Geant4. Each file containing the voxelised shower information obtained from
single particles produced at the front of the calorimeter in the |η| range (0.2-0.25) simulated in

11



1.5. BOLOGAN CHAPTER 1. INTRODUCTION

the ATLAS detector. The information in each file is a table; the rows correspond to the events
and the columns to the voxels.

In summary, the detailed energy deposits produced by ATLAS were converted from x,y,z
coordinates to local cylindrical coordinates defined around the particle 3-momentum at the
entrance of the calorimeter. The energy deposits in each layer were then grouped in voxels and for
each voxel the energy was stored in the csv file. For each particle, there are 15 files corresponding
to the 15 energy points used to train the GAN. The name of the csv file defines both the particle
and the energy of the sample used to create the file. Each sample has 10,000 events at energies
up to 256 GeV. For higher energies, the number of events decreases, reaching 1,000 events at 4
TeV due to the longer simulation time needed for high-energy showers. This approach balances
the need for statistical robustness at low energies with computational efficiency at high energies.

Figure 1.9. Number of events per various energy levels (in Mev) for Photons and Pions based
on dataset 1 of Calochallenge 2022

1.5 BoloGAN

Model

BoloGAN Krause et al. (2022b) is a GAN-based calorimeter simulation tool, evolved from
FastCaloGAN, a fast simulation framework developed within the ATLAS Collaboration at
CERN. The model employs a Wasserstein GAN with gradient penalty (WGAN-GP) Goodfellow
et al. (2014); Gulrajani et al. (2017) in the discriminator’s loss function, ensuring stable training
and high-performance results. Additionally, the model is conditioned on the kinetic energy of
the incoming particle, implementing a conditional WGAN-GP architecture in TensorFlow 2.0.

Training was conducted over 1 million epochs, with TensorFlow checkpoints saved every
1000 epochs. This checkpointing strategy balances the need for monitoring training progress
while avoiding excessive disk space usage. Due to the adversarial nature of GAN training, the
final epoch does not necessarily yield the best model, as fluctuations during training can lead
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to suboptimal performance. To select the best iteration, a χ2 test is employed between the
reference sample and the GAN-simulated sample, evaluated over the sum of the energy in all
voxels—corresponding to the total energy deposited in the calorimeter by the particle. The
iteration with the lowest χ2 value is chosen for simulation. The total energy for each incident
energy value serves as a natural benchmark, as it is straightforward to define yet challenging to
accurately reproduce.

For each checkpoint, 10,000 events are generated per incident energy value, and the χ2

between the reference and GAN-simulated samples is computed. The total χ2 for a given
checkpoint is obtained by summing the individual χ2 values across all incident energy levels,
and the checkpoint with the lowest total χ2 is selected as the best-performing GAN iteration.

The current implementation of BoloGAN is capable of simulating calorimeter showers for
photons, electrons, and pions, covering an energy range from 256 MeV to 4 TeV across the
full detector acceptance. For the CaloChallenge, BoloGAN was applied to Dataset 1 for both
photons and pions. For pion simulations, a single GAN was trained across all energy values. In
contrast, for photon simulations, two separate GANs were trained: one dedicated to low-energy
photons (up to 4.096 GeV) and another for high-energy photons (above 4.096 GeV). This division
ensures optimal performance across different energy scales.

Figure 1.10. BoloGAN architecture Krause et al. (2022b)
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2
GANs

2.1 Basics of Deep learning

Deep learning is a subfield of machine learning that focuses on deep neural networks — neural
networks with many hidden layers. These layers enable the network to learn hierarchical
representations of data, capturing both low-level and high-level features. The Neurons nodes are
the fundamental unit of a neural network. Each neuron performs a computation:

y = f(
∑n

i
xiωi + b) . (2.1)

Where xi is the input to the neuron, ωi are the weights, Activation functions are functions,
set up by the user, that introduce non-linearity to the network, enabling it to learn complex
relationships. The quantity b is the bias and f is the activation function. Weights determine the
importance of each input while bias shifts the activation function, helping the network learn
more complex patterns. Neurons are organized into layers, forming the structure of a neural
network. The input layer is the first layer and it is the entry point of data into the network. It
does not perform any computations unlike hidden layers. Hidden layers are intermediate layers
that process features. They include weights, biases, and activation functions. Output Layer
produces the final result (e.g., class probabilities or predictions).

The forward pass is a fundamental step in the operation of a neural network. It refers
to the process of passing input data through the network’s layers to compute the output.
During the forward pass, the input data is transformed layer by layer, with each layer applying
weights, biases, and activation functions to produce intermediate outputs until the final output
is generated. During it, input x is passed through the network to compute the output ŷ. The
loss L is computed between ŷ and the true label y.

The backward pass is the process of computing gradients of the loss function with respect to
the model’s parameters (weights and biases) and using these gradients to update the parameters.
The backward pass follows the forward pass, where the model computes predictions and the loss.
It starts from the output layer and moves backward through the network. The gradient of the
loss is computed with respect to the outputs of each layer ∂L

∂ŷ . The chain rule is then used to
propagate these gradients back to the inputs of each layer, and ultimately to the parameters
∂L

∂w1
and ∂L

∂w2
(gradients for the weights in the hidden and output layers). Finally the weights

are updated using the gradients (gradient descent algorithm):

wnew = wold − η · ∂L

∂w

where η is the learning rate.
This is also called optimization which refers to the process of adjusting the model’s parameters

(weights and biases) to minimize the loss function. This is typically done using gradient-based
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2.1. BASICS OF DEEP LEARNING CHAPTER 2. GANS

optimization algorithms, which iteratively update the parameters based on the gradients of the
loss function with respect to those parameters. Gradient descent is the most basic optimization
algorithm. For the purpose of this thesis, we will refer to advanced optimization algorithms that
improve stability and convergence. Momentum accelerates gradient descent by adding a fraction
of the previous update to the current update. This helps overcome local minima and saddle
points.

vt = γvt−1 + η · ∂L

∂w

wnew = wold − vt

where γ is the momentum term.
Root Mean Square propagation: Adapts the learning rate for each parameter based on the

magnitude of recent gradients. This helps in dealing with sparse gradients.

E[g2]t = βE[g2]t−1 + (1 − β)
(

∂L

∂w

)2

wnew = wold − η√
E[g2]t + ϵ

· ∂L

∂w

where β is the decay rate and ϵ is a small constant for numerical stability.
Adam (Adaptive Moment Estimation): Combines the ideas of Momentum and RMSprop. It

maintains both a moving average of the gradients and their squared magnitudes.

mt = β1mt−1 + (1 − β1) ∂L

∂w

vt = β2vt−1 + (1 − β2)
(

∂L

∂w

)2

m̂t = mt

1 − βt
1
, v̂t = vt

1 − βt
2

wnew = wold − η · m̂t√
v̂t + ϵ

where β1 and β2 are the decay rates for the first and second moments, respectively.
As a result of training there can be problems such as overfitting or underfitting. Overfitting

occurs when a model learns the training data too well, including its noise and outliers, resulting
in poor performance on unseen data. This could happen due to a model having too many
parameters that can just "memorize" the data, or when the data is insufficient or when the model
is trained for too many epochs. To fix this problem, use regularization 1, data augmentation,
reduction of model complexity, etc. On the other hand, underfitting occurs when a model is too
simple to capture the underlying patterns in the training data, resulting in poor performance on
both the training data and unseen data. It can happen due to too simple models, insufficient
training, poor feature representation, or high bias. To address this problem, we can increase
model complexity, conduct longer trainings, engineer input features via transformation or feature
augmentation, reduce regularization, use a different model or tune hyperparameters.

1Regularization techniques add a penalty to the loss function to discourage the model from learning overly
complex patterns.
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Stability and convergence are key considerations when training neural networks. Stability
ensures that the training process remains controlled, while convergence ensures that the model
reaches an optimal or near-optimal solution. Poor stability or convergence can lead to training
failures, such as exploding or vanishing gradients, or the model getting stuck in suboptimal
solutions. Batch Normalization is such a technique used in deep learning to normalize activations
in a neural network during training. It helps stabilize and accelerate training by reducing internal
covariate shift.

Evaluation metrics are used to measure the performance of neural networks on specific tasks.
The choice of metric depends on the type of problem (e.g., classification, regression, or object
detection) and the desired outcome. For classification tasks, the goal is to predict discrete labels.
Accuracy measures the proportion of correctly predicted instances out of the total instances.

Accuracy = Number of Correct Predictions
Total Number of Predictions

Precision measures the proportion of true positives out of all positive predictions.

Precision = True Positives (TP)
True Positives (TP) + False Positives (FP)

F1-Score measures the harmonic mean of precision and recall.

F1-Score = 2 · Precision · Recall
Precision + Recall

For regression tasks, the goal is to predict continuous values. Common metrics include: Mean
Absolute Error measures the average absolute difference between predicted and actual values.

MAE = 1
n

n∑
i=1

|yi − ŷi|

MSE measures the average squared difference between predicted and actual values.

Mean Squared Error = 1
n

n∑
i=1

(yi − ŷi)2

R-squared measures the proportion of variance in the target variable that is explained by the
model.

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

where ȳ is the mean of the target variable.

All of this process is undertaken under the model logistics. The first concept is pipelining
which organizes the sequence of steps required to preprocess data, train a model, and produce
predictions. It helps automate and standardize the deep learning workflow. There is data
preprocessing pipeline which handles tasks like normalization, augmentation, tokenization,
and batching. There is then Model Training Pipeline which defines the forward pass, loss
computation, backward pass, and optimization steps. Moreover, Inference Pipeline is Optimized
for deploying models to production and it includes preprocessing inputs and postprocessing
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outputs for real-world applications. Lastly, there is Evaluation Pipeline in which we compute
metrics (e.g., accuracy, F1-score, BLEU) on validation/test datasets.

Checkpointing is a technique used during the training of neural networks to save the model’s
state (e.g., weights, optimizer state, and training progress) at regular intervals. This allows one
to resume training from a saved checkpoint in case of interruptions, and it also enables you
to select the best-performing model based on validation metrics. Distributed training refers to
splitting the workload of training a deep learning model across multiple devices (e.g., GPUs,
TPUs, or nodes). It is crucial for training large models and processing massive datasets.

There are various types of neural networks. One are Feedforward Neural Networks (FNNs) in
which the data flows in one direction which is from input to output. They are commonly used
for simple regression and classification tasks. There are also Convolutional Neural Networks
(CNNs) specialized for processing grid-like data (e.g., images). They use convolutional layers to
extract spatial features. Then there are Recurrent Neural Networks (RNNs) which are designed
for sequential data (e.g., time series, text). They maintain a "memory" of previous inputs using
loops. Then come the transformer Networks which are state-of-the-art for NLP tasks (e.g.,
GPT, BERT). They use attention mechanisms to process sequences efficiently. As used in this
thesis there are Generative Adversarial Networks (GANs) which consist of a generator and a
discriminator competing to improve each other. They are used for generating new data, like
images. These however incorporate FNNs or CNNs as the generators and discriminators.

2.2 Generative Deep Learning

Generating high-quality samples from a complex distribution is one of the fundamental problems
in machine learning. One approach to solve this is by using Generative Adversarial Networks
(GANs). A GAN is a framework in which two neural networks, the generator and the discrim-
inator, engage in a competitive process. The generator aims to transform random noise into
data that resembles real observations, while the discriminator tries to distinguish between real
data and the data produced by the generator. This adversarial dynamic drives both networks to
improve iteratively, resulting in the generator producing increasingly realistic data. In the original
GAN paper Gulrajani et al. (2017), the generator and discriminator were constructed using
dense (fully connected) layers. However, subsequent researches demonstrated that convolutional
layers significantly enhance the discriminator’s predictive power and the generator’s ability to
produce high-quality outputs. This led to the development of Deep Convolutional Generative
Adversarial Networks (DCGANs), which replaced dense layers with convolutional layers in both
the generator and discriminator. Foster (2019) For this thesis we will still use the fully connected
implementation in BoloGAN

The generator takes as input a vector, typically sampled from a multivariate standard
normal distribution. This vector serves as a source of randomness, allowing the generator to
produce diverse outputs. The generator then transforms this input vector into an image whose
dimensions match those of the images in the original training dataset. This latent vector z
contains all information needed to generate a sample, hence it can be seen as an encoding (latent
representation) of the given sample. The latent values must be disseminated with a known,
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Figure 2.1. Schematic overview of GAN training process.

regular distribution in their space (the so-called prior distribution).
However, the true essence of GANs lies in their training process, which is unique and requires

a deeper understanding.Training of the discriminator still makes sense from a supervised learning
standpoint since we have training data that the discriminator compares the generated images
with to distinguish between real and fake (generated) images. It gives 1 to real images and 0 to
fake images. Training the generator is more challenging and counterintuitive because there is no
explicit "correct" output for a given input (a point in the latent space). Instead, the generator’s
goal is to produce images that fool the discriminator, which means the discriminator should
output values close to 1 for the generated images. Therefore, the generator only produces some
images that it wants to fool the discriminator with. In any case, since the output of the generator
is fed to the discriminator, we connect the generator to the discriminator in a single Keras
model. We train the combined model. The loss function is then just the binary cross-entropy
loss between the output from the discriminator and the response vector of 1. We train this
combined model by creating training batches consisting of randomly generated 100-dimensional
latent vectors as input and a response which is set to 1, since we want to train the generator to
produce images that the discriminator thinks are real. Importantly, while training the weights of
the discriminator are fixed so that only the weights of the generator are updated. If the weights
are not frozen, there is a danger that discriminator will adjust so that it is more likely to predict
generated images as real, which is not the desired outcome. It is essential that generated images
to be predicted close to 1 (real) because the generator is strong, not because the discriminator is
weak. After a suitable number of epochs, the discriminator and generator find an equilibrium
that allows the generator to learn meaningful information from the discriminator and the quality
of the images improves. Foster (2019)

2.3 Performance metrics

Evaluating the performance of Generative Adversarial Networks (GANs) is challenging because
GANs generate data rather than classify or predict it. Traditional metrics like accuracy or mean
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squared error (MSE) are not directly applicable. Instead, GAN performance is assessed using
specialized metrics that measure the quality, diversity, and realism of the generated data. Below
is a detailed explanation of the most commonly used performance metrics for GANs:

The Inception Score (IS) evaluates the quality and diversity of images generated by AI
models, such as GANs. A pre-trained Inception v3 model (an image classification network) is
used to analyze generated images. For each image, the model predicts a probability distribution
over possible classes (e.g., cat, flower, car), indicating how confident the model is about the
image’s content. A sharp probability distribution (high confidence in one class) indicates that the
image is high-quality and recognizable. The marginal distribution (aggregate of all probability
distributions across the dataset) measures the variety of generated images. A uniform marginal
distribution indicates high diversity (many different classes represented). The Kullback-Leibler
(KL) divergence quantifies the difference between the probability distribution and the marginal
distribution. A high KL divergence indicates high quality (each image is distinct and recognizable)
and high diversity (the dataset contains a wide variety of classes). The IS is calculated as
the exponent of the average KL divergence across all images. A higher IS indicates better
performance in terms of both quality and diversity.

IS = exp
(
Ex∼pg [KL(p(y|x)∥p(y))]

)
where p(y|x) is conditional probability over classes p(y) given a generated image x. p(y)

is the marginal probability distribution over classes y, computed by averaging p(y|x) over all
generated images. KL(p(y|x)∥p(y)) measures how different the conditional distribution p(y|x) is
from the marginal distribution p(y). It is the Kullback-Leibler (KL) divergence between p(y|x)
and p(y). Ex∼pg is the expectation (average) over all generated images x sampled from the
generator’s distribution pg.

Fréchet Inception Distance (FID) is a metric used to evaluate the quality of AI-generated
images, particularly for generative models like GANs. Unlike IS, which evaluates only generated
images, FID compares generated images to real images (ground truth). This makes FID more
aligned with human perception, as it directly measures how close generated images are to
real ones. It uses a pre-trained Inception v3 model to extract feature representations of both
real and generated images. FID models the feature distributions of real and generated images
as multivariate Gaussian distributions. It computes the mean (µ) and covariance (Σ) for
both distributions, where µr, Σr: Mean and covariance for real images and µg, Σg is the mean
and covariance for generated images.FID calculates Fréchet distance (also called Wasserstein-2
distance) between the two Gaussian distributions using the formula

FID = ∥µr − µg∥2 + Tr(Σr + Σg − 2(ΣrΣg)1/2)

where ∥µr − µg∥2 is squared Euclidean distance between the means. Tr is the trace of the matrix
(sum of diagonal elements). (ΣrΣg)1/2 is the square root of the matrix product ΣrΣg.

Lower FID indicates that the generated images are closer to real images in terms of feature
distribution, implying better quality and diversity. Higher FID indicates poorer performance,
with generated images less similar to real images.
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2.4 Advantages of GANs and Training Issues

In the context of training Generative Adversarial Networks (GANs), the following issues are
common challenges that can arise:

1. Unstable Convergence Explanation: GAN training involves a minimax optimization game
between the generator (G) and the discriminator (D), which can be inherently unstable. The
loss functions of G and D are adversarial, meaning their improvements are often at the expense
of the other. This creates oscillations in the optimization process rather than convergence
to a stable point. Symptoms: Losses for G and D fluctuate wildly or fail to stabilize. The
generator produces highly inconsistent outputs across training epochs. Reasons: Non-stationary
optimization dynamics: G and D update their parameters simultaneously, continuously changing
the optimization landscape. Imbalanced training: If D becomes too strong, G may stop improving,
and vice versa.

2. Mode Collapse Explanation: The generator learns to produce only a limited subset of the
data distribution (or even just one mode), ignoring other valid modes of the distribution. This
leads to a lack of diversity in the generated samples. Symptoms: The generator outputs nearly
identical or repetitive samples, even for varied input noise. The GAN fails to model the full
data distribution. Reasons: The generator finds a "shortcut" by exploiting weaknesses in the
discriminator, repeatedly generating outputs that maximize D’s loss for a specific pattern while
ignoring the rest of the distribution. Solutions: Use techniques like minibatch discrimination,
unrolled GANs, or mode-seeking regularization. Improve diversity by incorporating noise
conditioning or feature matching objectives.

3. Two Time Scale Update Rule (TTUR) Explanation: TTUR refers to updating G and
D with different learning rates or at different frequencies. This can help balance the dynamics
of GAN training. Why It Matters: If D learns too quickly (due to a high learning rate or
more frequent updates), it might overpower G, providing gradients that are not useful for
G’s improvement. If G learns too quickly, it might confuse D, preventing D from learning
to distinguish real from fake samples effectively. Approach: Typically, D is updated more
frequently or with a higher learning rate than G. A well-known configuration from literature
(e.g., WGAN-GP) updates D five times for every G update.

4. Vanishing Gradient Explanation: When the discriminator becomes too strong, it confi-
dently classifies fake samples as fake (or real samples as real), leading to vanishing gradients
for the generator. Without meaningful gradients, G cannot learn to improve. Symptoms: The
generator stops improving, producing low-quality outputs or noise. The discriminator achieves
near-perfect accuracy early in training. Reasons: Poor choice of loss function, such as using the
standard cross-entropy loss, which can saturate quickly. Solutions: Replace the standard loss
with alternatives like Wasserstein loss or Least Squares GAN loss, which provide non-vanishing
gradients. Regularize D to prevent it from becoming overly confident, e.g., through gradient
penalty or label smoothing.

5. High Resource Demand Key Insights GAN training requires careful balancing of G and D’s
learning dynamics to avoid these pitfalls. Many solutions involve modifying the loss functions,
architectures, or training schedules to encourage stability and diversity in the optimization
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process.
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3
Wasserstein GANs

During the training of Generative Adversarial Networks (GANs), the primary goal is to optimize
the generator and discriminator in a way that the generator learns to produce realistic samples.
The choice of metric for training is critical because it directly influences the stability and
convergence of the model. Training Generative Adversarial Networks (GANs) requires carefully
chosen metrics to ensure stability and effective optimization. The metric must be differentiable
to allow gradient-based updates, as seen with the Wasserstein Distance, which provides stable
gradients. Stability is crucial since GAN training is prone to issues like vanishing or exploding
gradients; the Wasserstein Distance helps mitigate these problems compared to traditional loss
functions. Real-time feedback is essential, as metrics like the discriminator’s loss in Wasserstein
GANs (WGANs) provide ongoing evaluation of the generator’s performance. Ultimately, training
metrics focus on distribution matching by minimizing the discrepancy between generated and
real data distributions, with Wasserstein Distance serving as a direct measure of this difference.

Performance metrics are essential for evaluating the effectiveness of generative models like
Conditional Wasserstein GANs with Gradient Penalty (CWGAN-GP). These metrics provide
quantitative and qualitative insights into the quality, diversity, and realism of the generated
samples. Common metrics include the Fréchet Inception Distance (FID), which measures
the similarity between the generated and real data distributions in a feature space, and the
Inception Score (IS), which evaluates both the quality and diversity of generated samples. Visual
inspection is also crucial for assessing the realism of outputs, particularly in image generation
tasks. Additionally, metrics like precision and recall for generative models can be used to
evaluate the coverage and diversity of the generated data. In the context of fast calorimeter
simulations, such as in this thesis, involving GEANT4 and CWGAN-GP, the chi-squared (χ2)
statistic is employed to compare the distributions of Geant4-simulated data and BoloGAN-
generated data. Energy distribution of Geant4 is taken as the reference data in contrast with
approximate (model) distribution of the generated distribution by CWGAN-GP. This metric
quantifies the discrepancy between the two distributions, providing a rigorous measure of how
well the generative model replicates the underlying physics. By using chi-squared, researchers
can ensure that the generated data aligns closely with the ground truth provided by GEANT4,
validating the model’s performance in scientific applications.

3.1 Training metrics: Wasserstein Distance and Loss Function

Conventional metrics: Kullback-Leibler Divergence (Relative Entropy) and
Jensen-Shannon Divergence

In deep learning and statistics, we use these metrics to train models, optimize likelihood functions,
and improve generative modeling techniques like GANs and VAEs. The Kullback-Leibler (KL)
divergence is used in information theory and variational inference in Bayesian deep learning. KL
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divergence measures the loss of information when using one probability distribution Q(x) to
approximate another P (x):

DKL(P ||Q) =
∑

x

P (x) log P (x)
Q(x)

If P and Q are identical, DKL(P ||Q) = 0 (no difference). If P (x) is nonzero where Q(x)
is zero, KL divergence becomes infinite (because log 0 is undefined). It is not symmetric
(DKL(P ||Q) ̸= DKL(Q||P )), meaning the direction matters.

On the other hand, Jensen-Shannon Divergence (JSD) is used to quantify the difference
between two probability distributions. In generative modeling, JSD can measure how well the
generated data distribution matches the real data distribution. It is a symmetrized version of
KL divergence:

DJS(P∥Q) = 1
2DKL(P∥M) + 1

2DKL(Q∥M)

where M = P +Q
2 is the average distribution.

Unlike KL divergence, JSD is always finite and bounded between [0, log 2]. JSD is symmetric,
meaning DJS(P ||Q) = DJS(Q||P ), which is useful for comparing distributions more fairly. JSD
is used in Generative Adversarial Networks (GANs) to measure how different the generator’s
distribution is from the real data.

Wasserstein Distance (Earth-Mover Distance, EMD)

Wasserstein distance measures the minimal cost of transforming one probability distribution
into another:

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x − y∥]

where Π(Pr, Pg) represents all possible ways of pairing samples from Pr (real distribution)
and Pg (generated distribution).

Unlike KL and JSD, Wasserstein distance is a true metric meaning that it satisfies symmetry
and triangle inequality. It works even when distributions have disjoint support, making it more
stable in GAN training. Wasserstein distance is used in optimal transport problems, image
processing, and WGANs for improved training stability.

In conclusion, each of these measures serves a unique purpose in comparing probability
distributions. KL Divergence measures how much information is lost when approximating P (x)
with Q(x). JSD A symmetric, bounded alternative to KL divergence, used in GANs. Wasserstein
distance measures the cost of transforming one distribution into another, making it more stable
for training generative models.

Directly computing Wasserstein distance is computationally expensive therefore we use the
Kantorovich-Rubinstein duality to simplify it. The duality allows us to rewrite the Wasserstein
distance as a maximization problem over 1-Lipschitz functions:

W (Pr,Pg) = sup
∥f∥L≤1

(
Ex∼Pr [f(x)] − Ex∼Pg [f(x)]

)
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f is a 1-Lipschitz function, meaning its slope is bounded by 1. The supremum (sup) is taken
over all 1-Lipschitz functions. This duality transforms the problem into finding a function f

that maximizes the difference between the expected values of f under the real and generated
distributions.

In practice, the WGAN uses this duality to train discriminator to approximate the Wasserstein
distance. The discriminator must be 1-Lipschitz, meaning its output should not change too
rapidly with small changes in the input. The discriminator is trained to maximize the difference
between its outputs for real data and generated data:

MaxEx∼Pr [f(x)] − Ex∼Pg [f(x)]

This is done by feeding real data samples (from Pr) and generated samples (from Pg) into the
discriminator and adjusting its weights to increase the difference between the average outputs
for real and fake data. The generator is trained to minimize the Wasserstein distance, which
means it tries to make the discriminator’s outputs for generated data as close as possible to the
outputs for real data. The generator’s loss is:

Minimize: − Ex∼Pg [f(x)]

This encourages the generator to produce data that the critic assigns high scores to (i.e.,
data that looks real).To ensure the dsicriminator is 1-Lipschitz, the WGAN uses one of two
methods, weight clipping or gradient penalty. In weight clipping The weights of the critic are
clamped to a small range (e.g., [−0.01, 0.01]), which limits how quickly the critic’s output can
change. For gradient penalty, penalty term is added to the discriminator’s loss to encourage the
gradient of the discriminator’s output with respect to its input to have a norm close to 1.

Ultimately, the Wasserstein distance provides a smooth and continuous measure of how close
the generated data is to the real data. he WGAN is less prone to issues like mode collapse and
vanishing gradients. The WGAN can work with simpler architectures (e.g., MLPs) that often
fail with traditional GANs.

Binary Cross Entropy Loss versus Wasserstein Loss

The Binary Cross-Entropy (BCE) Loss is a common loss function used in binary classification
tasks, including traditional Generative Adversarial Networks (GANs). The BCE loss for a single
sample is defined as Foster (2019):

BCE Loss = − (yi log(pi) + (1 − yi) log(1 − pi))

For a dataset with n samples, the average BCE loss is:

BCE Loss = − 1
n

n∑
i=1

(yi log(pi) + (1 − yi) log(1 − pi))

The BCE loss is used in traditional GANs. The discriminator outputs a probability pi

(between 0 and 1) that a sample is real. The loss is based on binary classification (real vs. fake).
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The Wasserstein loss is used in Wasserstein GANs (WGANs). The discriminator (called the
critic) outputs a scalar score D(xi) (unbounded, not a probability).

The Wasserstein loss for a batch of n samples is defined as:

Wasserstein Loss = − 1
n

n∑
i=1

yi · pi

where:yi is the label for the i-th data point, (yi = 1 is for real data, yi = −1 is for fake data).
pi is the critic’s output (scalar score) for the i-th data point. The critic outputs a scalar score pi

for each data point. For real data (yi = 1), the critic aims to output a large positive score. For
fake data (yi = −1), the critic aims to output a large negative score.

The Wasserstein loss measures the difference between the critic’s scores for real and fake
data. Minimizing this loss encourages the critic to assign higher scores to real data and lower
scores to fake data.

Aspect Binary Cross-Entropy Loss
(BCE)

Wasserstein Loss

Labels yi = 1 (real) yi = 0 (fake) yi = 1 (real) yi = −1 (fake)
Output of D Probability pi ∈ [0, 1]. Scalar score pi ∈ [−∞, ∞].
Activation Sigmoid activation in the final layer. No activation in the final layer.
Loss Function − 1

n

∑n
i=1 (yi log(pi) + (1 − yi) log(1 − pi)).− 1

n

∑n
i=1 yi · pi.

Gradient Behavior Can suffer from vanishing gradients. Provides stable gradients.
Training Stability Prone to mode collapse and

instability.
More stable training.

Lipschitz Constraint Not required. Required (enforced via weight
clipping or gradient penalty).
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3.2 Stability Issues of Wasserstein GANs (WGANs)

While Wasserstein GANs (WGANs) address many stability issues present in traditional GANs
(e.g., mode collapse, vanishing gradients), they are not entirely free from challenges. Below is a
summary of the key stability issues and their mitigation strategies. .

Critic (Discriminator) Capacity and Lipschitz Constraint The Wasserstein Distance relies
on the critic being a 1-Lipschitz function. Enforcing this constraint can lead to stability issues.
Clipping weights to a small range (e.g., [−0.01, 0.01]) can cause optimization difficulties, vanishing
gradients, or poor training dynamics. Gradient Penalty adds computational overhead and is
sensitive to hyperparameters (e.g., penalty coefficient). WGANs are sensitive to hyperparameters
Poor tuning can lead to overfitting, instability, or slow convergence. Mode collapse is another
issue which WGAN is not immune to, it occurs if discriminator does not provide meaningful
feedback. This can be mitigated by using expressive discriminatot architectures or gradient
penalty. WGANs, especially WGAN-GP, are computationally expensive. Multiple discriminator
updates per generator update increase training time. WGANs also have non-convergence or
oscillations if the discriminator is not trained optimally. WGANs also have challenges such as
sensitivity to initialization.

While WGANs improve upon traditional GANs, they face challenges related to the Lipschitz
constraint, hyperparameter sensitivity, and computational cost. By employing techniques
like gradient penalty, spectral normalization, and careful tuning, these stability issues can be
mitigated, leading to more robust and reliable generative models.

