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“La lutte elle-même vers les sommets

suffit à remplir un cœur d’homme.

Il faut imaginer Sisyphe heureux.”

Albert Camus



Sommario

Essence è uno standard progettato per descrivere le metodologie e le pratiche di

sviluppo del software. Fornisce un linguaggio comune e strumenti concettuali che

aiutano i team a organizzare il lavoro, comunicare efficacemente e adeguare le

metodologie alle proprie esigenze, promuovendo una gestione più collaborativa e

consapevole dei progetti software.

Questa tesi esplora l’integrazione dell’intelligenza artificiale, in particolare dei Large

Language Model (LLM), con Essence. L’obiettivo principale è quello di sviluppare

un chatbot supportato da un sistema di Retrieval-Augmented Generation (RAG)

per assistere studenti e professionisti nell’apprendimento di Essence e nella sua ap-

plicazione pratica.

Dopo una panoramica sull’architettura degli LLM e sullo standard Essence, la tesi

descrive la progettazione e l’implementazione del chatbot, delineando le motivazioni

dietro alle diverse scelte progettuali e le strategie utilizzate per la sua ottimizzazione.

In particolare, l’applicazione utilizza il modello Llama 3 insieme a un sistema RAG

basato su un ensemble retriever. Un database di documenti selezionati relativi a

Essence è stato utilizzato per eseguire ricerche per parole chiave e vettoriali, al fine

di fornire un contesto più approfondito alle domande degli utenti.

Successivamente, per valutare l’efficacia del sistema, è stata condotta una serie di

esperimenti che hanno esaminato sia la pertinenza dei contesti recuperati che la

qualità delle risposte generate. L’analisi comparativa con un modello generico senza

RAG ha dimostrato che il sistema proposto offre prestazioni superiori rispetto alla
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sua controparte. La valutazione è stata condotta utilizzando un approccio duplice:

da un lato, mediante metriche oggettive come il BERTScore, e dall’altro, attraverso

un’analisi qualitativa basata su valutazioni umane.

I risultati di questa ricerca contribuiscono a evidenziare il potenziale degli LLM nel

supportare l’apprendimento e la gestione delle pratiche di ingegneria del software.

Sebbene siano necessari ulteriori test con utenti reali per perfezionare l’applicazione

e comprenderne appieno le potenzialità, questa tesi pone le basi per future ricerche

all’intersezione tra intelligenza artificiale e gestione dei progetti software, un’area

che al momento rimane poco esplorata.
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Introduction

This thesis explores the intersection between the fields of artificial intelligence and

software engineering. Large language models, one of the latest advances in nat-

ural language processing, and Essence, a standard for the description of software

engineering practices, will be the main topics.

Nowadays, large language models have become one of the most discussed topics not

only in computer science research, but also in everyday conversations. With unsub-

stantiated claims and unreasonable expectations dominating the public discourse,

it is becoming increasingly hard to distinguish what these models can and cannot

do. It is therefore of utmost importance, now that this technology has the attention

and resources it needs to be studied, to find its most suitable use cases.

At the same time, software systems are becoming more and more complex, with

some applications reaching millions if not billions of lines of code and tech companies

hiring thousands of employees. To manage these software projects, whether large

or small, teams need to have an adequate set of practices that they can rely on

to organise their work. To help handle these practices, Essence comes into play,

creating a common ground for teams to communicate effectively.

The objective of this thesis is to find a way to make use of the new advancements in

natural language processing, including large language models, but also information

retrieval systems, to promote the adoption of the Essence standard across industry

and academia. In particular, it aims to answer these two research questions:

1



2 Introduction

RQ1: How can a system that leverages large language models integrate and retrieve

domain knowledge about Essence?

RQ2: How effective is this new system in providing information related to Essence?

In particular, how does it compare to other general-purpose systems?

To address these questions, I developed a chatbot designed to provide answers about

the Essence standard. This application is capable of retrieving relevant information

from selected documents and generating responses based on the given prompt and

context.

The thesis starts by explaining the architecture of large language models (LLMs)

and their optimisation techniques in Chapter 1. Chapter 2 focuses on the Essence

standard, its components, and its applications. Chapter 3 reviews existing literature

on LLMs in software engineering, identifying research gaps. Chapter 4 outlines the

methodology, including the chatbot’s design and implementation phases. Chapter

5 presents experimental results, while Chapter 6 discusses the findings, limitations,

and future research directions.



Chapter 1

Large Language Models

This chapter aims to outline and briefly explain some key concepts that are necessary

for a full understanding of the following sections of this thesis. It will provide

an overview of large language models, explaining their role in natural language

processing, their functionality and how they can be optimised.

1.1 Definition of Language Model

A language model is a computational framework designed to understand, generate,

and predict sequences of text. At its core, a language model assigns probabilities

to sequences of words, determining the likelihood of a given sequence appearing in

a language. This predictive capability allows language models to perform a range

of tasks in natural language processing (NLP), from sentence completion and text

generation to translation and summarisation [1].

Figure 1.1 highlights four major stages in language models development: statistical

models (e.g., n-grams), neural models (e.g., RNNs, LSTMs), contextualised embed-

dings (e.g., BERT, ELMo), and large-scale pretrained models (e.g., GPT-4). In this

3



4 Large Language Models

thesis, we focus solely on large language models (LLMs).

Figure 1.1: Types of language modeling (source: [2]).

Large language models are an advanced class of these systems, characterised by their

scale in terms of parameters and training data. By leveraging more sophisticated

architectures, such as transformers, and vast datasets, LLMs have shown remarkable

potential in understanding and generating text that is increasingly similar to human

language. They are revolutionising fields like conversational AI, machine translation,

and content creation by enabling machines to process and interpret language with

human-level nuance. [3]
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1.2 How Large Language Models work

This section of the chapter aims to give a general overview of the key components

of large language models and their functionality. The literature presents a variety of

approaches to the separation of the system components. For the sake of clarity, I’m

following the separation suggested by Minaee et al. [4], which is also summarised in

Figure 1.2.

1.2.1 Data Cleaning

The training process of large language models begins with extensive data collec-

tion. Since LLMs rely on processing textual input as numerical representations,

acquiring diverse and high-quality data is critical. This data can be in a variety of

formats, such as books, websites, articles, code repositories, and multimodal con-

tent like images and audio. The goal is to provide the model with a comprehensive

understanding of human language and other domains.

Before being fed into the model, the data is subjected to a meticulous preprocessing

phase to enhance its quality and usability. This process includes noise removal (e.g.,

filtering out irrelevant or incorrect data), quality filtering (to retain only meaningful

information), deduplication (to eliminate repetitive content), and privacy reduction

(to remove sensitive or personally identifiable information) [2].

1.2.2 Tokenization

Tokenization is the process of breaking down input text into smaller units, typically

words, subwords, or characters, that the model can process. Subword tokenization

methods such as Byte Pair Encoding (BPE) and WordPiece are commonly used

in LLMs to balance vocabulary size and representational efficiency. These meth-

ods split rare or unknown words into subword units, allowing the model to handle
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Figure 1.2: Different components of LLMs (source: [4]).
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different languages and domains [5].

For example, the word “unbelievable” might be tokenized into [“un”, “believe”,

“able”], allowing the model to leverage its knowledge of common subwords like

“believe” and “able”.

Figure 1.3 depicts the steps involved in the data cleaning and tokenization processes

that we have discussed so far.

Figure 1.3: The illustration of a data processing pipeline for pre-training LLMs

(source: [2]).

1.2.3 Embedding and Positional Encoding

Once tokenized, the text is converted into numerical vectors through a process called

embedding. Embedding maps discrete tokens into continuous vector spaces, captur-

ing semantic relationships between words. Words with similar meanings are repre-

sented by vectors that are close together in the embedding space [6].

Embeddings are typically initialised with pre-trained weights, such as Word2Vec or

GloVe, and further fine-tuned during the training of the transformer model. This
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process ensures that the model develops a nuanced understanding of the relationships

between words in context [3].

Transformers process sequences in parallel, but this parallelism introduces a chal-

lenge: the model lacks inherent knowledge of the order of tokens. Positional encoding

addresses this by adding position-specific information to the embeddings, allowing

the model to understand the relative positions of tokens in a sequence [3].

