Ricci, Sabrina
(2024)
Dense optical flow estimation for event cameras: application to parcel sorting conveyors.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (7MB)
|
Abstract
Event Cameras respond to brightness changes in the scene asynchronously and independently for every pixel, providing an output that is called ''event''. This camera has many advantages which make it particularly suitable to estimate optical flow. The goal of this project is to estimate a dense optical flow that is pixel-dependent, starting from a set of events. We refer to the state-of-the-art, applying some changes and giving some more detailed mathematical reasoning. We focus on the Steepest Descent and the Accelerated Proximal Gradient algorithms, adding in the second case a Vectorial Total Variation regularizer. Furthermore, we test the method at first on some synthetic data and then on a real dataset generated by the movement of a parcel on a conveyor.
Abstract
Event Cameras respond to brightness changes in the scene asynchronously and independently for every pixel, providing an output that is called ''event''. This camera has many advantages which make it particularly suitable to estimate optical flow. The goal of this project is to estimate a dense optical flow that is pixel-dependent, starting from a set of events. We refer to the state-of-the-art, applying some changes and giving some more detailed mathematical reasoning. We focus on the Steepest Descent and the Accelerated Proximal Gradient algorithms, adding in the second case a Vectorial Total Variation regularizer. Furthermore, we test the method at first on some synthetic data and then on a real dataset generated by the movement of a parcel on a conveyor.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Ricci, Sabrina
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
Event camera,Optical flow,Steepest Descent,Proximal Gradient,Parcel sorting conveyors
Data di discussione della Tesi
31 Ottobre 2024
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Ricci, Sabrina
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
Event camera,Optical flow,Steepest Descent,Proximal Gradient,Parcel sorting conveyors
Data di discussione della Tesi
31 Ottobre 2024
URI
Statistica sui download
Gestione del documento: