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Introduction

For decades, researchers have relied on tools such as P-value and Null
Hypothesis Significance Testing (NHST) to determine whether their findings
are statistically significant. However, many challenges have emerged with these
traditional methods. Common misunderstandings, arbitrary thresholds (e.g.,
p-value < 0.05), and oversimplified interpretations of complex evidence have
contributed to issues such as the replication crisis [1][2][3]. These problems are
not solely due to P-value misuse but also due to the misuse of other statistical
methods [1][4]. A recent systematic review found that 31% of 1,579 Bayesian
articles in psychology failed to specify the priors used in their analyses [5].

The P-value and NHST were introduced by Fisher (1925)[6] and Neyman
& Pearson (1933)[7], respectively. Criticism of these methods is longstanding
(e.g., Berkson 1942 [8]). In 2001, Sellke, Bayarri, and Berger demonstrated that
a p-value of 0.05 could correspond to a false discovery rate of approximately
29% [9][10]. In 2018, 73 statisticians proposed to redefine statistical significance
by lowering the p-value threshold to 0.005 [11], while others recommended 0.001
[10].

Statistical tests are important in many research fields, including medicine,
psychology, economics, and technical areas like artificial intelligence. In ma-
chine learning (ML) studies, they are often used to judge how well models
work and whether they can generalize. Verifying that ML models are reliable
in real-world situations is crucial. Moreover, P-value, NHST and confidence
intervals are commonly employed to compare how different ML algorithms
perform and determine which one is best.

The primary issue is the widespread misinterpretation of statistical concepts
such as P-value, confidence intervals, and statistical power. In 2015, the journal
Basic and Applied Social Psychology (BASP) banned P-value [12], arousing
mixed reactions [13]. In 2016, the American Statistical Association (ASA)
released guidelines on P-value usage, urging researchers to avoid the term "sta-
tistically significant" [14]. In 2019, the paper Retire Statistical Significance[15],
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viii Introduction

signed by 800 authors, called for an end to the conventional use of P-value.

Despite efforts to find alternatives, such as confidence intervals, effect sizes,
Bayesian methods, and new metrics (e.g., S-value [16], SGPV [17], MESP [18],
EP [19]), none have fully replaced the P-value. As Cohen (1994) noted: "Don’t
look for a magic alternative to NHST, some other objective mechanical ritual
to replace it. It doesn’t exist." [20].

In this study, we reviewed and analyzed key research papers to identify the
most important critiques and recommendations. Our goal was to design a new
metric called Practical Significance Probability (PSP), which estimates
the probability that an effect exceeds a predefined practical significance thresh-
old. PSP is easy to learn and interpret, and shifts the focus from statistical
significance to practical or scientific significance [21][22]. It is not a "magic
alternative" to NHST. Instead, PSP should be used alongside other methods, as
discussed in the final chapter of this thesis. Details of this method are provided
in Section 2.2.
The PSP can be used in ML studies to check if a model’s performance score
exceeds a minimum level of practical relevance. As a result, the methods
discussed in this thesis are not only relevant to traditional statistical analysis,
but also play a key role in supporting the reliability and interpretability of ML
findings.
In Chapter 4, we compare PSP to other statistical methods through an empirical
analysis based on simulations and inspired by Goodman’s research [18].

Thesis Structure

This thesis is structured as follows:

• History of Statistical Significance: We begin with a review of the
history of statistical significance, the ASA’s statement on p-values and
the challenges in statistical interpretation and replicability.

• Theoretical Background: We then present common statistical method-
ologies and introduce the PSP. A detailed mathematical derivation of
PSP is provided, along with its underlying assumptions and limitations.

• Comparative Analysis of Statistical Validation Techniques: This
chapter compares existing statistical validation techniques, highlighting
their strengths and weaknesses.
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• Empirical Analysis Supporting PSP: Simulation studies and empiri-
cal comparisons demonstrating PSP’s performance.

• Code: Reproducible code for simulations and a SciPy-like implementation
of PSP.

• Conclusions: Final recommendations for reliable statistical analysis.
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Chapter 1

History of Statistical Significance

1.1 Fisher, Neyman-Pearson, Cohen

For decades, null hypothesis significance testing (NHST) has been a topic of
debate among researchers. The foundations of this method can be traced back
to Ronald Fisher, who had developed many of its key principles by 1925 [6].
A few years later, Jerzy Neyman and Egon Pearson introduced the concepts
of type I and type II errors, along with the idea of setting a predetermined
significance level, which led to the well-known hypothesis testing that have
been used since then [7].
Despite its widespread adoption, NHST has faced criticism from early on. In
1938, Joseph Berkson published one of the first major challenges to its logic
and usefulness [23][8], starting a discussion that continues to this day.

Fisher himself recommended not using the significance test alone, but also
measuring the strength of the correlation between variables through analysis of
variance.
Throughout the years, many other methodologies have been proposed, but only
a few have been widely adopted by authors. A study [21] has found that the
confidence interval [24] and Cohen’s d [25] were the most common approaches
along with NHST.
Cohen’s d was the first statistical measure to be explicitly recognized as an
effect size. The peculiarity of Cohen’s work was not just defining d, but also
offering practical guidelines for interpreting its magnitude. In his work, he
described a medium effect (0.5) as something that a careful observer could
detect without statistical analysis. A small effect (0.2), while noticeably less
than medium, was still meaningful rather than negligible. A large effect (0.8),
on the other hand, was positioned symmetrically above medium.

1



2 Chapter 1. History of Statistical Significance

In 1994, Cohen’s famous paper "The Earth Is Round (p < .05)" [20] highlighted
the core issues regarding NHST and recommended abandoning the ritualistic
p-value < 0.05. He also noted: "Don’t look for a magic alternative to NHST,
some other objective mechanical ritual to replace it. It doesn’t exist.".

1.2 ASA’s Statement on P-Value
In 2016, the American Statistical Association (ASA) - the world largest

community of statisticians - has published the "ASA Statement on P-value"
[14], which is considered a milestone in the hypothesis testing discussion (cited
more than 7300 times as of the time of this thesis).
The authors stated that “the statistical community has been deeply concerned
about issues of reproducibility and replicability of scientific conclusions” and
that the “misunderstanding or misuse of statistical inference is only one cause
of the reproducibility crisis.”
The statement suggests moving away from rigid declarations of "statistical
significance." A P-value alone cannot determine the existence or importance of
an association or effect. Similarly, we should stop using confidence intervals to
make binary decisions based on whether a null value falls within the interval.

Along with the ASA’s statement, another important paper entitled "Statistical
tests, P values, confidence intervals, and power: a guide to misinterpretations"
by Greenland et al. [1], gathered the most common misinterpretations of P-
value, confidence intervals and statistical power. The main misinterpretations
are the following:

• The P value represents the probability that the test hypothesis
is true. Incorrect! The P-value assumes the hypothesis is true and only
measures how much the data deviates from predictions, not the likelihood
of the hypothesis itself.

• A significant result (P ≤ 0.05) means the hypothesis is false or
should be rejected. Incorrect! A low P-value suggests unusual data
under the assumptions but does not prove the hypothesis false, it could
result from errors or assumption violations.

• A nonsignificant result (P > 0.05) means the hypothesis is true
or should be accepted. Incorrect! A large P-value does not confirm
the hypothesis, random errors or faulty assumptions might cause it.

• A large P-value is evidence in favor of the test hypothesis.
Incorrect! Any P value below 1 indicates that the tested hypothesis is not
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the most compatible one; a larger P value suggests better compatibility.

• Statistical significance implies scientific or substantive impor-
tance. Incorrect! A low P-value only flags unusual data under model
assumptions. Confidence intervals should be consulted to assess the
practical importance of results.

• The P-value is the probability of obtaining our data if the
hypothesis is true. Incorrect! The P-value depends on all model
assumptions, including randomness and unbiased selection, not just the
hypothesis.

• If P ≤ 0.05 leads you to reject the hypothesis, then there’s only
a 5% chance your result is a false positive. Incorrect! The 5%
threshold only means that, over many tests, false rejections would occur
5% of the time under correct assumptions. Another study showed that a
0.05 p-value correspondss to a 29% false discovery rate [9].

• P-value should be reported as inequalities, such as "P < 0.02"
or "P > 0.05". Incorrect! Exact P values provide more clarity and help
in interpreting results accurately compared to vague inequalities.

The paper also presented the most common misinterpretations for confidence
intervals and statistical power:

• “A 95% confidence interval has a 95% chance of containing the
true effect size.” Incorrect! A specific confidence interval represents a
fixed range between two numbers, such as 0.72–2.88. The probability that
this interval contains the true effect size is either 100% or 0%, depending
on whether the true effect is within the interval. The 95% refers to the
long-term frequency of intervals containing the true effect if computed
from many studies, assuming the model’s assumptions are correct.

• “If two confidence intervals overlap, the difference between esti-
mates is not significant.” Incorrect! Confidence intervals from different
studies can overlap, yet a test for the difference between them could still
yield P < 0.05. It can be noted that if the 95% confidence intervals do
not overlap, P will be less than 0.05 for the difference, assuming the same
conditions used to compute the intervals. Conversely, if one confidence
interval contains the point estimate of another, then P > 0.05.

• “A 95% confidence interval predicts that 95% of future study
estimates will fall within this interval.” Incorrect! The 95% confi-
dence level refers to the frequency with which newly observed intervals
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will contain the true effect size. Despite these misinterpretations, many
researchers consider confidence intervals more informative than P values,
as they shift the focus from a single hypothesis to the range of effect sizes
compatible with the data. When discussing practical implications of a
study, we should consider all the possible effect sizes in the range of the
confidence interval.

• “If the P value exceeds 0.05 and the test has 90% power, then the
chance of a false negative is 10%.” Incorrect! If the null hypothesis
is false and one accepts it, the error rate is actually 100%, not 10%. The
10% figure refers only to how often the test would incorrectly accept the
null hypothesis over many repetitions, assuming all other assumptions
are true.

Another paper published on ASA entitled "Moving to a World Beyond p<0.05"
[26] summarized the main rules to follow in a clear way:

• Don’t base your conclusions solely on whether an association
or effect was found to be “statistically significant” (i.e., the
p-value passed some arbitrary threshold such as p < 0.05).

• Don’t believe that an association or effect exists just because it
was statistically significant.

• Don’t believe that an association or effect is absent just because
it was not statistically significant.

• Don’t believe that your p-value gives the probability that chance
alone produced the observed association or effect or the proba-
bility that your test hypothesis is true.

• Don’t conclude anything about scientific or practical importance
based on statistical significance.

ASA did not set strict rules on which statistical methods to use, but they
provided important advice on how to interpret data correctly. To understand
results properly, researchers should consider effect sizes and confidence intervals,
which give more context about the strength and reliability of findings.
It is also important to think about the assumptions behind statistical methods.
Every analysis is based on certain rules and conditions, and ignoring them can
lead to mistakes. Additionally, P-value and confidence intervals alone cannot
prove whether something is truly happening or not. Statistical tests only show
probabilities based on the data, but real conclusions require extra information.
One way to include this extra knowledge is through Bayesian methods, which
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help make sense of data by combining it with what is already known.
ASA also encourages researchers to focus on collecting high-quality data and to
use multiple ways of analyzing it instead of relying on just one method. Since
real-world data is often messy and unpredictable, it is important to accept
that uncertainty is a natural part of research. Results can change slightly each
time an experiment is repeated, so researchers should always show how much
uncertainty exists in their findings by including things like standard errors or
confidence intervals.
ASA incorporates these concepts with the following sentence:

“Accept uncertainty. Be thoughtful, open, and modest.”

1.3 Challenges in Statistical Interpretation and
Studies Replicability

The "replication crisis" derives from the fact that researchers often struggle
to get the same results when they repeat a study. We indicate that with the
term replicability: it means that if someone else does the same experiment,
they should get similar results. More recently, another important concept called
reproducibility has become a basic requirement in research. Reproducibility
means that if someone has the same data and knows the steps used in the
analysis, they should be able to get the same results. Bad statistical analysis
have contributed to this crisis, although they are not the only reason [27].

A recent observational study has analyzed the statistical section of about
120,000 papers and studies using topic modeling techniques [3]. The researchers
found that these sections often had recurring boilerplate text, reflecting a
mechanistic approach to statistical reporting. In particular, around 13% of the
papers included a variation of the phrase "a p-value < 0.05 was considered
statistically significative". This sentence goes against the recommendations
from the ASA on the correct use of P-value.

Using only the NHST to validate a research’s finding is unreliable. A study
examined the relationship between p-values and evidence against null hypothe-
ses, demonstrating that a p-value of 0.05 can correspond to a minimum false
discovery rate of approximately 29% (to be optimistic) [9]. In other words, a
study that relies solely on a P < 0.05 has 1 in 3 chance of supporting a false
claim.

As we have seen in the previous section, the replication crisis fault must
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not be attributed only to P-value. In fact, also confidence intervals and sta-
tistical power are often misunderstood. Moreover, a recent systematic review
found that 31% of 1,579 Bayesian articles in psychology failed to specify the
priors used in their analyses [5].

In 2015, the journal Basic and Applied Social Psychology (BASP) banned
P-value for the first time [12]. Also in this case, no strict replacement has
been proposed as statical methods, the editors said: "BASP will require strong
descriptive statistics, including effect sizes. We also encourage the presentation
of frequency or distributional data when this is feasible. Finally, we encourage
the use of larger sample sizes.".
This event has sparked mixed reactions. A 2019 study[13] examinating papers
published after the ban has found that authors were making less proven claims.
This, in turn, increases the risk of more non-reproducible effects. The study’s
authors argue that banning P-value could make publications worse.
Daniel Lakens (2021) pointed out that there’s no strong evidence that removing
P-values and hypothesis testing would make research better [28]. Hanson (1958)
[29] found that research findings were more likely to be replicated when they
followed clear confirmation rules, like using a 5% significance level. In his
study, more than 70% of findings with such rules were later confirmed by other
researchers, while less than 46% of findings without clear rules were confirmed.

Between the large number of papers that have contributed to the replica-
tion crisis, there are some that became famous for the consequences that they
had. In 2006 a group of researchers published a paper claiming that they had
build an algorithm that predicted which cancer patients would respond to
chemotherapy [27]. When other statisticians have attempted to reproduce the
study, they found a poorly conducted data analyses. Only 5 years later, in
2011, the original study was retracted.

Another well-known example comes from the 2010 paper "Power Posing: Brief
Nonverbal Displays Affect Neuroendocrine Levels and Risk Tolerance"[30],
which claimed that adopting "high-power" poses for just a few minutes could
significantly alter hormone levels (increasing testosterone and decreasing corti-
sol) and improve risk-taking behavior and feelings of power. In 2012, one of the
authors, Amy Cuddy, presented a TED Talk based on this study, which became
one of the most-watched talks ever, spreading the idea that simple changes
in posture could dramatically affect success. However, in 2015, a replication
study has been attempted by Ranehill et al.[31] on a larger sample and found
no significant effect, directly challenging the original findings. A year later,
Dana Carney, the first author of the original study, publicly stated that she no
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longer stood by its conclusions [32].

1.4 From Statistical Significance to Practical Sig-
nificance

In 2018, 73 statisticians proposed redefining statistical significance by lower-
ing the p-value threshold to 0.005 [11]. Colquhoun recommended even a lower
threshold of 0.001 [10]. In 2019, the papers "Abandon Statistical Significance"
[33] (published on ASA) and "Retire Statistical Significance" [15] (signed by
800 authors) called for a drop of the NHST paradigm.

Over the years many alternatives have been proposed, but none of them
have been widely adopted. We will analyze and compare them in Chapter 3.
Ho et al. [34] suggested to use estimation plots in the descriptive analysis.
Estimation plots show the actual size of differences between groups along
with confidence intervals, making it easier to understand the results and their
uncertainty.

Many authors agreed that effect sizes and confidence intervals should be in-
cluded to validate the practical implications of a study.
While effect sizes are not synonymous with practical significance, they could
represent a good starting point. Authors should find and report effect sizes
whenever possible [22].
The concept of practical significance is not recent; Kirk in 1996 gave a good
definition [21]:

Statistical significance is concerned with whether a research result
is due to chance or sampling variability; practical significance is
concerned with whether the result is useful in the real world.

