
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Matematica

DENSE OPTICAL FLOW ESTIMATION
FOR EVENT CAMERAS:

Application to parcel sorting conveyors.

Tesi di Laurea in Applied Inverse Problems in Imaging

Relatore:
Chiar.mo Prof.
ALESSANDRO LANZA

Correlatore:
Dott. Ing.
MARTINO ALESSANDRINI

Presentata da:
SABRINA RICCI

Anno Accademico 2023-2024

Introduction

Event cameras are bio-inspired visor sensors that react to changes in
brightness in the scene, providing an output with high dynamic range and
minimal blur at high temporal resolution. Thanks to his many advantages,
one of the main applications of this camera is the estimation of optical flow.
This thesis aims to estimate a dense optical flow map to infer depth.
Many studies are being carried out about this subject, we will refer to the
state-of-the-art article [1], applying a few changes. The goal is to provide
more specific mathematical reasoning and show the algorithms used. More-
over, this theory will be applied to a particular scenario: the estimation of
the height of a parcel moving on a conveyor with fixed and known velocity.

In Chapter 1, we are going to explore the mathematical model of the
event camera and its method of work. Then we’re going to consider the
optical flow estimation problem with a focus on the most used technique of
contrast maximization. We will present our applied problem, analyzing the
linear transformation to calibrate a camera with respect to the world frame.

In Chapter 2 we are going to present the first method we have tested and
the reasons why it hasn’t worked. After a brief introduction to variational
models we study the multi-reference objective function proposed in [1] and
the computation of its gradient.

In Chapter 3 we will analyze the three algorithms used: Steepest De-
scent, (Accelerated) Proximal Gradient, and Alternating Direction Method
of Multipliers combined into a convergence analysis.

In Chapter 4 we will apply the algorithms presented in the previous chap-

i

ii INTRODUCTION

ter to some synthetic data at first and then to two datasets of real data.

This project is mostly been developed during the internship at the com-
pany Datalogic S.p.A., which has been providing the Python initial codes
and the datasets of real data.

Introduzione

Le camere ad eventi sono dei sensori di visione che reagiscono ai cam-
biamenti della luminoscità nella scena generando un output caratterizzato
da un elevato intervallo dinamico e da una sfocatura minima anche con alta
risoluzione temporale. Grazie a questi numerosi vantaggi, una delle princi-
pali applicazioni della camera ad eventi è il flusso ottico.
L’obiettivo di questa tesi riguarda la stima di un flusso ottico denso dipen-
dente dalla posizione del pixel per poi ricavare la profondità.
Su queste tematiche sono stati svolti numerosi studi, nello specifico in questo
progetto faremo riferimento allo stato dell’arte [1], con l’aggiunta di alcune
modifiche. Lo scopo è quello di fornire maggiori spiegazioni matematiche e
mostrare nello specifico i diversi algoritmi applicati. In particolare testeremo
questi risultati a una specifica applicazione che riguarda il passaggio di un
pacco su un conveyor con velocità fissata e nota.

Nel Capitolo 1 andremo ad approfondire il modello matematico e il fun-
zionamento di una camera ad eventi. Sucessivamente considereremo la risoluzione
del problema riguardante la stima del flusso ottico, concentrandoci sulla tec-
nica maggiormente usata: il contrast maximization degli eventi. Presenter-
emo poi il nostro specifico caso di applicazione del metodo, analizzando le
trasformazioni lineari per calibrare la camera rispetto il ristema di riferimento
del conveyor.

Nel Capitolo 2 presenteremo il primo modello testato e i motivi per cui
non è risultato corretto. Dopo una veloce introduzione sui metodi variazion-
ali, studieremo la funzione obiettivo multi-reference focus proposta da [1],

iii

iv INTRODUZIONE

soffermandoci sul calcolo del suo gradiente.

Nel Capitolo 3 analizzeremo i tre algoritmi proposti: il metodo di discesa
gradiente, del gradiente prossimale accelerato e non e dei moltiplicatori con
direzione alternata uniti allo studio sulla loro analisi di convergenza.

Nel Capitolo 4 applicheremo gli algoritmi proposti nel precedente capitolo,
prima ad alcuni esempi con i dati sintetici e poi a due dataset di dati reali.

Questo progetto nasce durante il percorso di tirocinio svolto presso l’azienda
Datalogic S.p.A. che ha reso disponibile il codice Python iniziale e il dataset
dei dati reali.

Contents

Introduction i

Introduzione iii

1 Optical flow estimation by event camera 1

1.1 Event Camera . 1

1.1.1 Data acquisition model 4

1.2 Optical flow estimation and related work 5

1.3 Depth estimation for 3D model 10

1.3.1 Forward imaging model 10

1.3.2 3D model of interest 13

2 The considered estimation model 15

2.1 First (unsuccessful) attempt 15

2.2 Variational models for optical flow 18

2.3 Multi reference Focus Objective Function 21

2.3.1 Computation of the gradient of the loss function 25

2.3.2 Boundary conditions 30

2.4 Estimation with constant velocity 31

3 Optimization Algorithms 35

3.1 Steepest Descent . 35

3.1.1 Line search-based algorithm 35

3.2 Proximal Gradient Method . 43

v

vi CONTENTS

3.2.1 Preliminary theory . 43
3.2.2 Composite Optimization 47
3.2.3 Vectorial Total Variation regularizer 54

4 Experimental Results 61

4.1 Main contributions . 61
4.2 Experiment 1 on synthetic data. 62

4.2.1 A variation of Experiment 1 78
4.3 Experiment 2 on synthetic data 80
4.4 Test on real data . 92

4.4.1 Dataset 1: camera aligned to the world frame 95
4.4.2 Dataset 2: camera rotated with respect to the world

frame . 99

Conclusions and future work 107

Bibliography 109

Chapter 1

Optical flow estimation by event

camera

In 1991 C. Mead and M. Mahowald published an article in the Scientific
American where they presented the new ’Silicon Retina’ [2]. Here appeared
also the first image taken with the one that after will be called ’Event Cam-
era’.
This new camera was inspired by the neural architecture of the eye, which
defined the start of the field of neuromorphic engineering.
Event cameras had many advantages over conventional frame cameras but
have become commercially available only since 2008. Now their potential, in
particular for high-speed and high dynamic range scenarios is understood.
Still, the difference in operating from frame cameras brings the necessity to
develop new methods to process their output.

1.1 Event Camera

The Event Camera (or silicon retina neuromorphic camera or dy-

namic vision sensor) responds to brightness changes in the scene asyn-
chronously and independently for every pixel.
The camera collects a sequence of events (or spikes), each of them containing

1

2 1. Optical flow estimation by event camera

Figure 1.1: Comparison between frame camera and event camera regarding the

capture of the scene (Rebecq, Gallego, Mueggler, Scaramuzza [3]).

the pixel location, the time stamp, and the change of brightness.
When an event occurs in a pixel, it memorizes the brightness and keeps mon-
itoring the scene’s luminosity waiting for a sufficiently big change. When this
happens, another event is generated.
Events cameras are data-driven sensors, that is the output depends on the
amount of motion in the scene, then generation per second of the events is
proportional to the velocity of the motion. The sensor quickly reacts to the
visual stimuli: the events are timestamped with microsecond resolution and
sub-millisecond latency.
The incident light at a pixel is the result of scene illumination and surface re-
flectance. Usually, illumination is assumed to be constant then the changes in
the brightness are caused by reflectance changes which are mostly the result
of the movements of objects in the scene.

Advantages

The main difference between the event camera and the standard frame
camera is the output (Figure 1.1). In the first case, the full image is acquired
at a fixed frame rate (commonly expressed in frames per second or fps)
while the second one stores just an event in correspondence with brightness
changes. This implies saving memory for the event camera. In particular,
there are many advantages:

- High temporal resolution. The camera can detect very fast motions

1.1 Event Camera 3

thanks to the quick monitor of brightness changes: events are caught
and stamped with microsecond resolution. For this reason, it is less
sensitive to motion blur.

- Low latency. The latency of a system is the delay between the time at
which the input is sent and the time at which the output is registered,
it measures the velocity of the response. In event cameras each pixel
works independently, as a consequence, as soon as the event is detected,
it is transmitted. It has a latency from 10µs to 10−3s in the real world.

- Low power consumption. Redundant data are removed, then the power
can be used only for brightness changes.

- Hight dynamic range. The dynamic range is the ratio between the
smallest and the largest signal value. It is greater than 120 dB, indeed
pixel detection works in very dark as well as very bright environments.
This happens because events are detected with a logarithmic scale of
intensity.

On the other hand, there are also some disadvantages:

- Events cameras are expensive (about 10ke)

- Events are asynchronous and sparse while images are synchronous and
dense, so standard imaging methods cannot be applied to event cam-
eras.

- The detection of events depends on the brightness and also on the
relative motion between the scene and the camera.

- Event cameras are noisier than other vision sensors.

Summing up, event cameras in some aspects are already much more conve-
nient than frame ones, moreover, finding methods and algorithms to resolve
the previous challenges would improve even more the obtained results.

4 1. Optical flow estimation by event camera

1.1.1 Data acquisition model

Definition 1.1.1. We define the brightness as L := log(I) where I repre-
sents the intensity.

The output of an event camera is a collection of events E = {ek}Ne
k=1 with

ek := {xk, tk, pk} ∀k = 1, ...Ne. In particular:

• xk = (ik, jk) represents the pixel location,

• tk is the time at which the event happens,

• pk := sgn
(
∂I

∂t
(xk, tk)

)
∈ {+1,−1} is the polarity which is defined as

the sign of the brightness change compared to the brightness of the
previous event in the same location.

We consider a temporal threshold C > 0, called contrast sensitivity,
which is fixed, usually between 10 to 50 percent illumination change. The
change in brightness at the pixel location x is represented as

∆L(xk, tk) = |L(xk, tk)− L(xk, tk −∆tk)| > pkC

where ∆tk is the time elapsed since the last event in xk. A new event is
generated when |∆L(xk, tk)| > C (Figure 1.2).

For small ∆tk the brightness increment can be approximated using Tay-
lor’s expansion:

∆L(xk, tk) ≈
∂L

∂t
(xk, tk)∆tk (1.1)

⇒ ∂L

∂t
(xk, tk) ≈

∆L(xk, tk)

∆tk
=

pkC

∆tk
.

This representation considers the temporal derivative of L and represents an
indirect way of measuring brightness.

Proposition 1.1.2. Assuming constant illumination, events are generated
by moving edges.

1.2 Optical flow estimation and related work 5

Figure 1.2: Graphical representation of the model of event generation. Every time

the brightness changes its value more than a fixed threshold C a new event is

generated with positive (if brightness is increasing) or negative (if brightness is

decreasing) polarity (G. Gallego [4]).

Proof. Suppose that the pixel location x is also a function of t. By the
assumption of constant brightness, we get the so-called optical flow constraint
equation:

∂L

∂t
(x(t), t) +∇xL(x(t), t) · ẋ(t) = 0.

Now we set ẋ = v and using (1.1) we obtain:

∆L(x(t), t) ≈ −∇xL(x(t), t) · v∆t = −∇xL(x(t), t) ·∆x.

This is equivalent to saying that, for a small increment in time, the inten-
sity increment is caused by −∇xL(x(t), t) moving with velocity v, over a
displacement ∆x.

1.2 Optical flow estimation and related work

Events-based cameras are suitable for estimating optical flow.

Definition 1.2.1. We define optical flow as the distribution of the apparent
velocities of objects caused by the relative motion between an observer and
the scene.

6 1. Optical flow estimation by event camera

Optical flow estimation is the problem of computing the velocity of objects
without having any information about the scene motion.
In standard cameras, it is measured by comparing consecutive frames. In
general, the more a moving object is closer to the camera, the more it will
display apparent motion.

On the other hand, one single event does not have enough information to
estimate optical flow, therefore, they have to be aggregated.
In this case, event cameras are optimal to determine the flow because, as we
have seen in Proposition 1.1.2, events represent moving edges, where the flow
is less ambiguous. Moreover, their time information allows high-speed flow
measurements.

The main problem of optical flow estimation is the expensive computa-
tional cost: instead of determining the flow field over the whole space it is
preferable to determine it only at certain points, which usually are the events’
locations.

Related work

Since optical flow estimation has many advantages in event cameras, much
research has been carried out. At first, has been proposed the adaptation
of frame-based approaches (block matching [5] and Lucas-Kanade [6]), filter-
banks [7], [8], spatio-temporal plane-fitting [9], [10], time surface matching
[11], variational optimization on voxelized events [12] and feature-based con-
trast maximization [13], [14]. In [15] is presented a detailed survey.
The current state-of-the-art approach is artifical neural networks in [16],
[17], [18], [19]-[21], mostly inspired by frame-based optical flow architec-
tures [22], [23]. If spiking-based approaches are not used, the input signal
has to be adapted and the events have to be converted into a tensor repre-
sentation. These learning-based methods can be classified into supervised,
semi-supervised, and unsupervised. The three most common in terms of ar-
chitectures are U-Net [18], [24], FireNet [25], and RAFT [19], [26].
Supervised methods train ANNs in simulations and real data: [19], [24], [26]-

1.2 Optical flow estimation and related work 7

[30]. To match the space-time resolution of the event cameras are required
GT flow. This technique works well in simulations, while there are some
issues with real-world data sets. Indeed because of the large domain gap
between training and test data, there is a performance gap when trained
models are used to predict flow on real data ([28], [31]).
To partially solve this problem, semi-supervised methods use grayscale im-
ages from a colocated camera, for instance, DAVIS camera [32], as a su-
pervisory signal. Images are warped using the flow predicted by the ANN
and their photometric consistency is used as a loss function ([18], [20], [21]).
This supervisory signal can suffer from the limitations of frame-based cam-
eras, such as motion blur and low dynamic range, and can affect the trained
ANNs. EV-FlowNet [18] pioneered these approaches.
Unsupervised methods only use event data. The flow predicted by the arti-
ficial neural network is used to compute an event alignment error that rep-
resents the loss function ([16], [25], [17], [33]-[35]). Zhu et al. [16] extended
EV-FlowNet [18] to the unsupervised setting using a motion-compensation
loss inspired by the average timestamp image in [36]. This U-Net-like ap-
proach has been improved with recurrent blocks in [25], [17]. A FireFlowNet,
a lightweight recurrent ANN with no downsampling, has been proposed in
[25]. More recently, in [17] many variants of EV-FlowNet and Fire-FlowNet
models are considered. Thanks to the recurrent blocks, sequentially process-
ing short-time event frames replaces the usual voxel-grid input event repre-
sentation. Finally, recurrent work [35] builds upon [17], proposing iterative
event warping at multiple reference times in a multi-timescale fashion, which
allows curved motion trajectories.

Contrast Maximization

The main technique used in event cameras to estimate the optical flow is
contrast maximization (proposed in [13]).
Consider an image of dimensions h × w represented by a set of Np pixels
{(i, j)}h,wi,j=1. Given a specific spatiotemporal region of interest, we select a

8 1. Optical flow estimation by event camera

set of events E = {ek}Ne
k=1 with ek = {xk, tk, pk}, ∀k = 1, ..Ne.

Under the assumption of events generated by moving edges and flow locally
constant, we transform the events geometrically according to a motion model
W. Indeed corresponding events are triggered by the same edge, therefore
they lie on the same trajectory. After selecting a reference time tref , we warp
the events according to these trajectories.
We obtain another set of events E ′ = {e′k}Ne

k=1 such that

ek = {xk, tk, pk} 7→ e′k = {x′
k, tref , pk}

where

x′
k = W(xk, tk,v)

according to a candidate velocity v.

Definition 1.2.2. After having obtained the set of warped events E ′, we can
construct a image of warped events (IWE):

H(x;v) =
Ne∑
k=1

bkδ(x− x′
k)

where each pixel x sums the bk of the warped events x′
k falling within it.

• if bk = pk then we sum the polarities of the events along the trajectories

• if bk = 1 then we sum the number of warped events along the trajecto-
ries.

We’ll be using bk = 1 throughout the whole project.

The Dirac delta δ is not differentiable, then it is approximated by a Gaus-
sian distribution:

δ(x− x′
k) ≈ N (x;x′

k, σ
2I).

Then

H(v; (i, j)) =
Ne∑
k=1

N ((i, j);x′
k, σ

2I2) =
Ne∑
k=1

1

2πσ2
exp

(
−(i− i′k)

2 + (j − j′k)
2

2σ2

)
.