3.3 The Lipschitz constraint: Gradient Penalty

Gradient Penalty in WGAN-GP

The gradient penalty is a technique used in Wasserstein GANs with Gradient Penalty (WGAN-
GP) to enforce the 1-Lipschitz constraint on the critic (or discriminator). This constraint is
necessary for the critic to approximate the Wasserstein distance accurately. Let’s break down the
gradient penalty and its role in WGAN-GP: In WGANs, the critic must be 1-Lipschitz, meaning
its output should not change too rapidly with small changes in the input. Mathematically, this
means:

|D(x1) − D(x2)| ≤ ∥x1 − x2∥

for any two inputs x1 and x2. This constraint ensures that the critic’s gradients are bounded,
which is necessary for the Wasserstein distance to be well-defined and for the training process to
remain stable. In the original WGAN Goodfellow et al. (2014), the 1-Lipschitz constraint was
enforced by clipping the weights of the critic to a small range (e.g., [−0.01, 0.01]). However, weight
clipping can lead to undesirable behavior, such as vanishing gradients or poor approximation
of the Wasserstein distance. Instead of clipping weights, WGAN-GP Gulrajani et al. (2017)
introduces a gradient penalty to enforce the 1-Lipschitz constraint. The idea is to directly
constrain the gradient norm of the discriminator’s output with respect to its input. Specifically,
the gradient norm should be at most 1 everywhere. The gradient penalty term (∥∇x̂D(x̂)∥2 −1)2
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encourages the critic’s gradient norm to be close to 1 for random samples x̂. By penalizing
deviations from a gradient norm of 1, the critic is trained to satisfy the 1-Lipschitz constraint.
To formualte mathematically, the new objective function for the critic in WGAN-GP is:

L = Ex̃∼Pg [D(x̃)] − Ex∼Pr [D(x)]︸ ︷︷ ︸
Original critic loss

+ λEx̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
︸ ︷︷ ︸

Gradient penalty

Where Pris the real data distribution,Pg is the generated data distribution, D(x)is the critic’s
output for input x. ∇x̂D(x̂) is the gradient of the critic’s output with respect to its input x̂. λ:
A hyperparameter that controls the strength of the gradient penalty (typically λ = 10). Px̂: A
distribution of random samples x̂ created by interpolating between real and generated samples:

x̂ = ϵx + (1 − ϵ)x̃, ϵ ∼ Uniform(0, 1)

where x ∼ Pr and x̃ ∼ Pg.

Figure 3.1. Interpolated image.

The gradient penalty is applied to samples x̂ that lie on straight lines between real and
generated samples. This ensures that the critic’s gradient norm is constrained not just at real
and generated points, but also in the space between them. This interpolation helps the critic
generalize better and prevents it from focusing only on specific regions of the input space.

Here’s how the gradient penalty is implemented in practice: Sample a batch of real data
x ∼ Pr. Sample a batch of generated data x̃ ∼ Pg. Create Interpolated Samples Generate
random interpolation coefficients ϵ ∼ Uniform(0, 1). Compute interpolated samples:

x̂ = ϵx + (1 − ϵ)x̃

Compute Gradients: Compute the critic’s output for the interpolated samples D(x̂). Compute
the gradient of D(x̂) with respect to x̂:

∇x̂D(x̂)
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Figure 3.2. CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right)
for four models. WGAN-GP significantly outperforms weight clipping and performs comparably
to DCGAN. Gulrajani et al. (2017)

Calculate Gradient Penalty:Compute the gradient penalty term:

(∥∇x̂D(x̂)∥2 − 1)2

Update Critic Loss: Add the gradient penalty to the original critic loss:

L = Ex̃∼Pg [D(x̃)] − Ex∼Pr [D(x)] + λEx̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]

BoloGAN Implementation Krause et al. (2022a)

def gradient_penalty(self, batch_size, real_samples, fake_samples, labels):
"""Calculates the gradient penalty.

This loss is calculated on an interpolated image
and added to the discriminator loss.
"""
# Get the interpolated image
alpha = tf.random.uniform([batch_size, 1], 0.0, 1.0)
interpolated = alpha * real_samples + (1 - alpha) * fake_samples

with tf.GradientTape() as gp_tape:
gp_tape.watch(interpolated)
# 1. Get the discriminator output for this interpolated image.
pred = self.discriminator(inputs=[interpolated, labels], training=True)

# 2. Calculate the gradients w.r.t to this interpolated image.
grads = gp_tape.gradient(pred, [interpolated])[0]
# 3. Calculate the norm of the gradients.
norm = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=1))
gp = tf.reduce_mean((norm - 1.0) ** 2)
return gp
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Summary

The gradient penalty in WGAN-GP is a soft constraint that enforces the 1-Lipschitz condition
on the critic by penalizing deviations of the gradient norm from 1. This approach improves the
stability and performance of WGANs compared to weight clipping, making it a key component of
WGAN-GP. The gradient penalty is applied to interpolated samples between real and generated
data, ensuring that the critic’s gradients are well-behaved across the entire input space.

3.4 Intergration of Conditionality conditional WGAN-GP

The ATLAS Fast Calorimeter CWGAN-GP (Conditional Wasserstein Generative Adversarial
Network with Gradient Penalty) is a model designed to generate fast calorimeter shower
simulations for high-energy physics experiments. Conditionality in this context is imposed
on the kinetic energy of the showers, allowing the model to generate realistic shower patterns
corresponding to specific energy levels.

Conditionality on Kinetic Energy

In high-energy physics (HEP), calorimeter showers depend on the kinetic energy of the incoming
particle. The CWGAN-GP model is conditioned on kinetic energy, enabling it to generate
showers consistent with the expected energy response. This conditioning is implemented using
the function:

G(z, Ekin) → X (3.1)

where:

• G is the generator.

• z is the latent noise.

• Ekin is the kinetic energy.

• X is the generated calorimeter shower.

The critic D(X, Ekin) is trained to distinguish real and fake showers while considering the
energy conditioning.

Conversion of Momenta to Kinetic Energy

To implement conditioning on kinetic energy, the momenta of incoming particles must be
converted to kinetic energy using the relativistic energy-momentum relation:

Ekin =
√

p2 + m2 − m (3.2)

where:
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• p is the momentum of the particle.

• m is the rest mass of the particle.

• Ekin is the kinetic energy.

This computation is performed using the function:

@staticmethod
def momentumsToEKins(momentums, mass):

ekins = np.sqrt(np.square(momentums) + np.square(mass)) - mass
return ekins

@staticmethod
def energyLabel(labelType, energy, E_min, E_max):

if labelType == EnergyLabelDefinition.LogE:
return math.log(energy / E_min) / math.log(E_max / E_min)

elif labelType == EnergyLabelDefinition.MaxE:
return energy / E_max

elif labelType == EnergyLabelDefinition.Exp:
return math.log(energy, 2)

Energy Normalization

Before training, the kinetic energy is normalized using different methods:

Logarithmic Scaling: E′ = log(E/Emin)
log(Emax/Emin) (3.3)

Max Normalization: E′ = E

Emax
(3.4)

Exponential Scaling: E′ = log2(E) (3.5)

This ensures that energy values are properly scaled before being used in the CWGAN-GP
model. For this thesis, we have used the normalization of logE.

Conclusion

Conditioning the CWGAN-GP on kinetic energy enables energy-aware fast calorimeter simulation,
making it an essential tool for ATLAS and other HEP experiments. This approach provides a
computationally efficient alternative to full detector simulation while preserving crucial physics
properties.

3.5 Evaluation metric: Reduced chi squared

After training, the focus shifts to evaluating how well the generator replicates the real data
distribution. Post-training validation metrics are used to assess the quality and realism of the
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generated samples. These metrics do not need to be differentiable, as they are not used for
optimization, such as in the case of the Chi-Squared (χ2) test. They often emphasize statistical
significance by quantifying the similarity between the generated and real data distributions. For
example, the χ2 test measures how well the generated data matches the expected distribution,
like Geant4 showers in high-energy physics. Post-training metrics should also be interpretable,
providing p-values that indicate the statistical significance of the differences between distributions.
They complement training metrics by offering a different perspective on the model’s performance;
while Wasserstein Distance ensures stable training, χ2 provides a rigorous statistical evaluation.
Additionally, validation metrics focus on the quality of the generated samples, including their
realism, diversity, or adherence to physical constraints, such as matching the energy distributions
and spatial patterns of real calorimeter showers in high-energy physics.
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4
Hypothesis Testing

Hypothesis testing is a cornerstone of inferential statistics, helping make data-driven decisions
across various fields like medicine, business, and science. It is a statistical method used to make
decisions or draw conclusions about a population based on sample data. It helps determine
whether there is enough evidence to support a specific claim or hypothesis about a population
or sample data parameter.

4.1 Overview of Hypothesis Testing

Types of Hypothesis Testing and Their Metrics

Hypothesis testing is a statistical method used to make decisions about population parameters
based on sample data. Below are some common types of hypothesis tests and the metrics
associated with them:

Statistical hypothesis testing involves various methods depending on the data and research
question. The Z-test is used to test the mean of a population when the population variance is
known and the sample size is large (n ≥ 30). It uses the Z-score, calculated as:

Z = X̄ − µ

σ/
√

n
,

where X̄ is the sample mean, µ is the population mean, σ is the population standard deviation,
and n is the sample size. For smaller sample sizes (n < 30) with unknown population variance,
the T-test is appropriate, using the T-score:

t = X̄ − µ

s/
√

n
,

where s is the sample standard deviation. The Chi-square test (χ2) is used to test the indepen-
dence of categorical variables or the goodness-of-fit of observed data to expected data, with the
Chi-square statistic calculated as:

χ2 =
∑ (Oi − Ei)2

Ei
,

where Oi is the observed frequency and Ei is the expected frequency. For comparing the means
of three or more groups, the ANOVA (Analysis of Variance) is used, with the F-statistic:

F = Between-group variability
Within-group variability .

When data is not normally distributed, non-parametric tests are employed. The Mann-Whitney
U test compares two independent groups using the U-statistic, while the Wilcoxon signed-rank
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test compares two related samples using the W-statistic. For three or more independent groups,
the Kruskal-Wallis test uses the H-statistic. Finally, Fisher’s exact test is used for small sample
sizes to test the association between two categorical variables, calculating an exact p-value using
the hypergeometric distribution.

4.2 Chi-squared testing: Assumptions and Methodology

The assumptions for conducting a chi-squared test include several key requirements. First, the
observations must be independent, meaning each data point belongs to only one category, and
there should be no overlap (e.g., a single respondent’s answer in a survey cannot contribute to
multiple categories). Second, the data must be categorical, such as gender, type of car, or color.
Third, the expected frequency in each cell of the contingency table should ideally be at least 5;
if some expected frequencies are below 5, the test may still work but with reduced reliability,
and alternatives like Fisher’s Exact Test are recommended for small sample sizes. Fourth, the
sample data should be collected through random sampling to ensure unbiased representation.
Fifth, the total sample size should be large enough to ensure reliable results, which ties into
the expected frequency assumption. Finally, the observed and expected frequencies must be
non-negative values.

