
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

NEIGHBORING-BASED STRATEGIES FOR
MULTI-AGENT REINFORCEMENT

LEARNING

Elaborato in

ADVANCED SOFTWARE MODELLING AND DESIGN

Relatore

Prof. MIRKO VIROLI

Correlatore

Dott. GIANLUCA AGUZZI
Dott. DAVIDE DOMINI

Presentata da

NICOLÒ MALUCELLI

Anno Accademico 2023 – 2024

Abstract

Multi-Agent Reinforcement Learning introduces many new challenges to
the single agent scenario, such as non-stationarity, scalability, partial observ-
ability, and credit assignment. While centralized training methods help address
some of these problems, mitigating partial observability and non-stationarity,
and facilitating credit assignment, they are affected by scalability issues as the
number of agents increases.

Centralized training methods are by far the most used and studied. How-
ever, they are not always a feasible solution in real-world scenarios, especially
due to the potential limitations imposed by the structure of the agent network.
On the other hand, decentralized training methods received less attention, but
their potential in real-case scenarios is high.

This thesis investigates different neighbor-based decentralized training strat-
egies, proving that they can represent a valid alternative to the centralized
training approach. Various distributed training methods, such as Experience
Sharing, NN-Averaging, and NN-Consensus, are evaluated within a custom
environment and compared against the centralized training scheme, in order
to assess their efficiency and scalability.

to my family and friends

Contents

Introduction vii

1 Background 1
1.1 Reinforcement Learning . 1

1.1.1 Overview of the main algorithms 3
1.2 Multi-Agent Reinforcement Learning 8

1.2.1 Key concepts . 9
1.2.2 Main challenges . 12
1.2.3 Training schemes . 15

2 Frameworks and Technologies 19
2.1 Gymnasium . 19

2.1.1 Environments . 19
2.1.2 Action and observation spaces 21
2.1.3 Simulating an episode 23

2.2 RLlib . 24
2.2.1 Supported algorithms . 24
2.2.2 Extension to multi-agent scenarios 30

3 Contribution 35
3.1 Problem definition . 35
3.2 Inspected distributed learning strategies 36

3.2.1 Independent learners . 36
3.2.2 NN-averaging . 36
3.2.3 NN-consensus . 37
3.2.4 Experience sharing . 38

4 Evaluation 39
4.1 Introduction to the test environment 39

4.1.1 Configuring the environment 40
4.1.2 Observation space . 40
4.1.3 Action space . 42

v

4.1.4 Interacting with the environment 43
4.1.5 Reward structure . 44

4.2 Experimental setup . 45
4.3 Results . 47

4.3.1 Performance on the experimental scenario 47
4.3.2 Scalability . 50
4.3.3 Communication overhead 52

Conclusions 55

Acknowledgements 57

Introduction

The rapid progress in artificial intelligence highlighted the significant po-
tential of Reinforcement Learning (RL) as a technique for empowering agents
to make autonomous decisions in dynamic environments. Agents can learn
optimal strategies through a trial-and-error approach by interacting with the
environment and receiving feedback for their actions [28].

While single-agent reinforcement learning has been extensively studied and
applied across various domains, the complexity increases when multiple agents
are involved: in Multi-Agent Reinforcement Learning (MARL), agents must
take into account the presence of other agents when solving a task; depend-
ing on the type of the environment, agents may collaborate or compete with
the other agents, introducing new challenges not present in the single agent
scenario, such as non-stationarity, scalability, partial observability, and credit
assignment [3].

To address these challenges, many training schemes have been explored by
researchers. The main approach consists in training agents using a centralized
setup, where a central node is responsible to handle the policy of each agent.
This approach allows dealing with many of the problems above cited, but it is
particularly subject to scalability issues: as the number of the agents increases,
the central node becomes more and more a weakness, making this approach
not feasible in some large-scale, real-world scenarios.

On the other hand, distributed training schemes, where each agent indepen-
dently learns its policy, offer better scalability and robustness, but are subject
to other problems, such as the non-stationarity of the environment, and the
lack of coordination among agents.

This thesis focuses on comparing the effectiveness of different distributed
learning strategies with the goal to offer a valid solution to the centralized
training approach, exploring different solutions to identify the most effective
way to address the main challenges of MARL. Along with the theoretical anal-
ysis, a prototype has been developed to implement and evaluate these dis-
tributed learning strategies in practice, providing a more robust foundation
for addressing the main challenges of MARL.

The thesis begins by introducing the foundational concepts of Reinforce-

vii

ment Learning and Multi-Agent Reinforcement Learning, providing a solid
theory that allows to better understand the following more practical chap-
ters. An overview of the main RL algorithms is provided and the challenges
of MARL are described, along with the possible training schemes.

The second chapter introduces the frameworks and the technologies that
have been employed in the test section. In particular it discusses Gymnasium,
an open-source library for the definition of custom environment, and RLLib,
a powerful reinforcement learning library.

The third chapter outlines the primary contribution of this thesis, describ-
ing the custom environment in which the experiments have been conducted,
and how the different approaches have been evaluated and compared.

Chapter 4 presents the results of these experiments, offering an evaluation
of the performance of the different approaches, focusing on key metrics such
as learning efficiency, scalability, and communication overhead.

Chapter 1

Background

The first section of this chapter explains what reinforcement learning is and
which is the idea behind two mainstream algorithms: Deep Q-learning (DQN)
and Proximal Policy Optimization (PPO). The second section introduces the
multi-agent case instead, along with the challenges of this formulation.

1.1 Reinforcement Learning

Reinforcement learning is a subfield of machine learning in which an agent
learns by itself the correct way to act in an environment, to fulfill the given
task through a trial-and-error approach [12].

In the context of reinforcement learning, the term agent refers to a generic
entity that is able to interact with the surrounding environment, make deci-
sions and perform actions in order to achieve a specific goal.

Reinforcement learning differs from classic approaches of programming
agents, such as rule-based systems, since the programmer does not code the
behaviour of the agent (i.e., which action to take in which situation), but
rather defines a reward system. In reinforcement learning, the agent learns to
perform tasks by interacting with the environment and receiving feedback in
the form of rewards or penalties. This feedback helps the agent to develop a
strategy that maximizes the cumulative reward over time.

A reinforcement learning problem can be described by a Markov Decision
Process (MDP) [13], that is a tuple ⟨S,A, f, p⟩, where:

• S represents the finite set of the environment states;

• A represents the finite set of actions that the agent can perform while in
any state s ∈ S;

1

2 CHAPTER 1. BACKGROUND

• f : S,A, S → [0, 1] represents the transition probability function, which
describes the probability of reaching a state s1 ∈ S by performing an
action a ∈ A while in the state s0 ∈ S. In the scenario of a fully
deterministic environment, since for each pair state-action there can be
only an arrival state, the transition probability function can be simplified
in such a way: f : S,A→ S;

• p : S,A, S → R represents the agent’s reward function, which maps
each transition to a numerical value. In the same way of the transition
probability function f, p can be simplified to p : S,A→ R in case of fully
deterministic scenarios.

As shown in the image below (1.1), at a generic time instant t, the envi-
ronment is in a state st ∈ S and the agent performs an action at ∈ A, possibly
causing a change in the environment state st+1 ∈ S according to the transition
probability function f, and receiving a reward rk+1 = p(st, at, st+1).

Figure 1.1: Graphical representation of the interactions between agent and
environment

The goal of the agent is to maximize the cumulative discounted reward
given nothing but the immediate feedback for its actions (i.e., reward and
new environment state). This is a significant problem because in many real-
world scenarios, since the consequences of an action may not be immediately
apparent, making it difficult for an agent to learn the optimal strategy. This
problem, known by the name of delayed reward, is a crucial challenge in the
field of reinforcement learning [12].

Exploration vs exploitation In contrast to supervised learning, in rein-
forcement learning the agent must explore the environment by itself in order
to gather more information about the surrounding environment and possibly

CHAPTER 1. BACKGROUND 3

discover new advantageous strategies. However, the exploration component
must be balanced with exploitation, where the agent utilizes the knowledge it
has already gained to optimize the performance based on the current under-
standing.

Different strategies can be adopted to balance this trade-off. One of the
most effective and common approaches is the ϵ-greedy strategy where, at each
step, the agent generates a random number between 0 and 1. If the number
is less than ϵ, the agent picks a random action between the possible ones (ex-
ploration), otherwise the agent chooses the action having the highest expected
reward (exploitation). A common strategy involves decreasing the value of ϵ
while the agent learns, in order to encourage the agent to explore the environ-
ment more when the knowledge is low, and preferring exploitation as the agent
gains more confidence. The effectiveness of the ϵ-greedy approach, compared
to a completely greedy approach (ϵ = 0) has been proved by Sutton and Barto
in [28].

Another approach is the softmax approach. In this method, a probability is
assigned to each action based on how good they are, prioritizing actions with a
higher expected reward, while still allowing for exploration of more uncertain
options [28].

1.1.1 Overview of the main algorithms

Reinforcement learning algorithms can be classified into two main classes:
value-based, and policy-based, also known as critic-based, and actor-based
methods (image 1.2).

Value-based algorithms, such as Q-Learning [32], SARSA [24], and their
variants, use a function to estimate how good a state, or a pair state-action, is.
This function, called the value function, is then used to make decisions about
which action the agent should take in a given state. Each value takes into
account not only the immediate reward received for reaching that state, but
also the future rewards that the agent may receive from performing actions
in that state. This formulation allows to address the delayed reward problem
previously described.

While value-based methods use a value function to estimate states’ values,
policy-based methods, such as REINFORCE [33], TRPO [26], and PPO [27],
rely on a function, called policy, which maps each state to an action. The
agent learns the optimal behaviour by directly optimizing the policy function,
and adjusting the parameters in order to maximize the expected reward.

Both critic-based and actor-based methods have their strengths and weak-
nesses; this led to the development of a new class of algorithms, known as
actor-critic methods, which aims to combine the aspects of both methods [14].

4 CHAPTER 1. BACKGROUND

Figure 1.2: Value-based vs Policy-based approaches

Q-learning Q-learning is a value-based and model-free reinforcement learn-
ing algorithm that relies its operations on the Q-table. The Q-table maps
each pair state-action to a value representing the expected discounted reward
obtainable by the agent performing that action while in that state.

The agent learns the optimal behaviour by iteratively updating the Q-
values depending on the agent’s experience using the Bellman equation:

Q(s, a)← (1− α)Q(s, a) + α(r + γmaxa′Q(s′, a′)) (1.1)

where:

• α is the learning rate, a hyperparameter that determines how much the
new experience will override the current value of Q(s, a). Normally α is
set higher at the beginning of the training process and lowered as the
agent gets better.

• r = p(s, a, s′) represents the immediate reward received by the agent as
a consequence of having performed the action a while in the state s

• s′ = f(s, a) is the new environment’s state

• maxa′Q(s′, a′) is the highest reward that the agent can obtain while in
the state s’. This is the element that allows the iterative evaluation of
the Q-table, and is fundamental to predict the discounted reward in the
given state.