1.2 Optical flow estimation and related work 9

Figure 1.3: Representation of the events generated by the movement of a parcel on

a conveyor. On the left the image of H before contrast maximization, and on the

right the image of H after contrast maximization.

In this case, we obtain a differentiable function that is strictly related to the
Euclidian distance and hence to the distance between events. Therefore it is
ideal for optimization but it is very computationally expensive: the Gaussian
contribution has to be computed at every pixel location. If we have an image
of Np pixels and Ne events we need NpNe operations for every function call.

The goal of the contrast maximization framework is to find a warp max-
imizing the alignment of the events caused by the same edges.
From Figure 1.3 we can see the difference before (on the left) and after (on
the right) contrast maximization of a parcel moving on a conveyor. We can
observe that in the first case, events are not aligned: the events generate a
shadow in correspondence with the edges of the image. In the second case,
to the previous set of events is applied a motion model with the velocity that
maximizes the alignment of the events.

Dense optical flow

In particular, we are interested in the estimation of the optical flow that
is not constant but depends on the pixel location of the image plane called
a dense optical flow. In fact:

• the parcel can have a dimension that is not regular, for instance, it can

10 1. Optical flow estimation by event camera

be higher on one side and lower on another one. Then, since the optical
flow depends on the proximity to the camera, we obtain different values
depending on the height.

• the camera could be not well calibrated and this implies different values
of optical flow in each pixel.

Therefore we have:
x′
k = W(xk, tk,v(x))

where {v(x))}x=1,...Np is the flow field on the image plane at tref .

In our specific case, parcels move on a conveyor with fixed velocity. Then
the trajectories followed by the events are straight and the motion model W

can be approximated by translations:

W(xk, tk,v(x)) = xk − (tk − tref)v(x) = xk −∆tkv(x)

where v(x) is a vector with two components representing vertical and hori-

zontal direction, i.e. v(x) =

(
v(1)(x)

v(2)(x)

)
.

1.3 Depth estimation for 3D model

1.3.1 Forward imaging model

To switch from a 3D model to a 2D model and vice-versa we consider the
so-called forward imaging model [37] which is illustrated in Figure 1.4.
We start from 3D world frame reference x̂wŷwẑw and we consider a point P

with coordinates xw = (xw, yw, zw).
The camera lies in this world frame and it has its own reference system x̂cŷcẑc

where the axis ẑc is aligned with the optical axis of the camera. f is the focal
length that is the distance between the image plane and the axis ŷc. If we
assume to know the relative position cw and the orientation between the
camera frame and the world frame then we can obtain the coordinates of P
projected into the image plane.

1.3 Depth estimation for 3D model 11

Figure 1.4: Representation of the forward imaging model of a point P in 3D world

coordinates to 2D camera’s image plane coordinate.

In particular, we can obtain the coordinates of the point P in the camera
frame system xc = (xc, yc, zc) through a 3D to 3D coordinate transformation.
Then we apply perspective projection to obtain the 2D image coordinates
xi = (xi, yi).

We at first assume to know the coordinates of P in the camera system,
by the criterion of similar triangles,

xi

f
=

xc

zc
⇒ xi = f

xc

zc
(1.2)

yi
f

=
yc
zc

⇒ yi = f
yc
zc
. (1.3)

The image plane is defined in pixels, then we have to transform the co-
ordinates from mm to pixels. We set mx and my the pixel densities (i.e.
pixel/mm) in x and y directions, respectively. Moreover, we don’t know the
position in which the optical axis pierces the image plane, say the coordinates
(ox, oy). As a convention, the origin of the image is usually located at one of
its corners. Then we obtain

xpix
i = mxxi + ox = mxf

xc

zc
+ ox

ypixi = myyi + oy = myf
yc
zc

+ oy.

(mxf,myf, ox, oy) are said to be the intrinsic parameters of the camera.

We have obtained a non-linear system, therefore we transform it into a
linear system through the homogeneous coordinates.

12 1. Optical flow estimation by event camera

We write xpix = (xpix, ypix) in homogeneous coordinates x̃pix = (x̃pix, ỹpix, z̃pix)

such that xpix =
x̃pix

z̃pix
and ypix =

ỹpix

z̃pix
where z̃pix ̸= 0.

We set z̃pix = 1, then

x̃pix =


xpix
i

ypixi

1

 =


x̃pix
i

ỹpixi

z̃pixi

 =


zcx

pix
i

zcy
pix
i

zc

 =


mxfxc + zcox

myfyc + zcoy

zc



=


mxfx 0 ox 0

0 myfy oy 0

0 0 1 0



xc

yc

zc

1

 = Mintx̃c. (1.4)

The matrix Mint is called intrinsic matrix and it can be written as Mint =

(K|0) where K is the upper triangular calibration matrix.

Now, we consider the coordinate transformation from the world frame
reference to the camera frame reference. We suppose to know the extrinsic

parameters that are the position cw and the rotation matrix R of the camera
in the world frame and we consider the point P . We can find the vector xc

in the world coordinate frame as:

xc = R(xw − cw) = Rxw + t

where t = −Rcw is the translation vector.
As before we use homogeneous coordinates:

x̃c =


xc

yc

zc

1

 =


tx

ty

tz

0 0 0 1

R3×3



xw

yw

zw

1

 = Mextx̃w. (1.5)

We call the matrix Mext extrinsic matrix.

To sum up, by combining equations (1.4) and (1.5) we obtain the following
relation that allows us to transform 3D coordinates in the world frame to 2D
coordinates in the image frame.

x̃pix = MintMextx̃w = Px̃w

1.3 Depth estimation for 3D model 13

Figure 1.5: Graphical representation of a parcel with height d moving on the

conveyor with velocity vconv. On the top is represented the event-based camera with

focal point F and focal length f . On the image plane is projected the velocity vopt

representing the optical flow. The distance between the camera and the conveyor

is h.

where P is called projection matrix.
If we know the image coordinates and we want to recover the world coordi-
nates, then

x̃w = P−1x̃pix.

1.3.2 3D model of interest

In this project, we have to estimate the depth of a parcel in the scenario
illustrated in Figure 1.5. We consider a conveyor that sorts parcels depending
on their detected bar code, moving with a fixed known velocity. An event
camera is placed stationary over the conveyor. We have the following data:

• h = 1.4m the distance between the focal point F of the camera and
the conveyor;

• f = 5 · 10−3m the focal length of the camera;

14 1. Optical flow estimation by event camera

Figure 1.6: Representation of the events collected by the camera during the passage

of a parcel at a specific time stamp.

• vconv = (v
(1)
conv, v

(2)
conv) = (1.5, 0)m/s the conveyor velocity;

• p = 4.86 · 10−6m the dimension in m/s of one pixel.

We have to estimate the following unknown quantities:

• d the parcel’s height to be estimated;

• vp
opt the optical flow in pixel/s.

We assume that the world frame of the conveyor and the camera frame are
aligned and that the second component of the velocity is null. In this case,
the depth estimation is simplified.
Note that vopt is expressed in pixel/s, then to transform it in meters we
multiply it by the pixel dimension:

vopt = vp
optp

By relation (1.2), (1.3) we obtain

vopt

vconv

=
f

hest

=⇒ hest =
vconv

vopt

f

where hest is the unknown distance between the top of the parcel and F .
From here we can easily obtain the following:

d = h− hest. (1.6)

Chapter 2

The considered estimation model

2.1 First (unsuccessful) attempt

The first idea is to use the pixel location of the events on the image plane
at the reference time instant. In this way, we obtain a loss function to be
minimized, defined as the variance of the geometric position of the warped
pixel locations. Better estimation of v brings to a less dispersion of the x′

k

around its centroid.
We consider the case with constant velocity v.

In particular, given the warped events x′
k we compute the centroid:

C′ :=
1

Ne

Ne∑
k=1

x′
k =

1

Ne

Ne∑
k=1

(xk −∆tkv)

=
1

Ne

Ne∑
k=1

xk −
1

Ne

Ne∑
k=1

∆tkv

= C − v
Ne

Ne∑
k=1

∆tk

=


C(1) − v(1)

Ne

Ne∑
k=1

∆tk

C(2) − v(2)

Ne

Ne∑
k=1

∆tk


15

16 2. The considered estimation model

where C is defined as the centroid of the events ek ∀k = 1, ..Ne.

We define the loss as the variance of the geometric positions of the warped
events:

L(v) = 1

Ne

Ne∑
k=1

||x′
k − C′||22

=
1

Ne

Ne∑
k=1

(x
′(1)
k − C′(1))2 +

1

Ne

Ne∑
k=1

(x
′(2)
k − C′(2))2

=
1

Ne

Ne∑
k=1

(
x
(1)
k −∆tkv(1) − C(1) +

v(1)

Ne

Ne∑
k=1

∆tk

)2

+

+
1

Ne

Ne∑
k=1

(
x
(2)
k −∆tkv(2) − C(2) +

v(2)

Ne

Ne∑
k=1

∆tk

)2

.

We have to solve:

v = argmin
v

L(v).

L is quadratic and strongly convex, then it has a unique global minimizer.
To obtain it, we impose first-order optimality conditions:

∇L(v) = 0.

Let’s compute the partial derivative:

∂L
∂v(1)

=
2

Ne

Ne∑
k=1

[(
x
(1)
k −∆tkv(1) − C(1) +

v(1)

Ne

Ne∑
k=1

∆tk

)(
−∆tk +

1

Ne

Ne∑
k=1

∆tk

)]

=
2

Ne

v(1)
Ne∑
k=1

∆t2k −
v(1)

Ne

(
Ne∑
k=1

∆tk

)2

−
Ne∑
k=1

∆tkx
(1)
k +

1

Ne

Ne∑
k=1

∆tk

Ne∑
k=1

x
(1)
k

 .

With the same calculation, we obtain a similar result for v(2). We set both

2.1 First (unsuccessful) attempt 17

equal to 0, obtaining a linear system with 2 equations and 2 unknowns:

v(1) =

Ne∑
k=1

∆tkx
(1)
k − 1

Ne

Ne∑
k=1

∆tk

Ne∑
k=1

x
(1)
k

Ne∑
k=1

∆t2k −
1

Ne

(
Ne∑
k=1

∆tk

)2
:=

b(1)

a

v(2) =

Ne∑
k=1

∆tkx
(2)
k − 1

Ne

Ne∑
k=1

∆tk

Ne∑
k=1

x
(2)
k

Ne∑
k=1

∆t2k −
1

Ne

(
Ne∑
k=1

∆tk

)2
:=

b(2)

a
.

We observe that the denominator of the two velocity components is the same.

To obtain a more accurate result, we divide the events according to their
polarity. We compute two different loss functions and we sum them:

L(v) = Lpos(v) + Lneg(v).

We obtain a linear system:(
apos + aneg 0

0 apos + aneg

)
=

(
v(1)

v(2)

)(
b
(1)
pos + b

(1)
neg

b
(2)
pos + b

(2)
neg

)
.

The advantages of this method are that it is very easy to solve (it involves

just the resolution of a linear system) and that it doesn’t depend on the
choice of tref . Moreover, we can add some data to adjust the new velocity.

Unfortunately, this method doesn’t work because the outlier events weigh
too much on the final result.
We consider an example with few synthetic events. Suppose we have 11
events moving with the same velocity on a straight line with equation y =

2x + 5 (first plot of Figure 2.1). Applying the explained method we obtain
the correct velocities: as we can see from the second plot of Figure 2.1 all
the events are warped to tref = tmin, where tmin stands for the minimum
timestamp of the events. Now we add to the previous events some noise:

18 2. The considered estimation model

Figure 2.1: Example of synthetic data without noise. On the left are shown the

events moving in the straight line with y = 2x + 5 with velocities v = (vx, vy) =

(1, 2). On the right is represented the same events warped according to the esti-

mated velocity.

a single event moving with different velocity. From Figure 2.2 can be seen
that the events are not warped to the same point anymore, therefore the
estimated velocity is incorrect.
For this reason, we have decided to leave behind this method to consider the
model developed by [1].

2.2 Variational models for optical flow

Before specifically considering the loss function, we are going to make an
introduction about the variational methods applied to the inverse problems,
in which this model is cast.

Definition 2.2.1. A general system or formation model is defined as:
y = N (Φ(x)) where:

• Φ(x) = ϕ(Ax) is the deterministic degradation operator where ϕ(·) is

2.2 Variational models for optical flow 19

Figure 2.2: Example of synthetic data with noise. On the left, the events are

moving on the line y = 2x + 5. On the right, we can see that the events are not

warped to the same point.

the identity or a nonlinear operator and A· is a linear operator;

• N (·) randomic noise operator.

We consider two different models:

• A forward problem is to compute the output, given the input and the
system:

input ⇒ system ⇒ output.

• An inverse problem is to compute the input given the system and out-
put, which is often noisy:

input ⇐ system ⇐ output.

Definition 2.2.2. A model is said to be well-posed by Hadamard def-

inition if there exists a unique solution depending continuously on data. If
these assumptions are not satisfied, the problem is ill-posed.

In particular:

20 2. The considered estimation model

• If noise is not considered, we obtain a deterministic forward model:
y = Φ(x). The corresponding inverse problem is x = Φ−1(y).

• if we consider noise, we have a probabilistic forward model: y = Φ(x)

with p(y|x). The inverse problem becomes x = Φ−1(y) with p(x|y).

The posedness or conditioning of the problem depends on the existence and
properties of Φ−1.

Definition 2.2.3. A variational method consists of the minimization of
an energy function:

x∗ = argmin
x∈D

{F(x; y, A) + µR(x)} subject to y = Ax.

D can be either a vector space Rn (discrete setting) or a function space
(continuous setting). In particular

• R is the regularization term, gives priori information on the input;

• F is the fidelity term that gives information on the data acquisition
model

• µ is the regularization parameter which sets a trade-off between the
regularization and the fidelity.

The most popular class of variational model presents the two terms in
the following form:

R(x) =
n∑

i=1

Φ(gi(x)) where gi(x) = ||(∇x)i||2 and

1. if Φ(gi) = g2i it is a Tikhonov regularizer,

2. if Φ(gi) = gpi it is a Total p−Variation regularizer.

F(x; y, A) = 1
q
||Ax− y||qq.

To derive the variational models we use just the probabilistic definition.
In particular, we consider two different estimations to recover the input x.

2.3 Multi reference Focus Objective Function 21

Consider the forward model where x is known, the maximum likelihood

estimator x∗
ML is obtained by the maximization of the likelihood probability

p(y|x) which is equivalent to minimize the negative log−likelihood function,
i.e.

x∗
ML ∈ argmax

x∈Rn

p(y|x) = argmin
x∈Rn

{−ln(p(y|x)}.

In the maximum a posteriori estimation (MAP), we consider the inverse
model where the output y is given. The prior belief before seeing data p(y)

and the posterior distribution p(x|y) which represents the updated belief on
x after observing some data are known.
From Bayes’ rule we have that

p(x|y) = p(x)p(y|x)
p(y)

.

The maximum posterior estimator x∗
MAP is obtained as a maximization of the

posterior distribution which is equivalent to the minimization of the negative
log−posterior function:

x∗
MAP ∈ argmax

x∈Rn

p(x|y) = argmin
x∈Rn

{−ln(p(x|y))}

= argmin
x∈Rn

{−ln(p(x))− ln(p(y|x)) + ln(p(y))}.

We erase the terms not depending on x and we obtain:

x∗
MAP ∈ argmin

x∈Rn

{− ln(p(x))︸ ︷︷ ︸
R(x)

− ln(p(y|x))︸ ︷︷ ︸
F(x;y,A)

}.

Therefore we have obtained the maximization of the sum of two terms: the
logarithm of the evidence p(x) representing the regularization term and the
log-likelihood representing the fidelity term. Depending on the features of the
probabilistic formation model of these two distributions we obtain different
loss functions.

2.3 Multi reference Focus Objective Function

To estimate the optical flow of a given set of events we have to maximize
the alignment of the warped events, therefore the loss function has to mea-

22 2. The considered estimation model

sure the goodness of the warp motion applied.
In the majority of the literature, it is applied the so-called contrast objec-

tive: the loss is defined as the variance of H, that is

fvar(v) = Var[H(x,v)] =
1

Np

Np∑
i,j

(H(x;v)− µH)
2 =

1

Np

Np∑
i,j

(H(x;v)− µH)
2

(2.1)
with mean

µH =
1

Np

Np∑
i,j

H(x,v).

It has been observed that with very complex flow fields, the warp tends
to accumulate the events in a few pixels. The result is that the objective
function overfits the events. To partly resolve this problem we apply an
alternative loss function proposed by Shiba et al. [1].

