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Abstract

English

The unprecedented pace of machine learning research has lead to incredible advances, but also
poses hard challenges. At present, the field lacks strong theoretical underpinnings, and many impor-
tant achievements stem from ad hoc design choices which are hard to justify in principle and whose
effectiveness often goes unexplained. Research debt is increasing and many papers are found not to
be reproducible.

This thesis is a survey that covers some recent work attempting to study machine learning cate-
gorically. Category theory is a branch of abstract mathematics that has found successful applications
in many fields, both inside and outside mathematics. Acting as a lingua franca of mathematics and
science, category theory might be able to give a unifying structure to the field of machine learning.
This could solve some of the aforementioned problems.

In this work, we mainly focus on the application of category theory to deep learning. Namely, we
discuss the use of categorical optics to model gradient-based learning, the use of categorical algebras
and integral transforms to link classical computer science to neural networks, the use of functors to
link different layers of abstraction and preserve structure, and, finally, the use of string diagrams to
provide detailed representations of neural network architectures.

Italiano

La velocità senza precedenti con la quale avanza la ricerca nel campo del machine learning ha
portato a eccezionali scoperte, ma pone anche sfide impegnative per il futuro. Al momento, il campo
manca di forti basi teoriche, e molte scoperte significative sono frutto di scelte ad hoc, difficili da
giustificare in teoria, la cui efficacia spesso non si riesce a spiegare. Contemporaneamente, il debito di
ricerca continua ad aumentare e molti tentativi di replicazione si concludono in fallimento.

Questa tesi è una rassegna di alcuni recenti lavori che tentano di analizzare il machine learning
dal punto di vista categorico. La teoria delle categorie è una branca della matematica astratta che è
stata applicata con successo in molti campi sia dentro che fuori della matematica. Agendo come una
lingua franca della matematica e delle scienze, la teoria delle categorie potrebbe dare una struttura
unificante al campo del machine learning, il che potrebbe risolvere alcuni dei problemi menzionati.

In queste pagine, ci concentreremo prevalentemente sull’applicazione della teoria delle categorie al
campo del deep learning. In particolare, trattaremo l’uso di ottiche categorie per modellare il gradient-
based learning, l’uso di algebre categoriche e integral transforms per collegare informatica classica e
reti neurali, l’uso di funtori per collegare livelli diversi di astrazione e preservare struttura, e, infine,
l’uso di diagrammi a stringhe per rappresentare dettagliatamente reti neurali.

i





Introduction

The scattered state of machine learning research

In the last seventy years, machine learning has gone from being a curiosity to being one of the most
exciting frontiers of engineering. The ever-increasing amount of research carried out in the field has
lead to incredible advancements and, nowadays, machine learning models have a substantial impact
many areas of science ([HSK`23]) and society ([KM23]). Despite its unquestionable successes, the
field also faces significant challenges on many levels. Setting aside ethical and societal considerations,
which are not discussed in this work, there are also significant scientific concerns. First of all, machine
learning, and deep learning in particular, lack strong theoretical underpinnings: at the moment, there
is no general mathematical theory of machine learning, and the field looks more like alchemy than
science ([Gav24b], [Rah17]). Scientists and engineers discover and optimize models by trial and error
with no direction and no frame of reference. This leads to a lot wasted time and resources and clearly
hampers future progress.

At the same time, bad incentives in the machine learning community lead to issues with the
research process itself ([SGW21]). [OC17] points out the chaotic state of research and likens it to
technical debt in computer engineering, coining the phrase “research debt”: bad notation, unclear
explanations, and unproven conjectures clutter the machine learning research panorama and make it
difficult to actually produce new research. These factors, together with erroneous or missing statistical
analysis, also lead to widespread reproducibility issues ([GCKG22]). For instance, [Raf19] found that
more than half of the 255 machine learning papers they considered were not reproducible.

These issues are especially significant in deep learning, where models often reveal themselves
to be brittle black boxes: minor changes in hyperparameters or architectures have large effects on
the performance of deep neural networks, and it is often impossible to explain their inner workings
proactively ([Gav24b]). Despite this, deep learning models are being deployed at scale, with little
concern for their flaws.

Category theory as a lingua franca of science

In the most general terms possible, category theory is the branch of mathematics that deals with
structure. From its start in algebraic topology, category theory has risen to be one of the most
foundational areas of mathematics. Category theory can be seen as a lingua franca of mathematics
that unites an ever expanding number of mathematical fields under the same fundamental notions.
Many have likened the rise of category theory as an extension of the Erlangen Programme that unified
geometry at the end of the nineteenth century and, from this point of view, categories might be seen
as the pulsating heart of mathematics.

More recently, the field of applied category theory has developed, with the aim to applying cate-
gory theory more generally as a unifying language of science and even engineering. Category theory
has found applications in resource theory ([CFS16]), database theory ([Spi12]), quantum mechanics
([AC09]), and much more. Applied category theory can be seen as the study of compositionality
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iv Introduction

and is thus useful wherever compositional structure arise, regardless of the nature of the objects or
phenomena at hand. Compositionality here is defined as the property of systems and relationships
that “can be combined to form new systems or relationships” ([FS18]).

Compositionality is a good property that should be strived for because it offers insight into the
fundamental structure of the systems at hand: large compositional systems can be broken up into
smaller systems that are easier to understand; conversely, small compositional systems can be as-
sembled into larger systems without requiring any paradigm shift. Machine learning models such as
Bayesian networks and neural networks are inherently modular, and so it makes sense to investigate
their compositionality using category theory. More generally, many authors think that category theory
could provide a unifying structure for machine learning, and thus could help solve or mitigate many
of the problems discussed above. Hence, starting from the seminal paper [FST19], a large amount of
research has explored the intersection between machine learning and category theory.

General overview

This thesis was originally meant to be a general survey of the intersection between machine learning
and category theory, in the style of [SGW21]. However, we soon realized that the field has grown so
much in the last few years that it has become impossible to do justice to every interesting approach
in the space and time available to us. Thus, we opted to focus on categorical approaches to deep
learning and we decided to focus this thesis around four main ideas, described in the same number of
chapters. Each chapter provides detailed descriptions of a few relevant approaches, and then compares
such approaches with other related works, which are only briefly touched upon. Brief summaries of
the chapters are listed below.

• Chapter 1: Parametric Optics for Gradient-Based Learning. Gradient-based learning
can be described and implemented within categories of adequately chosen parametric optics.

• Chapter 2: From Classical Computer Science to Neural Networks. Category theory
can build a bridge between classical computer science and neural networks, offering insight into
currently known neural network architectures and informing the design of novel ones.

• Chapter 3: Functor Learning. Learning functors between categories instead of just mor-
phisms between objects allows the models at hand to preserve structure, which can lead to better
learning outcomes.

• Chapter 4: Detailed Representations of Neural Networks. Appropriate classes of string
diagrams can be used to represent neural network architectures with all the detail necessary for
implementation.

We emphasize that this work only covers a small amount of the available research: for instance,
we do not even touch upon the enormous and enormously relevant field of categorical probabilistic
learning, nor do we discuss categorical approaches to explainable artificial intelligence. We do not
even cover every categorical approach to neural networks. Nevertheless, we believe that this thesis
can offer an interesting taste of the research that is going on in the field.

Target audience and introductory readings

This work is aimed towards people who already know the basics of both category theory and
deep learning. The readers are not required to be extremely proficient in neither, but we will assume
that they already have some familiarity with neural network architectures, gradient-based learning,
basic categorical definitions, and the theory of symmetric monoidal categories. Regrettably, we do not
have enough space to provide our own supplementary material on these subjects, but we encourage
interested readers to consult the repository [Gav23], for an introduction to category theory, and the
online textbook [ZLLS21], for an introduction to deep learning. [FS18] is a particularly good starting
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point of applied category theory. We also recommend that the readers consult the repository [Gav24a],
which collects numerous papers on the intersection between machine learning and category theory,
some of which are discussed in the following chapters.

Remark 1. For simplicity’s sake, we ignore any size concern in our treatment of categorical concepts.
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Chapter 1

Parametric Optics for Gradient-Based
Learning

Despite the unquestionable success that gradient-based deep learning has enjoyed in recent years,
the field is still both young and poorly understood. As mentioned in the introduction, the lack of
theoretical underpinnings means that good performance is highly dependent on ad hoc choices and
empirical heuristics leading to brittleness and poorly understood phenomena ([SGW21], [Gav24b]).
The ever-growing complexity of deep learning models poses significant challenges both in terms of
optimization ([Ell18]) and architectural design ([GLD`24]), and, while there are a number of general
purpose deep learning libraries that automatically implement backpropagation and provide tools for
designing a wide variety of neural networks, these tools often rely on inelegant machinery difficult to
parallelize ([Ell18]). Given the ever-increasing role gradient based learning plays in the sciences, in
industry, and in everyday life, solving these issues is of the utmost importance.