• γ is the discount factor, a hyperparameter that determines the trade-off
between immediate and future rewards. When the value of γ is 0, only
the immediate reward is considered when computing the Q-table, while
when γ is 1, all the rewards have the same importance, no matter how

CHAPTER 1. BACKGROUND 5

far in the future they are. Choosing one of the extremes is normally
not recommended: γ = 0 does not allow the agent to develop complex
strategies since only the present is considered, while with γ = 1 the
problem may never converge to a solution. For this reason, γ is normally
chosen between 0.90 and 0.99.

It has been proved byWatkins in [32] that this formulation always converges
to an optimal solution when the number of episodes from each starting state
and action is infinite. However, in order to get an optimal policy, an optimal
Q-table is not necessary: as shown in the image 1.3, a sub-optimal Q-table
can produce the same policy as the optimal Q-table. The difficulty, then, is to
recognize when the optimal policy has been reached.

Figure 1.3: Proof that a sub-optimal Q-table can produce the same policy as
the optimal Q-table

The reason why this happens is related to how the policy π is computed:

π(s) = argmaxaQ(s, a)

Thus, two different Q-tables, Q and Q’, may produce the same policy if:

argmaxaQ(s, a) = argmaxaQ
′(s, a) ∀ s ∈ S

Q-learning: limitations and solutions Q-learning adopts a table as value
function; therefore, the number of values to store directly depends on the

6 CHAPTER 1. BACKGROUND

number of states and the number of actions in each state. In many real-world
problems, Q-learning is not an admissible solution, because too many states
and too many actions, lead to the so-called state space explosion, making it
impossible to memorize all the values. Even imagining having infinite space
on our device, exploring all the pairs state-action would take too much time,
making the learning inefficient.

Deep Q-learning (DQN) [18] has been designed to overcome this limitation,
allowing to approximate the Q-table through a deep neural network. Mnih et
al. [17] proved that DQN can be fed using high-dimensional input such as
RGB images, outperforming previous approaches.

However, the use of a deep neural comes with some drawbacks, that if not
properly addressed may render the training unstable. The first problem is
the correlation between the sample of the same episode, while the second is
the correlation between the value to update and the target value, since the
target value directly depends on the same neural network being optimized, as
described by the Bellman equation in 1.1.

To solve the first problem, researchers introduced the idea of experience
replay : instead of directly training the neural network on the trajectory data,
each experience is before stored in a randomized buffer, called replay buffer.
This allows to remove the correlation between the samples forming a batch,
increasing the performance and facilitating the convergence.

Different types of buffers can be used, but one of the most common is the
prioritized buffer, presented by Schaul et al. in [25]. The core idea of prioritized
experience replay is to give more importance to the samples which may lead
to faster learning, instead of treating all the samples in the same way.

To overcome the second problem, the concept of delayed update has been
introduced: during the training two distinct networks are used, the main one
and an auxiliary target network. The target network is used to compute the
target value and is not updated in real-time like the main network, but only
at a frequency C previously defined. Therefore, the loss function becomes:

Li(θi) = [Q(s, a; θi)− (r + γmaxa′Q(s′, a′; θ−i)]
2

Where θi represents the set of weights of the main network, while θ−i rep-
resents the weights of the target network. This strategy effectively resolves
the moving target problem, allowing the main network to learn from a stable
target.

Q-learning: additional enhancements Deep Q-learning performance can
be further improved by adopting some additional expedients, such as Double
Q-learning [9] and Dueling Q-learning [30].

CHAPTER 1. BACKGROUND 7

• Double Q-learning: In the classic Q-learning, the update rule used to
estimate the next state, always select the state having the highest value.
This may lead to overoptimistic estimations due to the max operator’s
tendency to prefer higher, but potentially inaccurate, values.

The main idea of Double Q-learning is to address this issue by adopting
two value functions QA and QB, using one as target value of the other,
in order to reduce the bias introduced by the max operator [9]:

QA(s, a) = r + γmaxa′QB(s
′, a′)

QB(s, a) = r + γmaxa′QA(s
′, a′)

Since QA and QB are alternately trained on two different sets, the first
one shouldn’t suffer from the same positive bias as the second one and
vice versa. Even though Double Q-learning has been initially designed
for classic Q-learning, it can also be used in combination with Deep Q-
learning [20].

• Dueling Q-learning: The core idea of Dueling Q-learning is to decom-
pose the Q-value into two different components by using two different
estimators: one for the state-value function and one for the advantage
function, allowing to better generalize across actions.

In particular, the proposed architecture is able to learn whether a state
is good or not without having to learn the effect of each action for each
state, making it especially useful in those situations in which actions do
not affect the environment in a very relevant way [30].

Proximal Policy Optimization Unlike Q-learning and its variations, PPO
is a policy-based method, therefore it directly optimizes the policy instead of
estimating the value of state-action pairs. In particular, PPO belongs to the
family of policy gradient methods along with REINFORCE [33] and Actor-
Critic methods [14]. Generally, policy gradient methods use a loss function
having this structure:

LPG(θ) = Ê[logπθ(at|st)Ât]

Where πθ is the stochastic policy, while Ât is the advantage function. How-
ever, this formulation can lead to very large policy updates which may desta-
bilize the learning process.

PPO aims to guarantee the reliability typical of TRPO [26], while using a
more simple and efficient optimizer. PPO utilizes a clipped objective function,
which constrains the magnitude of policy updates in order to prevent drastic

8 CHAPTER 1. BACKGROUND

changes. Specifically, PPO maximizes the expected advantage while ensuring
that the probability ratio between the new and the old policy stays within a
given range defined by the hyperparameter ϵ:

LCLIP (θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ))Ât]

rt(θ) =
πθ(at|st)
πθold(at|st)

Due to their continuous nature, policy-based methods such as PPO perform
much better in continuous action spaces if compared to DQN [27].

1.2 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) extends the concepts of
single-agent reinforcement learning to environments in which multiple agents
coexist, each one aiming to maximize its own reward.

Since more agents are involved, the base reinforcement learning formulation
that relies on Markov Decision Process (MDP) is no longer suitable. The
generalization of the MDPs to multi-agent scenarios is known as stochastic
game [16].

In a similar way to MDP, a stochastic game consisting of n agents is defined
as a tuple ⟨S,A1, ..., An, f, p1, ..., pn⟩, where:

• S represents the finite set of the environment states, like in MDPs;

• Ai represents the finite set of actions of the i -th agent. Different agents
in the environment may have different set of actions;

• f : S,A, S → [0, 1] represents the transition probability function, which
describes the probability of reaching a state s1 ∈ S by performing an
action a ∈ A while in the state s0 ∈ S. Differently from the single-
agent scenario, which utilizes the action performed by the only agent to
compute the transition from a state s0, in the multi-agent scenario, the
result of the transition depends from the action taken from each agent.
We define A = A1× ...×An as the Cartesian product between the action
set of each agent.

• pi : S,A, S → R is the reward function of the i -th agent. Similarly to
what happens for the action sets, each agent may have a different reward
function to shape a different behaviour.

CHAPTER 1. BACKGROUND 9

As shown in the image below (1.4), at a generic time instant t, the environ-
ment is in a state st ∈ S and each agent performs an action ai,t ∈ Ai, causing
a change in the environment state st+1 ∈ S depending on the transition func-
tion f(st, [a1,t, ..., an,t], st+1). Each agent receives then a penalty or a reward
depending on its reward function ri,t+1 = pi(st, [a1,t, ..., an,t], st+1).

Figure 1.4: Graphical representation of the interactions between multiple
agents and the environment

1.2.1 Key concepts

Types of Multi-Agent Systems Multi-agent reinforcement learning prob-
lems can be classified in three categories depending on the relationships be-
tween the different agents: cooperative, competitive and mixed [4].

• In cooperative environments all the agents share a common goal, there-
fore the success of an agent directly benefits also the other agents. This
means that the strategies of each agent are aligned. Examples of envi-
ronments of this kind include robot systems performing a collaborative
task, drones swarming, a group of agents working together in a disaster
recovery mission, and so on.

A further classification consists in dividing agents into homogeneous and
heterogeneous categories: homogeneous agents are those that share the
same global policy and act in the same way at equal conditions, therefore
they are indistinguishable and interchangeable [2]. Considering the best-
case scenario of a fully observable environment, homogeneous agents are
able to predict other agents action. Heterogeneous agents, on the other
hand, differ in their policies, goals, or capabilities, leading to different
behaviours even in similar situations.

10 CHAPTER 1. BACKGROUND

• In competitive environments, agents have conflicting goals and the suc-
cess of an agent is a defeat for the other agents. A particular case of
competitive environment is zero-sum games, where the sum between the
reward of each agent is zero, meaning that in an environment consisting
of two agents A and B, at a generic time instant t, rA,t = −rB,t [31].
Examples of competitive environments include strategic games such as
chess and go, financial market where traders compete for profit, or ad-
versarial scenarios like cybersecurity, where defenders and attackers have
opposite goals.

The non-stationarity is quite a big challenge in this kind of scenarios,
since agents continuously adapt to their opponents’ strategies, making
the environment highly dynamic and unpredictable. The exploration-
exploitation trade-off is also crucial, since agents need to balance the
need to exploit known strategies with the need to explore new ones that
might provide an edge over opponents.

• Mixed environments take elements from both cooperative and competi-
tive settings. A typical case of mixed environment is when multiple teams
compete between each others, but all the agents within a team collab-
orate together to defeat the other teams. This dual nature of mixed
environments requires agents to develop both cooperative strategies to
work effectively with their teammates and competitive strategies to beat
their adversaries.

Agent Interactions In multi-agent reinforcement learning, interactions be-
tween agents play a crucial role in determining the success or the failure of
a solution. Communication is a fundamental aspect of multi-agent systems,
especially in scenarios in which the agents need to share information to achieve
a common goal, such as the cooperative scenarios previously described.

Communication can help to partially solve the problem of partial observabil-
ity, since agents can share with their neighbors their view of the environment,
and at the same time they can use their neighbors observation to expand their
knowledge about the surroundings.

Communication can also be used as a mechanism of coordination: agents
of the same team can share short-term intentions and long-term strategies
between each others, enabling more synchronized and efficient actions. For
instance, in a multi-robot scenario, robots might share their planned paths
to avoid collisions or to coordinate their movements when carrying an object
together.

Furthermore, even though there are multiple agents involved in the prob-
lem, from the agent’s perspective, the environment becomes stationary again

CHAPTER 1. BACKGROUND 11

when they exchange actions with one another in a fully observable environ-
ment. This is because the agent can precisely determine how it contributes to
the environment update by anticipating how other agents’ actions will affect
the environment [5].

The challenge in implementing communication lies in ensuring that it is
both effective and efficient: agents need to learn what information is valuable
to share and how to interpret the messages they receive.

Reward structure The reward structure is the main element that deter-
mines whether the behaviour of the agent is cooperative or competitive towards
the other agents within the environment (image 1.5).

When the cooperation component of the reward is greater than the com-
ponent related to the contribution of the specific agent, a more cooperative
behaviour emerges.

Cooperation can be obtained not only sharing positive rewards, but also by
punishing all the agents for an error made by a specific agent. This can lead
to scenarios in which agents help other agents to prevent situation of failure
[5].