Definition 2.3.1. Consider three different reference times:

t = min
k=1,..Ne

{tk}; t = max
k=1,..Ne

{tk}; tmid =
t+ t

2
.

We define
G(v) := ||∇H(v; i, j)||22.

The multi reference focus loss is the average of G at the three difference
reference times, selected before, normalized by the identity warp 4G(0) with
zero flow:

f(v) :=
G(v; t) + 2G(v; tmid) +G(v; t)

4G(0)
.

We use the multi-focus loss function, instead of the contrast objective
because:

• among the proposed objective functions it has the best performance
and converges more easily;

• it is sensitive to permutations of the pixel values in H whereas the
variance is not.

2.3 Multi reference Focus Objective Function 23

Given an image of dimensions h × w, we have to find the velocity that
maximizes the alignment of the events. Thus the problem is reduced to solve
the following optimization problem

v∗ = argmax
v∈Rh×w×2

{f(v)} = argmin
v∈Rh×w×2

{−f(v)}

= argmin
v∈Rh×w×2

{
−G(v; t) + 2G(v; tmid) +G(v; t)

4G(0)

}
. (A)

This model works fine how it is, however, we can add a regularizer to obtain
additional smoothness of the flow, even in regions with few events. Therefore
we obtain a composite optimization problem:

v∗ = argmin
v∈Rh×w×2

{F (v) = −f(v) + µR(v)}.

where λ ∈ R is the regularization parameter to be set. In the experiments of
this project, we are going to consider the Vectorial Total Variation (Section
3.2.3), therefore the optimization problem becomes

v∗ = argmin
v∈Rh×w×2

{
−G(v; t) + 2G(v; tmid) +G(v; t)

4G(0)
+ µ

Np∑
i=1

||(Dv)i||∗
}
. (B)

To simplify calculations, in both the minimization problems (A) and (B) we

have decided to use −f(v), instead of
1

f(v)
as it is proposed in [1].

In this project, we will try to resolve both models: in Section 3.1 we con-
sider the minimization problem (A) applying the Steepest Descent method,
in Section 3.2 we consider the composite problem (B) applying Proximal
Gradient Method and Accelerated Proximal Gradient Method.

Convexity of f

Definition 2.3.2. A function g : Rn → R is said to be convex if and only if
∀θ ∈ [0, 1], ∀x,y ∈ Rn holds

g(θx + (1− θ)y) ≤ θg(x) + (1− θ)g(y). (2.2)

24 2. The considered estimation model

Figure 2.3: Plot of the objective function f(v). The red segment represents the

function θf(v1) + (1− θ)f(v2) by varying θ. The intersection points between the

segment and the function are (v1, f(v1)) on the left and (v2, f(v2) on the right.

The blue part of the plot represents the function f(θv1 + (1− θ)v2). f(v) is non-

convex because the red segment is under the blue section of the curve.

We want to show that in our case the relation (2.2) does not hold and
therefore, the multi-reference focus objective function f is non-convex. We
consider two different constant velocities: v1,k = (1, 1) and v2,k = (2, 2),
∀ event k = 1, ...5. Then, setting θ = 0.5 ∈ [0, 1], v1 = (v1,1, ...v1,5) and
v2 = (v2,1, ...v2,5) we have

f(θv1 + (1− θ)v2) = −1.55 ≰ −2.06 = θf(v1) + (1− θ)f(v2).

The graphical interpretation is presented in Figure 2.3 where we plotted the
objective function f(v). We can observe that the red segment θf(v1) + (1−
θ)f(v2) is under the part of the plot highlighted in blue f(θv1 + (1− θ)v2),
therefore the objective function is non-convex.

The non-convexity of the function implies the non-existence and unique-
ness of a global minimum. Indeed we will observe that applying the Steepest
Descent and the Proximal Gradient algorithms gives as a result also local

2.3 Multi reference Focus Objective Function 25

minima, that don’t necessarily coincide with the most accurate result.

2.3.1 Computation of the gradient of the loss function

Throughout the project, for model (A) and (B) to apply the Stesspest
Descent and the Gradient Descent algorithm, we’ll need the gradient of the
objective function f(v).
We consider an image plane of dimension h× w hence H is an image of the
same dimension. The magnitude of the gradient of the IWE can be written
in the following way:

G(v) = ||DH(v; i, j)||22

where D =

(
Dh

Dv

)
∈ R2Np×Np and Dh, Dv ∈ RNp×Np are coefficients matri-

ces of linear difference operators discretizing horizontal and vertical partial
derivatives of the image H of dimension w × h = Np.

The function G can be written as composition of three different functions:

G(v) = G1(G2(G3(v))),

where in particular:

• G1 : Rh×w → R+ G1(u) = ||Du||22 ∀u ∈ Rh×w

• G2 : RNe×2 → Rh×w G2,i,j(y) =
Ne∑
k=1

N ((i, j);yk, σ
2I2) ∀y ∈ RNe×2,

i = 1, ...h, j = 1, ..w

• G3 : Rh×w×2 → RNe×2 G3,k(v) = xk −∆tkv(ik, jk) ∀v ∈ Rh×w×2,

k = 1, ..Ne.

Therefore the gradient of the objective function f(v) can be computed as:

∇f(v) =
JG(v;t1) + 2JG(v;tmid) + JG(v;tNe)

4G(0)
.

We compute at first JG(v;tref).
To simplify the representation and avoid tensors we vectorize all the variables.
Define:

26 2. The considered estimation model

• xev = (i1, ..., iNe , j1, ..., jNe)
T ∈ R2Ne×1 the vector containing the coor-

dinates of each event

• x′
ev = (i′1, ..., i

′
Ne
, j′1, ..., j

′
Ne
)T ∈ R2Ne the vector containing the coordi-

nates of each warped event

• ∆tev = ((t1 − tref), ...(tNe − tref), (t1 − tref), ...(tNe − tref))

= (∆t1, ...∆tref ,∆t1, ...∆tref)
T ∈ R2Ne

• v = (vec(v(1)), vec(v(2)))T ∈ R2Np×1 is the vectorization of the velocity
referred to each pixel location (i, j) ∀ i = 1, ...h, j = 1, ...w.

We have to compute the gradient of G, i.e.:

JG(v) = JG1◦G2◦G3(v)

= JG1(G2(G3(v)))JG2(G3(v))JG3(v)

= JG1(u)JG2(y)JG3(v).

- Computation of JG3(v) where G3 : R2Np → R2Ne and G3,k(v) = xk −
∆tkv(ik, jk) ∀v ∈ Rh×w×2, k = 1, ..Ne.
The function G3 can be seen in matrix form in the following way:

G3(v) =



i′1
...

i′Ne

j′1
...

j′Ne


=



i1
...

iNe

j1
...

jNe


−



t1 − tref
...

tNe − tref

t1 − tref
...

tNe − tref


⊙



S(1) 0

0 S(2)





v
(1)
1,1
...
...

v
(1)
h,w

v
(2)
1,1
...
...

v
(2)
h,w


where ⊙ represents the Hadamard product (or entry-wise product).
Then

G3(v) = x′
ev = xev −∆tev ⊙ Sv = xev − diag(∆tev)Sv.

In particular:

2.3 Multi reference Focus Objective Function 27

– S =

(
S(1) 0

0 S(2)

)
is a block binary selection matrix of dimension

(2Ne × 2Np) where S(1) = S(2) ∈ RNe×Np and

S(l)
n,m =

1 if ∃ the nth event in pixel location (in, jn) s.t. m = (jn − 1)w + in

0 otherwise

∀ l = 1, 2 n = 1, ...Ne, m = 1, ...Np.
In particular, note that for every row of S there exists at most one
entry equal to 1;

- diag(∆tev) is a (2Ne × 2Ne) matrix whose diagonal is the vector
∆tev.

Then we have:

JG3(v) = −diag(∆tev)S ∈ R2Ne×2Np .

- Computation of JG2(y) where G2 : R2Ne → RNp and G2,i,j(y) =
Ne∑
k=1

N ((i, j);yk, σ
2I2) ∀y ∈ RNe×2.

Consider G2,i,j as a vector of dimension Np and define y = (vec(y(1)), vec(y(2)))T ,
then ∀i = 1, ...h, j = 1, ...w, k = 1, ...Np

∂G2,i,j

∂y
(1)
k

=
1

2πσ2
exp

(
−(i− y

(1)
k)2 + (j − y

(2)
k)2

2σ2

)(
2(i− y

(1)
k)

2σ2

)

=
i− y

(1)
k

2πσ4
exp

(
−(i− y

(1)
k)2 + (j − y

(2)
k)2

2σ2

)
∂G2,i,j

∂y
(2)
k

=
j − y

(2)
k

2πσ4
exp

(
−(i− y

(1)
k)2 + (j − y

(2)
k)2

2σ2

)
.

As a consequence, setting Ci,j,k := 1
2πσ4 exp

(
− (i−y

(1)
k)2+(j−y

(2)
k)2

2σ2

)
, for

i = 1, ...h j = 1, ..w

(JG2)i,j =
(
(i− y

(1)
1)Ci,j,1 · · · (i− y

(1)
Ne
)Ci,j,Ne (j − y

(2)
1)Ci,j,1 · · · (j − y

(2)
Ne
)Ci,j,Ne

)
.

28 2. The considered estimation model

In particular, we construct:

dx =



1− y
(1)
1 . . . 1− y

(1)
Ne

2− y
(1)
1 . . . 2− y

(1)
Ne

...
h− y

(1)
1 . . . h− y

(1)
Ne

...
1− y

(1)
1 . . . 1− y

(1)
Ne

...
h− y

(1)
1 . . . h− y

(1)
Ne


, dy =



1− y
(2)
1 . . . 1− y

(2)
Ne

1− y
(2)
1 . . . 1− y

(2)
Ne

...
1− y

(2)
1 . . . 1− y

(2)
Ne

...
w − y

(2)
1 . . . w − y

(2)
Ne

...
w − y

(2)
1 . . . w − y

(2)
Ne


and

C =
1

2πσ4



exp

(
− (1−y

(1)
1)2+(1−y

(2)
1)2

2σ2

)
. . . exp

(
− (1−y

(1)
Ne

)2+(1−y
(2)
Ne

)2

2σ2

)
exp

(
− (2−y

(1)
1)2+(1−y

(2)
1)2

2σ2

)
. . . exp

(
− (2−y

(1)
Ne

)2+(1−y
(2)
Ne

)2

2σ2

)
...

exp

(
− (h−y

(1)
1)2+(w−y

(2)
1)2

2σ2

)
. . . exp

(
− (h−y

(1)
Ne

)2+(w−y
(2)
Ne

)2

2σ2

)


=

1

2πσ4
exp

(
−dx⊙2 + dy⊙2

2σ2

)
where ·⊙2 is the element wise exponentiation.
Therefore we obtain the following:

JG2 =
(

dx ⊙ C dy ⊙ C
)
∈ RNp×2Ne .

- Computation of JG1(u) where G1 : RNp → R+ and G1(u) = ||Du||22.
The function G1 can be written as:

G1(u) = (Du)T (Du) = uT (DT
hDh +DT

v Dv)u.

Hence:

JG1(u) = 2uT (DT
hDh +DT

v Dv).

2.3 Multi reference Focus Objective Function 29

Implementation of the loss function

In previous sections, we have seen that H is computationally very expen-
sive. In the implementation, to reduce the cost, we apply a truncated square
Gaussian support proposed in [38] that achieves the same accuracy but with
a linear time complexity. In a Gaussian distribution, the 98.9% of the data
falls in a neighborhood of 3 standard deviation of the mean, therefore the
98.9% influence for x′

k is extended for events x up to 3 standard deviation
of x′

k.
For this reason, we use the following function:

H(v;x) =
Ne∑
k=1

N (x;x′
k, σ

2I2) ∀x = ⌊x′
k⌉ ± rσ

where 1 ≤ r ≤ 3.
We will see, in the experiments proposed, that the choice of the dimension of
the kernel has an important impact on the accuracy of the estimation, that
happens because using a truncation means also adding some discontinuities
to the function.
The computation of H has linear time complexity O(Ne) which is indepen-
dent of the size of the sensor.

This choice reduces also the complexity of the matrices dx, dy, C and
as a consequence JG2 . If we set, for instance, r = 3, the derivative of G

has not to be computed at every pixel location. Indeed we are interested
only in pixels falling in the neighborhood of dimension 7 × 7 centered at
x′
k, ∀k = 1, ...Ne.

dx and dy become a sparse Np×Ne matrix where in the kth column we have
at most 49 non-zero entries (24 over ad 24 under the kth element equivalent
to i′k and j′k respectively).
By definition, also C and JG2 become sparse matrix.

30 2. The considered estimation model

2.3.2 Boundary conditions

To construct the matrix D and in particular Dh and Dv that discretize
the partial derivative of H, we have to assume some boundary conditions.
We consider the ones that are more related to the situation we have to handle.
The conveyor moves with constant velocity and at the boundary of the image,
there are noisy events caused by the conveyor. The most logical idea seems to
consider reflective boundary conditions, also called Neumann homogeneous
conditions. In this case, the boundary of the image is reflected preserving
the same sign.

Definition 2.3.3. In particular consider a grid with n points {x0, x1, ..., xn}
and a function f differentiable, the reflective boundary conditions take the
following form:

f ′(x0) = 0, f ′(xn) = 0.

For example, we analyze the one-dimensional case. We want to compute
the matrix d discretizing the approximation of the first order derivative of a
vector x = (x1, x2, ..., xn).
We approximate the first derivative with forward differences:

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

then we have:

for k = 1 : y1 = f ′(x1) = f(x2)− f(x1)

for 1 < k < n : yk = f ′(xk) = f(xk+1)− f(xk)

for k = n : yn = f ′(xn) = f(xn+1)− f(xn) = f(xn)− f(xn) = 0.

Therefore we obtain a bidiagonal matrix:

d =



−1 1

−1 1
.

−1 1

0


∈ Rn×n s.t. y =


y1

y2
...
yn

 = d


x1

x2

...
xn

 . (2.3)

2.4 Estimation with constant velocity 31

In our case, we have to compute the derivative of the matrix of dimension
h × w. Indeed for what concerns the construction of the matrices Dv and
Dh, we create at first the matrix dh ∈ Rw×w and dv ∈ Rh×h with the same
bidiagonal form of (2.3). Then:

Dh = dh ⊗ Ih×h

Dv = dv ⊗ Iv×v

where ⊗ denotes the Kronecker product. Both of the matrices have a block
structure.

2.4 Estimation with constant velocity

We consider now a particular case of the proposed model. We assume
that the optical flow is constant in every pixel, i.e.

v(i, j) = v ∀i = 1, ...h, j = 1, ...w.

This result will be used also as initialization for the estimation of the dense
optical flow.
We consider the situation described in Section 1.3.2, where the parcel is
passed under the event camera. We know the parcel used for the experiments
is 15cm high.
During the acquisition, the camera overall collects more than 1.8 ·107 events.
Obviously, this number of events is too high and will cause an out-of-memory
problem. Moreover, the events are not only caused by the edge movement
of the parcel but also by the noise on the conveyor. Therefore to reduce the
computational time and eventually avoid any outliers problem, we consider
a spatial and temporal region of interest of events. In particular, we select
events with

• time stamp tk ∈ [tstart, tstart+∆t] = [3.68·106, 3.68·106+3·104]µs ∀k =

1, ...Ne

32 2. The considered estimation model

• pixel coordinates jk ∈ [xmin, xmax] = [370, 837] and ik ∈ [ymin, ymax] =

[250, 544] ∀k = 1, ...Ne.

This reduces the dataset to 4.4 ·105 events. In this experiment, it is sufficient
to use the contrast objective function defined in (2.1), therefore we solve:

v∗ = argmin
v∈Rh×w

fvar(v) = argmin
v∈Rh×w

Var[H(x,v)]

where h = ymax − ymin + 1 = 294 and w = xmax − xmin + 1 = 467. We
apply the algorithm L-BFGS-B of the Python library SciPy, providing just
the Jacobian function and the initial guess of optical flow v0 = (0, 0) 1.
After 13 iterations, the method estimates an optical flow of

v∗ = (1250.68164, 20.5165)pixel/s.

Figure 2.4 compares the graphical representation of H with the initial guess
v0 with the same representation with estimated optical flow v∗. We can
observe that the edges appear to be more aligned. To better understand the
accuracy of the results we can directly estimate the associated distance h∗

between the parcel and the camera. It has an estimated value of 1.24953m.
Applying equation (1.6) we obtain that the parcel has a height of:

hparcel = hcamera − h∗ = 1.4m− 1.24953m = 0.15047m.

We can conclude that the method estimates the correct parcel dimension
with an absolute error of 4.7 · 10−4.

1this code has been provided by Datalogic S.p.A..

2.4 Estimation with constant velocity 33

Figure 2.4: Graphical representation of H with the events warped with ini-

tial velocities v = (0, 0)pixel/s (on the left) and estimated velocities v =

(1250.7, 20.5)pixel/s (on the right), plotted on a camera domain of dimension

294× 467.

Chapter 3

Optimization Algorithms

In this chapter, we will analyze the two algorithms that will be used for
the optical flow estimation. In both cases, after a brief introduction to the
related theory, we will examine the algorithms and their convergence analysis.

3.1 Steepest Descent

Firstly we consider the optimization problem described in (A), to solve
it we apply the Steepest Descent Algorithm [39].

3.1.1 Line search-based algorithm

Optimization problems have the following form:

min
x∈S

f(x)

where S is the feasible region and x is the vector of variables.

• If S = Rn it is said to be an unconstrained problem;

• if S ̸= Rn it is said to be an constrained problem.

Optimization problems generate a sequence of candidate solutions xk that
stop when either it can not make any more progress or when it reaches a
solution point with high accuracy.

35

36 3. Optimization Algorithms

In order to solve our problem (A) we will focus on unconstrained opti-
mization.
We consider f : Rn → R, f ∈ C1 (i.e. f is continuously differentiable).

The line search based algorithms are methods characterized by the
following framework:
given the starting point x0, until convergence we do:

1. choose a descent direction pk ∈ Rn, i.e. such that pT
k∇f(xk) < 0

(pk makes an angle of strictly less than π
2

radians with −∇f(xk));

2. determine a step size αk ∈ R such that f(xk + αkpk) < f(xk);

3. update the iteration xk+1 = xk + αkpk.

We obtain different algorithms depending on the choice of the step size
and the search direction.
The algorithm stops when one of the following criteria is satisfied. Given
ε > 0 small, we have:

• Gradient norm: ||∇f(xk)|| < ε, indeed near local minima ∇f(xk) ≈ 0

• Step size: ||xk+1 − xk|| < ε

• Relative objective change:
|f(xk)− f(xk+1)|

|f(xk)|
< ε.

Steepest descent direction

We select the steepest descent direction, i.e. we fix:

pk = −∇f(xk).

The negative gradient maximizes the directional derivatives of f ∈ C1 at xk

along the direction p, s.t. ||p|| = 1.
Indeed by definition of directional derivative

∂f

∂p
(xk) = ∇f(xk)

Tp = ||∇f(xk)||||p|| cos θ = ||∇f(xk)|| cos θ

3.1 Steepest Descent 37

where θ ∈ [0, π] is the angle between ∇f(xk) and p. Then it is minimized

for θ = π and p = − ∇f(xk)

||∇f(xk)||
.

Inexact line search

The next step is to choose αk such that it guarantees a sufficient decrease:

1. constant step size: α = αk ∀k ≥ 0

2. exact line search: αk = argmin
α>0

f(xk + αkpk)

3. inexact line search: we compute different candidates for αk until it does
not satisfy the Armijo sufficient decrease condition (3.1).

It is important to choose the best step size, indeed if the step is too large
the iterates start to oscillate near the minimum (Figure 3.1), and if it is too
short they cannot reach the solution (Figure 3.2). In both cases, the method
cannot converge.
In this project, we will focus on the inexact line search because, with a
constant step size, the method shows oscillations preventing convergence.

Well-definition

The simple condition f(xk+1) < f(xk) is not sufficient to guarantee the
convergence ||∇f(xk)|| → 0. Therefore we have to consider a more complex
condition.

Definition 3.1.1. We define the Armijo sufficient decrease condition

as

f(xk + αkpk) ≤ f(xk) + c1α∇f(xk)
Tpk (3.1)

where c1 ∈]0, 1[(usually it is set as 10−4).

Figure 3.3 represents the graphical motivation of Armijo’s rule. We set
ϕ(α) = f(xk + αkpk), then ϕ′(α) = ∇f(xk + αpk)

Tpk. Consider the plot of

38 3. Optimization Algorithms

Figure 3.1: Example of a function where the chosen step size is too large. Consider

f(x) = x2, we set x0 = 2, pk = (−1)k+1 and αk = 2 + 3
2k+1 . The method cannot

reach the minimum because it oscillates.

Figure 3.2: Example of a function where the chosen step size is too small. Consider

f(x) = x2, we set x0 = 2, pk = −1 and αk = 1
2k+1 . The method cannot reach the

minimum because it stops before.

3.1 Steepest Descent 39

Figure 3.3: Graphical interpretation of the Armijo rule. The dotted line represents

l(α) = f(xk) + c1α∇f(xk)
Tpk. The acceptable α’s values are highlighted down

the graph (Nocedal, Wright [39]).

ϕ(α).
We trace the tangent line to ϕ(α) at the point (0, ϕ(0)), it has equation:

y(α) = ϕ(0) + αϕ′(0) = f(xk) + α∇f(xk)
Tpk.

We set l(α) = f(xk) + c1α∇f(xk)
Tpk. The slope of l(α) is:

c1ϕ
′(0) = c1︸︷︷︸

>0

∇f(xk)
Tpk︸ ︷︷ ︸

<0

> ∇f(xk)
Tpk = ϕ′(0).

To conclude, we select the values of step size that decrease the function but
such that α is not too large.

Definition 3.1.2. Define the Wolfe condition as:

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk

where c2 ∈]c1, 1[.

Figure 3.4 shows the graphical interpretation of Wolfe’s condition.
ϕ′(αk) is the slope of the line tangent to ϕ(α) at (αk, ϕ(αk)).

40 3. Optimization Algorithms

Figure 3.4: Graphical interpretation of the Wolfe’s rule. The dotted line represents

l(α) = f(xk) + c1α∇f(xk)
Tpk. The acceptable α’s values are highlighted down

the graph (Nocedal, Wright [39]).

The desired slope is c2∇f(xk)
Tpk.

By definition c1 < c2 < 0 and ∇f(xk)
Tpk because it is a descent direction,

then

c1∇f(xk)
Tpk > c2∇f(xk)

Tpk > ∇f(xk)
Tpk.

Therefore we have that the desired slope is between the slope of l(α) and the
slope of y(α).

Theorem 3.1.3 (Wolfe’s Lemma). Consider f : Rn → R, f ∈ C1 and
bounded below along {xk + αpk|α > 0}. If 0 < c1 < c2 < 1, then exist a set
I ̸= ∅, I ⊂]0,+∞[such that α ∈ I satisfy both Armijo and Wolfe condition.

The previous lemma assures that if the Armijo and the Wolfe conditions
are satisfied the algorithm is well defined. Remain to prove the convergence.

Convergence

Definition 3.1.4. A function f : Rn →]−∞,+∞] is L smooth over a set
D ⊂ Rn (f ∈ C1,1

L (D)) with L ≥ 0 if it is continuously differentiable over D

3.1 Steepest Descent 41

with Lipshitz continuous gradient, i.e.

||∇f(x)−∇f(y)|| ≤ L||x − y|| ∀x, y ∈ D.

Theorem 3.1.5 (Zoutendijk’s Theorem). Let Ω = {x ∈ Rn | f(x) ≤
f(x0)}, with f ∈ C1,1

L (Ω), bounded below on Ω. Consider the sequence {xk}
generated by Steepest Descent with inexact line search. Then

lim
k→+∞

∇f(xk) = 0.

Moreover, given ε > 0 and kε the first iteration such that ||∇f(xkε
)|| ≤ ε,

then
kε ≤

⌈
1

ε2
f(x0)− flow

c

⌉
is the iteration complexity, where flow is such that f(x) > flow ∀x ∈ Ω and
c = c1(1−c2)

L
.

Remark 3.1.6. This theorem says that every limit point of xk if exists, is a
stationary point, therefore the steepest descent is a globalization strategy. In
addition ||∇f(xk)|| decreases at a rate O

(
1√
k

)
.

Compared to other choices of descent direction, such as Newton or Quasi-
Newton descent, the Steepest descent has the advantage of having a low com-
putational cost because it requires only the computation of the gradient (it
is a first-order algorithm).
However, it has a low convergence, particularly for problems with high-
condition numbers.

Backtracking procedure

The Armijo’s rule is usually combined with the backtracking proce-

dure:
Starting with a candidate α, until the Armijo’s rule is not satisfied we reduce
α by a decaying factor ρ ∈]0, 1[, i.e.

While f(xk + αkpk) > f(xk) + c1α∇f(xk)
Tpk

α = ρα.

42 3. Optimization Algorithms

If the backtracking step fails, it means that the α we are looking for is too
small, indeed the αk satisfying the Armijo condition yields stagnation. By
construction, the backtracking technique avoids small step size, so we do not
need to verify also the Wolfe condition.
As initial stepsize, we se

α0 =
sTk sk
sTk yk

=
(xk − xk−1)

T (xk − xk−1)

(xk − xk−1)T (∇f(xk)−∇f(xk−1))

To sum up, the final Steepest Descent algorithm with inexact line search
is the following:

Algorithm 1 Steepest Descent algorithm
Require: x, f,∇f, kmax, tol > 0, c1 > 0, ρ > 0

Ensure: x∗ s.t. x∗ = argmin f(x)

for k = 0, 1, ...kmax do

p = −∇f(x)

xtry = x+ αp

while f(xtry) > f(x) + c1α∇f(x)Tp do ▷ Armijo condition
α = ρα ▷ Backtraking procedure
xtry = x+ αp

end while

x = xtry

if ||∇f(x)|| ≤ tol then

return x

end if

end for

Remark 3.1.7. The Steepest Descent method doesn’t require the convexity
of the objective function to converge to a stationary point, however, in the
convex case, this corresponds to a global minimum, while in the nonconvex
case, it can be also a local minimum.
Unfortunately, our multi-reference objective function is nonconvex, therefore
we are not able to avoid convergence to local minima.

3.2 Proximal Gradient Method 43

3.2 Proximal Gradient Method

We now consider the composite optimization problem shown in (B).
For these kind of models, the steepest descent method is not well-suitable for
the following reasons:

• it requires differentiability of the function, in composite optimization
problems often one term is non-smooth;

• convergence is slow and it can have zigzagging movements;

• tends to stop in local minima, especially for non-convex problems;

• it requires a lot of iterations therefore it becomes inefficient for large-
scale problems.

For these reasons, we will introduce another class of algorithms, that are
called Proximal Gradient [40].

3.2.1 Preliminary theory

Singular values decomposition

Definition 3.2.1. Given X ∈ Cm×n, q = min{m,n}. Then exist a matrix

Σ =

(
Σ1 0

0 0

)
∈ Rm×n such that Σ1 = Diag(σ1, ...σq) with σ1 ≥ · · · ≥ σq ≥ 0

and two unitary matrices U ∈ Cm×m, V ∈ Cn×n such that

X = UΣV ∗.

This is called singular value decomposition of X and σi for i = 1, ..q are
called singular values.

Remark 3.2.2. Some important properties of the singular values decomposi-
tion.

• the columns of U and V are left and right singular vectors;

44 3. Optimization Algorithms

• the singular values and the eigenvalues of a matrix are strictly related:
σi =

√
λi(XX∗);

• ||X||2F =
∑
i

σ2
i , ||X||2 = σ1, k(X) =

σ1

σq

;

• If X is real, then U and V are orthogonal.

Proximal operator

Definition 3.2.3. A function f : Rn → R ∪ {+∞} is said to be proper if
∃x ∈ Rn such that f(x) ̸= +∞.

Definition 3.2.4. The effective domain of the function f is defined:

dom(f) = {x ∈ Rn | f(x) < +∞}.

Definition 3.2.5. If f : Rn → R∪{+∞} is closed, proper, convex, extended
value function is equivalent to say that its epigraph

epi(f) = {(x, t) ∈ Rn × R | f(x) ≤ t}

is a nonempty, closed, and convex set.

Definition 3.2.6. Consider f : Rn → R ∪ {+∞} a closed, proper, convex,
extended value function. We define the proximal operator of f at x with
parameter λ > 0 as the map proxλf : Rn → R such that

proxλf (x) := argmin
y∈Rn

{
f(y) +

1

2λ
||y − x||22

}
.

proxλf(x) is a point that compromises between minimizing f and being
near to x. λ can be interpreted as a trade-off between these two terms.
For this reason the proxλf(x) is said to be a proximal point of x with respect
to f .

In Figure 3.5 we can see the graphical interpretation of this formula.
Given a convex function f , the thick black line represents the boundary of
its domain, while the thin lines are the level curves. Evaluating the proximal
map at the blue points, move them to the red ones. In particular:

3.2 Proximal Gradient Method 45

Figure 3.5: Graphical interpretation of the evaluation of a proximal map at various

points (Parikh, Boyd [40]).

• if the blue point is inside the domain, it remains there and moves toward
the minimum of f ;

• if the point is outside the domain, it moves to the boundary of the
domain and toward the minimum of f .

The constant λ controls the extent to which the proximal operator maps
points to the minimum.

Remark 3.2.7. The proximal operator can be interpreted as a gradient step for
f : for λ small and f differentiable we can say that proxλg(v) ≈ v− λ∇g(v).
This is an important property because it suggests a close relation between
proximal maps and gradient methods with λ having the same role of step
size in a gradient method.

Theorem 3.2.8. If f : Rn → R ∪ {+∞} a closed, proper, and convex
function, then the proximal map of f at x ∈ Rn exists and it is unique.
Moreover

proxλf (x
∗) = x∗ ⇔ x∗ minimizes f.

Proposition 3.2.9. Assume f is block separable, i.e. it can be written as

46 3. Optimization Algorithms

f(x, y) = f1(x) + f2(y) ∀x, y ∈ Rn. Then for λ > 0

proxλf (v,w) = (proxλf1(v), proxλf2(w)), ∀v,w ∈ Rn.

As a consequence, it holds:

if f(x) =
n∑

i=1

fi(xi) ⇒ (proxf (v))i = proxfi(vi).

This proposition says that the proximal operator of a separable function
is equivalent to the proximal operator of each separable part, independently.
This property is very important because it allows to simplify calculations.

Example 3.2.10 (Vector Shrinkage Operator: f(x) = ||x||1). We want to
compute the proximal map of the ℓ1 norm. By definition:

f(x) = ||x||1 =
n∑

i=1

|xi|.

Then, by the separable property, we compute the proximal map of the abso-
lute value, that is:

proxλ|xi|(x) =


x− λ if xi > λ

x+ λ if xi < −λ

0 if |xi| ≤ λ

:= soft[−λ,λ](xi).

This operator is called soft thresholding or shrinkage operator.
In conclusion:

proxλ||x||1 = (soft[−λ,λ](xi))i=1,...n = max {|x| − λ, 0}sgn(x)

where all operations are component-wise.

Example 3.2.11 (Matrix Shrinkage Operator: f(X) = ||X||∗). Consider
the singular values decomposition of X: X = UDiag(σ)V T , where σi > 0

By definition, the nuclear norm can be written as:

f(X) = ||X||∗ = ||σ||1.

Then, by the proximal map of the ℓ1 norm we have:

proxf (X) = UDiag(soft[−λ,λ](σ))V
T := soft[−λ,λ](X)

3.2 Proximal Gradient Method 47

Figure 3.6: Plot of the proximal map of the absolute value.

3.2.2 Composite Optimization

An optimization problem is said to be composite if it has the following
form:

min
x∈Rn

F (x) = f(x) + g(x) (3.2)

where

(A) g : Rn → R ∪ {+∞} which is closed, proper and convex

(B) f : Rn → R∪{+∞} which is closed, proper, L smooth over the convex
set dom(f) and dom(g) ⊆ int(dom(f)).

Proximal Gradient Method

Approximate the function f(x) by the following quadratic model:

qα(x,y) = f(y) + ⟨x− y,∇f(y)⟩+ 1

2α
||x− y||22.

The first part represents a linear approximation of f at some point y, the
second part is a quadratic proximal term measuring the local error in the
approximation. This is equivalent to:

qα(x,y) = f(y) +
1

2α
||x− (y − α∇f(y))||22 −

α

2
||∇f(y)||22.

Now, we consider the general composite model. The function F (x) = f(x)+

g(x) can be approximated by:

Qα(x,y) = f(y) +
1

2α
||x− (y − α∇f(y))||22 −

α

2
||∇f(y)||22 + g(x).