Hence, it would be desirable to develop a mathematically structured framework for gradient-
based learning able to act as a bridge between low-level automatic differentiation and high level
architectural specifications ([Gav24b]). The great number of architectures developed in recent years
and the inherently modular structure of deep neural networks call for a model which is general (that is,
not dependent on a specific differentiation algorithm or a specific optimizer) and compositional (that
is, we should be able to predict the behavior of the entire model if the behavior of each part is known).
[CGG`22] and [Gav24b] propose a promising combination of differential categories, parametrization
and optics as a full-featured gradient-based framework able to challenge established tools and attack
open problems. In this chapter, we illustrate such framework and part of its mathematical foundations.

1.1 Categorical toolkit

Learning neural networks have two important properties: they depend on parameters and infor-
mation flows through them bidirectionally (forward propagation and back propagation). Any aspiring
categorical model of gradient-based learning must take these two aspects into consideration. A number
of authors (among which [CGG`22] and [Gav24b]) propose the Para construction as a categorical
model of parameter dependence and various categories of optics as the right categorical abstraction
for bidirectionality.

1.1.1 Actegories

Before we can deal with parametric maps, we need to find a way to glue input spaces to parameter
spaces, so that such maps have well-defined domains. One common strategy is to provide the category
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2 1. Parametric Optics for Gradient-Based Learning

at hand with a monoidal structure. However, monoidal products can only combine elements within the
same underlying category. Since (co)parameters are sometimes taken from spaces that are different
in nature from the input and output spaces, a more general mathematical tool is needed: namely,
actegories (see the survey [CG22] for a thorough treatment of the subject). Actegories are actions of
symmetric monoidal categories on other categories. For brevity’s sake, we will only give an incomplete
definition (see [CG22] or [Gav24b] for further information).

Definition 2 (Actegory). Let pM, I,bq be a strict symmetric monoidal category. A M-actegory is
a tuple pC, ‚, η, µq, where C is a category, ‚ : M ˆ C Ñ C is a functor, and η and µ are natural

isomorphisms enforcing C
ηC
– I ‚ C and pM bNq ‚ C

µM,N,C

– pM ‚ pN ‚ Cqq. The isomorphisms η and
µ must also satisfy coherence conditions. If η and µ are identical transformations, we say that the
actegory is strict.

Remark 3. Although the requirement for strictness is somewhat restrictive, we will proceed under
the assumption that the actegories we encounter are strict to streamline notation.

We will also be interested in actegories that interact with the monoidal structure of the underlying
category.

Definition 4 (Monoidal actegory). Let pM, I,bq be a strict symmetric monoidal category and let
pC, ‚, η, µq be a strict actegory. Suppose C has a monoidal structure pJ,bq. Then we say that pC, ‚q is
monoidal if the underlying functor ‚ is monoidal and the underlying natural transformations η and µ
are also monoidal.

We may also be interested in studying the interaction between actegorical structures and end-
ofunctors. This interaction can happen owing to a natural transformation known as strength. We
will not provide coherence diagrams in the definition below for the sake of brevity, but the interested
reader can find more detail in [GLD`24]. The paper also provides a definition of actegorical strong
monad, which is a very similar concept.

Definition 5 (Actegorical strong functor). Let pC, ‚q be an M-actegory. A strong actegorical endo-
functor on pC, ‚q is a pair pF, σq where F : C Ñ C is an endofunctor and σ is a natural transformation
with components σP,A : P ‚ F pAq Ñ F pP ‚ Aq which satisfies a few coherence conditions that we do
not list here.

1.1.2 The Para construction

Suppose we have an M-actegory pC, ‚q. We wish to study maps in C which are parametrized using
objects of M, that is, maps in the form P ‚ A Ñ B. We are not just interested in the maps by
themselves, but also in their compositional structure. Thus, we abstract away the details by defining
a new category Para‚pCq (first introduced in simplified form by [FST19]). Since we also want to
formalize the role of reparametrization, we actually construct Para‚pCq as a bicategory, so that a
0-cell A can serve as an input/output space, a 1-cell pP, fq can serve as a parametric map, and, finally,
a 2-cell r can serve as a reparametrization.

Definition 6 (Para‚pCq). Let pC, ‚q be an M-actegory. Then, we define Para‚pCq as the bicategory
whose components are as follows.

• The 0-cells are the objects of C.
• The 1-cells are pairs pP, fq : A Ñ B, where P : C and f : P ‚A Ñ B.
• The 2-cells come in the form r : pP, fq ñ pQ, gq, where r : P Ñ Q is a morphism in C. r must
also satisfy a naturality condition.
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• The 1-cell composition law is

pP, fq # pQ, gq “ pQb P, pQ ‚ fq # gq.

• The horizontal and vertical 2-cell composition laws are respectively given by parallel and sequen-
tial composition in M.

It is quite handy to represent the cells of Para‚pCq using the string diagram notation illustrated in Fig.
1.1. The Para construction has a dual coPara construction whose 1-cells f : coPara‚pCqpA,Bq take
the form pP, fq, where f : A Ñ P ‚ B. Cells in coPara‚pCq can also be represented with appropriate
string diagrams. The reader can find a complete definition in [Gav24b].

(a) (b)

(c)

Figure 1.1: String diagrams representing (a) a parametric morphism, (b) a reparametrization of a
parametric morphism, (c) a composition of parametric morphisms. (Images taken from [Gav24b].)

It is shown in [Gav24b] that Para‚pCq is actually a 2-category if the underlying actegory is strict.
Assuming this is the case (as we do in this thesis), we can use a functor F : Cat Ñ Set to quotient out
the 2-categorical structure and turn Para‚pCq into a 1-category F˚pPara‚pCqq. Here, F˚ : 2Cat Ñ Set
is the change of enrichment basis functor induced by F . This meaningfully recovers the 1-categorical
perspective of [FST19].

Both Para‚pCq and coPara‚pCq can be given a monoidal structure if pC, ‚q is a monoidal acte-
gory. This is extremely important because it allows us to compose (co)parametric morphisms both in
sequence and in parallel. Once again, more detail can be found in [Gav24b].

Remark 7. Another way to parametrize morphisms is the coKleisli construction. As noted by
[Gav24b], the main difference between coKl and Para is that the parametrization offered by coKl is
global, while the parametrization offered by Para is local: all morphisms in coKlpXˆ ´q must take a
parameter in X, while different morphisms of ParapCq admit different parameter spaces. Nevertheless,
the two constructions are related, and the former can be embedded into the latter.



4 1. Parametric Optics for Gradient-Based Learning

If we take a parametrized category Para‚pCq and we restrict our attention to morphisms parametrized
with the monoidal identity I, we get back the original category C. This is expressed by the following
proposition ([Gav24b]).

Proposition 8. Let pC, ‚q be an M-actegory. Then, there exists an identity-on-objects pseudofunctor
γ : C Ñ Para‚pCq that maps f ÞÑ pI, fq. If M is strict, this is a 2-functor.

1.1.3 Optics

Modelling bidirectional flows of information is not only useful in machine learning, but also in
game theory, database theory, and more. As such, categorical tools for bidirectionality have been
sought after for a long time: in particular, a great deal of effort has been devoted to the development
of lens theory. Lenses have then been generalized into optics (see e.g. [Ril18]) to subsume other tools
such as prisms and traversals into a single framework. Finally, there have also been various attempts
to generalize optics (see e.g. [CEG`24] for a definition of mixed optics). We will introduce lenses and
optics, and focus on the generalization of optics introduced by [Gav24b]: weighted optics.

As stated in [Gav24b], there is no standard definition of lens, and different authors opt for different
ad hoc definitions that best suit their purposes. We will borrow the perspective of [CGG`22].

Definition 9 (Lenses). Let C be a Cartesian category. Then, LenspCq is the category defined by the
following data:

• an object of LenspCq is a pair
`

A
A1

˘

of objects of C;
• a

`

A
A1

˘

Ñ
`

B
B1

˘

morphism (or lens) is a pair
´

f
f 1

¯

of morphisms of C such that f : A Ñ B and

f 1 : A ˆ B1 Ñ A1; f is known as the forward pass of the lens
´

f
f 1

¯

, whereas f 1 is known as the

backward pass;
• given

`

A
A1

˘

: LenspCq, the associated identity lens is
`

1A
π1

˘

;

• the composition of
´

f
f 1

¯

:
`

A
A1

˘

Ñ
`

B
B1

˘

and
` g
g1

˘

:
`

B
B1

˘

Ñ
`

C
C1

˘

is

´

f #g
xπ0,xπ0#f,π1y#g1y#f 1

¯

.

Lenses can be represented using the string diagrams illustrated in Fig. 1.2.