1.5 Practical Significance Probability (PSP): an
overview

Alongside common effect size measures like Cohen’s d, other approaches
have been proposed to assess practical significance. Confidence intervals can
also be useful for this purpose if the following principles are followed [35]:

• Considering both the upper and lower limits and their different practical
implications.
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• Not focusing on whether the interval includes the null value.

• Recognizing that the interval itself is an estimate subject to error.

Some newer methods define a threshold for the minimum effect size consid-
ered practically useful. Examples include equivalence testing [35] and MESP
[36].

In this thesis, we analyze key critiques and recommendations to develop a
new method that follows these principles:

• Combining effect size and uncertainty.

• Prioritizing practical relevance.

• Improving interpretability.

• Avoiding strict accept-or-reject decisions.

Building on these ideas and existing approaches, we introduce Practical
Significance Probability (PSP). PSP estimates the probability that an
effect exceeds a predefined practical significance threshold. It is not meant to
replace NHST but rather to complement other methods. Further details on
PSP are provided in Section 2.2.



Chapter 2

Theoretical Background

In this chapter, we provide a concise theoretical description of the most
common statistical methods and an exhaustive explanation of PSP.

2.1 Common Statistical Methodologies

2.1.1 Null Hypothesis Significance Testing (NHST) and
P-Value

We have seen in the previous chapter that the P-value and Null Hypoth-
esis Significance Testing (NHST) have been introduced by Fisher (1925)
and Neyman-Pearson (1933) papers, respectively.
NHST is a method used to analyze data and determine if there is enough
evidence to reject a default assumption called the null hypothesis. This
default assumption, represented as H0, usually states that there is no effect
or no difference. The alternative hypothesis, H1, suggests that an effect
exists. To evaluate this, a test statistic is calculated from the data, which is
then compared to what would be expected if H0 were true.

A key part of NHST is the significance level, denoted as α, which is the
threshold for rejecting H0. Researchers commonly use α = 0.05, meaning that
if the probability of getting the observed data under H0 is less than 5%, they
reject H0 in favor of H1. However, this cutoff is arbitrary, and strict adherence
to it can lead to misinterpretations and more recently a lower threshold of 0.005
or 0.001 have been recommended by other authors.

The P-value is a measure used in NHST to assess how well the data aligns with
the null hypothesis. It represents the probability of obtaining a test result at
least as extreme as the one observed, assuming that H0 is correct. A small

9
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P-value suggests that the observed data is unlikely under H0. However, a large
P-value does not confirm H0; it simply indicates that the data is not strongly
incompatible with it.
People often mistake the P-value for the probability that an effect θ is true
given the data, p(θ|data), which is what researchers actually want to know [21].
However, the P-value actually represents the probability of observing the data
(or more extreme data) assuming the effect and model assumptions are correct,
p(data|θ). To quote Greenland et al. [1]:

The P value is a statistical summary that measures the compatibility
between observed data and what we would expect under the full
model.

The P-value can be converted to a continuous value called Shannon infor-
mation (S-value). This is done by applying the formula s = − log2 p where p
is the p-value. The S-value measures the amount of information that the test
supplies against the hypothesis [16]. Higher S-values mean stronger evidence
against the null hypothesis. Fricker [13] suggests to use S-value with confidence
intervals instead of P-value.

2.1.2 Confidence Interval

A confidence interval is a way to estimate the possible range of an effect
in a study. Instead of just testing whether an effect exists (like in NHST), a
confidence interval gives us a range of values that are more in line with what
was actually observed in the data. For example, if we compare two treatments
and find a confidence interval of 10.0 to 20.0, this means that based on the
data, the true effect is likely within this range, assuming our statistical model
is correct. The key idea is that this interval includes values that are more
compatible with the data than those outside the interval.
A 95% confidence interval means that if we repeated the same kind of study
many times, 95% of the calculated intervals would contain the true effect size.
However, it does not mean that any single confidence interval has a 95% chance
of containing the true effect: intuitively, the probability that this interval
contains the true effect size is either 100% or 0%, depending on whether the
true effect is actually within the interval [1]. Confidence intervals give a fuller
picture by showing a range of plausible values for the effect. This is why many
journals now require them in research papers. By using confidence intervals,
we can better understand the uncertainty in our estimates rather than just
focusing on whether an effect is statistically significant.
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2.1.3 Statistical Power

Statistical power tells us how likely a study is to detect a real effect if
one truly exists. Before conducting a study, researchers estimate power to
understand the probability that their test will find evidence against the null
hypothesis (e.g., show a P-value below 0.05) when the alternative hypothesis
is actually correct. For example, if a study has 80% power, this means that
if there is a real effect, there is an 80% chance that the study will detect it.
However, there is still a 20% chance (1 - power) that the study will miss the
effect and fail to reject the null hypothesis. This is called a Type II error (or
beta error).
Power is calculated before a study begins, using estimates of the expected effect
size. Calculating power from observed data is just another way of looking at
the P-value, so it does not provide new evidence about the effect.

Even when a study is designed with 80% power, real-world issues like low
participant recruitment can reduce the actual power. Also, even if two separate
studies each have 80% power, the chance that both will show statistically
significant results is only 64% (0.80× 0.80). This means that even well-powered
studies can sometimes appear to contradict each other, leading to confusion in
research findings.
Despite these limitations, power is still useful in planning studies and under-
standing why replication attempts may fail, even when an effect is real. In
medical research, grant agencies commonly require sample sizes that yield
statistical power of at least 80% [37].

2.1.4 Effect Size

Effect size tells us how big or meaningful an observed difference or relation-
ship is, rather than just whether it exists. By focusing on magnitude, effect
size helps us understand whether a finding has practical relevance. Several
types of effect sizes can be used, depending on the nature of the data and the
research question. Common examples include Cohen’s d for comparing group
means, the correlation coefficient (e.g., Pearson’s r) for measuring the strength
of linear relationships, and odds ratios in studies of categorical outcomes. By
standardizing results, these metrics allow comparisons across different studies
and different measurement scales.
Effect size is often reported together with a confidence interval, providing a
range for the magnitude of the observed effect. This approach gives a clearer
picture of both the strength of the evidence (through the interval) and the size
of the effect itself.
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Effect size estimates are especially important in meta-analysis, where findings
from multiple studies are combined, and in power analyses, which rely on
estimating plausible effect sizes to determine how many participants or obser-
vations are needed for a study to detect a meaningful difference.

A 2011 study[36], based on an empirical analysis, has found that a large
effect size tends to correspond to low p-values, and small effect sizes tend to
correspond to large p values. However, a p-value of 0.01 can correspond to
effect sizes ranging from about 0.2 to 1, and an effect size close to 0.5 can
correspond to p-values ranging from about 0.001 to 0.05.

2.1.5 Equivalence Testing and SGPV

When researchers want to show that an observed effect is too small to
matter in practical terms, they can use equivalence testing (often indicated
with TOST, i.e. two one-sided tests), which goes beyond simply determining
if an effect differs from zero (as in NHST). In equivalence testing, a range of
values around zero is specified to represent what is considered not meaningfully
different from zero. If the entire confidence interval for a study’s effect estimate
falls within this predefined range, it suggests that the effect is so small it can
be treated as practically equivalent to zero [35].

Second Generation P-Values (SGPV) [17][35] are another tool for assessing
whether observed data sufficiently exclude meaningful effects. Like equivalence
testing, SGPVs involve defining a range of effects that would be considered
negligible. The SGPV then measures the overlap between this "null range"
and the range of values supported by the data (often a confidence interval). If
the confidence interval lies entirely within the null range, the SGPV equals 1.
This implies the data are fully compatible with an effect so small that it is of
no practical concern. If the confidence interval lies completely outside the null
range, the SGPV equals 0. This means the data support an effect size that is
larger than what we consider negligible. SGPVs between 0 and 1 signal that
the current data do not allow a clear conclusion about equivalence versus a
meaningful effect.

In practice, both the TOST and SGPV rely on comparing data to a spec-
ified smallest effect size of interest. In many cases, these two methods lead
to very similar conclusions. However, the SGPV’s utility can be limited if
confidence intervals are asymmetric or broader than the equivalence range [35].
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2.1.6 Bayesian Methods

Bayesian approaches offer an alternative framework to the traditional fre-
quentist perspective by treating unknown parameters as random variables with
probability distributions.
This framework begins with a prior distribution, which encodes the re-
searcher’s initial beliefs about the parameter (e.g., the true mean difference
between two groups), before observing data. Once data are collected, the prior
distribution is updated using Bayes’ theorem to produce a posterior distri-
bution, which reflects the updated beliefs after accounting for the observed
results. Researchers then typically summarize uncertainty about the parameter
through credible intervals. Unlike frequentist confidence intervals, these
credible intervals can be interpreted as having a certain probability (e.g., 95%)
of containing the true parameter value, assuming the model and priors are
correct [38].