Positional encodings are often implemented using sinusoidal functions that generate

unique values for each position. These values are added to the token embeddings

before being fed into the transformer so that the models can differentiate between

phrases like “The cat chased the mouse” and “The mouse chased the cat” [7].

1.2.4 Variants of Transformer Model Architectures

LLMs can be categorised into three primary structures, each tailored for specific

tasks [8]:

• Encoder-Only Models

Encoder-only models, such as BERT (Bidirectional Encoder Representations

from Transformers), focus on understanding input text by generating a rich,

contextualised representation of each token. These models are bidirectional,

meaning they analyse context from both preceding and succeeding tokens,

making them ideal for tasks like text classification, sentiment analysis, and

question answering.

• Decoder-Only Models

Decoder-only models, exemplified by GPT (Generative Pre-trained Trans-

former) and Llama (Large Language Model Meta AI), specialise in text gen-

eration. They process input text auto-regressively, predicting the next token

based on previously generated tokens. This unidirectional approach is well-

suited for tasks like language generation, code synthesis, and conversational AI.
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• Encoder-Decoder Models

Encoder-decoder models, such as T5 (Text-to-Text Transfer Transformer),

combine the strengths of both encoders and decoders. The encoder processes

the input to create a contextual representation, which the decoder then uses

to generate an output. These models are particularly effective for tasks like

machine translation, summarisation, and question answering.

1.2.5 Model Pre-training

Pre-training is the core stage where the LLM learns the foundational patterns

and relationships within the data. This process leverages a self-supervised learn-

ing paradigm, meaning that the model trains itself without labelled data [3]. We

could say that it plays a “guess the next word” game, known as language modelling,

predicting subsequent tokens in a sequence based on preceding ones.

The underlying architecture for this task is typically a transformer, which employs

mechanisms like self-attention to determine the importance of different input tokens

relative to each other. Key components such as positional encoding, layer normaliza-

tion, and activation functions further refine the model’s ability to handle sequential

data [9].

The training process involves stochastic gradient descent and back-propagation to

optimise the model’s parameters. When the model predicts a token incorrectly, back-

propagation adjusts its internal parameters to reduce future errors. This iterative

adjustment allows the model to become proficient at predicting patterns in the data,

capturing both syntax and semantics [10].

The next step after pre-training is alignment, a phase where the model is fine-tuned

to align its behaviour with human values and task-specific requirements. This can

be achieved, for example, through supervised learning, where the model is trained

on curated examples of correct responses, or through reinforcement learning with

human feedback (RLHF). In RLHF, human evaluators rank model outputs, and
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these rankings are used to train the model to produce higher-quality responses [11].

As the LLM processes more data during pre-training, it begins to discern higher-level

patterns and concepts, enabling it to perform increasingly complex tasks.

1.2.6 Decoding Strategies

The ability of LLMs to generate coherent and contextually appropriate text relies on

their advanced inference mechanisms. During inference, the model processes input

tokens and predicts the next most likely token, continuing iteratively until a stopping

criterion is reached. This process is powered by the attention mechanism, allowing

the model to dynamically focus on relevant parts of the input while processing all

tokens in parallel. The final output is determined through a softmax layer, which

transforms logits, the raw output values, into probabilities [12].

To improve output quality, LLMs use decoding strategies like beam search, which

evaluates multiple candidate sequences for the most plausible result, and greedy

decoding, which prioritises high-probability tokens but may compromise coherence.

The context window size also influences performance by determining how much

preceding text the model considers during generation [13].

Techniques such as temperature, top-k sampling, and nucleus sampling offer control

over the style and randomness of outputs. Temperature adjusts the variability of

token selection, while top-k sampling limits choices to the most probable tokens, and

nucleus sampling dynamically selects from tokens meeting a cumulative probability

threshold [4].

Figure 1.4 illustrates the original transformer model structure introduced by Vaswani

et al. in 2017 [14]. Models like GPT utilise the transformer decoder architecture,

depicted on the right side of Figure 1.4. In these models, the decoder operates

independently without an encoder, leading to the removal of Multi-Head Attention

and Layer Norm components that connect to the encoder. Unlike GPT, which adopts
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the transformer decoder structure, models such as BERT employ the transformer

encoder architecture, represented on the left side of Figure 1.4.

Figure 1.4: Transformer model structure with N encoder blocks (on the left) and N

decoder blocks (on the right) (source: [15]).
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1.3 Model’s Performance Optimisation

There are several advanced techniques for optimising large language models. Fine-

tuning enhances model performance by retraining pre-trained models on specialised

datasets. Retrieval-Augmented Generation (RAG) combines knowledge retrieval

and generation for more accurate outputs. Prompt engineering focuses on writing

effective inputs to guide model behaviour, improving performance across various

tasks.

Gao et al. [16] created this graph (Fig. 1.5) to compare model optimisation meth-

ods based on two factors: “External Knowledge Required” and “Model Adaptation

Required”. Prompt Engineering demands minimal changes to the model and exter-

nal knowledge, leveraging the inherent capabilities of LLMs. Fine-tuning, however,

involves additional model training. In the early phase of RAG (Naive RAG), model

modifications are minimal, but as research advances, Modular RAG has become

more integrated with fine-tuning techniques.

Figure 1.5: Comparison of model optimisation methods in the aspects of “External

Knowledge Required” and “Model Adaption Required” (source: [16]).
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1.3.1 Fine-tuning

Fine-tuning is a critical step in enhancing the performance of large language models

by tailoring their capabilities to specific domains or tasks. It involves retraining a

pre-trained model on a specialised dataset, starting from the weights learned during

pre-training.

Fine-tuning can be categorised into:

1. Full Fine-Tuning: The entire model, including all its parameters, is up-

dated using a labelled dataset. This method is computationally expensive and

requires significant resources but results in a highly specialised model [3].

2. Parameter-Efficient Fine-Tuning: Techniques like LoRA (Low-Rank Adap-

tation) and adapters allow only a subset of the model’s parameters to be

updated, significantly reducing resource requirements while maintaining per-

formance [17].

Moreover, there are more specialised approaches tailored to specific tasks, such as

Instruction Tuning. In this approach, the model is fine-tuned using instruction-

based data, where input-output pairs are designed to teach the model how to follow

commands and complete specific tasks effectively [18].

The fine-tuning process often includes supervised learning to optimise performance

for tasks like sentiment analysis, summarisation, or domain-specific text generation.

The quality and size of the labelled dataset play a crucial role in determining the

success of fine-tuning.

1.3.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation integrates external knowledge retrieval with the

text generation capabilities of LLMs, improving their performance and applicability.
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This approach is particularly effective in scenarios where the model’s pre-trained

knowledge is outdated or insufficient for a specific query [16].

The RAG process involves two main components:

1. Knowledge Retrieval: When given an input, the system retrieves relevant

documents or information from an external database or corpus. This step

ensures that the model has access to up-to-date or domain-specific knowledge

beyond its pre-training.

2. Contextual Generation: The retrieved information is provided as additional

input to the LLM, guiding its generation process. This allows the model to

produce contextually accurate and relevant outputs while reducing hallucina-

tions (instances where the model generates incorrect or fabricated information)

[19].

These steps can be seen in this diagram from Gao et al. [16] (Fig. 1.6).

RAG systems are often implemented using vector stores to store and retrieve em-

beddings of textual data efficiently. By combining retrieval with generation, RAG

systems can connect the static knowledge in pre-trained models with dynamic, real-

world information.
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Figure 1.6: Representative instance of the RAG process applied to question answer-

ing (source: [16]).

1.3.3 Prompt Engineering

Prompt engineering is the art of crafting effective input prompts to guide an LLM’s

output. Since LLMs generate responses based on the context provided in the prompt,

the quality and structure of the prompt significantly influence the results. Prompt

engineering is a lightweight and cost-effective method to optimise a model’s perfor-

mance without requiring additional training or fine-tuning.

Naveed et al. [3] present different strategies in prompt engineering, including:

1. Zero-shot Prompting: In this approach, the prompt directly asks the model

to perform a task without providing examples. For instance, “Summarise the

following article:” relies on the model’s inherent capabilities to understand and
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execute the task.

2. Few-shot Prompting: The prompt includes a few examples of the desired

input-output pairs before presenting the actual task. This helps the model

infer the task’s requirements from the examples.

3. Chain-of-Thought Prompting: For complex reasoning tasks, the prompt

can include intermediate reasoning steps, guiding the model to break down the

problem into smaller components. This approach improves logical consistency

and accuracy in outputs.