48 3. Optimization Algorithms

We set y = xk−1, the composite problem (3.2) has the unique solution:

xk = argmin
x∈Rn

{Qα(x,xk−1)}

= argmin
x∈Rn

{
f(xk−1) +

1

2α
||x− (xk−1 − α∇f(xk−1))||22 −

α

2
||∇f(xk−1)||22 + g(x)

}
.

But f(xk−1) is constant, then the problem reduces to:

xk = argmin
x∈Rn

{
g(x) +

1

2α
||x− (xk−1 − α∇f(xk−1))||22

}
.

Therefore, by definition of proximal map, we obtain.

xk = proxαg(x− (xk−1 − α∇f(xk−1)).

The Proximal gradient method has the following iterations.
Given the step size α > 0,

zk+1 = xk − α∇f(xk) (forward step)

xk+1 = proxαg(zk+1) (backward step)

Remark 3.2.12. We can observe that the backward step doesn’t require the
gradient of g, indeed only the function f has to be differentiable.

Convergence analysis for the non-convex case.

For this section, for every result, we assume that f and g satisfy the
properties (A) and (B) of (3.2). Moreover, we set

x := proxαg(x− α∇f(x)).

Definition 3.2.13. We define the gradient mapping as the operator Gα :

int(dom(f)) → Rn that is,

Gα(x) =
1

α
(x− x), ∀x ∈ int(dom(f)).

With the definition of the gradient mapping, the iteration of the proximal
gradient method becomes:

xk+1 = xk − αGαk
(xk).

3.2 Proximal Gradient Method 49

Lemma 3.2.14 (Descent Lemma). ∀x ∈ int(dom(f)) and α ≤ 2
L
:

F (x) ≤ F (x) + α2

(
1

α
− L

2

)
||Gα(x)||22.

The gradient mapping operation can be seen as a generalization of the
gradient operator, indeed we have the following result.

Theorem 3.2.15. Let 1
α
> 0, then:

1. if g ≡ 0 then Gα(x) = ∇f(x) ∀x ∈ int(dom(f)),

2. for x∗ ∈ int(dom(f)), Gα(x
∗) = 0 if and only if x∗ is a stationary

point of the composite problem (3.2).

The quantity ||Gα(x)||2 can be seen as a criticality measure because it
is nonnegative and equal to zero if and only if x is a stationary point.

As for the steepest descent algorithm, we can make two choices for the
step size. If the Lipshitz constant of ∇f is easy to compute we can use
constant step size: αk = α < 2

L
∀k.

Otherwise, we apply a backtracking procedure: given ρ ∈]0, 1[and c1 ∈]0, 1[,
starting with a candidate α > 0,

While F (xk) > F (xk)− c1αk||Gαk
(xk)||22, (3.3)

Set α = ρα.

Equation (3.3) is called Armijo-like condition.
In fact if g = 0, we have that x = x− α∇f(x) and Gα(x) = ∇f(x) by the
previous Theorem (3.2.15). Substituting in (3.3) we obtain:

f(xk − αk∇f(xk)) > f(xk)− c1αk||∇f(xk)||22

which is equivalent to the Armijo condition defined in (3.1).

Remark 3.2.16. We note that under the assumption of 3.2 the Descent Lemma
implies that the backtracking procedure is finite. In particular if

α <
2(1− c1)

L
⇒ c1 ≤

1− αL

2
,

50 3. Optimization Algorithms

then by the Descent Lemma, the backtracking procedure ends when

αk ≤
2(1− c1)

L
.

Theorem 3.2.17 (Convergence). Consider the sequence {xk} generated
by the Proximal Gradient method either with constant step size or chosen by
the backtracking procedure. Then the following hold:

1. {F (xk)}k≥0 is nonincreasing;

2. lim
k→∞

Gα̃ = 0 where α̃ is the chosen step size;

3. min
n=0,...k

||Gα̃(xn)||2 ≤
√

F (x0)− Fopt

M(k + 1)
for some M > 0;

4. all limit points of {xk} are stationary points of the composite problem
(3.2).

The third point of the theorem implies that

||Gα̃(xk)||2 ≈ O
(

1√
k

)
.

If we compare the Proximal Gradient method for the nonconvex case to the
Steepest Descent method, we can observe that they have the same rate of
convergence.

Convergence analysis for the convex case.

To the assumptions of (3.2), we add now the requirement of the convexity
for the function f . The following theory is for this convex case only.

The main change is applied to the choice of the step size.
For the constant step size, we apply α = L. Otherwise, we apply a back-
tracking procedure: given ρ ∈]0, 1[and c1 ∈]0, 1[, starting with a candidate
α > 0,

While f(xk > f(xk) +∇f(xk)
T (xk − xk) +

1

2α
||xk − xk||22

Set α = ρα.

3.2 Proximal Gradient Method 51

Theorem 3.2.18. Let {xk} be the sequence generated by the Proximal Gra-
dient method either with a constant step size or with a stepsize chosen by the
backtracking procedure, then the method has a sublinear rate of convergence.
If α ∈]0, 1

L
], ∀k ≥ 1:

F (xk)− F (x∗) ≤ σ||x0 − x∗||22
2αk

= O
(
1

k

)
,

where σ = 1 if the stepsize is constant.
Moreover

• ∀ optimal solution x∗ and ∀k ≥ 1 we obtain the Fejer monotonicity,
i.e.:

||xk − x∗||2 ≤ ||xk−1 − x∗||2;

• the sequence converges to an optimal solution.

Remark 3.2.19. In particular to obtain an ε-optimal solution, i.e. F (xk) −
F (x∗) ≤ ε, are required at most

C

ε
iterations where

C =
σL||x0 − x∗||22

2
.

The convergence rate of the proximal gradient method in the convex case
is improved with respect to the steepest descent method and to the proximal
gradient in the nonconvex case: the rate was O

(
1√
k

)
for both of them. This

is not particularly surprising, also because we add other assumptions on the
objective function.

Accelerated proximal gradient

The proximal gradient method can be accelerated to obtain a O(1
k2
) con-

vergence rate. This alternative algorithm is called accelerated proximal

gradient method and consists of the adding of a momentum term to the
computation of the new iterate.

52 3. Optimization Algorithms

Set t1 = 1, then ∀k ≥ 1

tk+1 =
1 +

√
1 + 4t2k
2

yk = xk +
tk − 1

tk+1

(xk − xk−1)

zk+1 = yk − α∇f(yk)

xk+1 = proxαg(zk+1).

We observe that at the first iteration, y1 = x0, therefore it is equivalent
to applying the proximal gradient method.
During the first iterations, the current iteration mostly dictates the direction
of the next step. As we are reaching the optimum, i.e. the gradient of f is near
zero, the momentum pushes more in the direction we are going, represented
by the difference of the two successive iterations xk and xk−1. This allows
us to speed up the method.

The computational complexity of the algorithm remains the same because
we have to compute the gradient of f and the proximal map as before, with
the main difference that they are computed on yk, instead of xk. The two
additional computations of tk and yk have a marginal cost.

The backtracking technique for searching the stepsize is the same as the
proximal gradient method, but we substitute xk with yk.

While f(yk) > f(yk) +∇f(yk)
T (yk − yk) +

1

2α
||yk − yk||22

Set α = ρα.

Convergence Analysis

Theorem 3.2.20. Let {xk} be the sequence generated by the accelerated
proximal gradient method either with a constant step size or with a stepsize
chosen by the backtracking procedure. Then if α ∈]0, 1

L
], ∀k ≥ 1:

F (xk)− F (x∗) ≤ 2σ||x0 − x∗||22
α(k + 1)2

= O
(

1

k2

)
,

where σ = 1 if the stepsize is constant.

3.2 Proximal Gradient Method 53

Remark 3.2.21. To obtain an ε-optimal solution are required at most C√
ε
− 1

iterations with
C =

√
2σL||x0 − x∗||22.

This is only one possibility to define the iteration of tk+1, other alterna-
tives can be used.

Alternating Method of Multipliers

Another algorithm that is often used to solve composite optimization
models is the Alternating Method of Multipliers (ADMM).
Consider a two blocks optimization problem:

minimize f(x) + g(y)

subject to Ax +By = c

where x ∈ Rn, y ∈ Rm, A ∈ Rp×n B ∈ Rp×m c ∈ Rp.

Assume f : Rn → R ∩ {+∞} and g : Rm → R ∩ {+∞} are both closed,
proper and convex.
Consider the augmented Lagrangian function.

Lβ(x,y;λ) = f(x) + g(y) + ⟨λ, Ax+By − c⟩+ β

2
||Ax+By − c||22

where λ ∈ Rp is the lagrangian vector and β ∈ R+ is the penalty parameter.
Resolving the minimization problem is equivalent to searching for the saddle
points of Lβ:

find {x∗,y∗,λ∗} s.t. Lβ(x∗,y∗,λ) ≤ Lβ(x∗,y∗,λ∗) ≤ Lβ(x,y,λ∗) ∀(x,y,λ).

ADMM consists of the following iterations:

xk+1 = argmin
x∈Rn

Lβ(x,yk;λk)

yk+1 = argmin
y∈Rm

Lβ(xk+1,y;λk)

λk+1 = λk + β(Axk+1 +Byk+1 − c).

54 3. Optimization Algorithms

It consists of two minimization steps called primal descent and an update of
λ called dual ascent which uses a step size equal to the penalty parameter
β.

3.2.3 Vectorial Total Variation regularizer

We have to solve the following model:

v∗ = argmin
v∈Rh×w×2

{−f(v) + µR(v)}. (3.4)

In this project, we consider a Vectorial Total Variation Regularization. This
regularizer is well-defined also for images with sharp discontinuities and we
think it can be the most suitable for our scenario.

Definition 3.2.22. Given a matrix A, we define the p-Schatten norm of
A as

||A||Sp =

(
r+1∑
n=1

σp
n

) 1
p

with σ1, ..σr+1 singular values of A and r = rank(A).

Remark 3.2.23. In particular:

• if p = 1 this is equivalent to the nuclear norm,

• if p = 2 to the Frobenius norm.

Definition 3.2.24. Consider v = (v(1), v(2)) ∈ Rh×w×2, D = (Dh, Dv) :

Rh×w×2 → Rh×w×4 a finite differences operator.
The Vectorial Total Variation regularizer is defined as:

R(v) =
Np=wh∑
i=1

||(Dv)i||Sp =

Np∑
i=1

∥∥∥∥∥
(
(Dhv(1))i (Dvv(1))i

(Dhv(2))i (Dvv(2))i

)∥∥∥∥∥
Sp

, ∀p = 1, 2.

In our case, we set p = 1.
The problem (3.4) becomes:

v∗ = argmin
v∈Rh×w×2

{−f(v) + µR(v)} = argmin
v∈Rh×w×2

{
||DH||22 + µ

Np∑
i=1

||(Dv)i||∗
}
.

3.2 Proximal Gradient Method 55

We apply the Proximal Gradient Method:

wk+1 = vk − α∇f(vk)

vk+1 = proxµα||D·||∗(wk+1).

In this case, the proximal operator has no closed-form solution, because of
the presence of D. Indeed, since DD∗ ̸= cI, with c > 0, we cannot apply
the property of the proximal function, therefore we solve the second iteration
with the ADMM algorithm.

By definition, we have:

proxµα||D·||∗(wk+1) = argmin
vk

{
Np∑
i=1

||(Dvk)i||∗ +
1

2µα
||vk − wk+1||22

}
.

We set v = vk, w = wk+1 and we consider the variable splitting

t =

(
th,1 tv,1

th,2 tv,2

)
=

(
Dhv(1) Dvv(1)

Dhv(2) Dvv(2)

)
= Dv,

then the problem reduces to:

vk+1 = v∗ = argmin
v

{
Np∑
i=1

||ti||∗ +
1

2µα
||v − w||22

}
s.t. t = Dv.

It corresponds to a standard two blocks problem where f(v) = ||v − w||22
and g(t) =

∑Np

i=1 ||ti||∗ are closed, proper and convex.

We consider the associated augmented Lagrangian function with λ =(
λh λv

)
∈ R2Np×2 and β ∈ R+ penalty parameter.

L(v, t,λ) =
Np∑
i=1

||ti||∗ +
1

2µα
||v − w||22 − ⟨λ, t − Dv⟩+ β

2
||t − Dv||22.

Finding a solution to the minimization problem is equivalent to seeking for
the saddle points of L, i.e.

find {v∗, t∗,λ∗} s.t. L(v∗, t∗,λ) ≤ L(v∗, t∗,λ∗) ≤ L(v, t,λ∗) ∀(v, t,λ).

56 3. Optimization Algorithms

Subproblem for the primal variable v.
We drop the terms not depending on v:

v(k+1) = argmin
v

{
Z(v) =

1

2µα
||v − w||22 + ⟨λ(k),Dv⟩+ β

2
||t(k) − Dv||22

}
.

It is quadratic with respect to v, the global minimizers are to be sought
among its stationary point, then we impose first order optimality condition:

v(k+1) ∈ {v : ∇Z(v) = 0}

i.e. (
DTD +

1

βµα
I
)

v(k+1) = DT

(
t(k) − λ(k)

β

)
+

w
βµα

.

The coefficient matrix is symmetric, positive definite, and with full rank,
then the solution of the linear system exists and it is unique.
During the implementation, we assume reflexive boundary condition (see
Section 2.3.2) therefore the system is simply solved with backslash.

Subproblem for the primal variable t.
As before, we do not consider the terms which don’t depend on t:

t(k+1) = argmin
t

{
Np∑
i=1

||ti||∗ − ⟨λ(k), t − Dv(k+1)⟩+ β

2
||t − Dv(k)||22

}

= argmin
t

{
Np∑
i=1

||ti||∗ +
β

2
||t − q(k)||22

}

with q(k) = Dv(k+1) +
λ(k)

β
.

The problem reduces to Np independent minimization problems:

t(k+1) = argmin
t

Np∑
i=1

{
||ti||∗ +

β

2
||ti − q(k)

i ||22
}
.

By the separable property of the proximal map, each independent problem
admits a closed-form solution.
So we apply the definition of the proximal map of the nuclear norm (Example
3.2.10). Consider the svd decomposition of q(k) = UDiag(s)VT , then

t(k+1) = UDiag(d)VT ,

3.2 Proximal Gradient Method 57

where d = prox 1
β
||·||1(s).

λ’s update.

λ(k+1) = λ(k) − β(t(k+1) − Dv(k+1)).

β’s update.
Usually, the value of β is set at the start of the algorithm and is kept constant.
In our case is difficult to choose the best value because the ADMM algorithm
is run at every iteration of the proximal gradient method. Therefore we use
the following procedure proposed in [45].
Given 0 < βmin < βmax < +∞

β(k+1) = (1− ω)β(k) + ωproj[βmin,βmax]

(
||λ(k+1)||2

|| − I2Npt(k+1)||2

)
ω ∈ [0, 1].

Therefore the ADMM scheme becomes:



v(k+1) = argmin
v

{
Z(v) =

1

2µα
||v − w||22 + ⟨λ(k),Dv⟩+ β

2
||t(k) − Dv||22

}
t(k+1) = argmin

t

{
2Np∑
i=1

||ti||∗ − ⟨λ(k), t − Dv(k+1)⟩+ β

2
||t − Dv(k+1)||22

}
λ(k+1) = λ(k) − β(t(k+1) − Dv(k+1))

β(k+1) = (1− ω)β(k) + ωproj[βmin,βmax]

(
||λ(k+1)||2

|| − I2Npt(k+1)||2

)
ω ∈ [0, 1].

To sum up, the final algorithm to solve (3.4) is the following.