Bayesian analysis can be a useful alternative to traditional statistical methods
like significance testing and equivalence testing, especially when researchers
want to include prior knowledge in their analysis. Significance tests and confi-
dence intervals alone cannot definitively prove whether an effect exists or not.
Bayesian methods allow researchers to directly incorporate prior information
into their statistical models[1], making them a preferred choice in many cases.
However, full Bayesian analysis will probably never be adopted as a substitute
for P-value because it is too complex for most users [39].

2.2 Introducing Practical Significance
Probability (PSP)

After reviewing the state-of-art statistical tests (discussed in Chapter 3) and
synthesizing insights from various studies and research papers, we developed
a new approach to address some of their limitations. We propose a method
that integrates effect size, uncertainty and practical relevance called Practical
Significance Probability (PSP). The PSP quantifies the probability that
the true effect size exceeds a predefined practical significance threshold
(PST) given the observed data. The PST represents the minimum effect size
considered of practical importance and must be chosen by domain experts of
the specific study.
The purpose of this proposal is not to replace existing statistical methods. As
Cohen [20] said in 1994:
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Don’t look for a magic alternative to NHST, some other objective
mechanical ritual to replace it. It doesn’t exist.

Instead, the PSP offers a different approach that can help in understanding the
significance of the results. It must be used alongside other statistical methods
and a complete descriptive analysis, where results and assumptions specific to
the study or research are well documented.

This approach provides a single, interpretable metric that addresses some
of the limitations associated with the traditional P-value. With this method,
we embrace the shift from statistical significance to practical significance (see
Section 1.4) as recommended by many authors.

The PSP is calculated using the following formula:

PSP = 1− Φ (Z) with Z =
δ − θ̂

SEθ̂

where

• θ̂ is the observed effect size (e.g., absolute mean difference),

• δ is the practical significance threshold (i.e., the smallest effect size
of interest),

• SEθ̂ is the standard error of the estimated effect size,

• Φ is the cumulative distribution function (CDF) of the standard
normal distribution.

The Z-score represents the number of standard errors by which the observed
effect size exceeds the practical significance threshold. By calculating 1−Φ(Z),
PSP provides the probability that the true effect size θ is greater than the
practical significance threshold δ, given the observed data.

PSP uses the same basic formulas (z-scores, standard errors) as traditional
frequentist methods but frames them in a way that looks like a Bayesian
posterior probability statement: “the probability that θ exceeds δ, given the
data.”:

P (θ > δ|data)

Unlike a purely Bayesian approach, PSP does not require specifying a prior;
instead, it fits within the confidence-distribution framework of frequentist
statistics, which creates a distribution for θ by inverting standard test statistics.

The main advantages of PSP over traditional methods are:
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• Direct Interpretability: PSP provides a probability that is directly
interpretable in terms of practical significance, making it more meaningful
for real-world applications.

• Integration of Effect Size and Precision: It combines the magnitude
of the effect and the precision of the estimate into a single metric.

• Avoidance of Dichotomization: PSP moves away from the binary
"reject/accept" decisions, promoting a more nuanced interpretation of
statistical results.

2.2.1 Addressing Common Misinterpretations of P-value
with PSP

P-values have long been a fundamental tool in statistical hypothesis testing;
however, they are frequently misinterpreted, which can lead to incorrect con-
clusions. The PSP offers an alternative approach that addresses some of these
misunderstandings by focusing on practical significance. This section explores
how PSP addresses common misinterpretations associated with P-values.

One prevalent misinterpretation is the belief that the P-value represents the
probability that the null hypothesis H0 is true. This indicates a misunder-
standing of the frequentist framework, where the P-value actually represents
P (data|H0), not P (H0|data). In contrast, PSP calculates the probability that
the true effect size θ exceeds a predefined practical significance threshold δ,
given the observed data. By focusing on P (θ > δ | data), PSP avoids making
statements about the probability of H0 being true or false, abandoning the
concept of statistical significance.

Another common misconception is that a significant p-value implies that the null
hypothesis is false and should be rejected, while a non-significant p-value means
that the null hypothesis is true and should be accepted. This dichotomous
interpretation oversimplifies the nuanced nature of statistical evidence. PSP
addresses this issue by offering a continuous measure of evidence concerning
practical significance without enforcing a rigid reject-or-accept decision.

Some researchers mistakenly interpret a large p-value as evidence in favor
of the null hypothesis. However, a high p-value merely indicates a lack of
sufficient evidence against the null hypothesis, not proof of its validity. PSP
does not support this misinterpretation because it does not interpret low prob-
abilities as evidence for the null hypothesis. This perspective helps prevent
the erroneous conclusion that insufficient evidence against the null hypothesis
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constitutes positive support for it.

There is also a tendency to confuse statistical significance with scientific or
practical significance, assuming that a significant p-value indicates a result
of practical relevance. P-values, however, do not measure the magnitude or
importance of an effect. PSP focuses on practical significance by incorporating
a predefined practical significance threshold into the analysis. By doing so, it
ensures that statistical findings are directly aligned with real-world importance,
bridging the gap between statistical significance and practical relevance.

Another frequent misunderstanding is the notion that a p-value less than
or equal to 0.05 implies only a 5% chance of a Type I error, or false positive.
This confuses the P-value with the significance level and overlooks the fact
that the P-value does not provide the probability of making an error. While
PSP reduces the likelihood of misinterpreting statistical significance as an error
probability, users must still be cautious and understand that PSP quantifies
the likelihood of a practically significant effect, not the rates of Type I or Type
II errors.

Finally, p-values are often reported as inequalities (e.g., p < 0.05) instead
of the exact level of evidence. PSP encourages the reporting of exact prob-
ability values, enhancing transparency and precision in statistical reporting.
By providing specific PSP values, researchers can better interpret the strength
of the evidence and make more informed decisions. This practice aligns with
recommendations for improved statistical communication and helps avoid the
arbitrary thresholding associated with the p-value.

In summary, the PSP addresses some of the common misinterpretations of
P-values by offering a probability directly related to practical significance. By
concentrating on the effect size and its real-world importance, PSP provides a
meaningful and interpretable metric for statistical analysis.

2.2.2 Mathematical Derivation

To derive the PSP, we start by considering the cumulative distribution
function (CDF) of a random variable X, which gives the probability that X
takes a value less than or equal to a specific value x:

Φ(x) = P (X ≤ x)

The goal of PSP is to compute the probability that the true effect size θ
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exceeds the practical significance threshold (δ):

P (θ > δ | data)

The observed effect size θ̂ is an estimate of the true effect size θ. Due
to sampling variability, θ̂ varies around θ. Under the assumption that the
sampling distribution of θ̂ is approximately normal, we indicate with θ̂ the
normally distributed effect size around the true effect size θ with standard error
SEθ̂.

θ̂ ≈ N(θ, SE2
θ̂
)

Since θ is a fixed but unknown parameter, we can consider the uncertainty
around θ given our observed θ̂.

θ ≈ N(θ̂, SE2
θ̂
)

Thus, we can reframe the problem as:

P (θ > δ | data) = P (δ < θ | θ̂)

To standardize the variables and utilize the standard normal distribution,
we define:

Z =
θ − θ̂

SEθ̂

and z =
δ − θ̂

SEθ̂

Here, z is a numerical value representing how many standard errors the
practical significance threshold is away from the observed effect size. The steps
of the derivation are as follows:

1. Start from the probability

P (θ > δ) = P (θ − θ̂ > δ − θ̂)

2. Standardize the inequality

P

(
θ − θ̂

SEθ̂

>
δ − θ̂

SEθ̂

)
= P (Z > z)

3. Use the CDF of the standard normal distribution

Φ(z) = P (Z ≤ z) → P (Z > z) = 1− Φ(z)

4. Therefore, the PSP is calculated as

PSP = 1− Φ(z)
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2.2.3 Assumptions

In this section, we review the assumptions on which the PSP relies on:

1. Normality of the Sampling Distribution: The PSP method assumes
that the sampling distribution of the estimated effect size (θ̂) is approx-
imately normal. This assumption is generally justified by the Central
Limit Theorem for large sample sizes. However, for small samples or when
the data are skewed, the normality assumption may not hold, potentially
leading to inaccurate PSP values.

2. Independence of Data: The data are assumed to be independently
distributed. Violations of independence, such as clustered, correlated, or
time-series data, can affect the validity of the standard error (SEθ̂) and,
consequently, the PSP.

3. Accurate Estimation of Standard Error: The reliability of the PSP
calculation depends on the accurate estimation of the standard error of
the effect size. Misestimations due to heteroscedasticity or other factors
can lead to misleading PSP values.

4. Predefined Practical Significance Threshold (δ): The practical
significance threshold should be established before data analysis and
grounded in domain-specific knowledge. Post-hoc selection of δ can
introduce bias and inflate the probability of Type I errors.

These assumptions are also made when computing the P-value for NHST. More
specifically, the fourth assumption could be applied similarly for the alpha
value.

2.2.4 Limitations

1. Ignores Type I and Type II Error Rates: The PSP focuses on the
probability that the true effect size exceeds the PST, but does not directly
control for Type I (false positive) or Type II (false negative) error rates.

2. Sensitivity to Sample Size and Normality: In small samples, the
Central Limit Theorem may not ensure normality of the sampling dis-
tribution, making the PSP unreliable. Non-normal data distributions
require alternative approaches or transformations to meet the normality
assumption.

3. PST specific for a study: The choice of the PST may vary between
studies or analysts. This subjectivity can make it difficult to compare
PSP values across different studies or contexts.
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4. Exclusion of Prior Information: The PSP method does not incorpo-
rate prior knowledge or Bayesian updating mechanisms, which can be
valuable in certain research settings.

5. Potential Misinterpretation: The PSP provides a probability that
the true effect size exceeds a threshold, which may be misinterpreted
as the probability that the effect is practically significant. Users must
be cautious to interpret PSP within the statistical framework and not
overextend its implications.





Chapter 3

Comparative Analysis of Statistical
Validation Techniques

In this chapter, we compare several statistical methods used in research.
Our goal is to highlight each method’s strengths and weaknesses, making it
easier to choose the appropriate approach for different research questions. We
will review the methods we have described in the previous chapter:

• Null Hypothesis Significance Testing (NHST) and P-Values

• Confidence Intervals

• Effect Size Measures

• Equivalence Testing and Second Generation P-Values (SGPV)

• Bayesian Factors

• Practical Significance Probability (PSP)

The table 3.1 below summarizes some of the key aspects of each statistical
validation technique.
In the next chapter we provide an empirical analysis to better analyse the
practical implications of each method.

21
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Method Easy to
Learn

Easy to
Interpret

Include
Uncertainty

Express
Effect
Size

Include
Minimum
Practical

Effect Size

Binary
Test

Sample
Size

Dependent

NHST
P-value Yes Yes Yes No No Yes Yes

Confidence
Interval Yes Yes Yes Yes No No* Yes

Cohen’s d Yes Yes No Yes No No No

Equivalence
Testing
/SGPV

Yes No Yes No Yes Yes Yes

Bayes
Factors No No Yes No No Yes No

PSP Yes Yes Yes No Yes No Yes

Table 3.1: Comparison of Statistical Methods on Different Criteria

* CI can be used in a dichotomous decision-making framework (e.g., if a 95% CI excludes
zero, one might conclude statistical significance), but this approach has been criticized.

This table makes it clear that no single method meets every need. For
example, traditional P-value and NHST are easy to learn and interpret, but
they push us toward a binary outcome (“significant” or “not significant”) without
telling us how large or practically important the effect might be. Confidence
intervals address uncertainty and can hint at effect size, but they do not auto-
matically define what is “practically” meaningful. Cohen’s d is a direct measure
of effect size, but it does not inherently capture the uncertainty around that
estimate.
Equivalence testing can account for a minimum practical effect size, but it uses
a dichotomous “equivalent or not” decision rule. Bayes factors let us compare
evidence for or against a hypothesis in a continuous way, but they can still be
used in a yes-or-no choice once a certain threshold is reached and they do not
automatically include a notion of practical significance. Moreover, they can be
harder to interpret or more complicated to learn.
In contrast, PSP method is designed to keep things simple (like P-value) while
explicitly relying on a minimum practical effect size and reflect uncertainty,
without forcing a strict yes-no decision. Of course, as with all methods, it still
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has limitations, so it’s best to combine multiple approaches to assess more
robustness.

To conclude, this table highlights the principles guiding our design of PSP.
We wanted a method that was both easy to learn and to interpret, so non-
statisticians can adopt it easily as P-value. At the same time, we wanted to
capture uncertainty and rely on a minimum practical significance threshold,
allowing us to talk directly in terms of practical utility. Finally, we designed it
to be a continuous value between 0 and 1, and not be used as a dichotomous
approach to assess any kind of significance.





Chapter 4

Empirical Analysis supporting PSP

In this chapter, we first present three examples of PSP in action, then we
conduct an empirical analysis to compare it with other methods by simulating
experiments.

4.1 Anecdotes with PSP
In this section, we propose three examples that show how to use PSP and

its comparison with P-value.

(1) Basic PSP Usage
Suppose a clinical trial evaluates a new drug intended to lower blood pressure.
The practical significance threshold (δ) is set at a reduction of 5 mmHg, deemed
clinically meaningful. The trial results show an average reduction of 6 mmHg.
The standard error of the effect size is 2 mmHg:

Z =
5− 6

2
= −0.5 Φ(−0.5) = 0.3085 PSP = 0.6915

There is approximately a 69% probability that the true effect size exceeds the
clinically meaningful threshold of 5 mmHg.

(2) PSP and P-value in Disagreement
A nutrition researcher is evaluating a new weight loss supplement. The practical
significance threshold (δ) is set at a weight loss of 3 kg over a 12-week period.
Both the treatment group n1 and the control group n2 have 60 participants
(n1 = n2 = 60). The results of the research are:

mean weight loss standard deviation
Treatment group: X̄1 = 4 kg s1 = 5 kg
Control group: X̄2 = 1.5 kg s2 = 4.5 kg

25
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The observed effect size is θ̂ = X̄1 − X̄2 = 2.5 kg. The standard error can be
computed with the Welch’s approximation:

SEθ̂ =

√
s21
n1

+
s22
n2

≈ 0.8684

Then, we can calculate the PSP as:

z =
δ − θ̂

SEθ̂

=
3− 2.5

0.8684
≈ 0.5758 PSP = 1− Φ(z) ≈ 0.28

To make a comparison, we calculate also the p-value:

t =
X̄1 − X̄2

SE
≈ 2.879 df = n1 + n2 − 2 = 118

The p-value for this problem is approximately 0.005. Even if we obtained a
small p-value, the practical impact may be minimal as the PSP is only 28%.

(3) Example from Roberts textbook
We consider a well-known example originally given in a textbook by Roberts
[40][19]. Two manufacturers, denoted by A and B, are suppliers for a component.
We are concerned with the lifetime of the component and want to choose the
manufacturer that affords the longer lifetime. Manufacturer A supplies 9 units
for lifetime testing. Manufacturer B supplies 4 units. The test data give the
sample means 42 and 50 hours, and the sample standard deviations 7.48 and
6.87 hours, for the units of manufacturer A and B respectively:

nA = 9 XA = 42 sA = 7.48
nB = 4 XB = 50 sB = 6.87

The two-tailed p-value was 0.0923, while the one-tailed p-value was 0.0462. If
we consider 1 hour as the practical significance threshold (δ), the PSP value is:

SEθ̂ =

√
s2A
nA

+
s2B
nB

≈ 4.2445

z =
δ − θ̂

SEθ̂

=
1− |50− 42|

4.2445
PSP = 1− Φ(z) ≈ 0.95

The PSP is high (≈ 95%), suggesting that Manufacturer B’s components have
a significantly longer lifetime than Manufacturer A’s, beyond the threshold
deemed practically important. However, this could require further investigation
because both P-value and PSP could be inaccurate due to the small size of the
samples.
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4.2 Simulation Study and Empirical Evidence

4.2.1 Overview of Prior Simulation Study

In 2019, a study published in The American Statistician [18] proposed and
tested a simulation-based approach to compare the performance of several
statistical methods. In addition to the most common ones, such as the P-value
with different alpha values, confidence intervals, and effect sizes, the researchers
introduced a new approach called MESP (Minimum Effect-Size plus P-value).