Chapter 2

Essence

Similarly to the previous chapter, this chapter provides background information to

support the understanding of this thesis. It introduces the Essence standard, de-

tailing its kernel, language, and applications in both industry and academia. Unless

otherwise stated, all information in this chapter is sourced from the book “The

Essentials of Modern Software Engineering: Free the Practices from the Method

Prisons!” [20].

2.1 Definition and purpose of the Essence standard

The Essence standard, developed by a community of software engineering experts

called SEMAT and maintained by the Object Management Group (OMG), is a

framework for improving software engineering practices by offering a common ground

for software development.

It addresses the complexities of modern software development by enabling teams to

define, adapt, and combine practices effectively. By promoting a shared language

and kernel, Essence simplifies communication across teams, supports flexibility in

17
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methods, and encourages continuous improvement in software engineering.

2.2 Essence Language

At its foundation, Essence consists of two integral components: the Essence Kernel

and the Essence Language.

Figure 2.1: Essence and its parts (source: [20]).

The Essence Language is a tool for expressing practices in a simple and visual man-

ner. This language enables practitioners to create modular, reusable practices that

can integrate seamlessly into different workflows. The kernel and language together

empower teams to assess project progress and identify areas for improvement while

maintaining flexibility in their chosen practices.

2.2.1 Key Elements of the Language

The Essence Language provides a structured framework to describe practices, re-

peatable approaches aimed at achieving specific purposes, and methods, combination

of practices.

The key elements of the Essence Language include:
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1. Alphas: Alphas are critical elements representing progress in a software en-

deavour. For instance, a “Team” achieving a “Performing” state or a “User

Story” progressing to “Done”. Alphas ensure focus remains on outcomes

rather than secondary concerns like documentation. They move through Al-

pha States, which are milestones defined by Checklist Items, actionable tasks

to evaluate progress.

2. Work Products: Work Products are tangible artifacts, such as a Kanban

board or a user story card. They have defined Levels of Detail, which describe

the depth and breadth of the information captured.

3. Competencies: Competencies define the skills and capabilities necessary for

a role, such as Development, Leadership, or Testing. Each competency in-

cludes multiple Competency Levels, from assisting (Level 1) to innovating

(Level 5).

4. Activities: Activities are actions undertaken to achieve specific outcomes,

like refining a backlog or conducting a daily stand-up. Each activity outlines

the expected outcomes, required competencies, and guidance for successful

execution.

5. Patterns: Patterns offer flexible guidance and reusable solutions. Examples

include milestones defined by Alpha States, techniques like Brainstorming or

roles such as Scrum Master.

6. Resources: Practices reference supporting materials, allowing practitioners

to access detailed guidance or supplementary information.

Each of these components interconnects to “tell the story” of how the practice

achieves valuable outcomes.
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2.3 Essence Kernel

The Essence Kernel is the foundation layer of the standard. It contains core elements

that are essential to any software development project. These elements include

Alphas, Activity Spaces and Competencies, which are discussed in more detail in

the following sections of this chapter.

2.3.1 Areas of Concern

The Kernel is organised into three Areas of Concern, the main categories to which

each element in a practice belongs or is related:

• Customer: Addresses customer needs, including identifying opportunities

and engaging with stakeholders.

• Solution: Focuses on defining and delivering a solution, including require-

ments and the software system itself.

• Endeavour: Covers the team, their activities, and their way of working.

Each area contains Kernel Alphas, which represent core concepts, such as “Stake-

holders” or “Team”, to monitor the endeavour’s health and progress.

2.3.2 Kernel Alphas

The Kernel Alphas in Essence are the core, universal elements of any software en-

deavour, representing the critical aspects that need to progress for success. These

include seven key Alphas organised into the three areas of concern. Each Alpha

moves through defined states, such as a “Requirement” transitioning from “Pro-

posed” to “Satisfied”, with associated checklist items to track progress.
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The Kernel Alphas include:

• Opportunity: Opportunity is the shared understanding of stakeholders’ needs,

justifying and shaping requirements for developing or changing software sys-

tems.

• Stakeholders: Stakeholders are individuals or groups affecting or affected by

a software system, providing requirements, funding, and involvement to ensure

its success.

• Requirements: Requirements define what the software system must do to

address the opportunity, satisfy stakeholders, and guide development and test-

ing.

• Software System: A software system integrates software, hardware, and

data to deliver value, often as part of broader business or social solutions.

• Work: Work encompasses all activities undertaken by the team to create

a software system that meets requirements and stakeholder opportunities,

guided by established practices.

• Team: A team is a group responsible for planning and executing tasks to

develop, maintain, deliver, or retire a software system.

• Way of Working: The way of working is the team’s evolving set of practices

and tools, continuously adapted to their mission and context.
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Figure 2.2: The Essence alphas and their relationships (source: [20]).

2.3.3 Kernel Activity Spaces

The Kernel Activity Spaces define the high-level tasks that must be addressed during

a software project, such as “Understand the Requirements” or “Build the System”.

These spaces act as placeholders for the activities within practices, offering a high-

level view of what needs to be done. They can be used independently to evaluate

existing workflows or integrated with practices to clarify the scope and purpose of

specific activities. For instance, the activity “Conduct Daily Stand-Up” might align

with the “Coordinate Activity” Activity Space. By mapping activities to these

spaces, teams gain a comprehensive understanding of their progress and ensure they
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address all critical aspects of their work.

Figure 2.3: Essence activity spaces (source: [20]).

2.3.4 Kernel Competencies

The Kernel Competencies represent the skills, knowledge, and capabilities necessary

for successful software engineering endeavours. Essence defines six core competen-

cies that are essential across most teams. These competencies are described across

five levels, from basic support (Level 1: Assists) to advanced innovation (Level 5: In-

novates). Practices can build upon these core competencies, introducing specialised

ones as needed, such as “Coaching” or “Operations”. By focusing on competencies,

the Kernel helps teams identify the skills required for specific activities.



24 Essence

Figure 2.4: The kernel competencies (source: [20]).

2.4 Essentializing a Practice

Essentializing a practice means distilling it into its fundamental components, mak-

ing it easier to adopt, adapt, and combine with other practices. Practices like Scrum

or Kanban can be essentialized into their core activities, alphas, and work products.

While it is impractical to essentialize every existing software engineering practice,

since there are thousands of them, the shared language provided by Essence en-

ables teams to define and refine their practices collaboratively. This standardisation

reduces ambiguity and promotes better decision-making across diverse teams and

projects.
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Figure 2.5: Pair programming described using Essence language (source: [20]).

2.5 Essence Games

Essence games use the Essence Cards, physical or digital cards that can represent

any Essence element, to improve collaboration and decision-making within software

development teams. These games are designed to make abstract concepts tangible,

facilitating discussions about progress, health, and objectives in a structured yet

engaging way. Each game focuses on specific aspects of the software lifecycle, offering

teams a practical approach to improve their methods and outcomes.
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Figure 2.6: Example of Essence cards (source: [20]).

Examples of these games can be:

• Progress Poker: Progress Poker is a consensus-driven game where team

members independently evaluate the current state of a specific Alpha. By re-

vealing their assessments simultaneously, the team can discuss differing opin-

ions and reach a shared understanding of their progress.

• Chase the State: Chase the State is a retrospective activity that prompts

teams to evaluate their current position across all Alphas. By methodically

reviewing each state, this game encourages a broader perspective on software

development health, complementing traditional metrics like burn-down charts.

• Objective Go: Objective Go builds upon the insights from Chase the State,

helping teams set realistic goals. By identifying the next achievable states for

each Alpha, this game ensures that objectives remain balanced and aligned

with the team’s capabilities and time frames.
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Other games, like Checkpoint Construction, Lifecycle Layout, Milestone Mapping,

and Health Monitoring, use the Alpha State Cards to define checkpoints, visualise

lifecycles, plan milestones, and track project health. Together, these games provide

teams with a lightweight toolkit to improve collaboration and planning.

Figure 2.7: Objective Go (source: [20]).

2.6 Applications

The Essence framework offers significant benefits in both industry and academia,

allowing organisations and educational institutions to learn, adapt and integrate

practices.
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2.6.1 Industry

In the software industry, Essence facilitates the integration of various methodolo-

gies, allowing organisations to tailor their processes without being locked into a

single framework. It supports teams in combining elements from Agile, DevOps, or

traditional methodologies to create workflows that address their unique challenges.