(a) (b)

Figure 1.2: String diagrams representing (a) a lens
´

f
f˚

¯

, (b) the composition of two lenses
´

f
f˚

¯

and
` g
g˚

˘

. (Images taken from [CGG`22].)

Lenses are a powerful tool, but they cannot be used to model all situations: for instance, lenses
cannot be used if we wish to be able to choose not to interact with the environment depending on the
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input, or if we would like to reuse values computed in the forward pass for further computation in the
backward pass.

Optics generalize lenses by weakening the link between forward and backward passes, and by replac-
ing the Cartesian structure of the underlying category with a simpler symmetric monoidal structure.
In an optic over C, an object M : C acts as an inaccessible residual space transferring information
between the upper components and the lower component. We provide the definition given by [Ril18]1.

Definition 10 (Optics). Let pC, I,b, λ, ρ, αq be a symmetric monoidal category (we make the unitors
and associators explicit for later use). Then, OpticpCq is the category defined by the following data:

• an object of OpticpCq is a pair
`

A
A1

˘

of objects of C;
• a

`

A
A1

˘

Ñ
`

B
B1

˘

morphism (or optic) is a pair
´

f
f 1

¯

of morphisms of C such that f : A Ñ M bB

and f 1 : M b B1 Ñ A1, where M : C is known as residual space; such pairs
´

f
f 1

¯

are also

quotiented by an equivalence relation that allows for reparametrization of the residual space and
effectively makes it inaccessible;

• the identity on
`

A
A1

˘

is the optic represented by
´

λ´1
A

λA1

¯

.

Refer to [Ril18] or [Gav24b] for the more information about the composition of optics and the repre-
sentation of optics with string diagrams.

Lenses come up as a special case of optics ([Ril18]), and optics do solve some of the issues we
have with lenses. However, optics are not perfect either: for instance, [Gav24b] points out that optics
cannot be used in cases where we ask that the forward pass and backward pass are different kind of
maps, as they are both forced to live in the same category. Thus, a further layer of generalization is
useful: namely, weighted optics.

1.1.4 Weighted optics

Before we define weighted optics, we need to introduce a new tool to our toolbox: the category of
elements of a functor.

Definition 11 (Elements of a functor). Let F : C Ñ Set be a functor. We define ElpF q as the category
with the following data: (i) the objects of ElpF q are pairs pC, xq where C : C and x : F pCq; (ii) the
pC, xq Ñ pD, yq morphisms in ElpF q are the morphisms f : C Ñ D in C such that F pfqpxq “ y.

[Gav24b] studies B-actegories pC, ‚q, which are then reparametrized so that the acting category
becomes E “ ElpW q for some weight functor W : Bop Ñ Set (which is to be specified). The
reparametrization takes place thanks to the opposite of the forgetful functor πW : E Ñ Bop, which
maps pB, xq ÞÑ B. Hence, we consider the action

‚π
op
W “ ElpW qop ˆ C

πop
W ˆC
ÝÑ B ˆ C ‚

ÝÑ C.

We are finally ready to define weighted optics2.

Definition 12 (Weighted coPara). If W is a weight functor as above and pC, ‚q is a B-actegory, we
define

coParaW‚ pCq “ π0˚pcoPara
‚
π
op
W

pCqq,

1[Ril18]also provides a more versatile (but more sophisticated) definition of optics that relies on coends. Under the
coend formalism,

OpticpCq
``

A
A1

˘

,
`

B
B1

˘˘

“

ż M :C
CpA,M b Bq ˆ CpM b B1, A1

q.

2Weighted optics also admit a coend definition. Refer to [Gav24b] for more information.
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where π0˚ is the enrichment base change functor generated by the connected component functor π0 :
Cat Ñ Set. More explicitly, π0˚ quotients out the connections provided by reparametrizations.

Definition 13 (Weighted optics). Suppose pC, ‚q is an M-actegory, suppose pD, ‚q is an M1-actegory,
and suppose W : Mop ˆ M1 Ñ Set is a lax monoidal functor. We define the category of W -weighted
optics over the product actegory pC ˆ Dop, p ‚

‚op qq as

OpticW
p ‚

‚ q
“ coParaW

p ‚
‚op q

pC ˆ Dopq.

The definition is very dense and deserves some explanation. Fist of all, we assume that W maps
`

M
M 1

˘

to a set of maps s : M Ñ M 1. If that’s the case, a
`

X
X 1

˘

Ñ
`

Y
Y 1

˘

map is a triplet
´

`

M
M 1

˘

, s,
´

f
f 1

¯¯

,

where M is the forward residual, M 1 is the backward residual, s : M Ñ M 1 links the two residuals,
f : X Ñ M ‚ Y is the forward pass, and f 1 : M 1 ‚ Y 1 Ñ X 1 is the backward pass. The triplets are also
quotiented with respect to reparametrization, which makes the residual spaces effectively inaccessible
(as it happens in the case of ordinary optics). We can get a clear ”operational” understanding of how
a weighted optic works looking at an associated string diagram (see Fig. 1.3): data from X flows
through the forward map, which computes an output in Y and a forward residual in M . Such forward
residual is then converted into a backward residual in M 1 by the map s, which is provided by the
weight functor. Finally, the backward residual is used by f 1, together with input from Y 1, in order
to compute a value in X 1. A full account of the composition law for weighted optics can be found on
[Gav24b]. As stated in [Gav24b], since coPara can be given a monoidal structure, we can also give
OpticW

p ‚
‚ q

one such structure as long as the underlying actegories are monoidal and the weight functor

W is braided monoidal.

Figure 1.3: String diagram representing the inner workings of a weighted optic. (Image taken from
[Gav24b].)

The advantages of weighted optics over ordinary optics are clear: when dealing with weighted
optics, we are no longer forced to take reverse maps from the same category as the forward maps.
The action on the category of forward spaces is now separated from the action on the category of
backward spaces, and the link between the two actions is provided by an external functor. Such
modular approach provides a great deal of conceptual clarity and flexibility, more than regular optics
or lenses can provide on their own. It is also shown in [Gav24b] that weighted optics are indeed a
generalization of optics. In particular, it is shown that the lenses in Def. 9 are the specialized weighted
optics obtained when C “ D is Cartesian and the actegories are given by the Cartesian product. More
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generally, [Gav24b] claims that - to the best of the author’s knowledge - all definitions of lenses
currently used in the literature are subsumed by the definition of mixed optics (see [CEG`24]), which
are themselves a special case of weighted optics. Hence, all lenses are weighted optics.

[Gav24b] goes on to apply the Para construction onto weighted optics, obtaining parametric
weighted optics, which are proposed as a full-featured model for deep learning. The author conjectures
that ”weighted optics provide a good denotational and operational semantics for differentiation”. In its
full, generality, this is still an unproven conjecture. However, restricting our attention to a special class
LensA of lenses with an additive backward passes yields a formal theory of “backpropagation through
structure” ([Gav24b]), which will be illustrated in the rest of the chapter, after a short digression on
differential categories.

1.1.5 Differential categories

Modelling gradient-based learning obviously requires a setting where differentiation can take place.
Although it is tempting to directly employ smooth functions over Euclidean spaces, recent research
has shown that there are tangible advantages in working with generalized differential combinators
that extend the notion of derivative to polynomial circuits ([WZ22], [WZ21]), manifolds ([PVM`21]),
complex spaces ([BQL21]), and so on. Thus, it makes sense to work with an abstract notion of
derivative which can then be appropriately implemented depending on the requirements at hand.

One approach to this problem involves the explicit definition of two kinds of differential categories:
Cartesian differential categories (first introduced in [BCS06]) and Cartesian reverse differential cate-
gories (first introduced by [CCG`19]). The former allow for forward differentiation, while the latter
allow for reverse differentiation. We will omit the defining axioms for the sake of brevity, but the
reader can find complete definitions in [CCG`19].

Definition 14 (Cartesian differential category). A Cartesian differential category (CDC) C is a Carte-
sian left-additive category where a differential combinator D is defined. Such differential combinator
must take a morphism f : A Ñ B and return a morphism Drf s : A ˆ A Ñ B, which is known as the
derivative of f . The combinator D must satisfy a number of axioms.

Definition 15 (Cartesian reverse differential category). A Cartesian reverse differential category
(CRDC) C is a Cartesian left-additive category where a reverse differential combinator R is defined.
Such reverse differential combinator must take a morphism f : A Ñ B and return a morphism
Rrf s : A ˆ B Ñ A, which is known as the reverse derivative of f . The combinator R must satisfy a
number of axioms.

Example 16. Consider the category Smooth of Euclidean spaces and smooth functions. Smooth
is a both a CDC and a CRDC. In fact, if Jf is the Jacobian matrix of a smooth morphism f ,

Drf s : px, vq ÞÑ Jf pxqv

and

Rrf s : px, yq ÞÑ Jf pxqT y

induce well-defined combinators D and R. This is only a partial coincidence: as shown in [CCG`19]
CRDCs are always CDCs under a canonical choice of differential combinator. The converse, however,
is generally false.

