Challenges in Statistical Validation: Introducing Practical Significance Probability as an Alternative

Borghesi, Andrea (2025) Challenges in Statistical Validation: Introducing Practical Significance Probability as an Alternative. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (1MB)

Abstract

For decades, researchers have relied on P-values and Null Hypothesis Significance Testing (NHST) to assess statistical significance. Despite their widespread use, these methods have faced criticism due to common misunderstandings, arbitrary thresholds, and oversimplified interpretations, contributing to the replication crisis in scientific research. Recent proposals to address these limitations include lower significance levels, confidence intervals, effect sizes, Bayesian methods, and hybrid approaches. However, none has fully replaced NHST. In this thesis, we reviewed key critiques of traditional statistical methods and introduced a new metric called Practical Significance Probability (PSP). PSP estimates the probability that an observed effect exceeds a predefined threshold of practical importance. It combines both effect size and uncertainty into a single intuitive measure, shifting emphasis from purely statistical significance toward practical or real-world importance. To evaluate PSP’s performance, we conducted empirical simulations inspired by previous research. The analysis showed that PSP effectively reduces false positives (6.6%) compared to traditional NHST methods (37% false positives with alpha = 0.05). PSP's continuous probability-based approach promotes a nuanced interpretation rather than rigid, binary decisions about statistical significance. We conclude that PSP is an easy-to-learn, intuitive, and effective tool for researchers, complementing rather than replacing existing methods. It helps researchers prioritize real-world relevance, facilitating more meaningful conclusions in scientific research.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Borghesi, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INGEGNERIA INFORMATICA
Ordinamento Cds
DM270
Parole chiave
Practical Significance, Statistical Tests, P-Value, Abandon Statistical Significance, Replication Crisis
Data di discussione della Tesi
25 Marzo 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^