The steps for calculating the chi-squared statistic involve several stages. First, we state
the null hypothesis (H0), which typically asserts no effect, difference, or relationship, and the
alternative hypothesis (HA), which contradicts H0. We then choose a goodness-of-fit statistic
that is sensitive to the hypothesis. From there we calculate the value of this statistic using
the observed data. Then, we determine the probability distribution of the statistic under
the assumption that H0 is true, identifying regions where the statistic becomes increasingly
improbable. Lastly, we compute the p-value, which represents the probability of obtaining a
statistic as extreme as the observed value under H0. If the p-value is sufficiently small (e.g.,
p < 0.05), reject H0; otherwise, fail to reject H0.

In the context of this thesis, the chi-squared test is used to compare energy distributions of
showers generated by Geant4 (ground truth) and CWGAN-GP (a generative model). The null
hypothesis (H0) states that the energy distribution of single-particle showers (pions, photons)
from CWGAN-GP is statistically indistinguishable from Geant4, while the alternative hypothesis
(HA) suggests a significant difference. To apply the test, the continuous energy values are binned
into histograms, with observed frequencies (Oi) from CWGAN-GP and expected frequencies
(Ei) from Geant4. The chi-squared statistic is computed as:

χ2 =
m∑

i=1

(Oi − Ei)2

Ei
,

where m is the number of bins. To account for degrees of freedom, the reduced chi-squared
(χ2

red) is calculated as:

χ2
red = χ2

m − k
,

where k is the number of estimated parameters. A χ2
red ≈ 1 indicates good agreement between
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the distributions, while χ2
red ≫ 1 or χ2

red ≪ 1 suggests significant deviation or overfitting,
respectively. The p-value, derived from the chi-squared distribution with m − k degrees of
freedom, determines statistical significance: if p > 0.05, H0 is not rejected, but if p < 0.05, H0 is
rejected in favor of HA.

BoloGAN evaluation with Geant4

In the context of high-energy physics, comparing the energy distributions of showers generated by
Geant4 (considered the ground truth) and CWGAN-GP (a generative model) involves hypothesis
testing to determine whether the generated data accurately represents the real data. The reduced
chi-squared (χ2

red) test is commonly used for this purpose.
By applying the reduced chi-squared test, we quantitatively assess how well CWGAN-GP

replicates the Geant4 energy distribution. This methodology ensures a rigorous statistical
evaluation, guiding improvements in generative model training for accurate physics simulations.

def chi2test(hist1, hist2) -> Tuple[float, int]:
"""Perform a chi2 test between two histograms.

Internally invokes the ‘TH1::Chi2Test‘ method. The test is performed
bin-by-bin, comparing the contents of each bin in the two histograms.
The histograms are considered as weighted histograms.

Args:
hist1 (TH1): First histogram.
hist2 (TH1): Second histogram.

Returns:
Tuple[float, int]: The chi2 value and the number of degrees of freedom.

"""

# Using the C convention, we’re passing return values by reference
chi2 = ctypes.c_double(0.0)
ndf = ctypes.c_int(0)
igood = ctypes.c_int(0)

hist1.Chi2TestX(
hist2,
chi2,
ndf,
igood,
"WW"

)

# igood=0 - no problems
# For weighted weighted comparison
# igood=1’There is a bin in the 1st histogram with less then 10 effective number of
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events’
# igood=2’There is a bin in the 2nd histogram with less then 10 effective number of

events’
# igood=3’when the conditions for igood=1 and igood=2 are satisfied’
if igood.value != 0:

if igood.value == 1:
msg = "There is a bin in the 1st histogram with less than 10 effective number of

events."
elif igood.value == 2:

msg = "There is a bin in the 2nd histogram with less than 10 effective number of
events."

elif igood.value == 3:
msg = "There is a bin in the 1st and 2nd histograms with less than 10 effective

number of events."

warnings.warn("chi2test: " + msg)

return chi2.value, ndf.value

histos_gan = []

total_chi2 = 0
total_ndf = 0

for index, energy in enumerate(self.energies):

# Create the label to condition the GAN
labels = Label(

nevents=NEVENTS,
energy=energy,
E_min=self.energy_min,
E_max=self.energy_max,
eta_min=self.eta_min,
energyLabelType=self.label_definition,

)

# convert to a numpy array and then to a tensor
labels = labels.GetLabelsAndPhiMod()

# Generate data with the GAN
data = self.model(labels)

# Normalize the GAN output data
if self._data_params.voxel_normalisation == VoxelNormalisation.normE:

data = data * energy # needed for conditional
elif self._data_params.voxel_normalisation == VoxelNormalisation.MaxVoxelAll:

data = data * self.max_voxel
elif self._data_params.voxel_normalisation == VoxelNormalisation.MaxVoxelMid:
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data = data * self.max_voxel
elif self._data_params.voxel_normalisation == VoxelNormalisation.midE:

data = data * self.mid_energy

# Get the original histogram
h_vox = self._histos_vox[index]

# Create a new histogram with GAN generated data
# https://root.cern.ch/doc/master/classTH1F.html#a958c4845a7cc935bae03b5578c4267c0
h_gan = ROOT.TH1F(

"h_gan", # name
"", # title
30, # nbinsx
h_vox.GetXaxis().GetXmin(), # xlow
h_vox.GetXaxis().GetXmax(), # xup

)

E_tot = data.numpy().sum(axis=1)
for e in E_tot:

h_gan.Fill(e / 1000)

h_gan.Scale(1 / h_gan.GetEntries())
h_gan.SetLineColor(ROOT.kRed)
h_gan.SetLineStyle(7) # Dashed line

range_max = [
h_vox.GetBinContent(h_vox.GetMaximumBin()),
h_gan.GetBinContent(h_gan.GetMaximumBin()),

]
range_max = max(range_max) * 1.25

h_vox.GetYaxis().SetRangeUser(0, range_max)
histos_gan.append(h_gan)
h_vox.GetYaxis().SetTitle("Entries")

xaxis_title = "Energy [GeV]"
h_vox.GetXaxis().SetTitle(xaxis_title)
h_vox.GetXaxis().SetNdivisions(506)

# Chi2 test over the two histograms. Returns chi2 and ndf (number of degrees of
freedom)

chi2, ndf = chi2test(h_vox, h_gan)

total_chi2 += chi2
total_ndf += ndf

# Add the two histogram to the canvas
canvas.cd(index + 1) # next graph
self._histos_vox[index].Draw("HIST") # draw the original histogram
histos_gan[index].Draw("HIST same") # draw the GAN histogram

# Legend box
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if energy > 1024:
energy_legend = f"{round(energy / 1000, 1)} GeV"

else:
energy_legend = f"{round(energy, 1)} MeV"

t = ROOT.TLatex()
t.SetNDC()
t.SetTextFont(42)
t.SetTextSize(0.1)
t.DrawLatex(0.2, 0.83, energy_legend)

t.DrawLatex(0.2, 0.73, "#chi^{2}/NDF = %.1f" % (chi2 / ndf))

chi2_o_ndf = total_chi2 / total_ndf

6

4.3 Data Study

The challenge Krause et al. (2022a)provides three datasets, categorized by difficulty levels: easy,
medium, and hard. The difficulty is determined by the dimensionality of the calorimeter showers,
specifically the number of layers and the number of voxels within each layer. For the purpose of
this thesis we work with "easy" dataset 1 as provided in Faucci Giannelli et al. (2023).

All datasets follow the same general structure. The detector geometry consists of concentric
cylinders, with particles propagating along the z-axis. The detector is segmented along this axis
into Nz discrete layers. Each layer is further divided into Nr bins in the radial direction and Nα

bins in the angular direction α. The number of layers, as well as the bin counts in r and α, are
summarized in Table 4.1.

Figure 4.1. Voxelization of layers in each dataset. We show Nr × Nα and the total number
of voxels, Ni, per layer. For datasets 1: a “–” indicates that this layer is not in the dataset, as
the numbering is based on the ATLAS detector definitions. ATLAS Collaboration et al. (2022)
Krause et al. (2022a)

The coordinates ∆ϕ and ∆η correspond to the x and y axes in cylindrical coordinates.
Figure 4.2 provides a three-dimensional visualization of a geometry consisting of three layers,
where each layer contains three radial bins and six angular bins. The right panel of the figure
presents a front view of the geometry as observed along the z-axis.
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The dataset is derived from the ATLAS open datasetsFaucci Giannelli et al. (2023) and
includes simulations of single photons and single charged pions, which are generated at the
surface of the ATLAS calorimeter system and directed towards the center of the detector. The
particle interactions within the calorimeters were simulated using the official ATLAS software,
which is based on Geant4.

A specialized configuration was employed, in which detailed hits were recorded while effects
such as electronic noise and cross-talk were excluded. This approach enables the modeling
of idealized showers that can be injected into the simulation chain before these effects are
introduced, thereby enhancing realism. These simulated samples were utilized for training the
GANs presented in the AtlFast3 paper ATLAS Collaboration et al. (2022) and the FastCaloGAN
ATLAS Collaboration (2020)

Figure 4.2. Schematic view of the voxelization in all datasets. Along the direction of the
incoming particle (z), the volume is segmented in Nz layers. Each layer has Nr radial and Nα

angular bins. Left: 3-dimensional view. Right: Front view.Krause et al. (2022a)

In the results section, a 1 MeV threshold is applied to all voxels to remove the low-energy
tail that affects certain models but has no physical impact. This assessment is based on the
transformation and calibration of energy deposited in the calorimeter into reconstructed objects
(such as photons or jets), which are built from clusters of calorimeter cells ATLAS Collaboration
et al. (2008).

The ATLAS calorimeters are segmented into cells to enhance granularity and improve the
spatial reconstruction of showers, and this segmentation is faithfully reproduced in the simulation.
The calorimeter cells have a rectangular shape for ease of construction, which differs from the
cylindrical voxel geometry described earlier. Consequently, an additional step in the AtlFast3
simulation was required to reassign energy from the voxels to the actual calorimeter cells.