Jana & Pal [21] highlight how Essence can be leveraged in large-scale software de-

velopment, noting its ability to mitigate risks through process health checks and

competency assessments, which help ensure alignment with project objectives and

agile principles. This approach not only enhances process agility but also supports

continuous improvement.

Raharjo et al. [22] further illustrate the practical application of Essence by propos-

ing a model that integrates popular Agile methods, customising practices to fit the

specific needs of an organisation. Their work, demonstrated in a national bank

in Indonesia, shows how Essence can provide the flexibility needed to adapt Ag-

ile methodologies to a diverse set of business contexts while maintaining process

coherence and efficiency.

2.6.2 Academia

Academia benefits from Essence by using it as a teaching tool for software engineer-

ing concepts. Its modular nature makes it an effective way to introduce students

to core principles like requirements analysis, team dynamics, and iterative devel-

opment. By emphasising essential elements, Essence encourages students to think

critically about software engineering practices and how to adapt them to real-world

problems.

Ciancarini & Missiroli [23] highlight how Essence can be applied to enhance the

teaching of Agile methodologies in software engineering courses. Integrating Essence

cards into the curriculum provides students with a structured framework to under-
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stand Agile principles, track their progress, and reflect on their learning. This

approach not only encourages collaboration, but also provides the flexibility to cus-

tomise practices, ultimately improving student engagement and performance.



Chapter 3

Literature Review

This chapter provides an overview of the existing literature on the applications of

large language models within the field of software engineering. At the beginning of

this project, only a limited number of articles were available for review. However,

as the study progressed, new research emerged on a monthly basis, with the lat-

est publications included up until October 2024. By synthesising current research,

this chapter aims to identify gaps in the literature and highlight potential research

directions.

3.1 Applications of LLMs in Software Engineering

The integration of large language models in Software Engineering (SE) has led to

a significant change in how software development is conducted. From automat-

ing mundane tasks to enhancing productivity and accuracy, LLMs are increasingly

becoming crucial tools in modern SE practices. This section explores the current

applications of LLMs in SE, drawing insights from the research articles by Hou et

al. [24] and Vassilka et al. [25].

30
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1. Code Generation: The most significant application of LLMs in software

development is code generation. Models like OpenAI’s Codex, based on the

GPT architecture, are capable of generating snippets of code based on natural

language prompts. This feature drastically reduces the time developers spend

writing code and facilitates rapid prototyping.

2. Specification Generation and Requirements Engineering: LLMs have

also found applications in the earlier stages of the software development life-

cycle. With their ability to process vast amounts of text and context, they

can assist in generating more complete and coherent specifications. Moreover,

LLMs can assist in understanding and refining user stories and functional

requirements, which are crucial for defining the scope of software projects,

especially in Agile methodologies [26].

3. Test Case Generation: Generating test cases, especially unit tests, is a

critical yet often neglected task in software development. Many developers

tend to bypass or shortcut the creation of comprehensive test cases, which

can lead to issues in system quality and maintenance. LLMs have shown

significant potential in automating the generation of test cases, from unit tests

to integration tests, ensuring better test coverage and quality.

4. Documentation: Keeping documentation up-to-date with changes in the

codebase can be time-consuming. LLMs can be to used to automatically gen-

erate or update documentation. They can also summarise complex codebases,

making them more accessible to new developers or contributors.

5. Collaboration and Communication: LLMs also aid in improving com-

munication within software engineering teams. They can assist in generating

summaries of meetings or technical discussions, helping team members who

may have missed certain conversations stay informed. Furthermore, LLMs

can help automate the creation of reports or status updates, streamlining

communication processes within teams or between stakeholders.
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3.2 Methodologies

The methodologies of the three studies discussed in this section illustrate different

approaches to the introduction of LLMs in software engineering.

The first study, conducted by Lin et al. [27], presents FlowGen, an agent-based

model for code generation that emulates software process models using LLMs. It

defines roles such as Requirement Engineer, Architect, Developer, and Tester, each

of which is responsible for a core software engineering activity. These roles are

then represented by LLM agents that interact with each other based on specific

software development models, including Waterfall, Test-Driven Development, and

Scrum. The study emphasises the iterative interaction between agents, allowing for

self-refinement, where the agents review and improve the artifacts they generate,

such as requirements, design documents, code, and tests. The methodology also

integrates testing throughout the process. The evaluation of FlowGen relies on the

use of GPT-3.5 to generate code, which is tested using established benchmarks like

HumanEval and MBPP. The results are measured with the Pass@1 metric, ensuring

that the generated code is both correct and practical.

In the second study, Khojah et al. [28] take a more observational approach to

understanding how software engineers interact with ChatGPT in their daily work.

Participants from 10 European organisations were involved in the study, where they

interacted with ChatGPT over five business days. The researchers collected 130

dialogues and categorised them into three types of interactions: Artifact Manip-

ulation, Training, and Expert Consultation. These categories helped to illustrate

how engineers used ChatGPT for various tasks, like generating code, consulting

on software engineering practices, and training. Quantitative analysis was used to

track usage patterns and volume, while qualitative analysis, including interpretative

phenomenological analysis, was employed to explore user experience and trust. The

study also included exit surveys to gain additional insights into how participants

perceived ChatGPT’s usefulness and effectiveness in supporting their work.
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The third study, conducted by Rasnayaka et al. [29], is set in an educational con-

text and it investigates the use of LLMs in a semester-long software engineering

project. Students in a course at the National University of Singapore were asked

to develop a Static Program Analyser for a custom language. The methodology in-

volved integrating LLMs as optional tools for code generation, allowing students to

annotate AI-generated code and track their modifications. An online survey, based

on the Unified Theory of Acceptance and Use of Technology (UTAUT), was used to

measure factors influencing the adoption of LLMs, such as performance expectancy,

effort expectancy, and social influence. The researchers also examined moderat-

ing factors like prior experience and coding proficiency. Automated extraction of

annotated code submissions, combined with sentiment analysis of survey responses,

provided insights into how students interacted with the AI tools and what influenced

their usage patterns. This empirical study helps to understand both the behavioural

and contextual factors that affect the effectiveness of LLMs in software engineering

education.

Together, these studies provide complementary perspectives on the use of LLMs in

software engineering. While the FlowGen study explores the potential for LLMs

to automate and refine the software development process, the second study offers a

closer look at how professionals interact with conversational AI tools in real-world

scenarios. Meanwhile, the third study provides insights into how LLMs are perceived

and adopted by students, shedding light on factors that influence their use in the

learning process.

3.3 Findings

The combined results of the three studies highlight the evolving role of LLMs in soft-

ware engineering, particularly in improving productivity, learning, and the quality

of generated code.

A significant finding from the studies is the notable improvement in code genera-
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tion accuracy when LLMs, specifically FlowGen, are applied in emulating software

process models. The FlowGen system demonstrated substantial improvements in

Pass@1 accuracy, particularly in the Scrum-based model, where it outperformed

traditional models like RawGPT. Additionally, the integration of testing, design,

and code review activities within FlowGen was found to have a significant positive

impact on the reliability and stability of generated code.

In contrast, the studies involving ChatGPT and other LLMs in real-world settings

show a mixed but generally positive impact. ChatGPT proved to be highly useful for

tasks such as artifact manipulation and expert consultation, with users frequently

relying on it for assistance in decision-making, solving problems, and generating

software artifacts. These uses reflect the versatile nature of LLMs, as they can handle

both routine tasks and more complex queries that require expert-like guidance.

The studies also reveal a strong preference among users for LLMs as tools for learn-

ing and decision-making. In the context of software engineering education, students

showed a tendency to use AI tools such as GitHub Copilot and ChatGPT for gen-

erating initial code structures. While there was a decrease in AI usage over time,

particularly after the first project milestone, students still appreciated the efficiency

that AI brought to the initial stages of their work. This mirrors findings from the

study of professionals, where ChatGPT’s usefulness was highlighted in automating

repetitive tasks and providing quick, reliable responses to technical questions.

Trust in the tools, while generally positive in most cases, varied depending on user

familiarity with the technology and the specific tasks at hand. Some users expressed

frustration with the AI’s occasional inaccuracies, particularly in situations where

high accuracy was crucial. However, trust was largely built through consistent use

and successful outcomes.

