Towards a Categorical Foundation of Deep Learning: A Survey

Crescenzi, Francesco Riccardo (2024) Towards a Categorical Foundation of Deep Learning: A Survey. [Laurea], Università di Bologna, Corso di Studio in Matematica [L-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (2MB)

Abstract

The unprecedented pace of machine learning research has lead to incredible advances, but also poses hard challenges. At present, the field lacks strong theoretical underpinnings, and many important achievements stem from ad hoc design choices which are hard to justify in principle and whose effectiveness often goes unexplained. Research debt is increasing and many papers are found not to be reproducible. This thesis is a survey that covers some recent work attempting to study machine learning categorically. Category theory is a branch of abstract mathematics that has found successful applications in many fields, both inside and outside mathematics. Acting as a lingua franca of mathematics and science, category theory might be able to give a unifying structure to the field of machine learning. This could solve some of the aforementioned problems. In this work, we mainly focus on the application of category theory to deep learning. Namely, we discuss the use of categorical optics to model gradient-based learning, the use of categorical algebras and integral transforms to link classical computer science to neural networks, the use of functors to link different layers of abstraction and preserve structure, and, finally, the use of string diagrams to provide detailed representations of neural network architectures.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Crescenzi, Francesco Riccardo
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
category theory,deep learning,machine learning,optics,algebras,functor learning,string diagrams
Data di discussione della Tesi
27 Settembre 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^