The MESP rejects the null hypothesis only if both the following conditions
are met: (1) the effect size is meaningfully large, and (2) the NHST rejects the
null hypothesis with an alpha value of 0.05. This hybrid approach combines a
minimum significance threshold with the traditional NHST. The authors also
introduced the term Minimum Practically Significant Distance (MPSD), which
aligns with the concept used in equivalence tests and SGPV, and that we refer
to as the “practical significance threshold” in this study for the PSP.

The authors aimed to step back from discussions of theoretical grounds about
P-value utility as evidence for a hypothesis and instead sought empirical ev-
idence to help address the issue. Similar efforts have been made by other
researchers in the past [41][36], showing that one of the best options could
be to triangulate various methods’ results to maximize confidence. A more
recent simulation study [42], conducted to assess the success of P-value-based
inferences, concluded that the P-value should be used as a cue alongside other
statistical techniques, such as effect size and Bayes factors.

Inspired by the study published in The American Statistician [18], we
replicated their simulation-based approach. The authors set three objectives:

1. To explore whether P-values can have evidential value.

2. To examine the nature and limitations of that value.

3. To empirically compare that evidential value with possible alternative
approaches, including their proposed MESP method.

They created a dataset of 10,000 simulated experiments. Each experiment
included key parameters, as listed in Table 4.1, with values randomly drawn
from predefined ranges.
For each simulated case, the null hypothesis with a null mean of 100 (H0 : µ =
100) was tested using the following methods:

1. NHST: Reject the null hypothesis if the p-value is lower than 0.05.
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Table 4.1: Parameters used in the simulated experiments

Parameter Predefined Range
Sample Size 5–100
True Population Mean 75–125
True Population Standard Deviation 4–60
MPSD 2–20

2. NHST (small α): Reject the null hypothesis if the p-value is lower than
0.005 (as recommended in the paper Redefine Statistical Significance [11],
signed by a coalition of 72 methodologists).

3. Distance-Only Method: Reject the null hypothesis if the effect size
(absolute difference between the mean sample and the null mean) exceeds
the MPSD.

4. Interval-Based Method: Reject the null hypothesis if there is no
overlap between the thick null interval, bounded by null mean±MPSD,
and a 95% confidence interval centered on the mean of the observed
sample.

5. MESP Method: Reject the null hypothesis if both the conventional
NHST (p-value less than 0.05) and the distance-only method reject it.

Each of these methods is evaluated by comparing its decision about the
null hypothesis to a method based on a full-knowledge null hypothesis rejection.
This benchmark rejects the null hypothesis only when the true effect size (the
difference between the actual population mean and the null hypothesis mean)
is greater than the MPSD.

For a method inference to be considered correct (or successful), its decision
to reject or not reject the null hypothesis must match the decision made by
the full-knowledge method.

The results of the 10,000 experiments are summarized in Figure 4.1. The
horizontal axis categorizes the experiments by three power levels (less than 0.3,
between 0.3 and 0.8, and higher than 0.8), while the vertical axis shows the
percentage of inference success.

For tests with high nominal power (e.g., large samples or small population
variance), the NHST had the worst true Type I error rates, as observed in
"Panel 1". This indicates that the P-value test failed by not accepting the null
hypothesis in about half of the cases, potentially leading to false positives.

Despite all the criticisms, the authors concluded that P-values provide
some evidential information relevant to an inference about a population mean.
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Figure 4.1: Inference success by power level. Image from [18].

They also stated that the NHST should not be regarded as a definitive or sole
justification for research conclusions, but instead should be interpreted properly.
All methods compared in the study demonstrated strengths and weaknesses,
with none emerging as the optimal solution. Finally, they concluded that the
MESP recognizes the heuristic nature of the α in the NHST and incorporates
the crucial criterion of effect size.

4.2.2 Revisiting the Simulation with PSP

In this study, we replicated the same simulation-based approach from the
research summarized in the previous section, but with the following modifica-
tions:

• Discard experiments with power lower than 0.60. Such experiments have
a high probability of Type II errors (false negatives), meaning they often
fail to detect a true effect even when one exists. These experiments
provide weak evidence for comparing statistical methods due to their
noise from small sample sizes or high variability. For this reason, we
focus on high-powered experiments (> 0.60), as these reduce the amount
of noise and yield more reliable comparisons. It would be unusual to
consider the results coming from an experiment with a small number
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of samples and high variability. Thus, for this study, we are not really
interested in how statistical methods perform in those situations. We
chose the threshold of 0.60 to include a broader range of experiments
compared to the traditional cutoff of 0.8 for strong power.

• Balance the number of experiments where the null hypothesis should be
rejected. We constrained our simulation algorithm to generate an equal
number of experiments where the true population mean falls within and
outside the null hypothesis equivalence interval. In this way, we have
balanced metrics and evaluations of the statistical methods.

• Incorporate the confusion matrix for each statistical method to compare
false positives and false negatives. One persistent issue with NHST is the
misinterpretation of p-values as the probability that results are due to
chance, contributing to a high rate of false positives in scientific literature.
Colquhoun [39] advocates for integrating False Positive Risk (FPR) into
statistical practice to address this issue. These metrics could help us
understand how to reduce false positives and improve reproducibility.

• Include PSP as an alternative to P-value. Unlike p-values, which provide
a dichotomous "statistical significance" decision, the PSP estimates the
probability that an effect size surpasses a practical significance thresh-
old. PSP is not a test and is not directly comparable with NHST. For
this study, we defined a PSP alpha (PSPα) representing the minimum
probability required to reject the null hypothesis. While we agree with
many authors on abandoning dichotomous testing approaches like NHST,
we made an exception here to compare PSP’s performance with tradi-
tional methods. Finally, we rename the Minimum Practically Significant
Difference (MPSD) to the Practical Significance Threshold (PST), the
meaning and the purpose remain unchanged.

• Include the Least Difference in Means.[43] This is another method recently
proposed with the focus on practical significance. With respect to the
PSP, this is a full Bayesian method and it is based on credible intervals.

• Use a sample size greater than 30. To enhance the reliability of statistical
comparisons, we set a minimum sample size of 30 for the simulated
experiments. This threshold is guided by the Central Limit Theorem,
which ensures that the sampling distribution of the mean approximates
normality as sample size increases. Additionally, larger sample sizes
reduce variability and make it easier to detect true effects, resulting
in more reliable outcomes. While 30 is not a strict rule, it provides a
practical heuristic. By focusing on experiments with adequate sample
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sizes, we reduce noise and obtain more robust evaluations of the statistical
methods.

In Table 4.2, we present the columns generated for each experiment.

Column Explanation
n Sample size.
true_pop_mean True population mean.
true_pop_std True population standard deviation.
observed_mean Observed sample mean.
observed_effect_size Observed effect size, calculated as the dif-

ference between the observed mean and
null hypothesis mean.

observed_std Observed sample standard deviation.
pst Practical significance threshold, defining

the minimum effect size considered practi-
cally meaningful.

power Statistical power of the test.
p_value p-value of the hypothesis test.
interval Confidence interval for the estimate, pre-

sented as a tuple of lower and upper
bounds.

PSP Probability of a substantial practical effect.
cohen_d Cohen’s d, an effect size measure calcu-

lated as (true population mean - null mean)
/ true population standard deviation.

full_knowledge_reject_null Boolean indicating whether the null hy-
pothesis is rejected based on true popula-
tion values compared to pst.

NHST_0.05 Boolean indicating rejection of the null
hypothesis under a significance level of α =
0.05.

NHST_0.005 Boolean indicating rejection of the null hy-
pothesis under a stricter significance level
of α = 0.005.
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Column Explanation
MESP_0.05 Boolean indicating rejection of the null hy-

pothesis when p-value ≤ 0.05 and absolute
observed effect size ≥ pst.

confidence_interval_test Boolean indicating whether the confidence
interval excludes the null hypothesis mean
± pst.

least_diff_in_means_test Boolean indicating if the least difference
in means is higher than the practical sig-
nificance threshold.

PSP_test_0.8 Boolean indicating whether the probability
of a substantial practical effect (PSP) is at
least 0.8.