58 3. Optimization Algorithms

Algorithm 2 Accelerated Proximal Gradient algorithm + ADMM iteration
Require: x, f,∇f, kmax, tol > 0, ρ > 0

Ensure: x∗ s.t. x∗ = argmin{f(x) + µR(x)}
for k = 0, 1, ...kmax do

tk+1 =
1 +

√
1 + 4t2k
2

y = x+
tk − 1

tk+1

(xk − xk−1)

z = y − α∇f(y)

x → ADMM step

while f(xtry) > f(y) +∇f(y)T (xtry − y) +
1

2α
||xtry − y||2 do

α = ρα ▷ Backtraking procedure
z = y − α∇f(y)

xtry → ADMM step

end while

if
||F (xtry)− F (x)||

||F (x)|| ≤ tol then

return xtry

end if

x = xtry

end for

Where the ADMM iteration is:

3.2 Proximal Gradient Method 59

Algorithm 3 ADMM algorithm
Require: t,w, β, kmax, tol > 0

Ensure: x∗ s.t. x∗ = argmin{f(x) + µR(x)}
for k = 0, 1, ...kmax do

Solve
(
DTD +

1

βµα
I
)

xtry = DT

(
t − λ

β

)
+

w
βµα

t = UDiag(d)VT with d = prox 1
β
||·||1(s)

λ = λ− β(t − Dvtry))

β = (1− ω)β + ωproj[βmin,βmax]

(||λ||2
|| − I2Npt||2

)
if

||xtry − x||
||xtry||

≤ tol then

return xtry

end if

x = xtry

end for

Remark 3.2.25. The overall method becomes quite computationally expen-
sive. Indeed at every iteration and, if needed, at every backtracking iteration
we apply the ADMM method. Moreover, we need to construct matrices of
big dimensions, such as Np×Ne. In order to reduce the cost we apply some
strategies:

1. all the quantities not depending on v and which remain constant during
the iterations are computed only one time outside the algorithms (e.g.
the matrix D and DDT and the selection matrix S for the gradient of
f);

2. all the matrices of big dimension, which mostly involve the computation
of ∇f , are stored as sparse matrices, if possible, or vectorized;

3. in the ADMM algorithm we consider warm start initialization: the vari-
ables t, β, λ are not initialized to zero at the start of every iteration.
Every time ADMM runs, the results are memorized to be used in the

60 3. Optimization Algorithms

next iteration. This technique allows us to reduce the cost because the
values of the variables we are using are nearer to the minimum;

4. during the iterations of the (Accelerated) Proximal Gradient algorithm
we decrease the relative change tolerance for the stopping criteria of
the ADMM. Indeed it is not necessary to find the optimum solution
of the ADMM in the first iterations of the Proximal Gradient, this
strategy permits the reduction of the computational complexity of the
algorithm. At the start, the tolerance has a value of 10−3, at every
iteration it decreases such that it reaches a value of 10−7 near the
achievement of the minimum.

Chapter 4

Experimental Results

In this chapter, we are going to test the two models (A) and (B) by apply-
ing the Steepest Descent and the Accelerated Proximal Gradient methods,
respectively. We will use at first 3 different synthetic datasets and then 2
different datasets of real data.

4.1 Main contributions

Before analyzing in detail the results obtained in the following experi-
ments, we summarize the main contribution given by this project depending
on the initial guess.
In the examples with synthetic datasets, we observe that changing the start-
ing guess of the algorithm affects a lot the estimations obtained. Indeed in
particular we have that

1. for the starting guess equal to the null velocity, we obtain good results
for experiment 1 using a kernel dimension support equal to 13, standard
deviation equal to 2, and a camera domain enlargement of 6 pixels. In
the second experiment, we obtain worse results, in particular with the
application of the Accelerated Proximal Gradient Descent, however,
they are better than other starting guesses;

61

62 4. Experimental Results

2. for the starting guess with the true value of the velocity at each pixel,
as predictable, we obtain the best results for every experiment, indeed
in a few iterations we obtain a minimum;

3. for the starting guess equal to the value of one of the two velocities
involved and null everywhere else, in general, we obtain estimations
that are worse than the previous two cases. In particular, for the second
experiment, the algorithm tends to uniform the results to the same
velocity;

4. for the starting guess with random velocities values, we obtain the
worst results for every experiment and it never converges to a global
minimum.

To summarize, we can say that the best results are obtained with an initial
guess equal to the correct values of the velocity. For this reason, we will run
the algorithm on the real data, setting as a starting guess the result obtained
for the case with constant velocity, illustrated in Section 2.4.

4.2 Experiment 1 on synthetic data.

We consider two points moving with constant velocity on the not inter-
secting straight lines y = x and y = 2x+ 12, respectively. This generates 15

equispaced events on each of them. Figure 4.1 shows the ground truth of the
velocity.
To this set of synthetic data, we apply the Steepest Descent algorithm with
inexact line search to the multi-reference focus objective function, reading

f(v) = −G(v; tmin) + 2G(v; tmid) +G(v; tmax)

4G(0)
.

To highlight the importance of the choice of the starting guess, we run the
algorithm with 5 different values of velocities:

1. null velocities at all pixels

4.2 Experiment 1 on synthetic data. 63

2. true value of the velocity at each pixel

3. true value of the velocity on the line y = x, null velocities elsewhere

4. true value of the velocity on the line y = 2x, null velocities elsewhere

5. velocities component values drawn from the uniform distribution in the
interval [0, 2].

We note that the values are imposed only on the pixel location in which there
is at least one event since without a regularization term the method cannot
change the other values of the velocity.
We evaluate the accuracy of the estimated velocity by the positive scalar
metric relative error defined as:

Erel =
||V̂ − V ||2

||V̂ ||2
(4.1)

where V̂ is the estimated value of the velocity vector field and V stands for
its true value.
As stopping criterium we use the relative change of the objective function f

with tolerance 10−16, i.e.

|f(vk+1)− f(vk)|
|f(vk)|

≤ 10−16 ∀ iteration k = 1, ...kmax.

In Figure 4.2 we show the plots of the estimated velocities with standard
deviation σ = 2. For what concern the size of the kernel support, for efficiency
purposes, as suggested in [38], we adopted a truncated square support with
side length 13 pixels (13× 13 support).
With the starting guesses equal to 0, to the true velocity, and to the true
velocity on the line y = x (i.e. the first three plots), we can see that the
method has estimated the correct value with a relative error of 1.58 · 10−4.
This seems to imply that they all converge to the same minimum point
(global?).
For the last two plots with a starting point equal to the true velocity on

64 4. Experimental Results

Figure 4.1: Plot of the ground truth velocities of two ideals points 1 and 2 mov-

ing with ideal velocities v(1) = (vx, vy) = (1, 1)pixel/s and v(2) = (vx, vy) =

(1, 2)pixel/s along the straight lines y = x and y = 2x, plotted on the domain of

the event camera of size 60× 30.

y = 2x and a random velocity, the error is higher: 3.5 · 10−1 and 3.3 · 10−1,
respectively. Therefore, we can assume that the algorithm has converged to
a local minimum (the objective function is non-convex). As we can see from
Figure 4.3 the objectives function decreases monotonically with the number
of iterations until the Steepest Descent algorithm converges.

For another visual representation of the results, Figure 4.4, 4.5, 4.6 show
the images of the events warped at the reference times tmin, tmid, tmax, re-
spectively associated to the estimated velocity fields for each starting point,
compared with the ground truth. In particular, we used

tmin = t+ 0.1(t− t), tmid =
t+ t

2
, tmax = t− 0.1(t− t).

To sum up, in Table 4.1 are reported the values of the relative error,
the function G associated with the reference times tmin, tmid, tmax, of the
objective function f , and of the number of iterations varying the starting
guesses. We can observe that for the first 3 cases, the value of f(v) is the

4.2 Experiment 1 on synthetic data. 65

Figure 4.2: Plots of estimated velocity with respect to different choices of starting

guesses and associated relative error reported in Table 4.1; with kernel dimension

13× 13, standard deviation 2 and camera domain 60× 30.

66 4. Experimental Results

Figure 4.3: Plots of the multi-reference focus function values along the iterations

of the Steepest Descent numerical optimization algorithm for different choices of

starting guess, with kernel dimension 13× 13 and standard deviation 2.

4.2 Experiment 1 on synthetic data. 67

Figure 4.4: Representation of the image H(i, j) of the events warped to the ref-

erence time tmin by varying the starting guesses and the associated value of the

function G reported in Table 4.1, compared to the ground truth. We consider a

kernel dimension 13× 13 and a standard deviation 2.

68 4. Experimental Results

Figure 4.5: Representation of the image H(i, j) of the events warped to the ref-

erence time tmid by varying the starting guesses and the associated value of the

function G reported in Table 4.1, compared to the ground truth. We consider a

kernel dimension 13× 13 and a standard deviation 2.

4.2 Experiment 1 on synthetic data. 69

Figure 4.6: Representation of the image H(i, j) of the events warped to the ref-

erence time tmax by varying the starting guesses and the associated value of the

function G reported in Table 4.1, compared to the ground truth. We consider a

kernel dimension 13× 13 and a standard deviation 2.

70 4. Experimental Results

same: this confirms that they converged to the same minimum point, while
for the other 2 cases, the value is higher. Moreover, it is interesting to note
that the case that is slower to converge is the one with a starting guess equal
to the correct velocity of y = 2x. The cases with an initial guess equal to 0

and to the correct velocity of y = x have more or less the same number of
iterations. Not surprisingly, the case with the correct initial velocity is the
fastest to converge.

v0 vtrue vtrue1 vtrue2 vrand

Erel 1.581 · 10−4 1.581 · 10−4 1.581 · 10−4 3.545 · 10−1 3.301 · 10−1

Gmin 1.489 · 10−3 1.489 · 10−3 1.489 · 10−3 1.272 · 10−3 1.190 · 10−3

Gmid 1.488 · 10−3 1.488 · 10−3 1.488 · 10−3 1.148 · 10−3 1.128 · 10−3

Gmax 1.489 · 10−3 1.489 · 10−3 1.489 · 10−3 1.075 · 10−3 1.349 · 10−3

f(v) -7.2503 -7.2503 -7.2503 -5.6539 -5.8405

iter 3127 20 3568 6298 155

Table 4.1: Experiment with synthetic data 1: values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, of the objective

function f and of the number of iterations with kernel size equal to 13 and standard

deviation equal to 2 with different starting guesses.

The multi-reference loss function is not a convex function, for this rea-
son, we cannot avoid the convergence of the algorithm to a local minimum
instead of a global one. This represents an intrinsic problem of the model.
However, we expect that changing the parameters of the Gaussian kernel in
the implementation of the image of warped events holds the potential for
reducing the local minima issue as well as for improving the accuracy of the
estimation, hence in the following section, we experimentally analyze how
the results change when the Gaussian kernel is varied.

Kernel variation

In the previous example, we used a kernel of dimension 13 × 13 and
standard deviation σ = 2. With this setting, we obtain the best results in

4.2 Experiment 1 on synthetic data. 71

terms of accuracy.
We now try to change the kernel size and standard deviation values to see
how much they affect the results. In particular, to avoid boundary effects,
in the following examples, if necessarily the event camera domain is enlarged
such that the kernel support is entirely contained in the image even when it
is centered on the spatially most extreme events.

In Figure 4.7 we reduce the dimension of the kernel to 7 × 7 and the
standard deviation to 1. The results are not as good as before: except for
the case with the starting point equal to the ground truth, the relative error is
higher than before, in particular for the starting guess equal to zero. Indeed,
as we can see from Table 4.2, f(vtrue) = −13.722 is much smaller than in the
other cases.

v0 vtrue vtrue1 vtrue2 vrand

Erel 8.337 · 10−1 1.883 · 10−4 1.303 · 100 1.312 · 10−1 4.085 · 10−1

Gmin 1.893 · 10−2 3.142 · 10−2 1.016 · 10−2 2.732 · 10−2 1.521 · 10−2

Gmid 1.898 · 10−2 3.146 · 10−2 1.050 · 10−2 2.454 · 10−2 1.644 · 10−2

Gmax 2.050 · 10−2 3.142 · 10−2 1.550 · 10−2 2.703 · 10−2 1.906 · 10−2

f(v) -8.446 -13.722 -5.094 -11.287 -7.329

iter 37158 30 1058 19468 1732

Table 4.2: Experiment with synthetic data 1: values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, of the objective

function f and of the number of iterations with kernel size equal to 7 and standard

deviation equal to 1, with different starting guesses.

We now try to increase the kernel’s dimension to 19×19 and of σ to 3. In
Figure 4.8 and in Table 4.3 we can see that the estimated velocity is better
than the previous experiment for the initial velocity value equal to 0 and to
the true value of y = x. For the starting guess equal to the true value on
y = 2x we obtain the same result. In the other two plots, the estimation
is worse. In addition, we can observe that as an average all the plots take
a smaller time to converge than the previous two experiments. From these

72 4. Experimental Results

Figure 4.7: Plots of estimated velocity with kernel reduction of 7 × 7 and σ = 1

and camera domain of size 50 × 25, with different choices of starting guesses and

associated relative error reported in Table 4.2.

4.2 Experiment 1 on synthetic data. 73

experiments, we can presume that increasing too much the influence of the
Gaussian distribution isn’t necessarily equivalent to an improvement in the
accuracy of the solution.

v0 vtrue vtrue1 vtrue2 vrand

Erel 6.028 · 10−3 6.028 · 10−3 6.028 · 10−3 4.560 · 10−1 4.243 · 10−1

Gmin 2.171 · 10−4 2.171 · 10−4 2.171 · 10−4 3.123 · 10−4 1.886 · 10−4

Gmid 2.202 · 10−4 2.202 · 10−4 2.202 · 10−4 1.578 · 10−4 1.819 · 10−4

Gmax 2.203 · 10−4 2.203 · 10−4 2.203 · 10−4 1.443 · 10−4 2.038 · 10−4

f(v) -5.327 -5.327 -5.327 -4.686 -4.589

iter 732 42 1102 1120 192

Table 4.3: Experiment with synthetic data 1: values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, of the objective

function f and of the number of iterations with kernel size equal to 19 and standard

deviation equal to 3 for different starting guesses.

Boundary issues

We now analyze how boundary issues can affect (negatively) the estimated
velocities. In particular, starting from the best-performing kernel, revealed
by previous experiments (13 × 13 with σ = 2), we shrink the event camera
domain by 3 and then 6 pixels, both horizontally and vertically. In this way,
we have two new experiments where the support of the kernel when centered
at the position of spatially extreme events falls outside the image domain of
3 and 6 pixels, respectively.

Concerning the shrinkage-3, the results are shown in Figure 4.9 and Table
4.4. For all the starting guesses, we obtain an estimation that is worse than
the first case. However, in the first 3 plots, we achieve sufficiently good
results with a relative error of 3.2 · 10−3.

For the shrinkage-6 case, the results are worse than the previous example
for all the initial velocities, except for the third plot where the relative error

74 4. Experimental Results

Figure 4.8: Plots of estimated velocity with kernel increment of 19× 19 and σ = 3

and camera domain of size 60 × 35, with different choices of starting guesses and

associated relative error reported in Table 4.3.

4.2 Experiment 1 on synthetic data. 75

Figure 4.9: Plots of estimated velocity with shrinkage-3 pixels and camera domain

of size 50 × 25, with different choices of starting guesses and associated relative

error reported in Table 4.4.

76 4. Experimental Results

v0 vtrue vtrue1 vtrue2 vrand

Erel 3.260 · 10−3 3.260 · 10−3 3.260 · 10−3 4.341 · 10−1 3.184 · 10−1

Gmin 2.137 · 10−3 2.137 · 10−3 2.137 · 10−3 1.272 · 10−3 1.717 · 10−3

Gmid 2.153 · 10−3 2.153 · 10−3 2.153 · 10−3 1.421 · 10−3 1.640 · 10−3

Gmax 2.142 · 10−3 2.142 · 10−3 2.142 · 10−3 1.278 · 10−3 1.942 · 10−3

f(v) -7.314 -7.314 -7.314 -4.595 -5.912

iter 2702 26 3298 946 354

Table 4.4: Experiment with synthetic data 1: values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, of the objective

function f and of the number of iterations with kernel size equal to 13 and standard

deviation equal to 3 with shrinkage-3.

is a bit lower (Figure 4.10 and Table 4.5). Yet, they all are worse than the
first experiment.

v0 vtrue vtrue1 vtrue2 vrand

Erel 4.895 · 10−2 4.895 · 10−2 1.815 · 10−1 2.281 · 10−1 4.019 · 10−1

Gmin 2.395 · 10−3 2.395 · 10−3 2.252 · 10−3 1.212 · 10−3 1.781 · 10−3

Gmid 3.400 · 10−3 3.400 · 10−3 3.404 · 10−3 3.404 · 10−3 2.582 · 10−3

Gmax 2.629 · 10−3 2.629 · 10−3 2.448 · 10−3 2.458 · 10−3 2.294 · 10−3

f(v) -7.833 -7.833 -7.623 -7.603 -6.120

iter 1591 53 2521 3060 470

Table 4.5: Experiment with synthetic data 1: values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, and of the objective

function f and of the number of iterations with kernel size equal to 13 and standard

deviation equal to 3 with shrinkage-6, by varying the starting guesses.