These studies collectively demonstrate that LLMs have a meaningful impact on

software engineering practices, improving code generation accuracy, productivity,

and learning experiences. Although, their effectiveness is influenced by factors such

as user trust, AI tool reliability, and the context in which they are applied.
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3.4 Research Gaps

Despite the promising results highlighted so far, several gaps remain in the current

body of research. One notable gap is the limited exploration of how LLMs can be

effectively integrated with established software engineering methods and practices.

There is a lack of research focusing specifically on how these models can be applied

to support the nuanced processes involved with software engineering methodologies.

The Essence standard remains largely unexplored in terms of its interaction with

LLMs.

Another gap lies in understanding the long-term effectiveness and adaptability of

LLMs in software engineering education. While studies have explored the use of AI

tools like ChatGPT in academic settings, the research has primarily focused on their

short-term utility in specific tasks like code generation or problem-solving. There is

a need for more comprehensive studies that investigate how LLMs can be integrated

into the broader curriculum of software engineering education.

Lastly, the role of trust, ethical considerations, and the potential impact of LLMs

on professional practices and educational standards remains insufficiently explored,

particularly in the context of their integration into regulated industries or educa-

tional institutions.

These gaps present significant opportunities for future research to guide the appli-

cation of LLMs in both software engineering practice and education.
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Methodology

This chapter explains how Essence Coach, the chatbot designed to support the

learning of software engineering practices, was created, from the early stages of the

design process to the final implementation.

4.1 Design

4.1.1 Initial Idea

The development of Essence Coach was inspired by the desire to encourage the use of

the Essence standard in software development and software engineering education.

The objective was to explore how a chatbot could improve the use cases of Essence,

which were highlighted in Chapter 2. Given that Essence has multiple use cases, the

chatbot could have served a wide range of purposes. However, for the scope of this

thesis, the focus was narrowed down to some specific use cases that would be most

suited for this kind of technology, such as providing general knowledge, summarising

information, and translating content.

36
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The initial concept was to create a chatbot specialised in answering questions related

to the Essence standard. This chatbot would function as a virtual assistant, sup-

porting anyone who wants to understand or apply the Essence framework. By using

the chatbot, users could improve the way they learn and apply software engineering

practices.

4.1.2 Target Audience

The chatbot is designed to serve a broad range of users, particularly those involved

in software engineering and process management. The primary target audience

includes:

• Software Engineering Students: The chatbot serves as an educational

tool, helping students in understanding the Essence framework and related

software engineering practices.

• Development Teams: New employees can use Essence Coach to familiarise

themselves with company-specific practices and methods. The chatbot can

help them quickly grasp the essential elements of the practices and its appli-

cation within the organisation.

• Methodologists and Managers: Professionals who wish to translate their

existing methods into the Essence language. This could be particularly useful

for methodologists looking to align or adapt their approaches to meet the

Essence standard, as well as managers overseeing the implementation of new

practices.

4.1.3 Use Cases

The primary goals of the chatbot are centred around helping users understand and

apply the Essence framework in various software engineering contexts. These goals
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are translated into the following main use cases:

1. Learning Support: The chatbot assists in the learning process of software

engineering by providing information on practices and methods and on the

Essence kernel and language. It serves as a guide for students and new em-

ployees looking to understand the fundamentals and applications of Essence.

2. Decision-Making Assistance: The chatbot assists teams in making in-

formed decisions about which methods and practices to adopt. Whether

starting from scratch, modifying existing practices, or scaling up processes,

the chatbot can provide guidance in selecting the most appropriate practices

and activities tailored to the needs of the team or organisation.

3. Translation of Practices: Methodologists and managers can use the chatbot

to translate written practices into the Essence language. The chatbot can help

define the Alphas, the Activities, and all the other elements needed to describe

the practice.

4.2 Implementation

4.2.1 Architecture

The main components of the system architecture are the LLM model, which gener-

ates the response to the user’s prompt, the RAG system, that retrieves contextual

information relevant to the question, and the user interface, which the user can

interact with.

The back-end provides an API endpoint for handling user queries. Upon receiv-

ing a question, the system uses the ensemble retriever module to retrieve relevant

context from markdown files stored in the database. This retriever combines an ad-

vanced keyword search and a vector search to find the most appropriate contextual
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information.

The processing pipeline starts with generating the augmented prompt by appending

the retrieved context to the user query. This prompt is sent to the Groq API,

where the chosen LLM, in this case Llama 3, processes the input based on the

system-defined prompt, which ensures the bot adheres to its purpose as an “Essence

coach”. The chatbot maintains a chat history, truncating it when token limits are

exceeded.

Finally, the response is returned to the user and its content, along with metadata

such as the context and model details, is stored in a database for future analysis.

Figure 4.1 depicts an overview of the system’s architecture.

Figure 4.1: Overview of the system’s architecture.

The following subsections explain how the various components work and the thought

process behind the design choices.
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Generation

To generate responses to user queries, the architecture leverages a pre-trained,

general-purpose large language model. The selected model is Llama-3.1-70b, a state-

of-the-art model trained on 70 billion parameters.

After testing different models and comparing their capabilities, Llama 3 was chosen

for the final implementation of the chatbot because of its superior contextual un-

derstanding, ability to generate coherent and domain-relevant responses, and robust

performance across different kinds of queries.

The LLM is accessed via the Groq API, which provides an efficient interface for us-

ing advanced language models without requiring significant computational resources

locally. The Groq API simplifies the integration of pre-trained LLMs into applica-

tions, handling tasks like tokenization, inference, and response generation. This

API was chosen for its reliability and ease of use. Moreover, Groq offers flexible pa-

rameter customisation, such as temperature settings and token limits, and system

prompts, allowing for a small fine-tuning of the model.

When customising the model parameters, I experimented with various combinations

of temperature settings, system prompts, and token limits to optimise performance.

Eventually, I chose a temperature of 0.7 to balance creative and practical responses.

The system prompt gave the chatbot its role of Essence expert, provided a brief

overview of the Essence standard and instructed the model to combine the retrieved

context with its own knowledge.

Despite its strengths, the Llama 3 model has certain limitations, primarily the

restricted context window imposed by the Groq API. This constraint limits the

amount of information the model can process simultaneously, necessitating strate-

gies to manage context effectively. To address this, I implemented a mechanism to

truncate older chat messages while maintaining the most relevant ones, ensuring the

chatbot remains within the token limit without losing important context.
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The decision to use a general-purpose pre-trained LLM instead of a fine-tuned model

was largely influenced by computational constraints. Fine-tuning requires significant

hardware resources and time, which were not feasible within the scope of the thesis.

Retrieval

The Llama 3 model is integrated with a RAG system that provides a reliable mech-

anism for contextual response generation [30]. When a user submits a query, the

RAG system first processes it to identify relevant context. This involves searching

the pre-processed database of documents for matches related to the query. The

retrieved context is then appended to the user’s query before being passed to the

LLM. This ensures that the model has access to relevant background information,

improving the quality of the generated response.

To ensure efficient retrieval, all documents were converted into markdown format

and manually reviewed for consistency. Using a text-splitting approach, I divided

the content at each header, to preserve logical units of information rather than re-

lying on arbitrary character limits. This semantic chunking method ensures that

each chunk represents a cohesive section of information, facilitating meaningful re-

trieval and improving the relevance of the context provided to the model. Figure 4.2

shows the process of converting the original documents, coming from various sources,

into a unified structure consisting of standardised chunks and their corresponding

embeddings.
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Figure 4.2: Data preprocessing, chunking and embedding.

Determining the optimal chunk size required some experimentation. Smaller chunks

improve granularity and retrieval precision but risk fragmenting context, while larger

chunks preserve context but may dilute relevance [31]. By balancing these factors,

I identified an optimal chunk size that preserves logical units while maintaining

sufficient granularity, resulting in a total of 461 chunks from 22 different documents.

The RAG system employs an ensemble retriever that uses both vector-based and

keyword-based search methods. The ensemble retriever combines the strengths of

both search methods while mitigating their weaknesses [32]. Vector search excels in

capturing semantic meaning but may overlook exact matches, while BM25 is highly

effective at identifying keyword-based matches but lacks semantic understanding.