Both these strategies may lead to the problem of credit assignment, since
part of the reward does not depend from the agent that did the action, but
from the other agents.

On the opposite, if the reward obtained for collaborating with the others
is low, agents might ignore it and act just for their own sake, fighting against
the other agents to get the higher reward.

(a) In the competitive scenario the
green agent acts greedily, trying to
collect all the rewards alone

(b) In the cooperative scenario agents
collaborate to collect all the rewards
as fast as possible

Figure 1.5: Example of competition vs cooperation in the task collect the
items. In the scenario on the left, only the agent who collects an item receive
the reward, while in the scenario on the right both agents receive the reward

12 CHAPTER 1. BACKGROUND

1.2.2 Main challenges

Compared to the single-agent scenario, the multi-agent case introduces
different challenges. The presence of multiple learning agents creates a more
complex and unpredictable environment, where each agent must not only learn
the optimal strategy to reach its goal, but also adapt to the strategies of the
other agents. In other words, this means that the optimal strategy of an agent
depends on the strategies of the other agents, whether they are optimal or not.

This form of dependency between agents gives rise to new unique challenges
such as non-stationarity, scalability issues, partial observability, and difficulties
in credit assignment. These challenges must be carefully addressed to ensure
successful learning and coordination among agents in multi-agent systems.

Non-stationarity The non-stationarity of the environment is one of the
main challenges of multi-agent reinforcement learning.

Consider a single-agent scenario in which the environment state at a time
t depends only on the previous environment state and the action performed
by the agent. The agent is able to learn the optimal policy because it is able
to understand the cause-effect relationship of its action on the environment.

In a multi-agent scenario this condition does not hold anymore, since the
environment state transition does not depend on the action of a single agent,
but on the action of many different agents which are simultaneously learning
and adapting their policies. From the perspective of the single agent, the
environment becomes non-stationary, therefore the Markov property no longer
holds.

One of the most common ways to address the non-stationarity issue, in-
volves adopting a centralized training model. In this framework, agents have
a global perspective of the environment during the training phase, allowing
them to better understand the dynamic of other agents. By providing addi-
tional information to the agents, the environment becomes more predictable,
making it is easier for the agent to understand its dynamics.

Another approach is to transform the problem from multi-agent to single-
agent, using the joint action A = A1 × ... × An as the new action set. This
solution removes all the problems related to non-stationarity since the new
formulation is a full-fledged single agent problem. However, this solution may
not be suitable when the number of agents is high because of the action set
dimensionality explosion that would make the problem too complex to be
solved.

A third alternative is the so called opponent modelling [11] which consist
in predicting other agents actions and act accordingly. By doing so the agent
is able to better understand the influence of its action on the environment,

CHAPTER 1. BACKGROUND 13

reducing so the non-stationarity problem [21].

Partial observability Many multi-agent scenarios have to deal with a prob-
lem known as partial observability : unlike fully observable settings, where an
agent has access to the entire state of the environment, in many multi-agent
scenarios each agent can perceive only a subset of the overall state.

This partial view of the environment has significant implications for the
Markov property, which asserts that the future state of the environment de-
pends only on the current state and action, and not on the sequence of events
that preceded it. In the presence of partial observability, the Markov prop-
erty no longer holds because the observation of the agent do not capture the
whole state of the environment, but only a subset; therefore the agent bases its
decision-making process on incomplete and possibly misleading information.
Consequently, agents may struggle to make optimal decisions and develop op-
timal policies (image 1.6).

(a) the agent can see all items in the
environment. Initially, the agent does
not choose the closest item because it
recognizes that a more distant item is
part of a cluster of items. By prioritiz-
ing the more distant item, the agent
optimizes its long-term strategy, aim-
ing to collect more items efficiently.

(b) the agent’s view is limited to a
specific radius and the agent cannot
see items outside it. Consequently,
the agent moves towards the near-
est visible item, unaware that a bet-
ter choice might be beyond its limited
view, leading to a suboptimal deci-
sion.

Figure 1.6: Illustration of full observability (on the left) vs. partial observabil-
ity (on the right) in a collect the items task.

To reduce the effects of partial observability, agents can adopt techniques
such as recurrent neural networks to process sequences of observations, al-
lowing them to maintain a form of memory and infer hidden aspects of the
environment over time [10].

14 CHAPTER 1. BACKGROUND

Another approach to dealing with partial observability is to adopt com-
munication protocols between agents [35]: agents can be designed to share
relevant information, mitigating the impact of partial observability and im-
proving coordination among agents at the same time.

Scalability As said, a way to address the non-stationarity problem is to
utilize a centralized learning model; however, this approach introduce a new
challenge related to the limit of the central node.

For instance, in a scenario with hundreds of learning agents, the central
node is responsible not only for storing the individual policies of each agent,
but also for optimizing them all. This increases the computational cost signif-
icantly, as the central node must manage and refine a large number of distinct
policies while considering their interactions within the environment.

A hybrid solution that addresses at the same time scalability and non-
stationarity issues, is to use a decentralized setting where agents are able to
communicate and exchange information with their neighbors. By using this
model, each agent is responsible for storing and optimizing its own policy, but
utilizes information from adjacent agents to improve the learning performance.

Credit assignment Credit assignment is a crucial challenge in Multi-Agent
Reinforcement Learning, especially in fully-cooperative scenarios because of
the large shared reward compared. This problem refers to the difficulty of
attributing rewards to the individual actions taken by the agents.

In environments where multiple agents are involved, rewards are often the
result of complex interactions between agents, making it challenging to deter-
mine which specific actions contributed to the outcome.

As described before, the reward function of an agent i is defined as pi :
S,A, S → R, therefore the reward (or the penalty) received by an agent does
not depend solely from the action performed by that agent, but also from the
action performed by all the other agents.

One of the main solution to address the credit assignment problem is the
so called reward shaping [6]. This technique involves modifying the reward
function to provide more immediate and informative feedback to agents about
their actions. By designing rewards that reflect the contributions of individ-
ual actions more clearly, agents can more easily discern which behaviors are
beneficial and adjust their strategies accordingly. For instance, imagine two
robots which have to move an item from a starting position to a target in a
2D-environment. If we consider the reward following function:

r =

{
100 if the item is at the target location

0 otherwise

CHAPTER 1. BACKGROUND 15

If the item reaches the target, all the robots receive a reward of 100. This
setup does not provide feedback on how individual actions contributed to the
outcome, making it difficult for each robot to learn which specific actions were
beneficial. If instead we consider this reward function:

ri = progress towards target + progress due to robot i

each agent receives a feedback based on how its specific action impacted
the progress.

1.2.3 Training schemes

As already mentioned, scalability represents one of the main challenges in
Multi-Agent Reinforcement Learning, especially during the training phase, due
to the high state and action space dimensionality, which is a direct consequence
of the large number of learning agents. To address this problem, two main
training paradigms have been proposed, which are one the opposite of the
other: the first strategy involves training the agents in a centralized manner,
while the second method consists in training the agents in a distributed way.

A further classification can then be made depending on how agents evaluate
their policy. Again, a centralized or a decentralized approach can be adopted.

Overall, three main settings emerge from these combinations: centralized
training-centralized execution (CTCE), centralized training-decentralized ex-
ecution (CTDE) and distributed training-decentralized execution (DTDE).

Centralized Training The main advantage of centralized training is that
it allows agents to leverage shared information during the learning process,
leading to more coordinated and effective policies.

Centralized training is particularly useful in those situations where is pos-
sible to simulate the environment reaction to agents actions. Being able to
simulate the environment has two main advantages: first, it simplifies the pro-
cess of collecting samples; second, it allows the sharing of an unlimited amount
of information between the agents, as they are virtual entities operating on the
same node.

Moreover, centralized training can be particularly beneficial in scenarios
with many homogeneous agents because these agents can share the same policy,
reducing the computational burden on the central node.

As anticipated, after the training is completed a further classification can
be made, depending on how agents act during the execution phase (image 1.7).

• Centralized Execution: in centralized execution, a single node dic-
tates the actions of all agents based on a global perspective, allowing to

16 CHAPTER 1. BACKGROUND

reach high levels of coordination.

In this particular scenario, single-agent training methods can be adopted
by using the joint observation and action spaces; however, this practise
is often not feasible since the joint action and observation spaces can be-
come excessively large, making the problem computationally intractable.
In environments with many agents, what is usually preferred is to use a
policy for each agent or group of agents, instead of a global policy for all
the agents.

• Decentralized Execution: in decentralized execution, each agent
maintains its own policy which maps the local observations to actions.

CTDE approach strikes a balance between the benefits of shared infor-
mation and the scalability challenges: the shared information available
during the training allows for a better learning if compared to a com-
pletely decentralized setting, speeding up the learning process and re-
ducing the effects of non-stationarity; while the decentralized execution
address the scalability problem typical of this kind of systems, since each
agent operates on their own without the needing of a central authority
that would be a bottleneck for the network.

For these reasons CTDE currently represents the state of the art par-
adigm [5] for Many-Agent Reinforcement Learning, providing a robust
framework that combines the advantages of centralized training with the
practical benefits of decentralized execution.

(a) Centralized execution (b) Decentralized execution

Figure 1.7: Centralized training schemes

Distributed Training In a similar way to CTDE, in distributed training
each agent maintains its own policy which maps the local observation to a
distributions of actions (image 1.8).

CHAPTER 1. BACKGROUND 17

The biggest advantage of this modality is its fully decentralized nature,
which enhances scalability, distributing the computational burden on each
node instead of concentrating it in a single node. On the other hand the
lack of coordinator node represents a big challenge because each agent is an
independent learner that has only a partial vision of the surrounding environ-
ment, making the non-stationarity a very relevant issue and complicating the
learning process.

To mitigate the effects of non-stationarity, one potential strategy is to en-
able agents to share information with their neighbors [34]. This approach can
help each agent gaining a broader view about the environment and the actions
of other agents, improving its ability to learn effectively. For instance, local
communication protocols can be implemented, allowing agents to exchange
information about their observations, actions, or rewards with nearby agents.

Figure 1.8: Distributed training, decentralized execution

Chapter 2

Frameworks and Technologies

This chapter shows and explains the main technologies and frameworks that
have been used to run the experiments described in the following chapters.

The first part of this chapter focuses on presenting Gymnasium, an open-
source library that allows to define single-agent environments, while in the
second part is described in details the reinforcement learning framework RLlib.

2.1 Gymnasium

Gymnasium [29] is an open-source library that enables the definition of
reinforcement learning environments. Thanks to its compatibility with a wide
range of reinforcement learning frameworks, Gymnasium is widely used by re-
searchers and developers in the field, allowing users to move from a framework
to another without having to be worried about compatibility issues.

One of the reason why Gymnasium is so popular nowadays, is its extensive
collection of built-in environments. These environments, that range from sim-
ple tasks in two-dimensional word to complex simulations, make Gymnasium
a great resource for testing and comparing different reinforcement learning
models. In addition to this, Gymnasium also provides a large suite of utili-
ties, designed to make the researchers’ work easier, by simplifying the complex
processes involved in setting up, running, and evaluating experiments.