As it turns out, forward differentiation tends to be less efficient when dealing with neural networks
that come up in practice ([Ell18]), so CDCs are not extremely useful when studying deep learning.
CRDCs, on the other hand, have been applied to great success (see e.g. [CGG`22]). As shown in
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[WZ22], a large supply of CRDCs can be obtained by providing the generators of a finitely presented
Cartesian left-additive category with associated reverse derivatives (as long as the choices of reverse
derivative are consistent). Moreover, CRDCs have been recently generalized by [Gav24b] to coalgebras
associated with copointed endofunctors, which could also increase the number of known CRDCs in
the future. The rest of this section is devoted to this generalization.

It is shown in [Gav24b] that there is a particular class of weighted optics which is useful for reverse
differentiation, being able to represent both maps (through forward passes) and the associated reverse
derivatives (through backward passes). Moreover, such weighted optics can be represented as lenses
in the sense of Def 9, which means that their inner workings can be pictured in a simple, intuitive
way.

Definition 17 (Additively closed Cartesian left-additive category). A Cartesian left-additive category
C is an additively closed Cartesian left-additive category (ACCLAC) if and only if the following are
true:

• the subcategory CMonpCq of additive maps has a closed monoidal structure pI,bq;
• the embedding ι : CMonpCq Ñ C is a lax monoidal funtor with respect to the aforementioned
structure of CMonpCq and the Cartesian structure of C.

Then, we can define the category of lenses with backward passes additive in the second component.

Definition 18. Let C be an ACCLAC with Cartesian structure is p1,ˆq and whose subcategory
CMonpCq has monoidal structure pI,bq. Then, we define

LensApCq “ Optic
Cp´,ιp´qq
´

ˆ
b

¯ .

As argued in [Gav24b], the symbol LensA is justified because one such optic of type
`

X
X 1

˘

Ñ
`

Y
Y 1

˘

can be concretely represented as a lens with forward pass f : CpX,Y q and backward pass f 1 : CpX ˆ

Y 1, X 1q, which is the approach we illustrate in this thesis. Nevertheless, some potential expressivity is
lost when passing from weighted optic composition to concrete lens composition. In particular, if we
operated with optics, we would be able to implement backpropagation without resorting to gradient
checkpointing, which is not possible if we use lenses ([Gav24b]).

The generalization mentioned above is possible because LensA is an endofunctor.

Definition 19. We defined CLACat as the category whose objects are Cartesian left-additive cate-
gories and whose morphisms are Cartesian left-additive functors (see e.g.[BCS06]).

Proposition 20. If C : CLACat, then LensApCq : CLACat.

Proof. The Cartesian structure on LensApCq is given by
`

X
X 1

˘

ˆ
`

Y
Y 1

˘

“

´

XˆY
X 1ˆY 1

¯

and by the initial

object p 1
1 q. The monoidal structure on each

`

X
X 1

˘

is given by the unit 0´

X
X 1

¯ “

´

0A
!1ˆA1

¯

: p 1
1 q Ñ

`

X
X 1

˘

and by the multiplication `´

X
X 1

¯ “

´

`A
π2#∆A1

¯

:
´

XˆX
X 1ˆX 1

¯

Ñ
`

X
X 1

˘

.

Proposition 21. LensA : CLACat Ñ CLACat is a functor.

Proof. Given a Cartesian left-additive functor F : C Ñ D, we can define LensApF q as the functor that

maps
`

X
X 1

˘

ÞÑ

´

F pXq

F pX 1q

¯

and maps
´

f
f 1

¯

ÞÑ

´

F pfq

f 1

¯

, where f 1 “ F pXq ˆ F pY 1q
–

ÝÑ F pX ˆ Y 1q
F pf 1q
ÝÑ

F pX 1q. It can be shown that LensApF q is also Cartesian left-additive.
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Proposition 22. LensA has a copointed structure3.

Proof. It suffices to endow LensA with the natural transformation ϵ whose components are the for-
getful functors ϵC : LensApCq Ñ C which strip away the backward passes.

Hence, [Gav24b] defines generalized CRDCs as follows.

Definition 23 (Generalized Cartesian reverse differential category). A generalized Cartesian reverse
differential category is a coalgebra for the pointed endofunctor LensA.

Explicitly, a colagebra for LensA is a pair pC,RCq such that C : CLACat and RC : C Ñ LensApCq

satisfies RC # ϵC “ idC . The intuition behind such definition is that RC should map f ÞÑ

´

f
Rrf s

¯

,

where R is a generalized reverse derivative combinator. [Gav24b] shows that ordinary CRDCs are
generalized CRDCs under this definition of RC .

1.1.6 Parametric lenses

We conclude this section discussing the relation between the Para construction and the LensA
endofunctor. [Gav24b] and [GLD`24] show that, under an appropriate definition, actegorical strong
functors induce 2-functors between parametric 2-categories.

Proposition 24. Suppose pC, ‚q is a strict M-actegory and F : C Ñ C is an actegorical endofunctor
with strength σ. Then, F induces a 2-endofunctor ParapF q : Para‚pCq Ñ Para‚pCq.

Proof. Define ParapF q so that:
1. ParapF q acts like F on objects A : C;

2. ParapF qpfq “ P ‚ F pAq
σP,A
ÝÑ F pP ‚Aq

F pfq
ÝÑ F pBq for all pP, fq : Para‚pCqpA,Bq;

3. ParapF q leaves reparametrizations unchanged.

As a consequence, it can be shown that, if pC,RCq is a generalized CRDC, RC induces a 2-functor
ParapRCq : ParaˆpCq Ñ Para‚pLensApCqq, which takes a parametric map f : P ˆ A Ñ B and
augments is with its reverse derivative Rrf s, forming a parametric lens. Parametric lenses behave very
similarly to lenses, but we provide a separate stand-alone definition (which we take from [CGG`22])
for the reader’s convenience.

Definition 25 (Parametric lenses). The category of parametric lenses over a Cartesian category
pC, 1,ˆq is Para‚pLenspCqq, where ‚ is the action on the lenses generated by the Cartesian structure
of C:

ˆ

P
P 1

˙

‚

ˆ

A
A1

˙

“

ˆ

P ˆA
P 1 ˆA1

˙

.

Refer to Fig. 1.4 to see a string diagram that shows the inner workings of a parametric lens.

1.2 Supervised learning with parametric lenses

In this section, we show how parametric lenses can be used to model supervised gradient-based
learning ([CGG`22], [Gav24b], [SGW21]). While lenses are not as general as weighted optics, it is
shown in [CGG`22] that they are powerful enough for most purposes and that there is empirical
evidence of their applicability and performance. The paper also discusses the use of parametric lenses
in modeling unsupervised deep learning and deep dreaming, but we do not have enough space to
discuss this topic.

3An endofunctor F : D Ñ D is copointed if it is endowed with a natural transformation ϵ : F ñ idD.
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Figure 1.4: String diagrams representing the inner workings of a parametric lens. (Images taken from
[CGG`22].)

1.2.1 Model, loss, optimizer, learning rate

Supervised gradient-based learning can be modeled using parametric lenses as follows:

1. we can design an architecture pP,Modelq as a parametric morphism in Para‚pCq for some gen-
eralized CRDC pC,RCq;

2. we can use the functor RC to endow pP,Modelq with its reverse derivative RrpP,Modelqs, yielding
a lens in Para‚pLensApCqq;

3. we can use 2-categorical machinery of Para‚pLensApCqq to provide a loss function, a learning
rate, and an optimizer, which can be assembled onto RCpP,Modelq to yield a supervised learning
lens able to update parameters based on inputs and predictions;

4. we can use copy maps from the Cartesian structure of C to create a learning iteration.

The theory of parametric optics and differential categories does not offer explicit insight with
respect to architecture design, so we will assume a good architecture has already been designed4. Given
an architecture pP,Modelq, it can be embedded into Para‚pLensApCqq as a lens

`

PˆA
PˆA

˘

Ñ
`

B
B

˘

by
breaking it up into its basic components (such as linear layers, convolutional layers, etc.), augmenting
such components with their reverse derivatives, and the composing the resulting lenses. The backward
pass of the composition is the reverse derivative of its forward pass because RC is a functor5. Many
examples can be found in [CGG`22].