For vector search, cosine similarity was used to find the chunks that were most

similar to the query [33]. This required embedding the query and the database

into 384-dimensional vectors using the all-MiniLM-L6-v2 embedding model. Every

embedding was assigned a score (the higher the score the more similar it was to the

query) and the top two results with the highest cosine similarity scores were then

retrieved and converted back to text.

The cosine similarity is calculated as follows:
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cosine similarity =
A ·B

∥A∥∥B∥

Where:

• A = the query vector.

• B = a document chunk vector.

• A ·B = dot product of the two vectors.

• ∥A∥ and ∥B∥ = magnitudes (norms) of the vectors.

For keyword search, I employed the BM25 algorithm, which retrieves results based on

term frequency and relevance. BM25 calculates a relevance score for each document

by considering the frequency of query terms in the document, the overall document

length, and the average document length across the dataset. These factors are

combined using a weighting scheme that prioritises terms appearing frequently in

shorter, more focused documents while reducing the impact of terms that are overly

common or appear in longer documents [34].

The BM25 relevance score for a document D and query Q is:

BM25(D,Q) =
∑
q∈Q

IDF(q) · TF(q,D) · (k1 + 1)

TF(q,D) + k1 ·
(
1− b+ b · |D|

avgdl

)
Where:

• q: A term in the query.

• TF(q,D): Term frequency of q in document D.

• IDF(q): Inverse document frequency of q.
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• |D|: Length of document D.

• avgdl: Average document length across the corpus.

• k1, b: Tunable parameters (commonly k1 = 1.5, b = 0.75).

The ensemble retriever assigns equal weights (0.5) to both methods, resulting in a

total of four contexts (two from each search) for every query. Figure 4.3 summarises

the steps taken during the retrieval phase.

Figure 4.3: Ensemble Retriever.

By combining vector search with BM25, the ensemble retriever ensures more com-

prehensive and balanced retrieval, providing the model with the most relevant and

contextually rich information.
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User Interface

The user interface of the chatbot is designed to be intuitive and user-friendly. It

allows users to input their queries directly and view the chatbot’s responses in a

conversational format. On the back-end, the chatbot is powered by Flask, which

handles user requests. The back-end also stores query-response data in MongoDB.

Figure 4.4 shows what the user interface of Essence Coach looks like.

Figure 4.4: Essence Coach user interface.

4.2.2 Data

The foundation of a RAG system lies in the quality and structure of the data it

retrieves. For Essence Coach, the system retrieves its information from a carefully
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curated database of 22 documents sourced from diverse materials. These documents

cover a wide range of content related to Essence and software engineering practices.

Initially, I tried looking for existing datasets that might contain information about

software engineering practices and Essence in particular. However, I could not find

any suitable resources. This led me to the decision to create my own dataset, tailored

specifically to the needs of my project.

The documents I gathered for the dataset came from a variety of sources, including

course materials, official Essence documentation, academic research articles, and

other relevant publications. These diverse sources provided a rich base of information

on Essence and its applications in software engineering, ensuring that the dataset

would be comprehensive and representative of different aspects of the topic.

Initially, I attempted to convert the collected documents into JSON format to struc-

ture the data. Unfortunately, this approach was unsuccessful due to poor text

separation and categorisation, which resulted in inconsistencies and errors in the

structure. Additionally, the contextual metadata that JSON format would have

provided was not necessary.

As a result, I opted to convert the documents into markdown format, using an

automatic converter initially and then manually revising them. During the revision

process, I focused particularly on ensuring proper heading levels (such as H1, H2)

because the chunking of the text depended heavily on these headings. I also removed

duplicate content to reduce noise and standardised the text formatting.

A particularly helpful source of information during the documents revision was the

Essence WorkBench from Essify [35]. This platform allows users to play Essence

games and visually build their methods by combining previously essentialized prac-

tices. Its collection of over ninety practices was especially useful during the revision

of the RAG dataset since it allowed me to include more detailed information about

the various practices, such as the work products they produce and the activities

they involve.
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The pie chart in Figure 4.5 illustrates the distribution of document types within

the dataset. Of the 22 total documents, 50% are focused on software engineering

practices, such as Scrum and retrospectives, and their essentialization. Five docu-

ments cover the Essence kernel and language, providing a general understanding of

Essence and its foundational elements. Three documents focus on Essence games,

and another three are dedicated to Essence cards. These card-based documents are

particularly useful for ensuring that the model knows how to structure the infor-

mation about the different Essence elements. All documents can be found in the

project’s GitHub repository, along with the source code [36].

Figure 4.5: Distribution of documents in the retrieval database.

4.2.3 Tools

This project utilises a range of modern technologies to build the Essence Coach

chatbot and collect its responses, including:

• PDF to Markdown Converter: A tool to convert documents into a struc-

tured markdown format.

• Essence WorkBench: A platform to conduct teams health-checks, organise

the way of working and play Essence games with several essentialized practices.
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• ChromaDB: A vector database used for storing document embeddings and

performing semantic searches.

• BM25: A keyword search algorithm used alongside ChromaDB for the en-

semble retrieval.

• LangChain: A framework that integrates the retrieval system with the lan-

guage model for seamless context-based response generation.

• Llama3 (via Groq API): A pre-trained large language model used to gen-

erate responses based on retrieved context.

• MongoDB: A NoSQL database for storing chat history and model’s configu-

rations.

• Flask: A Python web framework used to create the chatbot’s backend, han-

dling API requests and communication with the model.

4.2.4 Optimisation Strategies

The process of creating the chatbot entailed a significant amount of trial and error,

as different strategies were tested to improve the overall performance.

One of the key optimisations involved testing different configurations of the lan-

guage model, such as experimenting with various pre-trained models and adjusting

parameters like temperature.

Another important aspect of optimisation was refining the chunking strategy for

document retrieval. Initially, I experimented with random chunking based on char-

acter lengths, but this approach proved inefficient and often led to fragmented and

incoherent contexts. After further experimentation, I adopted the document-based

splitter strategy, which splits documents at meaningful header points in the mark-

down format. This method preserved logical units of information, which significantly

improved the quality of the responses.
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For document retrieval, I tested several search strategies to get the best results.

While simple keyword search or vector search methods provided useful outcomes,

they were not always sufficient on their own. After testing both approaches, I decided

to implement an ensemble retriever that combines vector search and BM25 keyword

search. The ensemble approach improved the retrieval accuracy and therefore the

generated answer.
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Results

This chapter presents the experiments conducted as part of this thesis, focusing on

the evaluation of the chatbot’s performance. It outlines the different use cases tested

and discusses the metrics used for the evaluation.

5.1 Challenges of Evaluation

Evaluating the responses of large language models and retrieval-augmented genera-

tion systems is challenging due to the inherent complexity and variety of factors that

influence the quality of the output. The process involves assessing not only how well

the system retrieves relevant information from the database but also how accurately

and coherently it generates responses based on that information. Additionally, the

subjective nature of evaluating the relevance of the responses further complicates

this, as the desired outputs may vary depending on the specific question or user

context, making standard evaluation methods harder to apply.

The study conducted by Yu et al. [37] identifies three key components for evaluating

RAG systems: retrieval, generation, and the entire system’s performance. Within
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these components, there are various factors to consider, such as the accuracy of

document retrieval, the quality of response generation, latency, scalability, and user

satisfaction. In this study, the focus was placed primarily on the first two aspects.

Accuracy of document retrieval was necessary to ensure the system fetched the most

relevant content, while the response generation quality was essential for producing

useful answers. Although speed and scalability are important for large-scale deploy-

ments, they were not a primary concern in this case, as the chatbot was not intended

for heavy traffic, so they were only marginally taken into consideration.

5.2 Experiments

To assess the effectiveness of the system, I conducted a series of experiments aimed

at evaluating the accuracy of the document retrieval and the quality of the generated

responses.

I created thirty questions, evenly distributed across three use case categories: provid-

ing information about Essence, helping in the decision-making process, and translat-

ing practices. Some of these questions have known answers within the RAG system,

while others do not. For instance, all the “information” questions were written start-

ing from the contents of the Essence documentation, while the “decision-making”

questions were formulated from scratch, knowing that there wouldn’t be a precise

answer anywhere in the dataset. This allowed me to evaluate how the model per-

forms when the exact answer is not directly retrieved, and whether the retrieved

context is still useful for generating an accurate or relevant response.