2.1.1 Environments

Defining a custom environment in Gymnasium is a straightforward oper-
ation, since it just takes the implementation of a couple of methods and the
definition of a few variables, as shown in the listing 2.1.

This user-friendly approach encourages the development of personalized
environments, allowing developers to customize environments to their specific

19

20 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

needs, and facilitating experimentation and innovation in reinforcement learn-
ing research.

class CustomEnvironment(gymnasium.Env):

def __init__(self, config):

super().__init__()

self.action_space = ...

self.observation_space = ...

def reset(self):

...

def step(self, action):

...

def render(self):

...

def close(self):

...

Listing 2.1: Defining a custom environment in Gymnasium

The method reset is used to set the environment to its initial state and
returns the first agent observation along with an information dictionary, useful
for debugging and collecting metrics.

In a typical usage scenario, the reset method is called at the beginning of
an episode, guaranteeing that the environment is in a known state before the
agent starts interacting with it. The returned observation allows the agent to
take its first action based on the current state of the environment.

After the agent decides which action to take, based on the observation
in its possession, the method step of the environment is called, passing the
chosen action as parameter. Inside this method are coded how the environment
reacts to the agent actions, and the reward function. For instance, in case of
a two-dimensions environment in which the agent is free to move, in the step
method is called the position update. The step method always returns a tuple
composed by five elements: the next observation of the agent, the reward for
the action, a boolean indicating if the episode is ended, a boolean indicating
if the episode has been truncated and an information dictionary.

The methods render and close, while not essential for basic environment
functioning, provide important additional capabilities. The render method is
used to visually represent the environment, which can be particularly helpful

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 21

for debugging, understanding the agent’s behavior, or just for having a visual
representation of the simulation. The close method is instead responsible for
properly terminating any resources or processes that were opened during the
use of the environment, such as graphical windows or simulation processes.

2.1.2 Action and observation spaces

Defining the action and observation spaces is a fundamental operation
to enable the environment working effectively with a reinforcement learning
framework. The observation space determines the shape of the learning model
input, while the action space represents the set of possible actions the agent
can take in response to the observations, therefore the output of the learning
model.

Action and observation spaces in Gymnasium are defined using specialized
classes provided by the library, such as Box, Discrete, MultiDiscrete, and
MultiBinary. These classes allow the user to specify the range or the set of
admissible values for each one of the two spaces (i.e., action and observation).

Defining a space involves specifying its dimensions and the type of values
it can hold. Each different class serves a specific purpose:

• Box is used to define vectors or matrices, both continuous and discrete.
It requires to specify the shape of the space and the lower and higher
bounds, and it also allows to specify different bounds for each dimension.

Box can be used also for modelling images, as shown in the listing 2.2.

Box(low=0, high=255, shape=(3,512,512), dtype=np.uint8)

Listing 2.2: Gymnasium observation space for a 512x512 RGB image

• Discrete is used to define a space with a finite set of values, often
representing actions or states in environments with a limited number of
choices.

In the example below it is represented the action space used in a two-
dimensional environment for the agent movement, where at each step
the agent can move up, down, left or right.

actions = ["UP", "RIGHT", "DOWN", "LEFT"]

action_space = Discrete(len(actions))

Listing 2.3: Gymnasium action space to handle a four-directions movement

22 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

• MultiDiscrete supports multiple discrete values with multiple axes. It
is the same as Discrete but it works along multiple dimensions.

In the example below, at each step the agent can move up, down, left or
right in three different ways: running, walking, or crawling. The number
of possible combinations is given by the Cartesian product between the
different sets.

direction = ["UP", "RIGHT", "DOWN", "LEFT"]

movement_type = ["RUN", "WALK", "CRAWL"]

action_space = Discrete(np.array([

len(direction),

len(movement_type)]))

Listing 2.4: Example of a Gymnasium MultiDiscrete action space to handle
a three-ways four-directions movement

• MultiBinary supports boolean vector and matrices and it can be used
for modelling masks.

observation_space = MultiBinary([64, 64])

Listing 2.5: Example of a Gymnasium MultiBinary observation space

In addition to the listed fundamental spaces, Gymnasium allows the cre-
ation of more complex and flexible spaces by combining two or more of these
fundamental spaces through composite spaces such as dictionaries (Dict) and
tuples (Tuple). This is particularly useful when designing complex environ-
ments where the observation space may be composed by multiple elements
which may have different type or constraints.

The example below (listing 2.6), shows how is possible to use Dict to model
an action space that allows the agent to move at any direction and speed.

action_space = Dict({

"direction": Box(low=-1, high=1, shape=(2,1), dtype=np.float32),

"distance": Box(low=-np.inf, high=np.inf, shape=(1,1),

dtype=np.float32)

})

Listing 2.6: Example of a Gymnasium action space obtained through Dict

On each one of this spaces, whether it is fundamental or obtained as com-
bination of more simple spaces, it is possible to call the method sample to
get a random value belonging to that space. This is particularly useful for

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 23

initializing values, testing, or simulating random actions during the training
process, providing a straightforward way to generate valid data points within
the defined constraints of the space.

2.1.3 Simulating an episode

Once the methods described in the previous section are properly imple-
mented, simulating the execution of an episode becomes a very straightforward
task. After having initialized the environment, the method reset is called and
the first observation is returned. This observation will serve as first input of
the agent’s policy function. With the environment initialized and the initial
observation obtained, the next step is to enter the main loop of the simulation.
Within this loop, the agent selects an action based on its policy, which could
be a trained model, or even a simple heuristic; the action is then passed to the
environment by calling the step method.

The step method is the core of the interaction between the agent and the
environment. It processes the agent’s action, updates the environment’s state,
and returns several useful information. After having updated the environment
state, the environment is rendered using the render method to have a visual
feedback about what the agent is doing and how its action are affecting the
environment.

The loop continues, with the agent selecting actions and the environment
responding, until either the terminated or truncated flag is set to True. At
this point, the episode is considered complete. To ensure a clean exit from the
simulation, the close method is then called in order to properly shut down
possible external processes or resources.

The below listing (2.7) illustrates the process just described, using a random
policy that selects actions by randomly sampling values from the agent’s action
space.

config_params = ...

env = CustomEnv(config_params)

obs, info = env.reset(seed=3010)

terminated = False

truncated = False

while not terminated and not truncated:

action = env.action_space.sample()

obs, reward, terminated, truncated, info = env.step(action)

env.render()

env.close()

Listing 2.7: Simulating an episode of a Gymnasium environment

24 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

2.2 RLlib

RLlib [15] is a powerful library for reinforcement learning and is part of
the Ray ecosystem [19], an open-source framework designed to simplify dis-
tributed computing. RLlib provides scalable, flexible, and easy-to-use tools for
developing, training, and deploying reinforcement learning models.

RLlib is designed to simplify the often intricate process of reinforcement
learning, abstracting many of the complexities involved in scaling reinforce-
ment learning algorithms across multiple nodes, allowing users to focus more
on developing and fine-tuning their models.

This section contains an overview of RLlib’s functionalities and capabilities.
Starting from a high-level description of the available algorithms, the section
continues by showing methods that can be applied to obtain better results, such
as custom callbacks and curriculum learning. Lastly is presented the RLlib
functionality that allows to handle multi-agent environments, also describing
the main differences with the single-agent case.

2.2.1 Supported algorithms

Algorithms are the main component of RLlib: they link an environment
to a policy, or a set of policies, and aim to optimize these policies based on
episode trajectories.

RLlib supports a wide range of reinforcement learning algorithms, pro-
viding users with the flexibility to choose the most suitable method for their
specific applications. Among the most popular algorithms supported there are
Proximal Policy Optimization (PPO) and Deep Q-Networks (DQN), both of
which are widely used in the reinforcement learning community for their effec-
tiveness and robustness. Beyond PPO and DQN, RLlib also supports many
other algorithms such as Soft-Actor Critic (SAC) [7] and DreamerV3 [8].

Algorithms can be classified in three categories: offline, model-free, and
model-based:

• offline algorithms are used for training agents using pre-collected sam-
ples, therefore they do not need any interaction with the environment;

• model-free algorithms, such as DQN and PPO, are among the most
common and can be further classified in on-policy (policy-based) and
off-policy (value-based);

• model-based algorithm, such as DreamerV3, involve learning a model
of the environment’s dynamics and using this model to plan or simulate
outcomes.

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 25

The table below (2.1) lists the different RLlib algorithm and some of their
characteristics. All the RLLib algorithms, except for DreamerV3, can work
with both TensorFlow and PyTorch as underlying framework, and most of
them are enabled to work in multi-agent environments as well, as shown in the
table below (2.1).

Algorithm Class
Discrete
actions

Contintuous
actions

Multi-Agent

Behavioural
Cloning

Offline ✓ ✓ ✓

Conservative
Q-Learning

Offline ✗ ✓ ✗

MARWIL Offline ✓ ✓ ✓

APPO
Model-free
On-policy

✓ ✓ ✓

PPO
Model-free
On-policy

✓ ✓ ✓

IMPALA
Model-free
On-policy

✓ ✓ ✓

Deep Q-Networks
Model-free
Off-policy

✓ ✗ ✓

Soft Actor
Critic

Model-free
Off-policy

✓ ✓ ✓

DreamerV3 Model-based ✓ ✓ ✗

Table 2.1: Algorithms available in RLlib

Configuring and training an algorithm All the RLLib algorithms share
a common set of configuration parameters in addition to the algorithm-specific
parameters and allow the user to specify custom callbacks which are executed,
for instance, after the end of an episode, or after the training is completed.

Thanks to the very simple APIs, setting up a basic training routine using
RLlib is a straightforward operation, as shown in the listing below (2.8). Each
algorithm has its own algorithm configuration class which follows a builder
pattern to set the different algorithm parameters.

This example shows the minimal structure needed to configure and train a
reinforcement learning agent using RLlib. After having configured the model,
the method build is called and the algorithm is ready to be trained for any
number of training iterations.

In this example, the algorithm is implemented using PyTorch; however,
RLlib does not depend on any specific deep-learning framework and can work

26 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

with both TensorFlow [1] and PyTorch [22], depending on the user’s preference.

from ray.rllib.algorithms.ppo import PPOConfig

config = (

PPOConfig()

.training(

gamma=0.95,

lr=0.001,

train_batch_size=128)

.environment("CartPole-v1")

.framework("torch")

)

algo = config.build()

for _ in range(10):

print(algo.train())

algo.evaluate()

Listing 2.8: Simple reinforcement learning in RLlib using PPO

Parameters tuning The method shown in the listing 2.8 is just one of the
three ways that can be used to configure and train an algorithm.

A second method consists of using the Ray tuning tool, which is part of
the Tune component of Ray. This second solution allows to define a search
space and perform a grid search in order to find the best hyperparameter
configuration.