In offline reconstruction, ATLAS employs topological clusters, which are seeded from cells
with an energy of at least four times the noise level. These clusters then grow by incorporating
neighboring cells with energy above twice the noise level and are finalized by including adjacent
cells that exceed the noise threshold. The minimum noise level in the considered dataset layers
is approximately 10 MeV for layer 1, while other layers can have noise levels up to 50 MeV.
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Thus, applying a 1 MeV energy threshold to voxels is justified, even when accounting for
the fact that multiple voxels may map to the same cell. This scenario occurs predominantly in
the core of the shower, where the majority of the energy is deposited, meaning the threshold
does not eliminate significant energy contributions. All masked voxels correspond to peripheral
regions, where they map to multiple cells, further diluting the associated energy per cell.

Each file containing the voxelised shower information obtained from single particles produced
at the front of the calorimeter in the 0.2 < η < 0.25 range simulated in the ATLAS detector.

The information in each file is a table; the rows correspond to the events and the columns to
the voxels.

In summary, the detailed energy deposits produced by ATLAS were converted from x,y,z
coordinates to local cylindrical coordinates defined around the particle 3-momentum at the
entrance of the calorimeter. The energy deposits in each layer were then grouped in voxels
and for each voxel the energy was stored in the csv file. For each particle, there are 15 files
corresponding to the 15 energy points used to train the GAN. The name of the csv file defines
both the particle and the energy of the sample used to create the file.

The size of the voxels is described in the binning.xml file.
Each sample has 10,000 events at energies up to 256 GeV. For higher energies, the number

of events decreases, reaching 1,000 events at 4 TeV due to the longer simulation time needed for
high-energy showers. This approach balances the need for statistical robustness at low energies
with computational efficiency at high energies

1. Energy Deposits

• e0 to e23: Energy deposited in 24 calorimeter cells or layers.

• etot: Total energy deposited in the calorimeter for the event.

2. Delta Eta and Delta Phi

• ∆η1 to ∆η22: Pseudorapidity differences between pairs of particles or calorimeter
cells.

• ∆ϕ1 to ∆ϕ22: Azimuthal angle differences between pairs of particles or calorimeter
cells.
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Momenta (MeV) Events Photons Voxels Events Pions Voxels
256 80000 368 100000 533
512 90000 368 100000 533
1024 99900 368 100000 533
2048 100000 368 100000 533
4096 100000 368 100000 533
8192 100000 368 100000 533
16384 90000 368 99900 533
32768 89910 368 100000 533
65536 80000 368 49900 533
131072 69860 368 29700 533
262144 89548 368 9800 533
524288 41165 368 9850 533
1048576 25660 368 9700 533
2097152 18649 368 9480 533
4194304 9874 368 9575 533

Table 4.1. Breakdown of data files CSV
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Category Branches
Energy Deposits

• e_0, e_1, e_2...,e_23, e_tot, e_totNorm

Pseudorapidity differences

• Delta_eta_1,Delta_eta_2,
Delta_eta_5...,Delta_eta_13,
Delta_eta_21, Delta_eta_22

Azimuthal angle differences

• Delta_phi_1,Delta_phi_2,
Delta_phi_5...,Delta_phi_13,
Delta_phi_21, Delta_phi_22

Deposit Centroids (1048576 MeV)

• cog_phi_1,cog_phi_2,
cog_phi_5...,cog_phi_13, cog_phi_21,
cog_phi_22

• cog_eta_1,cog_eta_2,
cog_eta_5...,cog_eta_13, cog_eta_21,
cog_eta_22

Shower Width (1048576 MeV)

• width_phi_1,width_phi_2,
width_phi_5...,width_phi_13,
width_phi_21, width_phi_22

• width_eta_1,width_eta_2,
width_eta_5...,width_eta_13,
width_eta_21, width_eta_22

Table 4.2. Structure of data files ROOT
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Momenta (MeV) Events Photons Events Pions
256 10000 10000
512 10000 10000
1024 9000 10000
2048 10000 10000
4096 10000 10000
8192 10000 10000
16384 10000 10000
32768 10000 10000
65536 10000 10000
131072 10000 10000
262144 9000 10000
524288 5000 5000
1048576 3000 3000
2097152 1000 2000
4194304 1000 230

Table 4.3. Breakdown of data files ROOT
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Element Description
<Bins> Root element, defines binning strategy

isPolar="true" Uses polar coordinates for binning
optimisedAlphaBins="false" Alpha bin optimization is disabled
mergeAlphaBinsInFirstRBin="false" No merging of alpha bins in the first radial bin

<Particle> Defines particles and their ML training parameters
name="photon" Defines photon binning settings
pid="22" Particle ID for photon
latentDim="100" Latent space dimension (GAN)
learningRate="0.0001" Training learning rate
batchSize="1024" Number of events per batch
label_definition="LogE" Defines the energy scale used

<EnergyRanges> Defines energy binning categories
Low12 Uses ReLU activation, batch normalization enabled
High12 Uses Swish activation, different generator values

<Bin> Defines bins for different η (pseudorapidity) ranges
regionId="1" Bin covering 0 ≤ η ≤ 130
regionId="2" Bin covering 130 ≤ η ≤ 135
regionId="3" Bin covering 135 ≤ η ≤ 140

<Layer> Defines radial (r) and angular (α) bins per layer
id="0" r-edges: (0, 5, 10, 30, ..., 600), α-bins = 1
id="1" More refined binning, α-bins = 10
id="2" Further segmentation, α-bins = 10

<Particle name="pion"> Defines pion-specific binning (pid=211)
generator="200,400,800" GAN generator architecture
batchSize="512" Smaller batch size than photons

<Particle name="electron"> Defines electron-specific binning (pid=11)
label_definition="MaxE" Uses max energy instead of log energy

Table 4.4. Summary of XML binning file structure
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<Layer> Defines radial (r) and angular (α) bins per layer
Example Bin: regionId="1" (0 ≤ η ≤ 80)

id="0" r-edges: (0, 5, 10, 30, 50, 100, 200, 400, 600),
α-bins = 1 (coarse angular binning)

id="1" r-edges: (0, 1, 4, 7, 10, 15, 30, 50, 90, 150, 200),
α-bins = 10

id="2" r-edges: (0, 5, 10, 20, 30, 50, 80, 130, 200, 300,
400), α-bins = 10

id="3" r-edges: (0, 50, 100, 200, 400, 600), α-bins = 1
id="12" r-edges: (0, 10, 20, 30, 50, 80, 100, 130, 160, 200,

250, 300, 350, 400, 1000, 2000), α-bins = 10
Example Bin: regionId="2" (80 ≤ η ≤ 110)

id="0" r-edges: (0, 5, 10, 30, 50, 100, 200, 400, 600),
α-bins = 1

id="1" r-edges: (0, 1, 4, 7, 10, 15, 30, 50, 90, 150, 200),
α-bins = 32 (finer angular binning)

id="2" r-edges: (0, 5, 10, 20, 30, 50, 80, 130, 200, 300,
400), α-bins = 32

id="17" r-edges: (0, 50, 100, 150, 200, 250, 300, 400, 600,
1000, 2000), α-bins = 32

Key Observations About Pion Binning
Adaptive Binning

• Coarse binning (n_bin_alpha = 1) is used
in deeper layers.

• Fine binning (n_bin_alpha = 32) is used
in some η regions for detailed shape reso-
lution.

Radial Binning

• Some layers have many fine-grained bins,
while others use only a few bins (e.g., 0, 50,
100, 200, 400, 600).

• The presence of 1000, 2000 suggests inclu-
sion of very high-energy deposits.

Table 4.5. Summary of XML binning file structure and pion-specific binning details
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5
Hyperparameter Optimization

5.1 Literature Review and Current BoloGAN setup

Since BoloGAN is a model derived from FastCaloGAN literature study for the purpose of
hyperparameter tuning has been focused on studies of BoloGAN as well as FastCaloGAN.
The standard hyperparameters setups are reported for FastCaloGAN in Table 5.1 and 5.2 for
BoloGAN. For FastCaloGAN, the generator is a neural network composed of five layers: one
input layer, three hidden layers, and one output layer. In FastCaloGAN V1, the input layer
included three nodes representing information about the incoming pion and 50 nodes constituting
the latent space, whose values were randomly sampled. The values of the latent space nodes
were independently sampled from a uniform distribution over the range [−1, 1]. Progressing
forward through the generator, the number of nodes in the hidden layers was set to 50, 100, and
200, respectively. Like the generator, the discriminator is a neural network comprising three
hidden layers. In the initial version of FastCaloGAN, the number of nodes in each hidden layer
matched the number of voxels. However, it was found that reducing the number of nodes to 800,
400, and 200 in the three hidden layers, respectively, as the network progresses forward through
the discriminator, led to improved performance. ATLAS Collaboration (2020)

For BoloGAN, the conditional WGAN-GP is implemented in TensorFlow 2.0. The model
generator consists of neural network with 5 layers: one input layer, three hidden layers and one
output layer (corresponding to the number of voxels). For Pion showers the voxels are 533, while
for Photons there are 368 voxels. For Pions the optimized values of from the FastCaloGAN
studies are used with the discriminator having 800, 400, 200, 1 architecture. While for photons
the discriminator architecture is kept the same as FastCaloV1 i.e. number of nodes in hidden
layers match the number of voxels. The values used at the start of this project are reported
in Table 5.2. The discriminator has 829601 trainable parameters requiring a storage of 6.4MB
while the generator has 848733 trainable parameters.