Table 4.2: Description of columns generated for each experiment.

We used the same predefined ranges as those in the original paper, as reported
in Table 4.1, except for the sample size as explained above, and simulated
50,000 experiments with a minimum power threshold of 0.60. We chose a
PSPα = 0.8 that could represent a balanced value. In Section 4.2.5 we have
analyzed the behavior of the PSP method when using different levels of PSPα.

4.2.3 Exploratory Analysis of Simulations Parameters

In this section, we aim to examine the distributions of the parameters used
to simulate the experiments, checking for outliers or inconsistencies. In the
original paper’s simulation [18], the parameter distributions were flat, meaning
the values were uniformly distributed within the specified range. However, in
our study, as shown in the Image 4.2 below, we do not observe the same flat
behavior. This deviation is due to our minimum power threshold, which filters
out experiments with particularly high standard deviation and low effect size.
Consequently, the histograms of the true population mean and true population
standard deviation are not flat.

Similarly, in Image 4.3, we observe a lower number of experiments with low
absolute effect size.
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Figure 4.2: Parameter distributions in our study.

Figure 4.3: Distribution of other columns in the dataset.

The fourth image presents the kernel density estimate (KDE) plot for the
p-values and PSP distributions. The p-values are more clustered near zero,
while the PSP distribution is more spread out, showing concentration in the
two extremes: between 0 and 0.05 and between 0.95 and 1.0.
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4.2.4 Simulations Results Analysis

Once all the experiments were simulated, we conducted the statistical
tests and compared each decision to reject the null hypothesis with the
full_knowledge_reject_null, which indicates whether the null hypothesis
should have been rejected. From this comparison, we calculated confusion
matrices for each method, as shown in Figure 4.4.

Below there is a summary table generated from the confusion matrices,
which also includes the false positive rate (FPR) and the F1-score (F1). These
are defined as follows:

FPR = FP ·100
TP+FP

precision = TP
TP+FP

, recall = TP
TP+FN

, F1 = 2·precision·recall
precision+recall

Figure 4.5: Summary Table generated from the confusion matrices.

From this analysis, we made the following observations:

• The NHST with an α level of 0.05 has shown a high tendency for false
positives (37%) and a correspondingly high false positive rate (47%). This
aligns with findings from the original study [10], as shown in Figure 4.1,
where it is evident that the NHST wrongly rejected the null hypothesis in
63% of cases for high-power experiments. Colquhoun [10] demonstrated
that using an alpha significance level of 0.05 in NHST does not ensure
that the Type I error rate (false positive rate) is close to 5%. Instead,
he found that the actual false positive rate can be substantially higher,
depending on factors such as the prior probability of the hypothesis being
true and the statistical power of the test. Specifically, Colquhoun showed
that with typical conditions, a p-value of 0.05 could correspond to a false
positive rate of at least 29%, and in some scenarios, it could be much
higher.
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Figure 4.4: Confusion matrices for each method.
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• Reducing the α level to 0.005 lowered the false positive percentage to 27%,
but this value remains considerably higher compared to other methods.
The false positive rate (45%) is still similar to the traditional NHST with
an α of 0.05.

• The interval-based method achieved the lowest false positive percentage
(0.03%), but had the highest false negative percentage (≈25%). While
this method is highly accurate when rejecting the null hypothesis, it
often fails to detect an effect when one exists, limiting its practical utility.
The interval-based test and the Least Difference in Means test have very
similar values as they are highly correlated (see Figure 4.6).

• The MESP and the PSP achieved the best F1-scores, both around 81%.
While the MESP method performed better in terms of false negative
(10.7% vs 14% for PSP), the PSP had a better FPR (6.6% versus 17.4%
for MESP). Based on these results, we conclude that the PSP method is
more reliable and robust against false positives.

It is important to remember that the MESP is a hybrid approach that
incorporates P-value, making it focused on determining statistical significance
by answering a binary yes-or-no question. In contrast, the PSP provides
a probability, avoiding the need for a dichotomous decision on statistical
significance. Despite their different objectives, the two methods often produced
similar results in this study, as illustrated by the correlation data in Figure 4.6.

Finally, in Table 4.3, we list the most common "decision patterns". The
key observations are:

• The second row shows that in more than 20% of experiments, the NHST
(with an α level of either 0.05 or 0.005) incorrectly rejected the null
hypothesis, falsely indicating statistical significance. Additionally, the
fourth row reveals that in 8.5% more experiments, the NHST with a α
level of 0.05 made the same mistake.

• The fifth row shows that in 7.3% of experiments, the interval-based
methods failed to reject the null hypothesis. This supports the idea that
these methods tend to be more conservative compared to the others.

• The sixth row shows that in 5.2% of experiments, all the methods incor-
rectly accepted the alternative hypothesis.

• Row 14 shows that for 1.2% of experiments, PSP was the only method
that correctly rejected the null hypothesis.
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Figure 4.6: Correlation between statistical methods.
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Full
Knowledge
Reject NH

Reject NH DON’T Reject NH Count

1 True

full_knowledge_reject_null
NHST_0.05
NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

10895
(21.8%)

2 False NHST_0.05
NHST_0.005

full_knowledge_reject_null
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

10324
(20.6%)

3 False

full_knowledge_reject_null
NHST_0.05
NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

6255
(12.5%)

4 False NHST_0.05

full_knowledge_reject_null
NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

4241
(8.5%)

5 True
full_knowledge_reject_null

NHST_0.05
NHST_0.005
MESP_0.05

PSP_test_0.8

confidence_interval_test
least_diff_in_means_test

3656
(7.3%)

6 True full_knowledge_reject_null

NHST_0.05
NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

2603
(5.2%)

7 False
NHST_0.05
NHST_0.005
MESP_0.05

full_knowledge_reject_null
confidence_interval_test

least_diff_in_means_test
PSP_test_0.8

2069
(4.1%)

8 True
full_knowledge_reject_null

NHST_0.05
MESP_0.05

PSP_test_0.8

NHST_0.005
confidence_interval_test

least_diff_in_means_test

2061
(4.1%)
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Full
Knowledge
Reject NH

Reject NH DON’T Reject NH Count

9 True
full_knowledge_reject_null

NHST_0.05
NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

1283
(2.6%)

10 True
full_knowledge_reject_null

NHST_0.05
MESP_0.05

NHST_0.005
confidence_interval_test

least_diff_in_means_test
PSP_test_0.8

1184
(2.4%)

11 False
NHST_0.05
NHST_0.005
MESP_0.05

PSP_test_0.8

full_knowledge_reject_null
confidence_interval_test

least_diff_in_means_test

1095
(2.2%)

12 True
full_knowledge_reject_null

confidence_interval_test
least_diff_in_means_test

NHST_0.05
NHST_0.005
MESP_0.05

PSP_test_0.8

1065
(2.1%)

13 False NHST_0.05
MESP_0.05

full_knowledge_reject_null
NHST_0.005

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

811
(1.6%)

14 True full_knowledge_reject_null
PSP_test_0.8

NHST_0.05
NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

579
(1.2%)

15 True
full_knowledge_reject_null

NHST_0.05
NHST_0.005

MESP_0.05
confidence_interval_test

least_diff_in_means_test
PSP_test_0.8

520
(1.0%)

16 True

full_knowledge_reject_null
NHST_0.05
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

NHST_0.005 415
(0.8%)

17 True full_knowledge_reject_null
NHST_0.05

NHST_0.005
MESP_0.05

confidence_interval_test
least_diff_in_means_test

PSP_test_0.8

387
(0.8%)

Table 4.3: Results of hypothesis testing scenarios.
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4.2.5 Understanding PSPα Threshold Behavior

In our empirical analysis, we used a PSPα of 0.8 as the threshold for re-
jecting the null hypothesis. We then compared the PSP test performance with
the other statistical tests. In this section, we explore how varying the PSPα

from 0.5 to 0.99 affects the results, and we measure how each PSP test with a
different threshold is correlated with the other tests.