The example below (listing 2.9) shows how is possible to do so.

from ray import train, tune

config = (

PPOConfig()

.environment("CartPole-v1")

.training(

gamma=tune.grid_search([0.90, 0.95, 0.975]),

lr=tune.grid_search([0.01, 0.001, 0.0001]),

train_batch_size=tune.grid_search(128,512))

.framework("torch")

)

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 27

tuner = tune.Tuner(

"PPO",

param_space=config,

run_config=train.RunConfig(

stop={"env_runners/episode_return_mean": 150.0}

),

)

tuner.fit()

Listing 2.9: Hyperparameters tuning using Ray Tune functionalities

the method fit returns a ResultGrid that can be used to better analyze
the training result and also retrieve checkpoints.

Custom callbacks RLlib offers a powerful way to extend and refine the
training process of reinforcement learning models, based on custom callbacks.
Callbacks provide a mechanism to execute custom code at specific points dur-
ing training, such as before or after each environment step, episode, or training
training, allowing users to monitor and log various aspects of the training pro-
cess.

One common way to use custom callbacks is for monitoring and logging the
training process, but callbacks can also be used to share information between
different policies. By implementing a custom callback, users can track metrics
and statistics that are not included in RLlib’s default output; for instance,
users might use callbacks to log additional performance metrics, such as agent
behavior patterns, or environment interactions. This enhanced monitoring
capability can be crucial for diagnosing issues, analyzing learning trends, and
gaining deeper insights into the training dynamics.

Custom callbacks can also be employed to implement dynamic modifica-
tions to the training process. For example, you can use callbacks to adjust hy-
perparameters on-the-fly based on performance metrics or specific conditions
during training. This flexibility enables adaptive learning strategies where
parameters like learning rates or exploration strategies can be adjusted in re-
sponse to observed performance, potentially leading to more efficient training
and better overall results.

Adding a custom callback requires to extend the DefaultCallbacks class
and add the new defined callback to the algorithm configuration through the
callback method.

In the listing below (2.10) a dummy callback is defined and added to the
algorithm during its configuration.

28 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

from ray.rllib.algorithms.ppo import PPOConfig

from ray.rllib.algorithms.callbacks import DefaultCallbacks

class DummyCustomCallback(DefaultCallbacks):

def __init__(self):

super().__init__()

def on_episode_start(self, *, worker, base_env, policies,

episode, env_index):

...

def on_episode_step(self, *, worker, base_env, policies,

episode, env_index):

...

def on_episode_end(self, *, worker, base_env, policies, episode,

env_index):

...

def on_sample_end(self, *, worker, samples):

...

config = (

PPOConfig()

.environment("CartPole-v1")

.framework("torch")

.callbacks(DummyCustomCallback)

)

algo = config.build()

Listing 2.10: Example of custom callback in RLlib

Curriculum learning Curriculum learning is an advanced reinforcement
learning training strategy that consists in organizing the learning process in a
way that gradually introduces increasingly complex tasks.

The core idea behind curriculum learning is to start with simpler and easier
problems and progressively move towards more complex and difficult ones,
allowing the agent to learn by step. This approach aim to emulate the human
learning process, where basic tasks are mastered before tackling more complex
ones.

In the context of reinforcement learning, curriculum learning involves de-

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 29

signing a sequence of tasks or environments that gradually increase in difficulty.
For example, in a robotic control task, an agent might first be trained in a sim-
plified environment with fewer obstacles and then gradually be exposed to more
challenging scenarios with additional obstacles or more complex dynamics. By
starting with simpler tasks, the agent can build a solid understanding of basic
skills and strategies, which can then be transferred to more complex scenarios.
This staged approach helps the agent avoid the difficulties of starting with a
very challenging task, which might otherwise making learning harder due to
the high complexity.

Curriculum learning also help reducing the risk of an agent getting stuck
in local optima, because the way tasks are structured encourages the agent to
constantly explore new strategies.

RLlib allows to apply curriculum learning to a task, as shown in the ex-
ample below (listing 2.11): after the average episode return is higher than a
certain value, the task of each environment present in the algorithm is updated
to a more difficult one.

from ray.rllib.algorithms.ppo import PPOConfig

from ray.rllib.algorithms.callbacks import DefaultCallbacks

tasks = [...,...,...]

class CurriculumLearning(DefaultCallbacks):

def on_train_result(self, algorithm, result, **kwargs):

task_idx = 0

if result["env_runners"]["episode_return_mean"] > 200:

task_idx = 2

elif result["env_runners"]["episode_return_mean"] > 100:

task_idx = 1

algorithm.env_runner_group.foreach_worker(

lambda ev: ev.foreach_env(

lambda env: env.set_task(tasks[task_idx])))

algo = (PPOConfig()

.environment("CartPole-v1")

.framework("torch")

.callbacks(CurriculumLearning)).build()

Listing 2.11: Curriculum learning in RLlib

30 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

2.2.2 Extension to multi-agent scenarios

RLlib provides support to the previously explained Gymnasium environ-
ments; however, it also supports environments that might require more ad-
vanced setups, such as multi-agent environments.

To create a multi-agent environment in RLlib, the environment must ex-
tend the MultiAgentEnv class provided by the RLlib framework. This class
serves as the foundation for multi-agent environments, offering a structured
way to manage the interactions of multiple agents within a single environ-
ment. Implementing this class requires defining the same core methods and the
same variables that are essential for any Gymnasium environment: reset(),
step(), render(), close(), actions space, and observation space.

When creating a multi-agent environment in RLlib by extending the
MultiAgentEnv class, the methods reset and step do not return simple ob-
jects like in single-agent environments; instead, they return dictionaries where
the keys are the agent ids. In particular, in the observation dictionary only
the observations for the agents that are expected to take an action in the next
step should be included. In the same way, when updating the environment
through the step method, a dictionary containing the different agents’ actions
is expected.

This structure allows each agent to have its own individual observation,
action, reward, and termination status. For instance, after executing the step
method, the environment will return a dictionary that maps each agent’s id
to its respective observation, reward, and done signal. This design ensures
that the environment can handle the simultaneous and independent actions of
multiple agents, facilitating complex interactions and making it suitable for a
wide range of multi-agent reinforcement learning tasks.

Multi-agent interaction dynamics The RLlib API offers significant flex-
ibility in designing multi-agent environments, making it possible to model
various interaction dynamics among agents. Whether the scenario involves
turn-based games, environments where all agents act simultaneously, or a hy-
brid structure, RLlib’s architecture supports it. This flexibility is essential for
accurately simulating complex real-world scenarios or intricate games where
agent interactions vary significantly.

For example, in turn-based games like chess and Go, agents take turns
making decisions. In such cases, during the first turn, only the first agent
takes an action, while in the next turn, only the second agent does.

On the other hand, in environments where all agents act simultaneously,
such as in many real-time strategy games or multi-agent simulations, every
agent selects and executes an action at each environment step.

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 31

Additionally, RLlib supports hybrid solutions where agents may or may
not perform an action at any given moment based on the specific situation.
Agents expected to take an action at a time t are those whose observation
time t-1 was returned.

Handling multiple policies While in single-agent reinforcement learning
a single policy is used, in multi-agent reinforcement learning different agents
may use different policies to select their actions, whether their goal is the same
or not, as depicted in the image below (2.1).

Figure 2.1: Difference in the number of policies between single-agent and multi-
agent scenarios. Source: https://docs.ray.io/en/latest/rllib/rllib-env.html

If not differently specified, all the agents within the environment utilize the
same default policy. Nevertheless it is possible to modify the number of policy
to allow the agents act in different ways.

In the example below (listing 2.12), an algorithm for a custom environment
containing an undefined but fixed number of agents is configured. At each
agent is assigned its own policy, which is determined using the policy mapping
function.

from ray.rllib.algorithms.ppo import PPOConfig

policies = {f"agent-{i}": (None, None, None, {}) for i in

range(n_agents)}

config = (

PPOConfig()

.environment("custom_environment")

.framework("torch")

.multi_agent(

policies=policies,

https://docs.ray.io/en/latest/rllib/rllib-env.html

32 CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES

policy_mapping_fn=(lambda agentId, *args, **kwargs: agentId))

)

algo = config.build()

Listing 2.12: Learning multiple policies in RLLib

It is also possible to specify which policies should be updated and which
ones instead are static by using the configuration parameter
policies to train.

When multiple policies are present, computing an action requires to specify
which one of the policies to use. In the example below (listing 2.13), for each
agent in the previous step observation dictionary is computed an action using
the policy specified by the given mapping function. Once all the actions are
computed, they are passed to the environment through the step and the new
observations are returned along with rewards and termination flags.

actions = {}

for agent in obs.keys():

actions[agent] = algo.compute_single_action(

obs[agent],

policy_id=policy_mapping_function(agent)

)

obs, reward, terminated, _, infos = env.step(actions)

Listing 2.13: Computing actions using multiple policies

Advanced functionalities In addition to what already said, RLlib offers
some advanced functionalities that allow the users to highly customize their
environments and training processes:

• experience sharing: experience sharing in RLlib refers to the ability
of different policies or agents to share and learn from each other’s expe-
riences. This functionality can be particularly advantageous in scenarios
with limited interaction time or when agents face similar challenges, as it
helps in creating a more generalized and effective learning process across
multiple agents.

• grouping agents: grouping agents in RLlib involves organizing agents
into distinct groups based on their goal or characteristics, in order to
manage their interactions and learning processes more efficiently. Agents
group can be defined through the with agent groups function of the
MultiAgentEnv class.

CHAPTER 2. FRAMEWORKS AND TECHNOLOGIES 33

• hierarchical environments: hierarchical environments in RLlib allow
the creation of complex, multi-level learning structures where agents op-
erate at different levels of abstraction. This feature supports the devel-
opment of hierarchical reinforcement learning [23] strategies, where high-
level policies can coordinate the actions of lower-level policies, enabling
the decomposition of complex tasks into more manageable sub-tasks and
facilitating the learning process.

Chapter 3

Contribution

3.1 Problem definition

In the last years, training schemes involving centralized training have been
extensively explored by the researchers, while distributed training has received
much less attention. Nevertheless, as anticipated in the previous chapters,
centralized training is not always a valid solution due to different problems:

• scalability issues: a high number of learning agents makes difficult to
train in an effective way due to the limited resources of the central node.

• communication overhead: centralized training requires frequent com-
munication between the agents and the central node, which can become
a bottleneck, especially in scenarios where the number of agents is high
and the observation space is big.

• limited flexibility: the presence of a central node during the training
limits the flexibility of the network. Moreover, if the central node fails,
the whole learning process does.

• necessity of an accurate simulator: centralized training typically
relies on simulators capable of accurately handle the dynamic of the
environment.

The goal of this work is to compare the effectiveness of different distributed
training strategies that can be applied in those situations in which centralized
training is for some of these reasons not feasible.

To achieve this objective, a custom multi-agent environment was developed
and some experiments were conducted on it, in order to compare the train-
ing performance of different distributed training schemes with the centralized
training scenario one.

35

36 CHAPTER 3. CONTRIBUTION

3.2 Inspected distributed learning strategies

This section outlines the distributed learning strategies that were tested in
this work: independent learners, NN-averaging, NN-consensus and experience
sharing.