Updating the parameters based on data requires a loss function, an optimizer and a learning
rate. Loss functions can be implemented as parametric lenses which take in predictions as input and
labels as parameters. The output they produce can be considered the actual loss that needs to be

differentiatied. Given a model parametric lens
´

Model
RrModels

¯

:
`

PˆA
PˆA

˘

Ñ
`

B
B

˘

and a loss parametric

lens
´

Loss
RrLosss

¯

:
`

BˆB
BˆB

˘

Ñ
`

L
L

˘

, the composition
´

Model
RrModels

¯

#
´

Loss
RrLosss

¯

takes in features as input and

takes model parameters and labels as parameters. Then, this information is used to compute the loss
associated with the predictions of the model. See Fig. 1.5 (a) for the associated string diagram.

It can be helpful to think about dangling wires in the diagrams as open slots where other com-
ponents can be plugged. For instance, the diagram of Fig. 1.5 (a) has dangling wires labeled with
L on its right. We can use a learning rate lens α to link these wires and allow forward-propagating
information to ”change direction” and go backwards. α must have domain equal to

`

L
L

˘

and codomain
equal to p 1

1 q, where 1 is the terminal object of C. For instance, if C “ Smooth, α might just mul-

4We will come back on this in Chpt. 2.
5As highlighted by [SGW21], the diagram for the backward pass of the composition of two lenses looks exactly like

the diagram describing the chain rule for reverse derivatives, which is what makes RC a well-defined functor.
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(a) (b)

(c)

Figure 1.5: String diagrams representing (a) the composition of a model lens and a loss function lens
(b) the composition of a model lens, a loss function lens, and a learning rate lens, (d) a supervised
learning lens. (Images taken from [CGG`22].)

tiply the loss by some ϵ, which is what machine learning practitioners would ordinarily call learning
rate. Fig. 1.5 (b) shows how a learning rate can be linked to the loss function and the model using
post-composition.

The final element needed for the model Model in Fig. 1.5 (b) to learn is an optimizer. It is
shown in [CGG`22] that optimizers can be represented as reparametrisations in ParapLenspCqq.

More specifically, we might see an optimizer as a lens
`

P
P

˘

Ñ

´

Q
Q

¯

. In gradient descent, for example,

P “ Q and the aforementioned lens is
`

1P
´P

˘

. We can plug such reparametrisation on top of the
model, we can redirect the input wires of the model to convert them into parameters, and we can
plug useless wires with delete maps taken from the Cartesian structure of C. We are then left with
a p 1

1 q Ñ p 1
1 q parametric lens with parameter space

`

A
1

˘

ˆ
`

P
P

˘

ˆ
`

B
1

˘

. This lens is pictured in Fig.
1.5 (c).The diagram shows how the machinery hidden by the ParapLenspCqq can take care of forward
propagation, loss computation, backpropagation and parameter updating in a seamless fashion.

1.2.2 Weight tying, batching, and the learning iteration

Both [CGG`22] and [Gav24b] emphasize the essential role played by weight tying in deep learning.
Weight tying can be implemented within the parametric lens framework as a reparametrization that
copies a single parameter to many parameter slots (see Fig. 1.6 (a)): given pPˆP, fq : ParapCqpX,Y q,
we can define pP, f∆P q : ParapCqpX,Y q so that

f∆P : P ˆX
∆P ˆX
ÝÑ P ˆ P ˆX

f
ÝÑ Y.

Copy maps can also be used for batching : batching is implemented by instantiating n different copies
of our supervised learning lens (comprised of model, loss function, and learning rate) and tying the
parameters to a unique value. Then, it suffices to feed the n data points to the n lenses, and we can
optimize across a single parameter (see Fig. 1.6 (b)).
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[CGG`22] introduces a possible representation for the whole learning iteration of a supervised
learning model as a single map. The paper suggests extracting the backward pass of the lens in Fig.
1.5 (d) and reframing it as a P Ñ P parametric map with parameters AˆB. Since this is an endomap,
it can be composed n times with itself to obtain a P Ñ P map, which is proposed as a model of the
learning iteration. While this approach requires breaking lenses apart, it is markedly simple.

(a) (b)

Figure 1.6: String diagrams representing (a) weight trying and (b) batching, both implemented using
the copy maps of a Cartesian category. (Images taken from [CGG`22].)

1.2.3 Empirical evidence

Empirical evidence for the effectiveness of the parametric lens framework discussed in this section
can be found in [CGG`22], where the authors implement a Python library for gradient-based learning
rooted in these ideas. They use the library to develop a MNIST classifier, obtaining comparable
accuracy to models developed using traditional tools. The Python implementation of components
of learning as parametric lenses is elegant and mathematically principled, as it mirrors an abstract
categorical structure. It is also insightful because it highlights possible generalizations, which manifest
as simple modifications of existing lenses.

This kind of success story foreshadows a future where popular machine learning libraries also
follow elegant principled paradigms informed by category theory. Quoting [CGG`22] directly, “[the]
proposed algebraic structures naturally guide programming practice”.

1.3 Future directions and related work

The parametric optic framework discussed in this chapter is very promising, but there is still a
lot of work that needs to be done for it to reach its full potential. For instance, [Gav24b] conjectures
that weighted optics can be used in its full generality to model differentiation in cases which are not
covered by lenses. For instance, lenses cannot model automatic differentiation algorithms that do
not use gradient checkpointing, while weighted optics are conjectured to be able to do so. [Gav24b]
suggests investigating locally graded categories as potential replacements for actegories, and also
suggests investigating the applications of parametric optics to meta-learning, that is deep learning
where the optimizers themselves are learned. Moreover, [CGG`22] conjectures that some of the
axioms of CRDC may be used to model higher order optimization algorithms. Finally, as suggested
by [CGG`22], future work might allow the parametric optic framework to encompass non-gradient
based optimizers such as the ones used in probabilistic learning. See [SGW21] for more on this topic.
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We conclude this chapter by discussing three other directions of machine learning research that
are closely related to the framework of parametric optics.

1.3.1 Learners

One of the first compositional approaches to training neural networks in the literature can be found
in the seminal paper [FST19], which spurred a lot of research in the field, including what is presented
in [Gav24b] and [CGG`22]. The authors introduce a category of learners, objects which are meant to
represent neural network components and behave similarly to parametric lenses.

Definition 26 (Category of learners). Let A and B be sets. A learner A Ñ B is a tuple pP, I, U, rq

where P is a set, and I : P ˆ A Ñ B, U : P ˆ A ˆ B Ñ P , and r : P ˆ A ˆ B Ñ A are
functions. P is known as parameter space, I as implement function, U as update function, and r
as request function. Two learners pP, I, U, rq : A Ñ B and pQ, J, V, sq : B Ñ C compose forming
pP ˆQ, I ˚ J, U ˚ V, r ˚ sq : A Ñ C, where

pI ˚ Jqpp, q, aq “ Jpq, Ipp, aqq,

pU ˚ V qpp, q, a, cq “ pUpp, a, spq, Ipp, aq, cqq, V pq, Ipp, aq, cqq,

pr ˚ sqpp, q, a, cq “ rpp, a, spq, Ipp, aq, cqq.

Learners quotiented by an appropriate reparametrization relationship6 form a category Learn.

A learner represents an instance of supervised learning: the implement function takes a param-
eter and implements a function and the update function updates the parameters using a data from
a dataset. The request function is necessary to implement backpropagation when optimizing a com-
position of learners. Suppose we select a learning rate ϵ and an error function e : R2 Ñ R such
that y ÞÑ Be

Bxpx0, yq is invertible for all x0. It is argued in [FST19] that we can define a functor
Lϵ,e : ParaˆpSmoothq Ñ Learn which takes a parametric map and yields an associated learner that
implements gradient descent.

We do not have the space to talk about learners at length, but we wish to draw a short compar-
ison between parametric weighted optics (and, in particular, parametric lenses) and the approach of
[FST19], given the relevant position held by the latter in machine learning literature. The similarities
between learner-based learning and lens-based learning are evident: every learner pP, I, U, rq looks
like a parametric lens, where I passes information forward, r passes information backwards and P
is the parameter space. Moreover, the role of Lϵ,e is very similar to the role played by ParapRCq in
optic-based learning. Such similarities were even discussed in the original paper [FST19] and have
been researched at length: it has been proved in [FJ19] that learners can be functorially embedded in
a special category of symmetric lenses (as opposed to the lenses of Def. 9, which are asymmetric).

Despite the similarities, there is one fundamental difference between the lens-based approach and
the learner-based approach: each learner carries its own optimizer, whereas optimization of lenses is
usually carried out separately. Moreover, if we compare parametric weighted optics with learners, the
latter clearly win in versatility, generality, and (at least from our point of view) conceptual clarity. It
is argued in [SGW21] and [CGG`22] that the parametric lens framework largely subsumes the learner
approach. More information regarding the comparison can also be found in [Gav24b].

6As argued in [FST19], learners could be studied from a bicategorical point of view, where reparametrizations would
just be 2-cells. We could then use a connected component projection to compress Learn into a 1-category Learn, as it
is done for coPara when defining weighted optics.