Hyperparameter Values
Latent Space 50

Generator Nodes 50, 100, 200, NVoxel (pid and η dependent)
Discriminator Nodes NVoxel, NVoxel, NVoxel, NVoxel, 1
Activation Function ReLU (all layers)

Optimizer Adam
Learning Rate 10−4

Beta 0.5
Training Ratio (D/G) 5

Batch Size 128
Gradient Penalty λ 10

Table 5.1. Hyperparameters of FastCaloGAN ATLAS Collaboration (2020)
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Parameter Pions Low Energy Photons High Energy Photons
Latent Space 100 100 100

Generator Nodes 200,400,800, 533* 100,200,400,368* 50,100200,368*
Discriminator Nodes 800,400,200,1 368,368,368,1 368,368,368,1
Activation Function ReLU ReLU Swish

Optimizer Adam Adam Adam
Learning rate 10−4 10−4 10−4

n_critic 5 8 8
Beta 0.5 0.5 0.5

Lambda 10 3 3
Batch Size 512 1024 1024

Used Batch Normalization No Yes Yes

Table 5.2. BoloGAN WGAN-GP hyperparameters. Low (high) energy photons are those up to
(above) 4.096 GeV. Values marked with * are equal to the number of voxels in the corresponding
case.Krause et al. (2022a)

5.2 Hyperparameter Summary

Generator Width and Depth
Increasing the width of the feedforward neural network of the Generator contained in the GAN
increases the neurons per layer and thus also increases parameters of the model. This increased
number of parameter is particularly effective to reduce training times due to increased parallel
processing of features from the input layer. The increased neuron count also mitigates risk of
perturbations in the input and improves robustness of the network. The increased neurons
would also allow for broader range of features to be captured and then generated (i.e. wider
array of shower widths, shapes etc) allowing the model to achieve generalizability. Similarly,
increasing the depth of the neural network increases the capacity to create outputs with both
fine-grained details and coherent global structures. The early layers focus on low-level features
and deeper layers on high-level features with finer details. Additionally pre-trained deep neural
networks can be used for transfer learning. The potential issues with wider and deeper neural
networks are vanishing gradients, overfitting, computational demands, diminishing returns, curse
of dimensionality etc.
Batch Size
Increasing the number of batch size increases samples processed together in one forward/backward
pass. Smaller batches lead to more frequent updates, speeding up initial learning but requiring
more iterations to converge. Larger batches stabilize updates but may slow down overall training.
Smaller batches require less memory, making them ideal for large datasets or complex models
with limited computational resources. Smaller batches can improve generalization, while larger
batches might lead to quicker convergence but increase the risk of overfitting. Larger batch
sizes generally allow models to complete each epoch (iteration) faster due to increased parallel
processing capabilities. However, excessively large batches may degrade model quality and
hinder generalization on unseen data.

Learning rate
The generator learning rate is a key hyperparameter in CWGAN-GP that controls how quickly
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the generator adapts to the critic’s feedback. It plays a crucial role in ensuring stable training,
preventing mode collapse, and achieving high-quality sample generation. If the generator learning
rate is too high, the generator may overreact to the critic’s feedback, leading to unstable training
or mode collapse. In this scenario the generator produces limited varieties of samples (e.g.,
the same image repeatedly). If it is too low, the generator may learn too slowly, resulting in
poor-quality samples.

Latent Space
The main objective of GAN is to generate realistic data from a random vector, which is in a
much lower dimension, sampled from a prior distribution which is normal distribution in our case.
This is called a “feature vector.” This vector is considered to encode and condense significant
characteristics of the generated sample from the generator, while the task of the GAN is to
generate an image from that information.
It is common to presume that a latent space in our example encodes features of the generated
single particle shower (shower width, shower shape, shower momenta, etc). Interpolation between
two images can show that latent space encodes meaningful semantics. We also expect high
correlation between latent variable and conditional label variable.
Training GAN is a tremendously challenging task, suffering from 4 main difficulties: non-
convergence and instability, mode collapse, unstable generator gradient, and highly sensitive to
hyper-parameter tuning. It has been attempted to show by studies that latent space encodes
meaningful semantics by using vector arithmetic. Studies have investigated transition between
two images by sampling a series of latent vectors which lies in a linear path connect two original
random points from a prior distribution. However, this is an open research problem. In practice,
an important point should be cleared out that the latent space is structured by the generator, it
itself has no meaning.

5.3 Methodology

For the purpose of this experiment, a standard random search hyperparameter tuning technique
for the single particle shower pion is implemented. After an initial experimentation on various
generator architectures, the more promising architectures are chosen and the parameters of
batch size, D/G and learning rate are tuned individually, ultimately combining the effects of
multiple parameters. With the top performing architectures the batch sizes of 128, 512 and 1024
are studied. D/G ratio results for the numbers of 3, 5 and 8 are reported as well. Learning rates
of 0.0001 and 0.00005 are experimented. At the end, the combined effect of multiple parameters
is experimented and reported.

The binning.xml file is used to store and organize hyperparameters for the cWGAN-GP
model. These values are passed from the binning.xml file and runs are carried out for each
model with a given set of hyperparameter values, to minimize random fluctuations. The average
reduced chi-squared value (for all energy levels) for a model is compared among all models.

Training is carried out on the NVIDIA H100/A100/V100 GPUs available on the CERN
HTCondor system LXBATCH. The values of best reduced chi-squares are studied from the output
files on the LXBATCH system. For the best performing models the Tensorboard visualizations
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for all energy levels are reported. Finally, the best performing hyperparameters are used to train
the model to demonstrate improved performance.
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6
Results

6.1 General Checking: Setup and evaluation on Open Physics
Hub cluster

Before starting hyperparameter tuning on LXPLUS, I conducted training on OPH cluster at
University of Bologna. Due to shortage of available GPU resources, training was conducted using
CPUs at OPH and short trainings of about 50 epochs were conducted using BoloGANtainer, a
singularity container with all details to install essential epel repository, install dependencies and
create virtual environment. Using Tensorboard, I carried out preliminary tutorial training of
χ2

red evaluation on OPH.

6.2 χ2
red Evaluation on LXPLUS

To display the χ2
red evaluation between Geant4 and BoloGAN we utilize the Tensorboard

dashboard. TensorBoard is a visualization tool provided by TensorFlow that allows us to track
and visualize various metrics, models, and data during the training and evaluation of machine
learning models. It provides a dashboard with several components to help monitor and debug
models effectively. For the purpose of this thesis we have the plots of χ2

red for all 15 energy levels
for pion single particle shower. The 15 graphs are all plotted as subplots of a larger figure. The
plots are normalized energy distributions of particle hits. Energy values in GeV are on x-axis
and their corresponding hits as plotted on the y-axis giving the distribution of energy in the
calorimeter for a single particle pion shower of a particular energy. Geant4 data for the same
distribution is plotted in black color while that generated from BoloGAN is plotted in red. χ2

red
is computed for all 15 energy values and the average of all 15 χ2

red values is reported on the
bottom-right of the larger figure. This value is used for hyperparameter tuning in conjunction
with other considerations such as computational cost and training time.

Starting from the preliminary analysis of various architectures of the generator the Ten-
sorboard plots of the best 3 performing models are reported in Figure 6.1 with the baseline
hyperparameters as laid down in Table 5.2 The best 2 models are with generator nodes 128, 256,
512 and 200, 400, 800, 1600. The baseline model 200, 400, 800 reported in 5.2 is also carried
forward for further inspection.

The next inspection is carried out for the hyperparameter batch size for the three models
reported above. The next hyperparameter of choice was D/G ratio for the two models with
nodes 200, 400, 800 and 200, 400, 800, 1600. The best performing model is reported in Fig 6.2
(c)

Finally combination of different D/G, batch size and learning rate were experimented with
to combine the benefits of two or more hyperparameters on the performance. The results are
reported in Fig 6.2.
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(a) Best χ2
red for the model with Generator nodes 128,256,512
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(b) Best χ2
red for the model with Generator nodes 200, 400, 800, 1600
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(c) Best χ2
red for the model with 200, 400, 800

Figure 6.1. Preliminary assessment χ2
red for the model with different Generator nodes with

baseline hyperparameters as given in Table 5.2
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(a) Model 100-200, 400, 800, 1600 with Batch size 1024, D/G 3, Learning rate 0.00005, Gradient
Penalty 12
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(b) Model 100-128,256,512 with Batch size 1024, D/G 3, Learning rate 0.0001, Gradient Penalty
10
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(c) Model 100-200, 400, 800, 1600 with Batch size 1024, D/G 3, Learning rate 0.00005, Gradient
Penalty 10
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(d) Lowest run value: Model 100-200, 400, 800, 1600 with Batch size 1024, D/G 3, Learning
rate 0.00005, Gradient Penalty 10

Figure 6.2. Best χ2
red for the models with combination of hyperparameters
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Analysis

7.1 Evaluations: Training times, Reduced Chi-Squares

The goal of this thesis is to modify the architecture of BoloGAN so as to achieve as low of
χ2/ndf as possible with minimal computational resources. The figure of merit used to compare
different models is a χ2/ndf statistic between the binned total energy distributions of the GAN
and the training data. Other factors such as training time and memory usage to store model
parameters is also reported. My work was focused on simulating charged pions in one region of
the detector (0.2 < η < 0.25). The number of epochs used to train the models was kept fixed
at the default value of 1 million. Evaluation of the χ2/ndf was performed every 1000 epochs.
Training this model on the GPU resources available on the CERN HTCondor system takes
approximately 6 hours and requires 6.4 MB of storage space.

With reference to 7.1 the analysis of generator layout is presented henceforth. By default,
the generator is a neural network with 5 layers: one input layer, three hidden layers and one
output layer (corresponding to the number of voxels). In BoloGAN, the input layer consists
of nodes called latent space concatenated with conditional variable to give 100 nodes (with
2 additional dimensional conditional labels). These are generated from random values from
a normal (Gaussian) distribution with mean and standard deviation both of 0.5. Moving to
towards the internal section of the generator, there are the hidden layers that are 200,400,800 in
BoloGAN whereas in In FastCaloGANV1 they were 50,100,200. In this section, we will denote
the generator architecture by 100-200,400,800 where the first number represents the latent space.
Starting from the 50-50,100,200 we see an improvement when using slightly different network
in 100-100,150,200 with a slight change in latent dimension. The improvement is drastic when
using 100-128,256,512 network. This signifies keeping the latent space a little smaller than the
first hidden layers pays dividends. One possible explanation is that a relatively higher latent
dimension as compared to hidden layer dimension can introduce noise or artifacts since the latent
space is underutilized. Additionally the transition to the output layer is smooth with the 512
nodes leading up to 533 voxels in output layer. This is another reason for improved performance.
The 100-200,400,800 and 100-256,512,1024 give comparable results however 100-200,400,800
comes out as better performing due to less number of nodes and hence lower complexity and
training time. Having a deeper network promises to deliver finer high level details due to a larger
number of nodes. Consequently, there is an improvement in reduced chi squares for the 4 hidden
layer models 100-100,150,200,250 and 100-200,400,800,1600. 100-100,150,200, 250 performs worse
than 100-200,400,800,1600 due to a lower width. The increased number of neurons per layer
reduces training time due to parallel processing of features, mitigates risk of perturbations, and
captures a broader range of features.