3.2.1 Independent learners

Among the tested techniques, independent learners is the most straightfor-
ward approach. In this approach, each agent learns independently and does not
share any information with the other agents, except the information necessary
to compose the observation.

The main advantage of this strategy is the high scalability; in fact, since
agents are completely independent, increasing the number of agents does not
affect in any way the computational burden of a specific node.

Since this strategy does not require to share experience or part of the
network between the agents, it allows for heterogeneous agents: different agents
could adopt different networks or different input shapes without affecting the
correct operating of the collective.

However, this approach comes with significant challenges, especially in sce-
narios in which the interaction and the coordination between the agent is
important such as the one taken in exam. Since each agent is completely
independent, this approach is highly affected from the non-stationarity issue.

3.2.2 NN-averaging

Unlike independent learners, where each agent learns its policy in isolation,
NN-averaging introduces information sharing between agents.

Each agent maintains its own neural network, but periodically averages the
weights with those of the other agents, typically its neighbors. This process
allows the agents to influence each others learning, allowing the development
of more coordinate behaviours. By sharing network weights, agents exchange
knowledge about the environment, helping to mitigate the non-stationarity
problem. The equation below (3.1) describes the process of updating the
weights, where wi

t represents the weights of the agents i at the time t, and
nbrs(i) represents the set of neighbors of the agent i.

wi
t+1 ←−

(wi
t +

∑
j∈nbrs(i) w

j
t)

|nbrs(i)|+ 1
(3.1)

Even though this approach introduces information sharing, it is still very
scalable since the information sharing is normally limited between a small

CHAPTER 3. CONTRIBUTION 37

amount of neighbors; moreover, the amount of shared information can be easily
controlled by choosing how often to share the network.

If the weight sharing is very frequent, agents tend to converge toward the
same policy, potentially reducing the overall performance. On the other hand,
not enough frequent averaging might not provide enough coordination, leaving
the agents too independent. The frequency of the information sharing becomes
therefore an additional hyperparameter of the model that the user has to tune.

NN-averaging can be modified to give more influence to certain agents
based on their performance, for instance the reward they obtained in the last
episodes. By doing the weighted average, agents that perform poorly can
benefit more and learn faster, while agents that perform better are not slowed
from the agents that perform worse, accelerating the learning process and
improving the performance of the entire system.

In the equation below (3.2), the reward of each agent at the time t is used
as the factor for averaging when computing the weights of the step t+1.

wi
t+1 ←−

ritw
i
t +

∑
j∈nbrs(i) r

j
tw

j
t

rit +
∑

j∈nbrs(i) r
j
t

(3.2)

Weighted averaging can also be used to limit the amount of changes in
the agent’s neural network, helping to develop different policies instead of
converging to the same one. For instance, it is possible to assign higher weight
to the agent’s own network (e.g., 0.75) distributing the remaining weight among
their neighbors. By doing so, agents still share information, but at the same
time their network is not completely changed at each iteration.

Both in the weighted-averaging case and in the basic one, the averaging is
done at the end of each training iteration. Each agent share its network with a
fixed set of neighbors that is selected before starting the learning. It is worth
mentioning that if we think the agents network as a graph, where each agent
represents a node, and each connection represents an edge, the resulting graph
is connected; in other words, there are no disconnected subgraphs or isolated
agents.

3.2.3 NN-consensus

NN-consensus is another learning approach based on sharing network’s
weights between neighbors. Differently from NN-averaging, where the resulting
network is the result of a combination of multiple networks, in NN-consensus
the network is chosen as the best performing network between the agent and
its neighbors. In NN-consensus, after each training iteration, each agent evalu-
ates the performance of its own network, shares the result with their neighbors
and then selects as new network the best performing one (equation 3.3).

38 CHAPTER 3. CONTRIBUTION

wi
t+1 ←− wk

t , where k = argmaxj∈nbrs(i)∪i(r
j
t) (3.3)

Like in NN-averaging, the frequency of the updates is a key factor in the
learning process. For instance, if the neighborhood with which the agent shares
its performance consists of the entire network of agents, then at each synchro-
nization step, all agents will end up adopting the same policy. This can lead
to rapid convergence but it might also reduce the diversity of strategies within
the agent population, potentially making the system less robust to changes or
variations in the environment.

Like NN-averaging, NN-consensus has been implemented through a call-
back that is called after each training iteration. As performance metric, the
mean episode reward of the policy has been chosen, while the agent network
structure is the same as the previous method one.

3.2.4 Experience sharing

Unlike NN-averaging and NN-consensus, in which agents share neural net-
work weights, in experience sharing agents share their experience as a list of
tuples of type ⟨initial state, action, final state, reward⟩.

replay bufferit+1 ←− replay bufferit+1 ∪ trajectoryjt ∀ j ∈ nbrs(i) (3.4)

Experience sharing can enhance the learning efficiency especially in envi-
ronments where it may be difficult to get useful information due to sparse
interaction. Through experience sharing, agents can use a broader range of
data, accelerating the learning process. For instance, an agent that has not
encountered a particular scenario yet, can still learn from the experiences of
another agent that instead has.

Another advantage of experience sharing is that by learning from the ex-
periences of others, an agent can reduce the need for extensive exploration, as
it can leverage the knowledge gained by others.

Experience sharing can be done either asynchronously, where agents peri-
odically exchange experiences at fixed intervals, or synchronously, where agents
share experiences in real-time as soon as they occur.

In the adopted strategy, each agent builds its trajectory, and once the
episode is over, it shares the collected information with their neighbors.

Chapter 4

Evaluation

4.1 Introduction to the test environment

The scenario taken into account consists in a “collect the items” task: in
a two-dimensional unbounded world, are located a certain amount of agents
(n agents) and items (n items), as shown in the image below (4.1).

Each agent shares the same goal, that is to collect all the items present in
the environment in the fewest number of steps. Achieving this goal requires
the agents to collaborate effectively, coordinating their movements to optimize
the items collection. This makes the task a pure coordination problem, where
success depends on the agents’ ability to work together.

Figure 4.1: Visual representation of the environment at a generic time instant
t. The red dots identify the items, while the colored encircled dots represents
the agents.

One of the main challenges is to ensure that the agents do not overlap their
intent excessively, for example by aiming to collect the same item as another

39

40 CHAPTER 4. EVALUATION

agent. Instead, the agents should cover the space in an efficient way, avoiding
to leave the items uncollected for too long.

In the following pages are described in detail the characteristics of the
environment, such as action and observation spaces and reward structure.

4.1.1 Configuring the environment

The environment was implemented by extending the MultiAgentEnv class
of the RLlib framework. When creating a new environment, an
EnvironmentConfiguration object is required. This object contains all the
configurable parameters of the CollectTheItems environment and is used to
avoid passing plenty of parameters directly to the environment instance.

Here are listed some of the parameters that is possible to configure:
n agents, n items, spawn area and agent range.

The first two parameters, as previously explained, specify respectively the
number of agents and the number of items. Even though agents are able to
freely move within the environment, each agent and item spawns within an
area of size spawn area × spawn area, which is the same area that is visible
when rendering the environment.

The agent range parameter represents instead the action range of the agent.
When the distance between an item and the agent is less equal than
agent range, the item is considered collected.

Additional parameters related to more specific aspects of this section, such
as action and observation spaces, will be described later.

4.1.2 Observation space

This task considers only homogeneous agents, therefore all the agents have
the same observation space. The observation space currently in use is the
result of multiple tests, aimed to find the combination of data that allows for
the best performance.

The shape of the observation space depends on three parameters speci-
fied in the EnvironmentConfiguration object: visible nbrs, visible items and
memory size.

The parameters visible nbrs and visible items are used to specify how many
agents and how many items the agent is able to see. By adopting this strategy,
the observation size is the same regardless the number of actors or items present
at a generic time t in the environment, therefore is possible to use the same
trained model for different environment configurations.

In particular, each agent knows the relative position of the visible nbrs-
closest agents and of the visible items-closest items. Each one of these relative

CHAPTER 4. EVALUATION 41

positions is defined as a dictionary containing direction and distance from the
object. The direction is specified by a normalized vector, while the distance is
calculated as the norm of the distance vector normalized using this formula:

obs dst from nbr1 = np.log(1 + ||distance vector(agent, nbr1)||)

By normalizing the distance in this way, the trained model is able to work
with environments having different spawn area compared to the one the model
has been trained for.

Since the number of available items decreases over time, sooner or later the
number of items left will be lower than visible items. Since the observation
space must have a fixed size, the remaining items’ observations are filled with
empty values (direction=[0,0], distance=-1).

What described until now contains only spacial information. Adding tem-
poral information can help the agent to better understand how its actions
affect the environment. Temporal information can be added by setting the pa-
rameter memory size higher than one. For instance, if memory size is three,
at each observation the agent perceive the environment status at the time t,
t-1 and t-2. This is realized by wrapping what described before in a dictionary
that has as many keys as memory size.

The resulting observation space comprehensive of memory size becomes
the following:

direction = Box(low=-1, high=1, shape=(2,1), dtype=np.float32)

distance = Box(low=-np.inf, high=np.inf, shape=(1,1),

dtype=np.float32)

nbrs = Dict({f"nbr-{i}": Dict({"direction": direction, "distance":

distance}) for i in range(self.visible_nbrs)})

items = Dict({f"item-{i}": Dict({"direction": direction, "distance":

distance}) for i in range(self.visible_items)})

time_t_obs = Dict({"nbrs": nbrs, "items": targets})

obs_space = Dict({f"t[-{t}]": time_t_obs for t in range(0,

self.memory_size)})

Listing 4.1: Observation space of a generic agent

Since the observation contains nested dictionaries, which are not directly
supported from RLlib algorithms, before returning the observation, the method
flatten space is called to transform the observation in a list.

42 CHAPTER 4. EVALUATION

4.1.3 Action space

Experiments were conducted using both PPO and DQN. Since DQN does
not support a continuous action space, two different formulations were im-
plemented: the first based on continuous actions and the second on discrete
actions.

Continuous action space The continuous action space is defined in a sim-
ilar way as the observation space explained before: the first component repre-
sents the direction of the movement, while the second one the speed.

In the setup below (listing 4.2), the direction component is a vector nor-
malized within the range [-1.0, 1.0], which determines the direction in which
the agent will move (the first component represents the movement along the
x axis, while the second on the y). The speed component, ranges from 0.0 to
1.0 and controls how fast the agent moves in the specified direction.

def action_space(self, agent):

direction = Box(low=-1.0, high=1.0, shape=(2,1),

dtype=np.float32)

speed = Box(0.0, 1.0, dtype=np.float32)

return flatten_space(Tuple([direction, speed]))

Listing 4.2: Continuous action space definition

Discrete action space The discrete action space depends on two param-
eters of the EnvironmentConfiguration object: movement sensitivity, and
speed sensitivity. In particular, the space is defined as follow:

def action_space(self, agent):

return Discrete(self.movement_granularity *

self.movement_granularity * self.speed_granularity)

Listing 4.3: Discrete action space definition

The parameter movement sensitivity determines the number of possible
movement directions available to the agent. For instance, if
movement sensitivity=3, the agent can move in one of eight directions: up,
down, left, right, up-left, down-left, up-right, down-right, or choose to not
move at all. The same concepts applies to speed sensitivity but mapping the
values in the range [0,1]. Increasing one of those values, allows the agent to
move more smoothly.