14 1. Parametric Optics for Gradient-Based Learning

1.3.2 Exotic differential categories

We have presented the parametric weighted optic approach of [Gav24b] and [CGG`22] within the
context of neural networks for the sake of simplicity, but the framework has been developed with
generality in mind and applies to a much wider range of situations. For instance, we can easily replace
Smooth with any other CRDC C, yielding a full-feature compositional framework for gradient-based
learning over C.

Switching to a different CRDC is useful because different differential categories can lead to different
learning outcomes, both in terms of accuracy of the model and in terms of computational costs
([WZ22]). For instance, is argued in [WZ22] that polynomial circuits can be used to define and train
intrinsically discrete machine learning models. Even ‘radical’environments such as Boolean circuits
- where scalars reside in Z2 - seem to be conductive to machine learning under the right choice
of architecture and optimizer ([WZ21]). Using such exotic differential categories could be of great
advantage because they might be able to better reflect the intrinsic computational limits of computer
arithmetic, leading to more efficient learning ([WZ22]).

1.3.3 Functional reverse-mode automatic differentiation

Finally, we wish to highlight the similarities between the formal theory of differential categories
illustrated here and the work in [Ell18]. The paper describes the Haskell implementation of a purely
functional automatic differentiation library, which is able to handle both forward mode and reverse
mode automatic differentiation without resorting to the mutable computational graphs used by most
current day libraries.

Among the main insights of [Ell18], it is stated that derivatives should not be treated as simple
vectors, but as linear maps, or multilinear maps in the case of uncurried higher-order derivatives.
Moreover, the author shows that differentiation can be made compositional by working on pairs
pf,Dfq, which behaved very similarly to lenses. As noted by [SGW21], however, [CGG`22] and other
lens-theoretical perspectives do not subsume the work in [Ell18] because of the latter’s programming
focus. See [SGW21] for more information regarding this comparison.



Chapter 2

From Classical Computer Science to
Neural Networks

Classical computer science focuses on discovering algorithms, that is ordered sequences of steps
which operate in precisely set, idealized conditions and have strong guarantees of correctness due
to their exact mathematical formulations. Neural networks, on the other hand, are able to work in
messy, real-world conditions, but offer very so few guarantees of correctness that their performance
is often described as unreasonably good. Moreover, whereas algorithms generalize very well (most
software engineers will only need a few dozen algorithms in their entire career), neural networks are
often completely helpless when pitted against out of distribution inputs. Hence, algorithms and neural
networks can be seen as complementary opposites ([VB21], [VBB`22]).

Recent attempts going under the label of neural algorithmic reasoning (see [VB21] for a very short
introduction to the subject) have tried to get the best of both worlds by training neural networks
to execute algorithms (see e.g [IKP`22]). The CLRS benchmark (introduced by [VBB`22]) uses
graphs to represent the computations associated with a few classical algorithms from the famous
CLRS introductory textbook ([CLRS22]) so that graph neural networks (GNNs) can be trained to
learn these algorithms. The benchmark has spurred a large amount of research in this direction, with
very promising results.

More generally, linking machine learning to classical computer science might unlock interesting
advances. For example, recovering neural networks as parametric versions of known algorithms might
help classify existing architectures in a conceptually clear manner, and it might even help discover
new neural network architectures by taking inspiration from well-researched classical notions. In this
chapter, we illustrate two lines of inquiry which use category theory to build such a bridge: categorical
deep learning and an interesting categorical approach to algorithmic alignment. Before treating such
topics, we go on a short categorical tangent regarding (co)algebras and integral transforms.

2.1 Categorical toolkit

2.1.1 (Co)algebras

Categorical algebras and coalgebras are a formalization of the principles of induction and coinduc-
tion. Induction and coinduction are fundamental to computer science because they allow us to give
precise definitions for many data structures and to formalize recursive and corecursive algorithms on
such structures. We will touch on (co)algebras very briefly but we refer interested readers to [JR97]
and [Wis08] for further detail.

15



16 2. From Classical Computer Science to Neural Networks

Definition 27 ((Co)algebra over an endofunctor). Let F : C Ñ C be an endofunctor. An algebra
over F is a pair pA, aq where A : C and a : CpF pAq, Aq. A coalgebra is a pair pA, aq where A : C and
a : CpA,F pAqq. In both cases A is known as carrier set and a as structure map.

(Co)algebras can also be defined on monads: the only difference between (co)algebras over an
endofunctor and (co)algebras over a monad is that the latter also need to be compatible with the monad
structure, that is, they have satisfy various coherence conditions (see [GLD`24]). (Co)algebras over
the same functor can be given a categorical structure by using the following notion of homomorphism.

Definition 28 (Homomorphisms of (co)algebras over an endofunctor). Let pA, aq and pB, bq be al-
gebras over the same endofunctor F : C Ñ C. An algebra homomorphism pA, aq Ñ pB, bq is a map
f : CpA,Bq such that the diagram in Fig. 2.1 (a) is commutative.

Now suppose pA, aq and pB, bq are coalgebras. A homomorphism between them is a map f : CpA,Bq

such that the diagram in Fig. 2.1 (b) is commutative.

(a) (b) (c)

Figure 2.1: Conditions under which f : pA, aq Ñ pB, bq is (a) an algebra homomorphism, (b) a
coalgebra homomorphism, (c) a lax algebra homomorphism. (Image (c) is taken from [GLD`24].)

The main intuition behind the notions of algebra and coalgebra is the following: the underlying
functor defines a signature for the (co)algebraic structure; the structure of an algebra is a constructor
that takes data from F pAq and uses it to build data from A, whereas the structure of a coalgebra
observes data from A and produces an observation in the form of data from F pAq; (co)algebra ho-
momorphism are arrows that preserve the underlying structure. Consider the following clarifying
examples from [GLD`24].

Remark 29. In the examples below we use polynomial and exponential expressions to define endo-
functors over Set. In this context, X is the argument of the functor, ˆ is the Cartesian product, `

is the disjoint union, xf, gy is the pairing induced by ˆ, rf, gs is the pairing induced by `, and BA

is the set of functions A Ñ B. The ˆ operator is assumed to take precedence over the ` operator.
Similarly, the exponential operator is assumed to take precedence over the ˆ operator.

Example 30 (Lists). Let A be a set. Consider the endofunctor 1`AˆX : Set Ñ Set. If ListpAq is the
set of A-labeled lists, pListpAq, rNil,Conssq is an algebra over 1 `AˆX. Here, Nil : 1 Ñ ListpAq is the
map which takes the unique object of 1 and returns the empty list, while Cons : AˆListpAq Ñ ListpAq

is the map which takes an element a P A and a list l of elements of A and returns the concatenated
list l Y tau. The algebra pListpAq, rNil,Conssq describes lists in ListpAq inductively as objects formed
by concatenating elements of A to other lists in ListpAq. The base case is the empty list.

Example 31 (Mealy machines). Now consider two sets I and O of possible inputs and outputs,
respectively. Consider the endofunctor pO ˆ XqI : Set Ñ Set. Define MealyI,O as the set of Mealy
machines with inputs and outputs in I and O, respectively. Now we can consider the coalgebra
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pMealyI,O,Nextq, where Next is the map that takes a Mealy machine m P MealyI,O and yields a
function which in turn, given i P I, returns the output of m at i and a new machine m1. This is a
coinductive description of Mealy machines.

Remark 32. Notice how the description we have given of Mealy machines does not mention internal
states at all. This is a recurring aspect of coinductive descriptions: as argued in [JR97], coinduction
is best interpreted as a process where an observer tracks the behavior of an object from the outside,
with no access to its internal state. This is very useful in machine learning because the internal state
of a learning model is often difficult to interpret.

The link between (co)algebras and (co)induction does not stop at the definition level. The ex-
ample below shows that an algebra homomorphism can model a recursive fold procedure. A similar
corecursive unfold procedure can be defined by using a coalgebra homomorphism (see [GLD`24] for
further detail).

Example 33 (List folds). Consider the algebra pListpAq, rNil,Conssq of lists from Ex. 30, and consider
a second algebra pZ, rr0, r1sq over the same functor. A homomorphism f : ListpAq Ñ Z from the
former into the latter must satisfy

fpNilq “ r0,

fpConspa, lqq “ r1pa, fplqq.

Hence, f is necessarily a fold over a list with recursive components r0 and r1. Incidentally, this proves
that f is unique, making pListpAq, rNil,Conssq an initial object in the category of algebras over the
polynomial endofunctor 1 `AˆX.

The notion of (co)algebra over a functor can be generalized to the sphere of 2-categories, defining
the notion of (co)algebra over a 2-endofunctor. The basic concepts stay the same but the commutativ-
ity of the diagrams definining (co)algebra homomorphisms is relaxed into lax-commutativity. A square
diagram of 1-cells is lax-commutative if there exists a 2-cell that carries the top-right composition of
the diagram onto its left-bottom composition, as in Fig. 2.1 (c). Once again, we refer to [GLD`24]
for further information.