At the end of this preliminary assessment, the top 3 performing models taking into account also
lower computational complexity are 100-128, 256, 512, 100-200,400,800 and 100-200,400,800,1600.
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The 100-200,400,800,1600 takes significantly longer 6 hours more than 100-200,400,800 does.

Generator Layout Reduced Chi-Squares
100- 200, 400, 800 2.80
100- 128, 256, 512 2.50
100- 256, 512, 1024 2.84

100- 100, 150, 200, 250 3.74
100- 200, 400, 800, 1600 2.52

100- 100, 150, 200 9.33
50- 50, 100, 200 12.51

Table 7.1. Preliminary assessment of models

The first parameter of choice to investigate for these models is the batch size. Smaller batch
size 256 takes longer to train, then how much 512 or 1024 takes. Increasing batch size reduces
the training time however it may lead to negative affects such as poor generalization, and
overfitting. Reducing batch size to 256 improves performance of 100-200,400,800, while there is
not any improvement to increase it from 512 to 1024. For 100-128,256,512 there is a decrease in
performance when batch size is increased.

Batch Size Architecture Reduced Chi-squares
256 200, 400, 800 2.48
512 200, 400, 800 2.80
1024 200, 400, 800 2.76
512 128, 256, 512 2.50
1024 128, 256, 512 2.71
512 200, 400, 800, 1600 2.52

Table 7.2. Batch size tuning

The next hyperparameter we choose to evaluate is D/G ratio. The standard values of 3, 5 and
8 are evaluated on the two better performing models 100-200,400,800,1600 and 100-200,400,800.
For the model 100-200,400,800, 3 and 8 both give better results than the current value of 5,
specially for the 100-200,400,800 model.

D/G Ratio Batch Size Architecture Reduced Chi-Square
3 512 200, 400, 800 2.51
5 512 200, 400, 800 2.80
8 512 200, 400, 800 2.49
3 1024 200, 400, 800, 1600 2.15
5 512 200, 400, 800, 1600 2.52

Table 7.3. D/G tuning

At the end, we combine the benefit from tuning previous parameters with the learning rate
which is the same for generator as well as discriminator. It can be seen that using a smaller
learning rate of 0.00005 leads to some improvement as can be seen in Table 7.4.

7.2 Discussion on best hyperparameter performances

It is to note that the model with the lowest χ2
red was 100-200,400,800,1600 with D/G ratio 3,

batch size 1024 and learning rate 0.00005, resulting in a value of 1.6. While this training could
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Learning Rate D/G ratio Batch Size Architecture Reduced Chi-square
0.00005 3 1024 200,400,800,1600 2.16
0.00005 3 1024 200, 400, 800 2.76
0.00005 5 512 200, 400, 800 2.43
0.0001 3 1024 200, 400, 800, 1600 2.53*
0.0001 3 1024 128, 256, 512 2.46
0.00005 3 1024 200, 400, 800, 1600 2.41*
0.00005 3 1024 200, 400, 800 2.75

Table 7.4. Lowest χ2
red for a combination of hyperparameters. *Dictates an increment in

gradient penalty from 10 to 12

be an outlier, the gradient penalty λ was then increased from 10 to 12 to mitigate potential
overfitting and the resulting value increased from 1.6 to 2.41 to prevent the large set of parameters
from overfitting the data. This combination also provided the χ2

red final value of 2.15. However,
another consideration while doing tuning is to consider computational cost. Therefore the
other two architectures 100-200,400,800 and 100-128,256,512 were experimented. In view of this
100-128,256,512 demonstrated comparable performance with the bigger 100-200,400,800 with
different set of hyperparameters with the later taking 4hours to train as compared to 7 hours
for the former. Both models performed around 2.43 which is comparable to the performance of
larger 100-200,400,800,1600 (with increased gradient penalty). Starting from the performance
of the model with the hyperparameters in Table 5.2, we had 6hr of training (6.4MB) and a
χ2

red value of 3.0 which has been improved to χ2
red value of 2.15 with 3 hours of training with

12.91MB required to save it.
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8
Conclusion

We present optimization of the cWGAN-GP model using random search to reduce incurred
computational cost and to improve performance in this project. The context of the work has been
reported from the point of view of high energy experiment, mathematics behind cWGAN-GP,
the statistics context of testing hypotheses, technical details of BoloGAN implementation, and
hyperparameters experimentation. The training and evaluation of the model on LXBATCH has
been shown. Final discussion demonstrates about 28% improvement in χ2

red score, proving the
experimentation to be successful. This reaffirms the application of BoloGAN as a lightweight
and accurate simulation tool for replacing current fast simulation tools, reproducing Geant4 to
such an extent that it could use the same calibrations as Geant4. This work can be used to see
the limits of cWGAN-GP performance as the model used to build BoloGAN and inform the
decision of either keeping with it or exploring another likely candidate DCGAN.

69





Bibliography

Agostinelli, S., et al. 2003, Nucl. Instrum. Meth. A, 506, 250, doi: 10.1016/S0168-9002(03)01368-8

Allison, J., Amako, K., Apostolakis, J., et al. 2016, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835,
186, doi: 10.1016/j.nima.2016.06.125

ATLAS Collaboration % . 2024, ATLAS Simulation Plot: SIM-2024-004, Tech. rep., CERN.
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2024-004/

ATLAS Collaboration. 2020, Fast simulation of the ATLAS calorimeter system with Generative
Adversarial Networks, Tech. rep., CERN, Geneva. https://cds.cern.ch/record/2746032

ATLAS Collaboration , o. 2023, ATLAS Simulation Plot: SIM-2023-005, Tech. rep., CERN.
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-005/

ATLAS Collaboration, Aad, G., et al. 2008, JINST, 3, S08003, doi: 10.1088/1748-0221/3/08/
S08003

ATLAS Collaboration, Aad, G., et al. 2022, Comput. Softw. Big Sci., 6, 7, doi: 10.1007/
s41781-021-00079-7

ATLAS Collaboration, Catmore, J., Di Girolamo, A., & Al. 2020, ATLAS HL-LHC Computing
Conceptual Design Report, Tech. Rep. CERN-LHCC-2020-015 ; LHCC-G-178, CERN. https:
//cds.cern.ch/record/2729668

ATLAS Collaboration, o. 2023, ATLAS Experiment Documentation, Tech. rep., CERN. https:
//opendata.atlas.cern/docs/atlas/experiment/

ATLAS Collaboration, Marshall, Z., & Di Girolamo, A. a. 2022, ATLAS Software and Computing
HL-LHC Roadmap, Tech. Rep. CERN-LHCC-2022-005 ; LHCC-G-182, CERN. https://cds.
cern.ch/record/2802915

CMS Collaboration, Chatrchyan, S., et al. 2008, JINST, 3, S08004, doi: 10.1088/1748-0221/3/
08/S08004

Faucci Giannelli, M., et al. 2023, Fast Calorimeter Simulation Challenge 2022 - Dataset 1, 1.0,
Zenodo, doi: https://doi.org/10.5281/zenodo.8099322

Foster, D. 2019, Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and
Play (O’Reilly Media)

71

http://doi.org/10.1016/S0168-9002(03)01368-8
http://doi.org/10.1016/j.nima.2016.06.125
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2024-004/
https://cds.cern.ch/record/2746032
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2023-005/
http://doi.org/10.1088/1748-0221/3/08/S08003
http://doi.org/10.1088/1748-0221/3/08/S08003
http://doi.org/10.1007/s41781-021-00079-7
http://doi.org/10.1007/s41781-021-00079-7
https://cds.cern.ch/record/2729668
https://cds.cern.ch/record/2729668
https://opendata.atlas.cern/docs/atlas/experiment/
https://opendata.atlas.cern/docs/atlas/experiment/
https://cds.cern.ch/record/2802915
https://cds.cern.ch/record/2802915
http://doi.org/10.1088/1748-0221/3/08/S08004
http://doi.org/10.1088/1748-0221/3/08/S08004
http://doi.org/https://doi.org/10.5281/zenodo.8099322


BIBLIOGRAPHY BIBLIOGRAPHY

Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. 2014, Advances in Neural Information
Processing Systems (NeurIPS). https://arxiv.org/abs/1406.2661

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. 2017, Advances in Neural
Information Processing Systems (NeurIPS). https://arxiv.org/abs/1704.00028

Krause, C., et al. 2022a, Review Article

—. 2022b, Journal of Instrumentation (JINST)

LHC Collaboration, Alves, A. A., et al. 2008, JINST, 3, S08005, doi: 10.1088/1748-0221/3/08/
S08005

Paganini, M., de Oliveira, L., & Nachman, B. 2017, arXiv preprint arXiv:1705.02355

Pequenao, J. 2008, Event Cross Section in a Computer-Generated Image of the ATLAS Detector,
CERN Document Server, CERN. https://cds.cern.ch/record/1096081

Zaborowska, A. 2017, Journal of Physics: Conference Series, 898, 042053, doi: 10.1088/1742-6596/
898/4/042053

72

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1704.00028
http://doi.org/10.1088/1748-0221/3/08/S08005
http://doi.org/10.1088/1748-0221/3/08/S08005
https://cds.cern.ch/record/1096081
http://doi.org/10.1088/1742-6596/898/4/042053
http://doi.org/10.1088/1742-6596/898/4/042053

	Abstract
	Summary
	Contents
	Contents
	List of Figures
	Contents
	List of Tables
	Introduction
	CERN and LHC
	ATLAS
	Detector Simulation
	Calochallenge
	BoloGAN

	I First part
	GANs
	Basics of Deep learning
	Generative Deep Learning
	Performance metrics
	Advantages of GANs and Training Issues

	Wasserstein GANs
	Training metrics
	Stability Issues
	The Lipschitz constraint
	Conditionality
	Evaluation metric


	II Second part
	Hypothesis Testing
	Overview of Hypothesis Testing
	Chi-squared testing
	Data Study

	Hyperparameter Optimization
	Literature Review and Current BoloGAN setup
	Hyperparameter Summary
	Methodology


	III Third part
	Results
	General Checking: Setup and evaluation on Open Physics Hub cluster
	2red Evaluation on LXPLUS

	Analysis
	Evaluations
	Discussion

	Conclusion

	Bibliography