Since the environment was originally designed to handle continuous actions,
a function to convert discrete actions in continuous was implemented, as shown

CHAPTER 4. EVALUATION 43

in the listing below (4.4).

def __continuous_action(self, discrete_action):

component_1 = (discrete_action // (self.movement_sensitivity *

self.speed_sensitivity)

component_2 = (discrete_action % (self.movement_sensitivity *

self.speed_sensitivity)) // (self.speed_sensitivity)

component_3 = discrete_action % self.speed_sensitivity

return [(2*(component_1 / (self.movement_sensitivity-1))-1),

(2*(component_2 / (self.movement_sensitivity-1))-1),

(component_3) / float(self.speed_sensitivity-1)]

Listing 4.4: Converting discrete actions in continuous actions

4.1.4 Interacting with the environment

Initializing the environment When calling the method reset, the envi-
ronment is set to its initial state: at each agent is assigned a random position
within the spawn area and the same is done for the items. Even though the
spawn position is always random, it is possible to pass a seed to the reset
method. This allows to compare different setups in a fair way and replicate
tests using the same initial state.

Updating the environment When the method step is called, the following
procedure is executed:

1. the position of each agent present in the actions’ dictionary is updated
according to the action. Since the environment does not have boundaries,
the agents can freely move as far as they want.

2. any item located within the action range of any agent is marked as col-
lected.

3. the new observations are produced.

4. the agents’ rewards are computed.

5. if all the items have been collected, terminated[‘ all ’] is set to true,
to notify who called the step method that the episode is over. This is
the only possible way for an episode to end successfully; until this does
not happen, all the agents keep performing actions.

44 CHAPTER 4. EVALUATION

However, an episode can also end when the number of steps reach
max steps. This parameter is passed during the environment creation
through the EnvironmentConfiguration object.

Rendering the environment The base class CollectTheItems does not
implement the method render. In order to be able to visualize the environ-
ment, the environment must be a RenderableCollectTheItems instance.

This class extends the base class by adding the possibility to visualize the
current environment status through a canvas. At the object creation, at each
agent is assigned a color and when calling the render method, both agents and
uncollected items are shown.

Since the environment is unbounded, only a portion of it can be shown to
the user. In particular, the visible region goes from the point (0,0) to the point
(spawn area,spawn area). If an agent moves outside this area it can not be
seen anymore until it does not move back to the visible area.

The image below (4.2) shows the evolution of the environment during the
episode. The small red dots represent the items, while the other dots represent
the agents. The big circle around each agent represents the agent’s action
range.

Figure 4.2: Evolution of the environment in 1, 15 and 30 steps

4.1.5 Reward structure

The reward of each agent is calculated as the sum of five components:

• Agents are penalized when their action areas intersect. If two agents’
action areas intersect, both agent are penalized by a factor of -2, therefore
this reward ranges from zero (no intersections) to -2*(n agents-1) in case
of multiple intersections.

The idea of this component is to maximize the covered area avoiding
multiple agents covering the same part of the environment.

CHAPTER 4. EVALUATION 45

• Agents are penalized at each step by a factor step penalty defined in
the environment configuration.

The value of this penalization is therefore constant, but it can be up-
dated using the increase step penalty method if adopting a curricu-
lum learning approach.

• Agents are rewarded if they move toward one of the visible targets. In
particular, is calculated the difference between the old and the new dis-
tance of the visible targets and the best value is taken and multiplied by
a factor of three. If all the values are negative, this component is zero.
Since each agent can move at most one unit at the time, the max value
of this component is three.

• Agents are reward if they increase the distance from their neighbors. In
particular, it is computed the difference between the new and the old
distance between an agent and their visible nbrs-closest agents. After
that, is computed the average and the the result is divided by two. If
the result is negative, the component is set to zero, therefore this reward
can range between zero and one.

This component encourages agents to move toward different target com-
pared to their neighbors, allowing for better coordination strategies.

• Agents are rewarded for any visible item that has been collected whether
they personally collected it or another agent did. The reward for col-
lecting an item is 100, therefore this reward can range from zero to
100*visible items.

This strategy encourages the agent to develop a cooperative behaviour.
On the opposite, if only the agent who physically collects the item was
rewarded, competitive behaviors would emerge.

4.2 Experimental setup

The experiments were conducted using the version 2.22.0 of ray and the
version 0.29.1 of gymnasium, while as underlying machine learning framework
it was used torch (version 2.3). The source code can be found in the repository
below1.

To ensure a fair and accurate comparison of the different algorithms, each
algorithm was initialized with the same seed, using the debug configuration
parameter offered by ray. Four model instances were trained for each one of the

1https://github.com/NicoloMalucelli/neighbor-based_MARL

https://github.com/NicoloMalucelli/neighbor-based_MARL

46 CHAPTER 4. EVALUATION

algorithms, using the seeds 2908, 3010, 911, and 2312. The final comparison
between the algorithms was done using the average performance across the
different runs.

In order to understand how this distributed strategies perform compared
to centralized training models, a fully centralized approach was employed as a
baseline. In this centralized setup, all agents were trained on a shared policy,
allowing them to learn in a coordinated manner as if they were a single entity.

The environment configuration used to conduct the tests is the one shown
below:

env_config = EnvironmentConfiguration(

n_agents = 4,

n_items = 10,

spawn_area = 200,

max_steps=300,

agent_range = 3,

visible_nbrs = 3,

visible_items = 3,

memory_size=3,

movement_sensitivity=5,

speed_sensitivity=5)

Listing 4.5: Environment configuration used in the experiments

Evaluation metrics To evaluate the effectiveness of the different learning
strategies, two main metrics have been used: the average episode length and
the average reward obtained by the agents. The average episode length high-
lights how quick the agents are to achieve their goal, while the average reward
offers a measure of how well the agents are performing within the environment.

Each learning strategy was evaluated under three different aspects: perfor-
mance on the experimental scenario, scalability and communication overhead.

To evaluate scalability, the number of agents and the size of the spawn area
have been progressively increased and the performance metrics above described
were evaluated again considering the new setup.

It is worth mentioning that during the scalability tests, the models were
not trained again, nor fine-tuned. Each one of the realized tests is based on
the models trained with the initial setup described in the listing above (4.5).

Algorithm configuration Each of the approaches discussed in this work
was trained using a DQN configured with the same set of hyperparameters.
The discount factor was set to 0.95, which strikes a balance between prioritizing

CHAPTER 4. EVALUATION 47

immediate rewards and considering long-term gains. The learning rate, instead
was set at 0.001, ensuring a gradual adjustment to the agent’s policy.

The training batch size was set to 32, while the target network update
frequency was set at 500 steps, and both Double Q-Learning and a dueling
network architecture were enabled.

This combination of hyperparameters is the result of a large tuning and
proved to be the best one for this specific task.

4.3 Results

4.3.1 Performance on the experimental scenario

The first test involved comparing the fully centralized method, where all
the agents learn from the same policy, with the fully decentralized approach,
where each agent maintains its own policy and does not share it with the other
agents. This first comparison has been used as a baseline to compare the more
sophisticated distributed methods.

Figure 4.3: Performance comparison: independent learners vs centralized ap-
proach

The left graph (4.3) shows the average number of steps required to com-
plete the task across different training iterations. The blue line represents the
centralized training approach, while the orange line represents the fully decen-
tralized approach. Initially, agents of both models do not manage to complete
the task within the maximum number of steps specified in the environment
configuration, therefore both graphs plateau at 300 steps.

As training progresses, the centralized approach shows a significant reduc-
tion in episode length, stabilizing at around 200 steps after only 30 training
iterations. In contrast, the decentralized learning proceeds more slowly, and
the average number of steps after the fiftieth training iteration is still above
210 steps.

48 CHAPTER 4. EVALUATION

NN-averaging The graphs below (4.4) show the performance of the NN-
averaging learning strategy. As noticeable, the performance increases when
considering an higher number of neighbors. In any case, each approach is
better than the independent learners approach, proving the effectiveness of
this strategy.

Figure 4.4: Performance comparison: NN-averaging vs independent learners

The effectiveness of the weighted average method has also been tested,
using the average agent reward as factor for the mean. Nevertheless, this
strategy did not yield any significant improvement over the base NN-averaging
method and the performance remained essentially the same when compared
with the standard NN-averaging approach for the same number of neighbors
(image 4.5).

Figure 4.5: Performance comparison: NN-averaging vs NN-weighted-averaging

NN-consensus Differently from NN-averaging, NN-consensus seems to per-
form slightly better when the number of neighbors considered for the weight
sharing is lower (image 4.6). This is probably due to the fact that when the
number of neighbors is high, all the agents tend to adopt the same policy after
a training iteration, reducing the exploration of different strategy. Neverthe-
less, at the end of the last training, all the configurations yield almost the same
result.

CHAPTER 4. EVALUATION 49

Figure 4.6: Performance comparison: NN-consensus vs independent learners

Experience sharing Like the previous strategies, experience sharing yields
better results if compared to the independent learners approach. We can no-
tice from the graph below (image 4.7) how the higher number of considered
neighbors determines a faster learning in the initial phase of the training, while
after a certain point the three settings tend to converge at the same average
episode length. The reason why this happens is related to the size of the replay
buffer used to store the experience. For instance, when the replay buffer has
limited capacity, adding an extra neighbor, such as considering five neighbors
instead of four, would not change the performance that much, because a small
buffer would fills up quickly regardless of the number of neighbors, reducing
the advantage of additional shared experiences over time. Using a prioritize
replay buffer could help in this situation, allowing low value experiences to be
discarded as the buffer gets full, and replaced by more valuable information
shared by the neighbors.

Figure 4.7: Performance comparison: experience sharing vs independent learn-
ers

Overall comparison The figure 4.8 compares the various strategies by the
“episode length” metric, taking in account the average between the four train-
ing seeds, as anticipated.

The graph shows that three strategies perform almost the same: centralized
training, NN-averaging with 3 neighbors, and NN-consensus with 3 neighbors,

50 CHAPTER 4. EVALUATION

proving the effectiveness of the distributed training approaches. At the end
of the fiftieth training iteration, the experience sharing method also converges
to the same result of the best strategies even though the learning is slower
especially in the middle phase.

The fully independent agents strategy, serving as a baseline for comparison,
shows how much worse a distributed approach performs if no further strategies
are adopted.

Figure 4.8: Performance comparison of the different learning strategies on the
training case scenario

4.3.2 Scalability

In order to evaluate the scalability of these approaches, different simula-
tions were run using the previously trained models, but adopting different
environment configuration. In particular, the spawn area was set to 500 and
the number of target to 30. The the performance of the different policies was
evaluated using 4, 8, 16, and 32 agents.

For each one of these simulation settings, 100 episodes were run, and the
average and the standard deviation of the previously described metrics were
computed. The results of these experiments are shown in the image below
(4.9).

