Neighboring-based Strategies for Multi-Agent Reinforcement Learning

Malucelli, Nicolò (2024) Neighboring-based Strategies for Multi-Agent Reinforcement Learning. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria e scienze informatiche [LM-DM270] - Cesena
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (1MB)

Abstract

Multi-Agent Reinforcement Learning introduces many new challenges to the single agent scenario, such as non-stationarity, scalability, partial observability, and credit assignment. While centralized training methods help address some of these problems, mitigating partial observability and non-stationarity, and facilitating credit assignment, they are affected by scalability issues as the number of agents increases. Centralized training methods are by far the most used and studied. However, they are not always a feasible solution in real-world scenarios, especially due to the potential limitations imposed by the structure of the agent network. On the other hand, decentralized training methods received less attention, but their potential in real-case scenarios is high. This thesis investigates different neighbor-based decentralized training strategies, proving that they can represent a valid alternative to the centralized training approach. Various distributed training methods, such as Experience Sharing, NN-Averaging, and NN-Consensus, are evaluated within a custom environment and compared against the centralized training scheme, in order to assess their efficiency and scalability.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Malucelli, Nicolò
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Multi-Agent Reinforcement Learning,Neighboring-based training,Distributed reinforcement learning
Data di discussione della Tesi
3 Ottobre 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^