LLMs and Essence: Developing a Chatbot to Support Software Engineering Practices

Nicoletti, Sonia (2024) LLMs and Essence: Developing a Chatbot to Support Software Engineering Practices. [Laurea magistrale], Università di Bologna, Corso di Studio in Informatica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB)

Abstract

Recent advancements in natural language processing (NLP) have led to the development of various applications in a wide range of domains. In the field of software engineering, NLP research has extensively focused on areas like code generation while overlooking other aspects such as project management and best practice recommendations. This thesis aims to fill this gap by investigating the integration of Essence, a standard and thinking framework designed to support the management of software engineering practices, and large language models (LLMs), one of the latest NLP techniques. To achieve this, a specialised chatbot was developed as a complementary tool to assist students and professionals in learning about Essence and improving their software engineering processes. The chatbot utilises a retrieval-augmented generation system to retrieve relevant context from a curated knowledge base, augmenting the users’ queries to generate more accurate and context-aware responses. Various optimisation strategies were implemented to enhance the system’s performance, which was evaluated using metrics assessing both the relevance of retrieved context and the quality of generated responses. Comparative analysis with a general-purpose LLM demonstrated that the proposed system consistently outperforms its counterpart in domain-specific tasks. Although further testing with real users is required to fully understand the application’s potential, this work establishes a foundation for future research into improving the learning and adoption of software engineering practices.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Nicoletti, Sonia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
large language models,artificial intelligence,software engineering,chatbot,essence,software engineering practices,rag
Data di discussione della Tesi
19 Dicembre 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^