As it can be noticed from the graph, the average number of steps necessary
to accomplish the goal decreases with the number of agents, following the same
curve for each one of the different strategies.

CHAPTER 4. EVALUATION 51

(a) centralized training (b) NN-averaging

(c) NN-consensus (d) experience sharing

Figure 4.9: number of episodes to complete the task using the different strat-
egies and a varying number of agents: 4, 8, 16, and 32.

It is worth to mention that since the distributed training of the model
was done with four learning agents, the number of produced policies is four.
Nevertheless, the number of agents in some of these experiments is higher than
four, meaning that multiple agents adopt the same policy. This creates some
sort of unintentional coordination between the agents having the same policy,
in a similar way to the fully centralized approach.

In particular, each agent i utilizes the policy i%4, therefore in the 32 agents
scenario, four agents are using the policy A, four the policy B, and so on.

This mechanism can actually be useful in scenarios in which new agents
join the environment later. Instead of starting the learning from scratch, the
new agent uses the policy of another agent as starting point for its training,
avoiding that part of the training in which the agent performs bad.

These box-plots (image 4.10) help visualizing the difference in performance
between the different approaches when the number of agent increases. As
it can be noticed, the performance are quite similar, confirming the results

52 CHAPTER 4. EVALUATION

obtained before (graph 4.8). Nevertheless, some of these approaches seems to
give slightly more confident results if compared to the others.

(a) 4 agents (b) 8 agents

(c) 16 agents (d) 32 agents

Figure 4.10: Comparing the scalability of the different learning strategies as
the number of agents increases

4.3.3 Communication overhead

The communication overhead depends on a vast range of parameters, such
as the frequency of the communication, and the number of considered neigh-
bors; however, some general consideration can still be done based on the con-
sidered test case.

For the same communication setup (i.e., number of neighbors and fre-
quency), this implementation of NN-consensus always requires less informa-
tion sharing than NN-averaging. In NN-averaging, in fact, each agent has to
receive the weights of everyone of its neighbors in order to be able to compute
the average network. In NN-consensus, instead, the communication is divided
in two phases: in the firth stage, each agent sends to their neighbors its av-

CHAPTER 4. EVALUATION 53

erage performance; then the agent selects among its neighbors the one having
the highest performance and asks for its weights. By doing so, at each step,
each agent receives just one set of network’s weights, instead of one for each
neighbors as it happens in NN-averaging.

Comparing experience sharing is more difficult since the information shared
are not of the same kind as NN-averaging and NN-consensus; however, this
strategy can reduce the communication load since the amount of information
shared is normally smaller than the full model parameters. The communication
overhead can still be significant if the agents have to frequently exchange large
volumes of experience data. Some additional techniques can be used in order
to reduce the amount of shared information; for instance, an agent may send
to its neighbors only the experiences that are actually relevant, instead of the
whole episode.

When evaluating experience sharing, an additional consideration must be
taken in account: the security of the information. While in NN-averaging
and NN-consensus, the information are embedded in the network weights, and
therefore not interpretable, in experience sharing the agent directly shares
tuples of the type ⟨state, action, state, reward⟩. This can be problematic in
scenarios in which the information are valuable and must be kept secret.

Figure 4.11: Amount of shared information across different training strategies
and an increasing number of neighbors

54 CHAPTER 4. EVALUATION

The graph 4.11 compares the amount of information that each agent re-
ceives at each sharing step in relation to the number of considered neighbors.
As shown, NN-consensus results in a flat graph, since the amount of infor-
mation remains constant regardless of neighborhood size. In contrast, the
communication overhead for NN-averaging and experience sharing increases
with the number of neighbors, making these algorithms less efficient as the
neighborhood size grows.

Conclusions

This thesis explored the application of Multi-Agent Reinforcement Learn-
ing in distributed environment with the main goal of finding a better and
more scalable alternative to the centralized training approach, which suffers
from scalability issues as the number of agents in the environment increases.

The work began by examining the theoretical foundation of reinforcement
learning, starting with considering simple scenarios involving of a single agent,
and then moving toward multi-agent scenarios.

To test the effectiveness of distributed learning approaches compared to the
fully centralized scenario, a custom test environment was defined, and agents
were trained using different distributed strategies: independent learners, NN-
averaging, NN-consensus and experience sharing. Each one of these strategies
was then compared with the fully centralized training, in which each agent
shares the same common policy.

The evaluation showed how some of these strategies were able to reach
the same performance of the centralized training approach in the considered
test case scenario, outclassing the simplest form of distributed training: the
independent learners approach. In particular, NN-averaging and NN-consensus
are the ones that performed better, achieving very good results after only 35
training iterations. Experience sharing required more training iterations to
achieve the same results as these methods, but on the other hand, it required
lower communication between the agents. This shows that performance is
strictly related to the amount of shared information: the more information is
shared, the faster the learning becomes.

In conclusion, this thesis contributed to understanding how different MARL
strategies can be effectively applied in distributed environments. While cen-
tralized approaches provide advantages in terms of coordination and efficiency,
their practical limitations make distributed strategies more appealing for large-
scale, real-world applications.

Future works could focus on evaluating the tested approaches across multi-
ple environments, providing a more comprehensive understanding of how well
the different MARL strategies generalize to a wider variety of tasks. It would
also be valuable to explore the adaptation of policies in an online setting,

55

56 CONCLUSIONS

such as through transfer learning, studying how well policies trained in one
environment can be transferred and fine-tuned in a new unseen environment.
Additionally, comparing other state-of-the-art algorithms, such as Proximal
Policy Optimization (PPO), could provide better insights into the effective-
ness of neighboring-based distributed learning methods.

Acknowledgements

This thesis represents for me the end of my academic journey, so I wish to
thank all the people that supported me during this important stage of my life.

First and foremost, I would like to thank my family, because without you,
none of this would have been possible. Not only you always let me free choice
about what do to of my life, but you also did everything you could to help me
achieve it, and I am really grateful for that.

I also want to thank all of my friends for having make my study path less
difficult and more enjoyable. You have always been there when I needed you,
and I will never be able to thank you enough.

Lastly, I would like to give a special thanks to all the people I met in Oulu.
Even though we did not share that much time together, every moment was
quality time: I lived in Oulu the best days of my life, and the credit is also
yours, so thank you. I will never forget you.

57

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[2] Gianluca Aguzzi, Mirko Viroli, and Lukas Esterle. Field-informed re-
inforcement learning of collective tasks with graph neural networks. In
2023 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), pages 37–46. IEEE, 2023.

[3] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A compre-
hensive survey of multiagent reinforcement learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(2):156–172, 2008.

[4] Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari,
Daniele Giardino, Marco Re, and Sergio Spanò. Multi-agent reinforce-
ment learning: A review of challenges and applications. Applied Sciences,
11(11):4948, 2021.

[5] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learn-
ing: a survey. Artificial Intelligence Review, 55(2):895–943, 2022.

[6] Chaoyi Gu, Varuna De Silva, Corentin Artaud, and Rafael Pina. Em-
bedding contextual information through reward shaping in multi-agent
learning: A case study from google football. In 2023 IEEE 13th Interna-
tional Conference on Pattern Recognition Systems (ICPRS), volume 57,
page 1–8. IEEE, July 2023.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In International conference on machine learn-
ing, pages 1861–1870. PMLR, 2018.

59

60 BIBLIOGRAPHY

[8] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap.
Mastering diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

[9] Hado Hasselt. Double q-learning. Advances in neural information pro-
cessing systems, 23, 2010.

[10] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for par-
tially observable mdps. In 2015 aaai fall symposium series, 2015.

[11] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent
modeling in deep reinforcement learning. In International conference on
machine learning, pages 1804–1813. PMLR, 2016.

[12] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-
forcement learning: A survey. Journal of artificial intelligence research,
4:237–285, 1996.

[13] Alan F. Karr. Chapter 2 markov processes. In Stochastic Models, volume 2
of Handbooks in Operations Research and Management Science, pages 95–
123. Elsevier, 1990.

[14] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in
neural information processing systems, 12, 1999.

[15] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Joseph Gonzalez, Ken Goldberg, and Ion Stoica. Ray rllib: A com-
posable and scalable reinforcement learning library. arXiv preprint
arXiv:1712.09381, 85:245, 2017.

[16] J F Mertens and Abraham Neyman. Stochastic games. International
Journal of Game Theory, 10:53–66, 1981.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep re-
inforcement learning. nature, 518(7540):529–533, 2015.

[19] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. Ray: A distributed framework for emerging {AI}

BIBLIOGRAPHY 61

applications. In 13th USENIX symposium on operating systems design
and implementation (OSDI 18), pages 561–577, 2018.

[20] Brian Ning, Franco Ho Ting Lin, and Sebastian Jaimungal. Double deep q-
learning for optimal execution. Applied Mathematical Finance, 28(4):361–
380, 2021.

[21] G Papoudakis, F Christianos, A Rahman, and SV Albrecht. Dealing with
non-stationarity in multi-agent deep reinforcement learning. arxiv 2019.
arXiv preprint arXiv:1906.04737, 2019.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32,
2019.

[23] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek.
Hierarchical reinforcement learning: A comprehensive survey. ACM Com-
puting Surveys (CSUR), 54(5):1–35, 2021.

[24] G. Rummery and Mahesan Niranjan. On-line q-learning using connec-
tionist systems. Technical Report CUED/F-INFENG/TR 166, 11 1994.

[25] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952, 2015.

[26] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International con-
ference on machine learning, pages 1889–1897. PMLR, 2015.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[28] Richard S Sutton. Reinforcement learning: an introduction. A Bradford
Book, 2018.

[29] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca
De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus
Krimmel, Arjun KG, et al. Gymnasium: A standard interface for rein-
forcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

62 BIBLIOGRAPHY

[30] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot,
and Nando Freitas. Dueling network architectures for deep reinforcement
learning. In International conference on machine learning, pages 1995–
2003. PMLR, 2016.

[31] Alan R Washburn et al. Two-person zero-sum games. International Series
in Operations Research & Management Science, 2014.

[32] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-
ing, 8:279–292, 1992.

[33] Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8:229–256, 1992.

[34] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar.
Fully decentralized multi-agent reinforcement learning with networked
agents. In International conference on machine learning, pages 5872–
5881. PMLR, 2018.

[35] Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-
agent reinforcement learning with communication. arXiv preprint
arXiv:2203.08975, 2022.

	Introduction
	Background
	Reinforcement Learning
	Overview of the main algorithms

	Multi-Agent Reinforcement Learning
	Key concepts
	Main challenges
	Training schemes

	Frameworks and Technologies
	Gymnasium
	Environments
	Action and observation spaces
	Simulating an episode

	RLlib
	Supported algorithms
	Extension to multi-agent scenarios

	Contribution
	Problem definition
	Inspected distributed learning strategies
	Independent learners
	NN-averaging
	NN-consensus
	Experience sharing

	Evaluation
	Introduction to the test environment
	Configuring the environment
	Observation space
	Action space
	Interacting with the environment
	Reward structure

	Experimental setup
	Results
	Performance on the experimental scenario
	Scalability
	Communication overhead

	Conclusions
	Acknowledgements