Finally, we carry out another experiment where, instead of shrinking we
enlarge the camera domain. We expect that, since boundary issues will not
be present as in the first experiment, the obtained result will be very similar.
The results shown in Figure 4.11 confirm that for the first 3 and the last

4.2 Experiment 1 on synthetic data. 77

Figure 4.10: Plots of estimated velocity with shrinkage-6 pixels and camera domain

of size 45×16, with different choices of starting guesses and associated relative error

reported in Table 4.5.

78 4. Experimental Results

starting guess cases, for which we obtain the same results. Only for the
fourth starting guess, the result is very slightly better. Also, the number of
iterations taken to converge is similar to the first case.

v0 vtrue vtrue1 vtrue2 vrand

Erel 1.581 · 10−4 1.581 · 10−4 1.581 · 10−4 3.311 · 10−1 3.297 · 10−1

Gmin 1.096 · 10−3 1.096 · 10−3 1.096 · 10−3 9.459 · 10−4 8.781 · 10−4

Gmid 1.096 · 10−3 1.096 · 10−3 1.096 · 10−3 8.394 · 10−4 8.301 · 10−4

Gmax 1.096 · 10−3 1.096 · 10−3 1.096 · 10−3 7.979 · 10−4 9.946 · 10−4

f(v) -7.250 -7.250 -7.250 -5.660 -5.842

iter 3190 22 2831 1146 186

Table 4.6: Experiment with synthetic data 1: values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, of the objective

function f and of the number of iterations with kernel size equal to 13 and standard

deviation equal to 3 with an enlarged domain.

4.2.1 A variation of Experiment 1

We think it is relevant to show another example that is a slight variation
of the previous one: we consider the same two points moving on the two
straight lines that are disposed such that they intersect. Figure 4.12 shows
the ground truth velocities.
This example is interesting because in the intersection point of the two lines
we have two events generated by different velocities, therefore the hypothesis
of the model [1] is not satisfied anymore. Even for us, it is not simple to
predict for sure the velocities this pixel should have. In the cases where we
give as a starting guess the correct velocities, we set this value equal to:

vint =
v(1) + v(2)

2
=

(
v
(1)
x + v

(1)
x

2
,
v
(2)
x + v

(2)
x

2

)
= (1, 1.5)

where v(1) = (v
(1)
x , v

(1)
y) and v(2) = (v

(1)
x , v

(1)
y) are the velocities of the two

points. This seems to be the most reasonable estimation.

4.2 Experiment 1 on synthetic data. 79

Figure 4.11: Plots of estimated velocity with enlarged camera domain of 3 pixels of

size 60× 35 with different choices of starting guesses and associated relative error

reported in Table 4.6.

80 4. Experimental Results

Figure 4.12: Plot of the ground truth velocities of two ideals points 1 and 2 mov-

ing with ideal velocities v(1) = (vx, vy) = (1, 1)pixel/s and v(2) = (vx, vy) =

(1, 2)pixel/s along the straight intersecting lines y = x+ 8 and y = 2x, plotted on

the domain of the event camera of size 60× 30.

We select the dimension of the kernel equal to 19 and the standard deviation
σ equal to 3.
In Figure 4.13 are presented the different plots, varying the starting guesses as
before. First of all, we observe that in the first 3 cases, the algorithm reaches
the same minimum point of f (Table 4.7). The results are not as good as
before however in the intersection pixel the algorithm estimates a velocity of
v = (vx, vy) = (0.999177, 1.50028) for the the first 3 plots. It is significant
that even if it starts with null velocity values, the method estimates with
high accuracy the velocities we predicted.

4.3 Experiment 2 on synthetic data

We now apply the same analysis to a different example: consider 3 points
moving in parallel along the line y = x with velocities v(1) = (vx, vy) =

(1, 1)pixel/s. After 5s, they half their velocity to v(2) = (vx, vy) =

(
1

2
,
1

2

)
pixel/s.

4.3 Experiment 2 on synthetic data 81

Figure 4.13: Plots of estimated velocity with enlarged camera domain of 14 pixels

of size 80×50 with different choices of starting guesses and associated relative error

reported in Table 4.7.

82 4. Experimental Results

v0 vtrue vtrue1 vtrue2 vrand

Erel 1.530 · 10−1 1.530 · 10−1 1.530 · 10−1 4.272 · 10−1 5.543 · 10−1

Gmin 2.161 · 10−4 2.161 · 10−4 2.161 · 10−4 1.800 · 10−4 1.787 · 10−4

Gmid 2.642 · 10−4 2.642 · 10−4 2.642 · 10−4 2.304 · 10−4 2.00 · 10−4

Gmax 2.161 · 10−4 2.161 · 10−4 2.161 · 10−4 1.461 · 10−4 1.791 · 10−4

f(v) -5.178 -5.178 -5.178 -4.241 -4.090

iter 657 52 1241 1957 243

Table 4.7: Experiment with synthetic data 1-variation: values of the relative error,

of the function G associated with the reference times tmin, tmid, tmax, of the ob-

jective function f and of the number of iterations with kernel size equal to 19 and

standard deviation equal to 3 for different starting guesses.

These two points generate a strip of 15 events arranged in 3 lines. The ground
truth of the velocity is presented in Figure 4.14.
As before, we apply the Steepest Descent method with inexact line search to
the multi-focus objective function.
We also consider the same starting guesses as before except for the third and
the fourth case where we take the velocities of the first part of the strip v(1)

and of the second part v(2), respectively.

Figure 4.15 shows the results. In this case, we have selected a kernel
support with dimension 7 × 7 and enlarged the camera domain of 12 more
pixels such that Gaussian support is entirely contained in the image. The
best result is obtained with a starting guess equal to the correct value. The
other cases, except for the random starting guess, have similar relative errors.
We also observe in Tab 4.8 that the lower value of the multi-focus function
is −12.15 for the starting guess equal to the correct velocity of the second
part of the strip. However, this is not the best result in terms of accuracy.
Moreover, the first 3 plots present a similar value of f but they have a
significantly different relative error.
In this experiment, the image H(i, j) of events warped at the reference times
tmin, tmid, tmax are not centered on the same peak, this happens because we

4.3 Experiment 2 on synthetic data 83

Figure 4.14: Plot of the ground truth velocities of three ideal points moving along

the straight lines y = x + k for k = 0, 1, 2. They move at first with velocities

v(1) = (vx, vy) = (1, 1)pixel/s, then after 5s they half their velocities to v(2) =

(vx, vy) =

(
1

2
,
1

2

)
pixel/s. The size domain is 60× 40.

have two different velocities starting from different positions. In Figure 4.16
the two peaks of the ground truth velocity almost overlap, in 4.17 they are
disjointed and 4.18 they increase their distance. For this reason, we need to
enlarge the camera domain of more pixels than in the previous example.

We try now to increase the dimension of the kernel support to 31 × 31

and of the standard deviation to 5. Figure 4.19 shows that the results are
worse than before for all the plots, Tab 4.9 confirms that the first 4 plots
reach the same minimum of f . From Figure 4.20, 4.21, 4.22 we can see that
considering a larger kernel dimension, move closer the two peaks due to the
two velocities. Probably this is the reason why in the previous example we
have that the function reaches the minimum for velocities that don’t coincide
with the best estimation, while here this problem doesn’t hold. The presence
of two disjoint peaks increases the value of f(v).

84 4. Experimental Results

Figure 4.15: Plots of estimated velocity with respect to different choices of starting

guesses and associated relative error reported in Table 4.8. The camera domain

has a size of 60× 40.

4.3 Experiment 2 on synthetic data 85

Figure 4.16: Representation of the image H(i, j) of the events warped to the ref-

erence time tmin by varying the starting guesses and the associated value of the

function G reported in Table 4.8, compared to the ground truth.

86 4. Experimental Results

Figure 4.17: Representation of the image H(i, j) of the events warped to the ref-

erence time tmid by varying the starting guesses and the associated value of the

function G reported in Table 4.8, compared to the ground truth.

4.3 Experiment 2 on synthetic data 87

Figure 4.18: Representation of the image H(i, j) of the events warped to the ref-

erence time tmax by varying the starting guesses and the associated value of the

function G reported in Table 4.8, compared to the ground truth.

88 4. Experimental Results

Figure 4.19: Plots of estimated velocity with respect to different choices of starting

guesses and associated relative error reported in Table 4.9. The camera domain

has a size of 90× 70.

4.3 Experiment 2 on synthetic data 89

Figure 4.20: Representation of the image H(i, j) of the events warped to the ref-

erence time tmin by varying the starting guesses and the associated value of the

function G reported in Table 4.9, compared to the ground truth.

90 4. Experimental Results

Figure 4.21: Representation of the image H(i, j) of the events warped to the ref-

erence time tmid by varying the starting guesses and the associated value of the

function G reported in Table 4.9, compared to the ground truth.

4.3 Experiment 2 on synthetic data 91

Figure 4.22: Representation of the image H(i, j) of the events warped to the ref-

erence time tmax by varying the starting guesses and the associated value of the

function G reported in Table 4.9, compared to the ground truth.

92 4. Experimental Results

v0 vtrue vtrue1 vtrue2 vrand

Erel 2.361 · 10−1 7.828 · 10−2 4.761 · 10−1 4.698 · 10−1 6.723 · 10−1

Gmin 4.310 · 10−2 4.410 · 10−2 1.961 · 10−2 3.426 · 10−2 1.164 · 10−2

Gmid 3.465 · 10−2 3.016 · 10−2 3.176 · 10−2 5.498 · 10−2 6.849 · 10−3

Gmax 2.741 · 10−2 2.401 · 10−2 4.367 · 10−2 4.469 · 10−2 5.580 · 10−3

f(v) -8.991 -8.260 -8.155 -12.150 -1.988

iter 7052 490 1535 60 1627

Table 4.8: Experiment with synthetic data 2: Values of the relative error, of the

function G associated with the reference times tmin, tmid, tmax, of the objective

function f and of the number of iterations with kernel size equal to 7 and standard

deviation equal to 1 with an enlarged domain.

Regularization term

We now consider problem (B) and we apply to the same set of synthetic
data the Accelerated Proximal Gradient algorithm, adding as regularization
the Vectorial Total Variation multiplied by the regularization parameter µ.
To select the best value of µ we run the algorithm with different regularization
parameters, for each of them we compute the relative error (4.1). We select
the µ values that give the smaller relative error.

As we observe from Figure 4.23 the results are slightly worse than the
same experiment without regularization term. Also in this case we can ob-
serve lower relative error associated with worse results. From Tab 4.10 we
can observe that the best regulariztion parameter µ depends on the initial
guess but in general it satisfied µ ∈ [1 · 10−6, 9 · 10−6]. Also, the number of
iterations depends on the initial guess.

4.4 Test on real data

We are now ready to test the algorithm on the real data. In this section,
we will consider two different sets of events collected from the passage of

4.4 Test on real data 93

Figure 4.23: Plots of estimated velocity with respect to different choices of starting

guesses and associated relative error reported in Table 4.10. The camera domain

has a size of 90× 70.

94 4. Experimental Results

v0 vtrue vtrue1 vtrue2 vrand

Erel 4.635 · 10−1 4.635 · 10−1 4.761 · 10−1 4.635 · 10−1 6.196 · 10−1

Gmin 4.368 · 10−5 4.368 · 10−5 4.368 · 10−5 4.368 · 10−5 3.506 · 10−5

Gmid 4.476 · 10−5 4.476 · 10−5 4.476 · 10−5 4.476 · 10−5 2.898 · 10−5

Gmax 4.433 · 10−5 4.433 · 10−5 4.433 · 10−5 4.433 · 10−5 3.365 · 10−5

f(v) -2.389 -2.389 -2.389 -2.389 -1.704

iter 274 126 170 49 1744

Table 4.9: Experiment with synthetic data 2 with Steepest Descent algorithm:

values of the relative error, of the function G associated with the reference times

tmin, tmid, tmax, of the objective function f and of the number of iterations with

kernel size equal to 31 and standard deviation equal to 5 with an enlarged domain

of 24 pixels.

the same parcel with heigh 15cm, used in Section 2.4. In both situations,
the parcel is moving on the conveyor with fixed velocity vconv = (1.5, 0)m/s.
However, in the first dataset, which is the same used in the experiment with
constant velocity in Section 2.4, the camera is well-calibrated and it is aligned
to the conveyor, then the optical flow is mostly constant in every pixel of the
parcel. In the second case, the acquisitions are made with a camera that is
rotated with respect to the conveyor plane. This inclination causes an optical
flow that changes in every pixel position and it is faster in the points nearer
to the camera and slower in the ones farther away. Both of these datasets
are provided by the company Datalogic S.p.A..
As a starting guess we consider the results given by the algorithm applied
to the loss function where the velocity v is assumed to be constant (Section
2.4). That is

v0 = vopt = (1250.68164, 20.5165)pixel/s.

In both experiments, we are going to use the multi-reference focus objective
function as in the previous examples.
We apply the Steepest Descent algorithm and the Accelerated Proximal Gra-
dient with the Total Variation Regularizer. In both cases, we use a kernel

4.4 Test on real data 95

v0 vtrue vtrue1 vtrue2 vrand

µ 4.524 · 10−6 1.730 · 10−3 2.103 · 10−6 9.310 · 10−6 5.344 · 10−6

Erel 2.679 · 10−1 8.129 · 10−2 4.138 · 10−1 4.797 · 10−1 1.335 · 100

Gmin 4.310 · 10−2 4.411 · 10−2 1.961 · 10−2 3.426 · 10−2 1.164 · 10−2

Gmid 3.465 · 10−2 3.016 · 10−2 3.176 · 10−2 5.498 · 10−2 6.849 · 10−3

Gmax 2.741 · 10−2 2.400 · 10−2 4.367 · 10−2 4.469 · 10−2 5.580 · 10−3

f(v) -8.568 -8.143 -11.814 -11.766 -2.008

iter 310 63 184 249 589

Table 4.10: Experiment with synthetic data 2 with Accelerated Proximal Gradient

algorithm: values of the selected best regularization parameter µ, the relative er-

ror, of the function G associated with the reference times tmin, tmid, tmax, of the

objective function f and of the number of iterations with kernel size equal to 7 and

standard deviation equal to 5 with an enlarged domain of 12 pixels.

support of dimension 7×7 and a standard deviation equal to 1. We use these
values because, in the previous example, they give us the best results, more-
over increasing them leads to a significant increment of time. Same speech
for the enlargement of the camera domain, we add just 2 pixels. The toler-
ance for the stopping criteria is set to 10−9 for both algorithms. Regarding
the regularization parameter for the Accelerated Proximal Gradient, we set
10−6, applying research for the best value as before would need too much
time.

4.4.1 Dataset 1: camera aligned to the world frame

In this first example, we consider the same dataset used in Section 2.4,
therefore we also consider the same region of interest.
Even though we have selected a smaller set of events, the dataset remains
very large, containing 4.4 · 105 data. For this reason, running the Steepest
Descent algorithm or the Accelerated Gradient Descent algorithm requires
many seconds to estimate just one iteration. Therefore to resolve this prob-

96 4. Experimental Results

Figure 4.24: Selected spatial and temporal region of interest and selected tile

marked in black to which the algorithm is applied.

lem we select a tile of dimension 30 containing 8.8 · 103 events. Figure 4.24
shows the events contained by the region of interest and the selected tile,
marked in black.

First, we apply the Steepest Descent algorithm. From Figure 4.25 and
4.26 we can see that the value of the objective function and, as a consequence,
the value of the velocities remains near the starting guess, stopping after more
than 1000 iterations. Figure 4.27 shows the three images of H associated with
the reference times tmin, tmid, tmax. We can observe that in the last case, the
events fall outside the image domain, therefore having more time available,
we should enlarge the camera domain.

The Accelerated Proximal Gradient in many more iterations estimates an
optical flow that is distant from the starting guess as we can see from Figure
4.28. The value of F (v) that is the sum of the multi-reference function and
the regularization term, as is shown in (B), starts from a value of about −15

and reaches the minimum of −30.85 (Figure 4.29). Also from Figure 4.30, we
can deduce that this estimation is more precise than the previous one, indeed
the events seem to be more aligned: the contrast maximization collects them
together in some common points.

Table 4.11 collects the values of the multi-reference focus f and of the total
function F for the Proximal Gradient evaluated on the estimated velocity.

4.4 Test on real data 97

Figure 4.25: Optical flow estimation of the components vx (on the left) and vy (on

the right), applying the Steepest Descent algorithm.

Figure 4.26: Convergence of the multi-reference objective function f along the

iterations applying the Steepest Descent algorithm.

98 4. Experimental Results

Figure 4.27: Graphical representation of the image H of warped events at the

reference times tmin, tmid, tmax applying the Steepest Descent algorithm.