A few examples of the questions asked can be seen in Table 5.1. Every question also

imposes a specific word limit to the model so that the length of the answer doesn’t

affect its evaluation.
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ID Question Type Question Ground Truth

1 Information What is the Essence stan-

dard by SEMAT? Write less

than 100 words.

The Essence standard, de-

veloped by a a community

of software engineering ex-

perts...

2 Information What are the Alphas of the

Essence Kernel? Write less

than 100 words.

The Kernel Alphas include

Opportunity, Stakeholders,

...

... ... ... ...

11 Decision-Making What practices would you

recommend to a group of

students who have to de-

velop a mobile game for a

university project? Write

less than 100 words.

I recommend practices that

can be easily implemented

by students. These prac-

tices should still cover most

Activity Spaces...

12 Decision-Making What practice(s) can help

us address the “Explore

Possibilities” Activity

Space? Write less than 100

words.

A practice that can help fill

the “Explore Possibilities”

space could be Prototypes...

... ... ... ...

21 Translation Describe the pair program-

ming practice using the

Essence language, in less

than 100 words.

Pair programming affects

the Software System Alpha,

it has one Activity which is

Writing Code...

22 Translation What’s the difference be-

tween user stories and use

cases? Explain it using the

Essence language, in less

than 250 words.

Use Cases influence the

Requirements Alpha and

present more activities and

work products, therefore

they are more detailed...

... ... ... ...

Table 5.1: Examples of test questions.
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Next, I input these questions into the chatbot, saving both the model’s responses

and the retrieved contexts in a dataset for later evaluation.

5.2.1 Evaluating the retrieved context

For evaluating the quality of the retrieved context, I used several standard infor-

mation retrieval metrics: Precision@k, Mean Reciprocal Rank (MRR), and Mean

Average Precision (MAP) [38]. These metrics provide a quantitative assessment of

how effectively the system retrieves relevant contexts in response to a given query.

The relevance of each retrieved context was manually set based on whether the

context contained relevant information to answer the user’s question. Relevance

was assigned on a binary scale, marking a context as either relevant or not relevant.

Precision@k measures the proportion of relevant documents in the top-k results,

allowing for an evaluation of how many of the retrieved contexts are relevant within

the first few results.

Precision@K =
Number of relevant items in top K

K

Mean Reciprocal Rank is a metric that evaluates the rank of the first relevant

context. It is particularly useful for assessing how quickly the system retrieves

the most relevant context in response to a query.

MRR =
1

N

N∑
i=1

1

ranki

Mean Average Precision averages the precision scores across all queries, giving an

overall evaluation of the retrieval quality over a set of queries.
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MAP =
1

N

N∑
i=1

APi

APi =
1

R

K∑
j=1

Precision@j · relevance(j)

To present the results, a table was generated showing the evaluation metrics for all

thirty questions (Table 5.2).

Metric Value

Precision@K 0.731

Mean Reciprocal Rank (MRR) 0.653

Mean Average Precision (MAP) 0.769

Table 5.2: Precision@K, MRR and MAP of the retrieved context.

5.2.2 Evaluating the response

When evaluating the chatbot’s responses, the main challenge lies in assessing the

faithfulness and accuracy of the content in relation to the input data. However,

the evaluation of correctness is not always straightforward, as it can depend on the

specific task or context.

The questions for evaluation were asked in a single setting, meaning within one

continuous chat session. This allowed the model to refer to previous messages,

which could impact the accuracy and relevance of the responses, as context from

prior exchanges can influence the generated content.

To evaluate the quality of the responses, I employed two complementary approaches:

BERTScore and human evaluation.
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BERTScore Evaluation

BERTScore is a metric for evaluating text generation tasks, as it captures semantic

similarity between texts using pre-trained contextual embeddings from BERT. It is

especially useful for tasks where meaning, not just exact wording, matters, providing

a more nuanced evaluation than traditional metrics like BLEU or ROUGE [39].

It evaluates the precision, recall, and F1 score based on the embeddings, rather than

exact token matches.

First, I measured the similarity between the “ground truth”, the ideal correct answer,

and the answer generated by Essence Coach. Then, I calculated the similarity

between the ground truth and the answer generated by the GPT-4o model (without

any RAG). I wanted to compare the results with those generated by GPT-4o because

it is a widely recognised and advanced model in natural language processing, offering

a useful benchmark to assess how well Essence Coach performs in comparison to

other state-of-the-art models.

Higher values of precision, recall, and F1 indicate greater similarity between the two

texts, which serves as a strong indicator of the correctness of the answer, as it aligns

more closely with the ideal, human-written response.

The different metrics in the BERTScore are based on the embedding similarity,

which is calculated as follows:

Given:

• X = {x1, x2, . . . , xm}: Tokens in the generated text.

• Y = {y1, y2, . . . , yn}: Tokens in the reference text.

• E(xi): The embedding of the token xi.

• sim(x, y) = cos(E(x), E(y)): Cosine similarity between embeddings of x and

y.
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The similarity matrix S is:

S =


sim(x1, y1) . . . sim(x1, yn)

...
. . .

...

sim(xm, y1) . . . sim(xm, yn)



Sij = sim(xi, yj) =
E(xi) · E(yj)

∥E(xi)∥∥E(yj)∥

Where · is the dot product and ∥ · ∥ is the L2 norm.

The precision in BERTScore is calculated by comparing the cosine similarity between

the word embeddings of the generated text and the reference (ground truth) text.

It measures how much of the content in the generated text is relevant and present

in the reference text.

The precision score is the average of these maximum similarities:

Precision =
1

m

m∑
i=1

Pi

Pi = max
j

Sij

The recall in BERTScore measures how much of the relevant content from the refer-

ence text is captured in the generated text. Higher recall values indicate that more

of the key information from the reference is present in the generated response.

The recall score is the average of these maximum similarities:

Recall =
1

n

n∑
j=1

Rj

Rj = max
i

Sij

The F1 Score in BERTScore is the harmonic mean of precision and recall, providing

a balanced measure that considers both the relevance of the generated text to the
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reference text (precision) and the extent to which the generated text captures the

key information from the reference (recall).

F1 =
2 · Precision · Recall
Precision + Recall

The results, divided by question type, are shown in the table below.

Essence Coach GPT-4o

Precision Recall F1 Precision Recall F1

Overall 0.840 0.858 0.849 0.816 0.855 0.835

Information 0.879 0.873 0.876 0.850 0.877 0.863

Decision-Making 0.834 0.854 0.844 0.809 0.848 0.828

Translation 0.808 0.847 0.827 0.791 0.839 0.814

Table 5.3: Comparison of precision, recall, and F1 scores between Essence Coach

and GPT-4o.

A better visualisation of the results can be seen in Figure 5.1.



58 Results

(a) Overall (b) Information

(c) Decision-Making (d) Translation

Figure 5.1: Bar plots comparison of F1, precision, and recall scores between Essence

Coach and GPT-4.

Human Evaluation

While useful for automated evaluation, BERTScore has limitations. Responses can

vary significantly in phrasing yet still be equally correct, or even diverge entirely

while maintaining a moderately high similarity score. To address this limitation

and ensure a more nuanced evaluation, human judgment was incorporated as an
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additional assessment method.

The human evaluation assessed responses based on three parameters: Relevance,

Accuracy, and Completeness, each rated on a 0–3 scale [40]. Relevance measured how

well the answer addressed the user’s question, from completely irrelevant (0) to fully

relevant (3). Accuracy evaluated the factual correctness, ranging from completely

false (0) to entirely accurate (3). Completeness examined the level of detail, from

lacking essential information (0) to providing sufficient and relevant detail (3).

Table 5.4 summarises the average scores for each parameter across all evaluated

responses.

Essence Coach GPT-4o

Relev. Accu. Complete. Relev. Accu. Complete.

Overall 2.767 2.433 2.433 2.5 2.033 2.033

Information 3.0 2.6 2.5 3.0 2.2 2.8

Decision-Making 3.0 2.7 2.5 2.8 2.6 2.2

Translation 2.3 2.0 2.3 1.7 1.3 1.1

Table 5.4: Comparison of relevance, accuracy, and completeness scores between

Essence Coach and GPT-4o.