2.1.2 Integral transform

Remark 34. In accordance with the notation of [DV22] and [DvGPV24], we use rA,Bs to represent
the set of A Ñ B functions, where A and B are sets.

Suppose pR,‘,bq is a commutative semiring. An integral transform is a transformation that carries
a function in rW,Rs to a function in rZ,Rs following a precise chain of steps. Integral transforms1 have
been introduced by [DV22] to provide a single formalism able to describe both dynamic programming
and GNNs. Integral transforms can be encoded as polynomial spans.

Definition 35 (Polynomial span). A polynomial span is a triplet pi : X Ñ W,p : X Ñ Y, o : Y Ñ Zq

of morphisms in FinSet (that is, the category of finite sets and functions). i is known as input, p as
process, o as ouput. W is known as input set, X as argument set, Y as message set, Z as ouput set.
We also ask that the fibers of p have total orderings2. The polynomial span pi, p, oq can be graphically
represented as the diagram in Fig. 2.2 (a).

1The label integral transform refers to the fact that similar ideas can be used to write categorical definitions for
familiar analytical integral transforms ([Wil10]). A similar construct is also used in physics ([EPWJ80]).

2Neither we nor [DV22] use this requirement but, as stated in the original paper, the requirement is useful to support
functions with non-commuting arguments.
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Definition 36 (Integral transform). Let pR,‘,bq be a commutative semiring. Let pi : X Ñ W,p :
X Ñ Y, o : Y Ñ Zq be a polynomial span. The associated integral transform is the triplet pi˚ :
rW,Rs Ñ rX,Rs, pb : rX,Rs Ñ rY,Rs, o‘ : rY,Rs Ñ rZ,Rsq, where:

1. i˚ is the pullback mapping f ÞÑ i # f ;
2. pb is the argument pushforward mapping

pbpaqpuq “
â

ePp´1puq

apeq;

3. ob is the message pushforward mapping

o‘pmqpvq “
à

ePo´1pvq

mpeq.

The integral transform pi˚, pb, o‘q can be represented by the diagram in Fig. 2.2 (b).

(a) (b)

Figure 2.2: (a) A polynomial span and (b) the associated integral transform. (Images taken from
[DV22].)

Remark 37. Whereas defining i˚ is quite straight-forward, defining pb and ob is more difficult because
the arrows p and o point in the wrong direction, which implies that the underlying functions must be
inverted before considering the associated pullbacks. However, inverting non-invertible functions yields
functions into the powersets of the original domains. Moreover, if we want to preserve the multiplicity
of arguments and messages, we have to construct inverses that go into the sets of multisets over
the original domains. Hence why we need b and ‘ to aggregate results over such multisets. The
significance of these steps will be clarified later on in this chapter.

2.2 Categorical deep learning

The optic-based framework we presented in the last chapter provides a structured general-purpose
compositional framework for gradient-based learning, but its great versatility has a price: optics
are unable to guide the architectural design of our models. It has been shown times and times
again that a better architecture makes as much of a difference in machine learning as an algorithm
with a better asymptotic cost does in classical computer science. Therefore, finding a principled
mathematical framework able to guide such architectural choices is of paramount importance. In this
section, we discuss a categorical approach to this problem known as categorical deep learning (CDL).
To understand the origin and motivations behind this approach, we also briefly touch upon its main
precursor: geometric deep learning (GDL).
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2.2.1 From GDL to CDL

GDL (see e.g. [BBCV21]) is one of the most significant approaches to the problem of architecture
design. Not unlike the Erlangen Programme, discussed in the introduction, GDL taxonomizes archi-
tectures based on the notion of symmetry. In particular, GDL considers architectures that implement
equivariance constraints with respect to group actions.

Definition 38 (Group action equivariance and invariance). Let G be a group and let pS, ¨q and pT, ˚q

be G-actions. A function f : S Ñ T is equivariant with respect to the aforementioned actions if
fpg ¨ sq “ g ˚ fpsq for all s P S and for all g P G. We say that f is invariant if ˚ is the trivial action
on T , and thus fpg ¨ sq “ fpsq for all s and g.

The GDL framework is very general and is powerful enough to derive many fundamental neu-
ral network architectures in a principled fashion. For instance, GDL recovers convolutional neural
networks from equivariance with respect to translations (actions of translation groups) and recov-
ers graph neural networks from equivariance with respect to permutations (actions of permutation
groups). However, GDL has also its limitations: first and foremost, many interesting transformations
are not invertible and cannot even be approximated by group actions ([GLD`24]). Hence, a general-
ization of GDL able to work outside group theory is desirable. Since category theory can be seen as a
generalization of the Erlangen Programme, it makes sense to generalize the geometric approach using
category theory: [GLD`24] achieves this by replacing the group-theoretical notion of equivariant map
with the categorical notion of (co)algebra homomorphism. The authors call their approach CDL.

Remark 39. At the moment, to the best of our knowledge, [GLD`24] is the only publicly available
paper that discusses the ideas of CDL.

The main insight of CDL is that group actions can be represented as algebras over group action
monads, and that maps that are equivariant with respect to these actions are homomorphisms between
these algebras. Hence, GDL can be generalized by taking into consideration (co)algebras over other
monads and endofunctors. According to [GLD`24], this yields a ”theory of all architectures”. The
field is too young to know whether this prophecy will actually be fulfilled, but the results obtained by
[GLD`24] already look very promising.

The following proposition and the subsequent example show how exactly CDL subsumes GDL.

Proposition 40. Let pG, e, ¨q be a group. The endofunctor G ˆ X : Set Ñ Set can be given a
monad structure using the natural transformations η, with components ηS : s ÞÑ pe, sq, and µ, with
components pg, h, sq ÞÑ pg ˆ h, sq. The monad pG ˆ ´, η, µq can serve as a signature for G-actions.
The actions themselves can be recovered by considering algebras pS, ˚q for the monad, and, given two
actions pS, ˚q and pT, ‹q, an associated equivariant map f : S Ñ T is a pS, ˚q Ñ pT, ‹q monad algebra
homomorphism.

Proof. It suffices to compare the equations that define group actions and group action invariance with
the commutative diagrams in Fig. 2.1.

Example 41 (Linear equivariant layer). Consider a carrier set S “ RZ2 , which can be seen as a
pair of pixels. Consider the translation action pi ˚ sqpjq “ spi ´ jq of G “ Z2 on S, which can
be seen as swapping the pixels. We want to find a linear map f : S Ñ S which is equivariant with
respect to the action. Imposing the equivariance constraints as equations on the entries of the matricial
representation Wf P R2ˆ2 of the map, we can prove that f is equivariant if and only if Wf is symmetric
([GLD`24]).
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2.2.2 (Co)inductive definitions for RNNs

As seen in Ex. 41, the formalism of CDL subsumes the formalism of GDL, but the difference
between the two is not a simple matter of notation: CDL offers a fresh new perspective and builds a
novel bridge between classical computer science and machine learning. The most significant piece of
novel contribution delineated in [GLD`24] is the use of (co)algebras and (co)algebra homomorphisms
over parametric categories to (co)inductively define recurrent neural networks (RNNs) and recursive
neural networks (TreeRNNs). (Co)algebras are used to define cells, whereas the associated homomor-
phisms provide the weight-sharing mechanics used to unroll them. Let us build on Ex. 30 and Ex.
33, as is done in [GLD`24].

Example 42 (Folding recurrent neural network cell). Consider the endofunctor 1`AˆX : Set Ñ Set
from Ex. 30. Consider the Cartesian action of Set on itself and associate the following actegorical
strength to the functor: σP,Xpp, inlq “ inl and σP,App, inrpx, x1qq “ inrppp, xq, pp, x1qq. Now that the
functor is actegorical strong, we can use Prop. 24 to construct an endofunctor Parap1 ` A ˆ Xq :
Para‚pSetq Ñ Para‚pSetq. Consider an algebra pS, pP,Cellqq for this functor. Via the isomorphism
P ˆ p1 ` A ˆ Xq – P ` P ˆ A ˆ X, we deduce that Cell “ rCell0,Cell1s, where Cell0 : P Ñ S and
Cell1 : P ˆAˆS Ñ S. We can interpret Cell0 and Cell1 as folding recurrent neural network cells: Cell0
provides the initial state based on its parameter and Cell1 takes in the old state, a parameter, and an
input, which are then used to return a new state (Fig. 2.3 (a)).