Figure 4.28: Optical flow estimation of the components vx (on the left) and vy (on

the right), applying the Accelerated Proximal Gradient algorithm.

4.4 Test on real data 99

Figure 4.29: Convergence of the total function F along the iterations, applying the

Accelerated Proximal Gradient algorithm.

We can observe that the value of f for the Accelerated Proximal Gradient
is much lower. Also, we consider the values of G associated with tmin, tmid,
tmax, the number of iterations needed, and the time required. It is clear that
the Accelerated Proximal Gradient is much slower, it spends much more time
than the Steepest Descent.

4.4.2 Dataset 2: camera rotated with respect to the

world frame

We consider now, the second dataset of the events where the camera is
inclined with respect to the conveyor. Also in this case the total number of
events is high: 2.7 · 107. Therefore we consider a region of interest such that:

• tk ∈ [tstart, tstart +∆t] = [4.24 · 106, 4.24 · 106 + 3 · 104]µs ∀k = 1, ...Ne

• jk ∈ [xmin, xmax] = [410, 940] and ik ∈ [ymin, ymax] = [20, 530] ∀k =

1, ...Ne.

As a consequence, the camera domain is h = 510 high and w = 530 wide and

100 4. Experimental Results

Figure 4.30: Graphical representation of the image H of warped events at the refer-

ence times tmin, tmid, tmax applying the Accelerated Proximal Gradient algorithm.

4.4 Test on real data 101

SD APG

f(v) −6.924 −31.020

F (v) / −30.850

Gmin 16.302 43.867

Gmid 21.292 55.359

Gmax 10.092 15.186

iters 1492 111862

time 6m 7h

Table 4.11: Values for the Steepest Descent Algorithm and the Accelerated Proxi-

mal Gradient of the multi-reference focus objective function f , of the total function

F , of G associated to the reference times tmin, tmid, tmax, of the number of itera-

tions and of the time required.

contains 3.8 · 105 events.
In this experiment, we consider a tile of dimension 80×80 because the edges
of the parcel are more blurred, and considering a tile with a smaller dimension
wouldn’t involve enough events to provide a correct estimation. Figure 4.31
is a graphical representation of the events contained in the region of interest
and of the selected tile that is marked in black.

First, we apply the Steepest Descent algorithm. In Figure 4.32 there are
the results of the two components of the velocities. As before, as we can
see also from Figure 4.33, the value of f doesn’t change much. Figure 4.34
presents the alignment of the events with respect to the three reference times,
reducing the tolerance for the stopping criterium could allow an improvement
of the solution.

As the last experiment, we tested the second dataset by applying the
Accelerated Proximal Gradient (Figure 4.35). Unfortunately, running this
code is much more time-consuming than the previous examples, therefore we
set as a maximum number of iterations kmax = 600000. For this reason, the
algorithm stops before converging and reaching the minimum point as we
can see from Figure 4.36. During the first 45000 iterations, the algorithm

102 4. Experimental Results

Figure 4.31: Selected spatial and temporal region of interest and selected tile

marked in black to which the algorithm is applied.

Figure 4.32: Optical flow estimation of the components vx (on the left) and vy (on

the right), applying the Steepest Descent algorithm

4.4 Test on real data 103

Figure 4.33: Convergence of the multi-reference objective function f along the

iterations applying the Steepest Descent algorithm.

decreases fast starting from the value of F of −1.51 and reaching the value
of −8.05, then it slows up. Also from Figure 4.37, we can observe that the
events are not completely aligned, mainly on the first plot where they are
warped at the reference time tmin.

Table 4.12 sums up all the results obtained. Also in this case, the Acceler-
ated Proximal Gradient algorithm provides a lower minimum of the objective
function f but is much more time-consuming than the Steepest Descent.

104 4. Experimental Results

Figure 4.34: Graphical representation of the image H of warped events at the

reference time tmin applying the Steepest Descent algorithm.

Figure 4.35: Optical flow estimation of the components vx (on the left) and vy (on

the right), applying the Accelerated Proximal Gradient algorithm

4.4 Test on real data 105

Figure 4.36: Convergence of the total function F along the iterations applying the

Accelerated Proximal Gradient algorithm.

SD APG

f(v) −1.514 −25.628

F (v) / −24.957

Gmin 1.820 · 10−1 2.310

Gmid 1.938 · 10−1 3.792

Gmax 1.880 · 10−1 2.918

iters 48109 600000

time 9h 87h

Table 4.12: Values for the Steepest Descent Algorithm and the Accelerated Proxi-

mal Gradient of the multi-reference focus objective function f , of the total function

F , of G associated to the reference times tmin, tmid, tmax, of the number of itera-

tions and of the time required.

106 4. Experimental Results

Figure 4.37: Graphical representation of the image H of warped events at the

reference time tmin applying the Accelerated Proximal Gradient algorithm.

Conclusions and future work

In this project, we have seen how to estimate the optical flow from the
events generated by an event camera. One of the main contributions of this
work is to estimate an optical flow that is not constant but depends on the
pixel location.
Having provided a few applications to synthetic data, we have concluded
that the estimation depends a lot on the dimension of the Gaussian kernel
support and on the camera domain. Choosing their best values is essential
to obtain better estimations.
When we used a synthetic dataset, the best algorithm seemed to be the
Steepest Descent, however without the presence of a regularization term, the
pixels in which there is no event are not associated with an optical flow. For
this reason, when we use real data the Proximal Gradient appears to be more
appropriate.

Experiments on real data are very time-consuming and can also require
days to terminate a single run, that’s why we have to use just a portion of
the dataset. In future work, more experiments and tests can be done on
synthetic data or mostly on real data.
In particular, it would be interesting to test other experiments changing the
dimension and the position of the tile, the dimension of the kernel support,
and the standard deviation σ. Moreover enlarging the camera domain with
more pixels would probably imply a more accurate estimation, mainly with
the Steepest Descent algorithm.
To test the method on real data one could divide the camera domain into

107

108 CONCLUSIONS AND FUTURE WORK

tiles, estimate the dense optical flow for each of them, and then interpolate
the results.
Additionally applying other algorithms and/or different regularization terms
could improve the results.
Afterward, starting from this thesis, other projects could be done on the
same topic. For instance, to obtain a more accurate estimation with real
data one could aggregate the events that are generated by the same flow and
then estimate the optical flow just for each of these subsets of events.

As we have said in the introduction of this thesis event cameras have a
big potential in the estimation of optical flow and have only recently started
to be used. Therefore many more studies and insights will be carried out in
the following years.

Bibliography

[1] S. Shiba, Y. Klose, Y. Aoki, G. Gallego, Secrets of event-based optical
flow, depth and ego-motion estimation by contrast maximization. IEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1-18,
July 2024.

[2] M. Mahowald and C. Mead, The silicon retina, Scientific American, vol.
264, no. 5, pp. 76–83, May 1991.

[3] H. Rebecq, G. Gallego, E. Mueggle and D. Scaramuzza, EMVS: Event-
Based Multi-View Stereo—3D Reconstruction with an Event Camera in
Real-Time, International Journal of Computer Vision, vol. 126, pp. 1394-
1414, November 2017.

[4] G. Gallego, ”Teaching” Guillermo Gallego - Event-based Robot Vision,
2020: https://sites.google.com/view/guillermogallego/teaching/event-
based-robot-vision

[5] M. Liu, T. Delbruck, Adaptive time-slice block-matching optical flow
algorithm for dynamic vision sensors in British Machine Vision Confer-
ence (BMVC), pp. 1–12, 2018.

[6] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, M. Srinivasan, Asyn-
chronous frameless event-based optical flow, Neural Networks, vol. 27,
pp. 32–37, 2012.

[7] G. Orchard, R. Benosman, R. Etienne-Cummings, N. V. Thakor, A
spiking neural network architecture for visual motion estimation in IEEE

109

110 BIBLIOGRAPHY

Biomedical Circuits and Systems Conference (BioCAS), pp. 298–301,
2013.

[8] T. Brosch, S. Tschechne, H. Neumann, On event-based optical flow de-
tection Frontiers in Neuroscience, vol. 9, no. 137, April 2015.

[9] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, C. Bartolozzi, Event-
based visual flow, IEEE Transactions on Neural Networks and Learning
Systems, vol. 25, no. 2, pp. 407–417, 2014.

[10] H. Akolkar, S.-H. Ieng, R. Benosman, Real-time high speed motion pre-
diction using fast aperture-robust event-driven visual flow, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp.
361–372, 2022.

[11] J. Nagata, Y. Sekikawa, Y. Aoki, Optical flow estimation by matching
time surface with event-based cameras Sensors, vol. 21, no. 4, 2021.

[12] P. Bardow, A. J. Davison, S. Leutenegger, Simultaneous optical flow
and intensity estimation from an event camera, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 884–892, 2016.

[13] G. Gallego, H. Rebecq, D. Scaramuzza, A unifying contrast maximiza-
tion framework for event cameras, with applications to motion, depth,
and optical flow estimation, IEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3867-3876, 2018.

[14] A. Z. Zhu, N. Atanasov, K. Daniilidis, Event-based feature tracking
with probabilistic data association, IEEE International Conference on
Robotics and Automation (ICRA), pp. 4465–4470, 2017.

[15] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, D. Scaramuzza,
Event-based vision: a survey, IEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 1, pp. 154-180, 2022.

CONCLUSIONS AND FUTURE WORK 111

[16] A. Z. Zhu, L. Yuan, K. Chaney, K. Daniilidis, Unsupervised event-based
learning of optical flow, depth, and egomotion, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 989–997, 2019.

[17] J. J. Hagenaars, F. Paredes-Valles, G. C. H. E. de Croon, Selfsuper-
vised learning of event-based optical flow with spiking neural networks
in Advances in Neural Information Processing Systems (NeurIPS), vol.
34, pp. 7167–7179, 2021.

[18] A. Z. Zhu, L. Yuan, K. Chaney, K. Daniilidis, EV-FlowNet: Self-
supervised optical flow estimation for event-based cameras, Robotics:
Science and Systems (RSS), pp. 1–9, 2018.

[19] M. Gehrig, M. Millh¨ausler, D. Gehrig, D. Scaramuzza, ERAFT: Dense
optical flow from event cameras, International Conference on 3D Vision
(3DV), pp. 197–206, 2021.

[20] Z. Ding, R. Zhao, J. Zhang, T. Gao, R. Xiong, Z. Yu, T. Huang,
Spatio-temporal recurrent networks for event-based optical flow estima-
tion, AAAI Conference on Artificial Intelligence, vol. 36, no. 1, pp.
525–533, 2022.

[21] C. Lee, A. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, K. Roy, Spike-
flownet: Event-based optical flow estimation with energy-efficient hybrid
neural networks, European Conference on Computer Vision (ECCV),
pp. 366–382, 2020.

[22] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks
for biomedical image segmentation, International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI), pp.
234–241, 2015.

[23] Z. Teed, J. Deng, RAFT: Recurrent all pairs field transforms for optical
flow, European Conference on Computer Vision (ECCV), pp. 402–419,
2020.

112 BIBLIOGRAPHY

[24] J. Cuadrado, U. Ranc¸on, B. R. Cottereau, F. Barranco, T. Masquelier,
Optical flow estimation from event-based cameras and spiking neural net-
works Frontiers in Neuroscience, vol. 17, p. 1160034, 2023.

[25] F. Paredes-Valles, G. C. H. E. de Croon, Back to event basics: Self-
supervised learning of image reconstruction for event cameras via pho-
tometric constancy, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3445–3454, 2021.

[26] H. Liu, G. Chen, S. Qu, Y. Zhang, Z. Li, A. Knoll, and C. Jiang, TMA:
Temporal motion aggregation for event-based optical flow, International
Conference on Computer Vision (ICCV), pp. 9685–9694, October 2023.

[27] D. Gehrig, A. Loquercio, K. G. Derpanis, D. Scaramuzza, End-to-end
learning of representations for asynchronous event based data, Interna-
tional Conference on Computer Vision (ICCV), pp. 5632–5642, 2019.

[28] T. Stoffregen, C. Scheerlinck, D. Scaramuzza, T. Drummond, N. Barnes,
L. Kleeman, R. Mahony, Reducing the sim-to-real gap for event cameras,
European Conference on Computer Vision (ECCV), pp. 534–549, 2020.

[29] M. Gehrig, M. Muglikar, D. Scaramuzza, Dense continuous-time optical
flow from event cameras, IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–12, 2024.

[30] X. Luo, K. Luo, A. Luo, Z. Wang, P. Tan, S. Liu, Learning optical flow
from event camera with rendered dataset, International Conference on
Computer Vision (ICCV), 2023.

[31] Y. Li, Z. Huang, S. Chen, X. Shi, H. Li, H. Bao, Z. Cui, G. Zhang,
Blinkflow: A dataset to push the limits of event-based optical flow esti-
mation, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2023.

[32] G. Taverni, D. P. Moeys, C. Li, C. Cavaco, V. Motsnyi, D. S. S. Bello, T.
Delbruck, Front and back illuminated Dynamic and Active Pixel Vision

CONCLUSIONS AND FUTURE WORK 113

Sensors comparison, IEEE Transactions on Circuits Systems II (TCSII),
vol. 65, no. 5, pp. 677–681, 2018.

[33] C. Ye, A. Mitrokhin, C. Parameshwara, C. Fermuller, J. A. Yorke, Y.
Aloimonos, Unsupervised learning of dense optical flow, depth, and ego-
motion with event-based sensors, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5831–5838, 2020.

[34] Y. Tian, J. Andrade-Cetto, Event transformer FlowNet for optical flow
estimation, British Machine Vision Conference (BMVC), 2022.

[35] F. Paredes-Vall´es, K. Y. Scheper, C. De Wagter, G. C. de Croon,
Taming contrast maximization for learning sequential, low latency,
event-based optical flow, International Conference on Computer Vision
(ICCV), pp. 9661–9671, October 2023.

[36] A. Mitrokhin, C. Fermuller, C. Parameshwara, Y. Aloimonos, Event-
based moving object detection and tracking, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1–9, 2018.

[37] S. K. Nayar, ”Linear Camera Model, Camera Calibration”, First
Principles of Computer Vision, Columbia University, 18 April 2021:
https://fpcv.cs.columbia.edu/

[38] M. Ng, Z. M. Er, G. S. Soh and S. Foong, Aggregation functions for
simultaneous attitude and image estimation with event cameras at high
angular rates, IEE Robotics and Automation Letters, vol. 7, no. 2, April
2022.

[39] J. Nocedal, S. J. Wright, Numerical Optimization, Springer Series in
Operations Research and Financial Engineering, 2006.

[40] N. Parikh, S. Boyd, Proximal Algorithms, Foundations and Trends in
Optimizations, vol. 1, no. 3, pp. 127-239, January 2014.

114 CONCLUSIONS AND FUTURE WORK

[41] A. Beck, M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183-202, 2009.

[42] A. Beck, First-order methods in optimization, SIAM, 2017.

[43] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers, Foundations and Trends in Machine Learning, vol. 3, no. 1,
pp. 1-122, 2010.

[44] T. Pock, PGMO Lecture: Vision, Learning and Optimization, lecture 5,
February 2020.

[45] D. A. Lorenz, Q. Tran-Dinh, Non-stationary Douglas-Rachford and al-
ternating direction method of multipliers: adaptive step-sizes and con-
vergence, Computational Optimization and Applications, vol. 74, pp.
67-92, May 2019.

Ringraziamenti

Vorrei ringraziare prima di tutto il Professor Lanza che si è sempre reso
molto disponibile partecipando con entusiasmo e interessamento allo sviluppo
di questo progetto. Con i numerosi pomeriggi che mi ha dedicato ha reso ev-
idente la passione che mette nel suo lavoro, trasmettendomi di conseguenza
maggior consapevolezza e fiducia nelle mie capacità.
Ringrazio inoltre Martino che con i suoi precisi consigli mi ha guidato du-
rante il percorso di tirocinio e il team R&D di Datalogic che mi ha accolto
calorosamente permettendomi di fare una bellissima esperienza.

Un ringraziamento speciale va alla mia famiglia che mi è sempre stata
accanto spronandomi a dare il massimo in ogni momento, anche quando gli
esami non sempre andavano bene. E’ stato un percorso difficile e il vostro
supporto è stato fondamentale.
Ringrazio Greg, non avrei potuto condividere questi 5 anni di matematica e
di vita con una persona migliore, percorrerli insieme a te li ha resi molto più
leggeri e divertenti.
Grazie a Martina, Lucia ed Elena che mi sono state sempre vicine.