Figure 4.7 shows the confusion matrices for different PSPα values. As expected,
increasing PSPα lowers both the false positive rate and the true positive rate.
A threshold between 0.75 and 0.8 seems like a balanced choice, while a PSPα

higher than 0.9 makes the test more conservative, producing confusion matrices
similar to those of the interval-based methods.
We can see that in Figure 4.8, where the correlation between each PSPα test
and each other statistical test is calculated. For PSPα > 0.9, the correlation
with the confidence_interval_test and the least_diff_in_means_test
increases (ranging from 0.83 to 0.91).
On the other hand, PSP has the highest correlation with the full knowledge
method for low PSPα, but this comes at the cost of a higher false discovery
rate (around 16%).
The PSP test with low PSPα is also highly correlated with the MESP test.
This is probably because both methods rely on comparing the observed effect
size with the practical significance threshold.

Figure 4.8: Correlation between each PSPα test and the other statistical
methods.
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Figure 4.7: Confusion matrices for each PSPα.





Chapter 5

Code

All the code used in this project is stored in a public GitHub repository1,
where the main scripts for the simulations, data analysis, and plotting can
be found. The repository contains separate functions for computing p-values,
confidence intervals, and other metrics.

In Listing 1 on the next page, the PSP function implementation is shown,
which follows a structure similar to scipy.stats functions. This design choice
helps keep the interface user-friendly and consistent with the SciPy library,
which is one of the most commonly used to compute the P-value.

This snippet illustrates how the PSP function calculates a probability value
(from 0 to 1) representing how much the observed effect surpasses a chosen
practical significance threshold (pst). As in other SciPy implementations, the
user can specify the method for computing the standard error. Typically, if
the control and treatment groups share the same variance, the Student t-test
formula is used; otherwise, Welch’s approximation is applied. In some cases
(as in the psychology field), Welch’s method is often more robust and is only
slightly worse than the Student one when the variances are about equals [44].
Further details and additional code components are available online.

1https://github.com/Borgo99/empirical-analysis-supporting-PSP
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def PSP(control_sample, treatment_sample, pst, equal_var=True):
if len(control_sample) != len(treatment_sample):

raise ValueError("Control and treatment samples must have the
same length.")↪→

n = len(treatment_sample)
control_mean = np.mean(control_sample)
treatment_mean = np.mean(treatment_sample)
control_std = np.std(control_sample, ddof=1)
treatment_std = np.std(treatment_sample, ddof=1)
observed_effect_size = treatment_mean - control_mean

if equal_var:
# 1) Calculate pooled standard deviation:
sp = math.sqrt(

((n - 1) * control_std**2 + (n - 1) * treatment_std**2)
/ (2*n - 2)

)
# 2) Standard error of the difference:
stde = sp * math.sqrt(2.0 / n)

else:
# Welch's approximation for unequal variance:
stde = math.sqrt(

control_std**2 / n + treatment_std**2 / n
)

psp = 1 - stats.norm.cdf((abs(pst) - abs(observed_effect_size)) /
stde)↪→

return psp

Listing 1: PSP Function Code
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Conclusions and Future Works

6.1 Best Practices in Statistical Testing
In this thesis, we have explored many studies that discuss the benefits and

drawbacks of different statistical methods. Over the years, several authors have
questioned the use of the P-value and Null Hypothesis Significance Testing
(NHST) to decide what is called “statistical significance.” The American Statis-
tical Association, along with the 800 authors of the paper “Retire Statistical
Significance” [15], has strongly advised people not to use this term. One main
reason is that the null hypothesis, which states that an effect is exactly zero, is
often not realistic, so rejecting it is not particularly meaningful [21][28].

Researchers have proposed many possible replacements for NHST, includ-
ing equivalence tests and new Bayesian techniques, but none of these methods
has completely taken its place. At the start of this thesis, we mentioned Cohen,
and now we wish to recall his statement from 1994 [20], which now sounds
almost as a theorem:

"Don’t look for a magic alternative to NHST, some other objective
mechanical ritual to replace it. It doesn’t exist."

In other words, there is no single method that will always work best. The
strongest approach is to use and compare several methods, so that we can
benefit from the strengths of each one.

It is also important to note that "P-values behave exactly as they should"
[16]. The main issue lies in their misinterpretation [1]. The P-value, defined
as p(data | θ), does not actually tell us p(θ | data), which is what researchers
often want to know [21]. In many cases, P-values have been used to answer
the wrong question, and this misuse comes from bad practices, not from the

45
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concept of the P-value itself.

When reporting results, some authors suggest that P-value should be treated
as a continuous measures [33]. Others recommend using the S-value [16][13].
Even if researchers choose to report the P-value, they should do it with caution.
Very small P-values (for example, p < 0.001 [10]) could be more meaningful
compared to a p-value of 0.05 that has an high false discovery rate[9], but even
a very small P-value only shows that the observed data do not align well with
the assumed model. It does not reveal which specific assumption is incorrect.
A small or large P-value may come from an incorrect hypothesis, violations in
the study protocol, or selective reporting of findings [1].

A statistic is an estimate of an unknown population parameter, derived from
a random subsample of that population. If data were available for the en-
tire population, there would be no uncertainty in sampling. To assess model
uncertainty, it is important first to identify what assumptions go into the
model. These include formal requirements of the statistical model as well
as choices made by the researcher, such as the selection of samples. Second,
researchers should check how valid these assumptions are. Third, they should
analyze how key results change when the model is altered in different ways [37].
According to “Moving to a world beyond p < 0.05” [26], researchers should
"Accept uncertainty. Be thoughtful, open, and modest.". This viewpoint is
also emphasized in the paper "Retire Statistical Significance", where the 800
authors advise to embrace uncertainty, for example by renaming confidence
intervals as "compatibility intervals". This renaming helps remind us to avoid
overconfidence. They also recommend describing the practical implications of
any values within these intervals.

These findings are also important for AI and ML contexts, where compar-
ing different models’ performance and evaluating their practical implications
is a key aspect. In ML, large datasets can lead to low p-values, which might
overestimate the differences between models. Relying only on p-values and con-
fidence intervals may not provide a full picture. Therefore, a statistical section
should include other measures that consider also the practical implications.

A complete and robust statistical section should address several key ideas:

• Effect sizes can offer important information about the magnitude and
practical importance of a finding [36]. Even when using precise P-value,
it is crucial to interpret them alongside confidence intervals and effect
sizes [1].
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• Confidence intervals generally give a more direct insight into the size of an
effect because they reflect both the estimate and its associated uncertainty
[45]. Nevertheless, neither confidence intervals nor significance tests alone
can confirm with absolute certainty whether an effect truly exists or
not [1]. Therefore, we should also pay attention to confidence interval
misinterpretations.

• Bayesian methods incorporate prior information directly into the model,
making them useful for more refined analyses [1]. However, a full Bayesian
analysis might be too complex to replace P-value as a standard practice
in many fields. It may be more practical in studies where professional
statisticians can guide the process [39].

• An increasingly popular way to present results is through estimation
plots, which place the focus on effect sizes and their confidence intervals.
By explicitly showing the uncertainty and the difference between groups,
these plots help researchers and readers make more informed decisions
[34].

• Practical significance addresses whether a result is meaningful in real-
world settings [21]. Including a method that accounts for a minimum
practically meaningful effect size can quickly highlight the actual impact
of a study’s findings. Our proposed Practical Significance Probability
method can be effectively used for this purpose.

6.2 Conclusions on PSP
In this study, we have introduced the Practical Significance Probability

(PSP) as a complementary approach that shifts attention from purely statistical
significance to practical importance. PSP gives an intuitive probability that
the true effect surpasses a chosen practical threshold, making it easier to judge
the real-world relevance of a result.
Our empirical analysis and simulation study highlight several benefits of PSP.
By setting a threshold (PSPα) of 0.8 to reject the null hypothesis, we achieved
an F1-score of about 81% and kept the false positive rate around 6.6%. This
performance compares well to other methods, suggesting that PSP is less prone
to overstating evidence than traditional NHST.
However, PSP should not be treated as another "reject-or-accept" test beyond
this specific evaluation. We agree with the idea of moving away from strictly
binary conclusions. The PSP is an easily understood probability measure
that should be used alongside other methods, as recommended in the previous
section.
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6.3 Future Work
The extensive application of PSP across various fields could help determine

its generalizability. Comparative studies using real-world datasets can help
understand how PSP behaves in different contexts, identify domain-specific
considerations, and inspire further innovations in statistical methodology. In
ML, future research might focus on integrating PSP into model selection and
validation workflows, providing a more nuanced evaluation of performance
differences that matter in practice.
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