A better visualisation of the results can be seen in Figure 5.2.
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(a) Overall (b) Information

(c) Decision-Making (d) Translation

Figure 5.2: Bar plots comparison of relevance, accuracy, and completeness scores

between Essence Coach and GPT-4.
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Discussion

6.1 Interpretation of the Results

The evaluation of Essence Coach has demonstrated that integrating a retrieval-

augmented generation system with a specialised database of Essence-related docu-

ments improves the chatbot’s ability to handle domain-specific queries compared to

general-purpose language models. The results from both the retrieval and generation

evaluation metrics highlight this advantage.

Precision@k, Mean Reciprocal Rank, and Mean Average Precision scores confirmed

that the RAG system could retrieve relevant and accurate context around 70% of

the time. A Precision@K of 0.731 indicates that 73.1% of the top retrieved contexts

were relevant to the query. The Mean Reciprocal Rank score of 0.653 reflects a solid

ranking performance, showing that the correct context often appears near the top.

The Mean Average Precision of 0.769 demonstrates consistent retrieval accuracy

across all queries (Table 5.2).

Moreover, the responses generated by Essence Coach, as evaluated by both BERTScore

and human assessments, were more aligned with the “ground truth” answers than
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those produced by GPT-4.

Overall, Essence Coach slightly outperforms GPT-4o in all metrics, achieving a

higher F1 score (0.849 vs. 0.835), which suggests better alignment with the ideal

responses. For questions related to general information about Essence, both models

perform well, with Essence Coach achieving the highest scores (F1: 0.876 vs. 0.863).

This was not particularly surprising considering most of the retrieval database con-

tains information about Essence. Regarding decision-making questions, the scores

are closer. This indicates that while both models give relevant advice, Essence Coach

provides slightly more accurate answers. For translation, both models show a drop

in performance compared to other tasks. Essence Coach (F1: 0.827) maintains an

edge over GPT-4o (F1: 0.814), reflecting its better contextual understanding in

translating practices into Essence language (Table 5.3).

Similar results can be seen in the human evaluation. Overall, Essence Coach out-

performs GPT-4o in all metrics, particularly in accuracy and completeness. For

Information questions, both models achieve perfect relevance (3.0), but Essence

Coach shows higher accuracy (2.6 vs. 2.2), reflecting its factual correctness, while

GPT-4o provides slightly more detailed responses. In Decision-Making, Essence

Coach demonstrates a slight advantage in all three metrics. In Translation, Essence

Coach significantly surpasses GPT-4o in relevance, accuracy, and completeness (Ta-

ble 5.4). In particular, this question type demonstrates the importance of human

evaluation, since the BERTScore wasn’t able to capture how incorrect GPT-4o’s

answer was compared to Essence Coach, possibly because it remained similar in the

vector space.

These results highlight the value that domain-specific knowledge integration can

bring, particularly for topics like Essence that are not widely represented in general

LLM training data.
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6.2 Limitations of the Study

Despite the positive results, this study had several limitations. First, the dataset

used for training the RAG system, though diverse, consisted of only 22 documents.

While sufficient for this proof of concept, the limited scope of the database could

limit the chatbot’s ability to handle edge cases or unexpected queries. Furthermore,

the chatbot’s performance was only evaluated in a controlled environment without

real-world user input. This means that metrics such as user satisfaction and practical

utility in educational or professional settings remain unexplored.

Another limitation was the reliance on human evaluation to complement BERTScore

in assessing response quality. While the Likert scale provided a structured frame-

work, it introduced potential subjectivity, especially in evaluating parameters like

relevance and completeness. This is also due to the fact that the ground truth wasn’t

the only acceptable answer and a practice could be translated in Essence in several

different ways, depending on the level of detail that is required.

Additionally, the decision not to evaluate speed or scalability, though justified by

the scope of the thesis, leaves open questions about the system’s performance under

higher user loads or in more complex operational settings.

6.3 Future Work

Building on what we’ve learned from this study, there are a few areas we can explore

further. One promising direction is conducting user-based evaluations, particularly

involving students, to assess how effective Essence Coach is as a learning tool. By

incorporating real-world feedback, it will be possible to measure user satisfaction,

identify gaps in the system’s functionality, and better understand its actual use

cases.

Another area for improvement is fine-tuning the LLM with a custom dataset of
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input-output pairs specific to Essence and related practices. While this was not

feasible in this study, fine-tuning could enable the model to generate even more

accurate and context-aware responses. A comparative analysis between a fine-tuned

model and the RAG system could provide deeper insights into the strengths and

weaknesses of both approaches.

Moreover, a future direction could involve integrating Essence Coach with the Essence

WorkBench from Essify [35]. With this integration, the chatbot could look up and

collect information directly from the user’s current board, such as the cards in use,

practices selected, or the set target goals. This could allow Essence Coach to answer

questions specific to the game the user is playing, the practice they are mapping, the

health check they are conducting, etc. Currently, this is not possible as the chatbot

cannot access the user’s current board state unless they explicitly write it in the

prompt, a process that could be tedious and impractical for the user. Developing a

way for the chatbot to automatically access this information would greatly improve

its ability to assist users in highly specific, real-time scenarios.

Finally, expanding the database to include more documents and experimenting with

ensemble techniques that weigh retrieval methods dynamically instead of statically

could further improve the chatbot’s responses.
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The objective of this thesis was to explore the potential uses of the Essence standard

when combined with large language models. In practice, this study aimed to create

a chatbot that could provide detailed information about Essence and help with the

management of software engineering practices.

To achieve this, an application integrating Llama 3 with a retrieval-augmented gen-

eration system was developed. The RAG system was designed to provide additional

information to the user’s queries in order to improve the model’s answers. Rele-

vant context was retrieved from a curated database of Essence-related documents.

This application benefited from various optimisation techniques, such as using an

ensemble retriever to search for the most meaningful context.

After finalising the chatbot, an experiment was conducted to evaluate its retrieval

capabilities and response quality. The experiment involved asking the chatbot thirty

questions, evenly distributed across its three main use cases, and collecting both

the retrieved context and the generated answers. The retrieved context was then

manually reviewed to assess its relevance, and different metrics were calculated to

determine its precision. The responses were evaluated in two ways: calculating their

similarity to the ideal answer using BERTScore and conducting a human evaluation.

These results were then compared with those achieved by a general-purpose model,

GPT-4o.

The results of this experiment show that the application’s RAG system was able to
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retrieve relevant context over 70% of the time. In addition, the generated responses

had an overall precision of 84% compared to the 81% of the general-purpose model.

Human evaluation results show a similar trend with the chatbot’s accuracy being

81% and GPT-4o’s being 68%. In particular, the application excelled at answering

general questions, presumably thanks to the information-dense retrieval database,

while it struggled more when asked to translate entirely new and very specific prac-

tices.

Going back to the original research questions, the following answers are presented:

RQ1: How can a system that leverages large language models integrate and retrieve

domain knowledge about Essence?

Answer: A system leveraging large language models can integrate and retrieve

Essence domain knowledge through a RAG framework. It processes curated Essence

documents into structured chunks, embeds them in a vector database, and retrieves

relevant context using an ensemble of vector and keyword search. The retrieved

context augments user queries for the LLM, providing context-specific responses.

RQ2: How effective is this new system in providing information related to Essence?

In particular, how does it compare to other general-purpose systems?

Answer: The new system proved to be fairly effective in providing domain-specific

information related to Essence. When compared to general-purpose models like

GPT-4o, BERTScore results showed that Essence Coach had a higher alignment

with ideal responses (F1: 0.849 vs. 0.835) as indicated in Table 5.3. Human evalu-

ations further confirmed its advantages, with Essence Coach showing better perfor-

mance in terms of overall relevance (2.767 vs. 2.5), accuracy (2.433 vs. 2.033) and

completeness (2.433 vs. 2.033) (Table 5.4). These results emphasise the value that

a RAG system can bring, thanks to its ability to retrieve more precise and contex-

tually relevant information from a custom knowledge base, unlike general models,

which can only rely on broader, less detailed knowledge.

In conclusion, this work explores a largely untapped intersection between artificial
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intelligence and software engineering, focusing specifically on integrating Essence

with LLMs. It highlights the potential of LLM-based applications to assist stu-

dents in learning software engineering practices and to support development teams

in managing them. The presented use case demonstrates promising results, but

further testing with real users is necessary to fully understand its limitations and

capabilities. This research lays a foundation for future studies on how AI can im-

prove the understanding and implementation of software engineering practices, while

also providing an example of a practical use case.
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