Example 43 (Unrolling of a folding recurrent neural network). Use Prop. 8 to embed the list algebra
pListpAq, rNil,Conssq from Ex. 30 as an algebra over the endofunctor Parap1 ` A ˆ Xq define in
Def. 42. Now consider an algebra homomorphism pP, fq : pListpAq, rNil,Conssq Ñ pS, pP,Cellqq. Since
we are working with algebras over a 2-endofunctor, we also need to specify a 2-cell that makes the
homomorphism diagram (Fig. 2.1 (c)) lax-commutative. Using the weight-tying reparametrization
∆P yields the lax commutative diagram in Fig. 2.4, which uniquely identifies f as the fold function
which takes a list of inputs in A and unrolls a folding recurrent neural network that reads such inputs.
The weight-tying reparametrization makes sure that each cell of the unrolled network uses the same
parameters (see Fig. 2.3 (b) for a graphical representation).

(a) (b)

Figure 2.3: (a) Two kinds of folding RNN cell representing the initial state of the network and a
generic state update based on input. (b) A folding RNN unrolled using weight tying. (Images taken
from [GLD`24].)

The construction in Ex. 42 and Ex. 43 constitutes a precise mathematical link between the classical
data structure of lists and the machine learning construct of folding RNNs. Similarly, [GLD`24]
recovers recursive neural networks (TreeRNNs) by building upon classical binary trees and, even more
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Figure 2.4: Lax-commutative diagram that makes pP, fq : pListpAq, rNil,Conssq Ñ pS, pP,Cellqq an
algebra homomorphisms. (Image taken from [GLD`24].)

interestingly, complete RNNs are recovered from the coalgebra of Ex. 31, which reveals an interesting
link between RNNs and Mealy machines. This begs the question: if Mealy machines generalize to
recurrent neural networks, what do Moore machines generalize to? It is argued in the paper that they
generalize to a variant of RNN where different cells (which share the same weights) are used for state
update and output production. Hopefully, more work in this direction will lead to new neural network
architectures inspired from other classical concepts. Fig. 2.5 shows various kinds of neural network
cells and the endofunctors used in their (co)algebraic definitions.

Remark 44 (CDL and optic-based learning). In all the examples discussed above, the (co)algebra
homomorphisms in question return parametric maps pP,modelq, which we can interpret as untrained
neural networks. We can feed these maps into the RC functor associated with a generalized Cartesian
reverse differential category3 to augment them with their reverse derivative. The framework of para-
metric lenses described in Sec. 1.2 can then be used to train these networks. CDL and optic-based
learning are thus compatible and even complementary.

Figure 2.5: Various kinds of neural network cells and the endofunctors used in their (co)algebraic
definitions. (Image taken from [GLD`24].)

2.3 Algorithmic alignment: GNNs and dynamic programming

One of them main tenets of neural algorithmic reasoning is algorithmic alignment ([XLZ`19]),
that is, the presence of structural similarities between the subroutines of a particular algorithm and

3The examples illustrated in this section have been developed in Set, but we see no reason why they couldn’t be
specialized to an appropriate CRDC.
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the architecture of the neural network selected to learn such algorithm. Since [XLZ`19] has shown
that dynamic programming algorithms align very well with message passing GNNs, and since dynamic
programming encompasses a wide variety of techniques used in various domains, these GNNs are at the
forefront of neural algorithmic reasoning research ([DV22]). However, the exact link between GNNs
and dynamic programming has yet to be fully formalized. In this section we present the work of [DV22],
which attempts to derive such a formalization, and the work in [DvGPV24], which studies conditions
under which message passing GNNs are invariant with respect to various form of asynchrony4, which
is argued to improve algorithmic alignment in some cases.

2.3.1 Integral transforms for GNNs and dynamic programming

The main link between dynamic programming and GNNs is that dynamic programming itself can
be interpreted from a graph-theoretical point of view. Dynamic programming breaks up problems
into subproblems recursively until trivial base cases are reached. We can thus consider the graph
with nodes corresponding to subproblems and edges py, xq corresponding to the relationships ‘y is a
subproblem of x’. Then, the solutions of the subproblems are recursively recombined to solve the
original problem. This dynamic is very similar to message passing: the simpler cases are solved first,
and their solutions are passed as messages along the edges so that they can be used to solve more
complex cases. More precisely, we can implement a dynamic programming algorithm as a GNN on
this subproblem graph, where the feature vector hkx associated with a node x at the k-th message
passing iteration represents the state of the solution of the subproblem x at the k-th iteration of the
algorithm ([XLZ`19]). Despite this striking resemblance, rigorously formulating the link between the
architecture of GNN and the structure an associated dynamic programming algorithm is not easy, the
main obstacle being the difference in data type handled by the two mathematical processes: dynamic
programming usually deals with tropical objects such as the semiring pN Y t8u,min,`q, while GNNs
usually deal with linear algebra over R ([DV22]).

[DV22] proposes the formalism of integral transforms as the common structure behind both message
passing GNNs and dynamic programming. While a full formal proof is not given, the idea is illustrated
by showing that both the Bellman-Ford algorithm and a message passing GNN can be expressed with
the help of integral transforms. The difference in data type is overcome by using the weakest common
hypothesis: that the data and associated operations form a semiring.

Bellman-Ford algorithm

The Bellman-Ford (BF) algorithm is one of the most popular dynamic programming algorithms
and is used to find the shortest paths between a single starting node and every other node in a weighted
graph G “ pV,Eq. Since we can see every node of the graph as a subproblem, and since we can see the
associated edges as subproblem relationships, the BF algorithm is a very good candidate for a GNN
implementation. The algorithm operates within the tropical min-plus semiring pR “ N Y t8u,‘ “

min,b “ `q, and the data can be provided as a tuple pd, b, wq of three functions into R. Here,
d : V Ñ R stores the current best distances of the nodes, b : V Ñ R stores the weights of the
nodes, and w : E Ñ R stores the weights of the edges. d is initialized as the function that maps
the initial node to 0 and every other node to 8. The values of d are updated at each step of the
algorithm according to the following formula, where Nu “ tv s. t. pv, uq P Eu represent the one-hop

4While much of the work described in [DvGPV24] does not fall under the umbrella of applied category theory, we
still mention it because on its close link with the work of [DV22] and with the idea of algorithmic alignment. Hopefully,
future work will explore the intersection between this work and category theory.
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neighborhood of a node u:

du ÐÝ min

ˆ

du, min
vPNu

pdvq ` wv,u

˙

.

[DV22] propose the integral transform encoded by the polynomial span in Fig. 2.6 (a) as the
supporting structure of the BF algorithm. The functions i, p, and o are defined as follows:

1. i : pV ` Eq ` pV ` Eq Ñ V ` pV ` Eq acts as the identity on the first V , it maps the edges of
the first E to their sources, and it acts as the identity on the second V ` E pair;

2. p : pV ` Eq ` pV ` Eq Ñ V ` E just collapses the two copies of V ` E;
3. o acts as the target function on the E and as the identity on V .

It is argued in the paper that the whole integral transform acts as step of the algorithm, carrying the
data in pd, b, wq to the updated function d. Let’s examine each step: the input pullback extracts the
distances of the sources of every edge; the argument pushforward computes the lengths of the one-hop
extensions of the known shortest paths (the weight of each node is treated as the weight of a self-edge
in this case); finally, the message pushforward selects the shortest paths to each node among the ones
studied by the argument pushforward. Hence, the simple polynomial span in Fig. 2.6 (a) successfully
encode the whole BP algorithm without any information loss or ad hoc choice.

(a) (b)

Figure 2.6: Polynomial spans used to by [DV22] to model (a) the Bellman-Ford algorithm and (b) a
message passing GNN. (Images taken from [DV22].)

Message passing neural network

Consider the message passing GNN architecture described by the following equations ([GSR`17]):

mt`1
v “

ÿ

wPNv

Mtph
t
v, h

t
w, ev,wq,

ht`1
v “ Utph

t
v,m

t`1
v q,

where t represents the time step, and Mt and Ut are learned differentiable functions.[DV22] argues
that this GNN layer can be implemented as the integral transform associated with the polynomial
span of Fig. 2.6 (b), with an extra MLP. Here,

1. i sends the first E to 1, acts as the source function on the second E, acts and target function
on the third E, and acts as the identity on the fourth E;

2. p collapses four E’s into one;
3. o acts as the target function.

In the associated integral transform, i˚ gathers graph features, node features, and edge features; pb

projects such features on the edges, the MLP combines them; finally, o‘ sends them to the right
target.
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Although not a perfect representation of the message passing architecture (due to the extra MLP),
the polynomial span in Fig. 2.6 (b) can be used to inform the design of new architectures which
are obtained by simple manipulations of the arrows or objects in the diagram. For instance, [DV22]
uses the integral transform formalism to investigate possible performance improvements on CLRS
benchmark tasks ([VBB`22]). The authors consider messages that reduce over intermediate nodes,
and they show that these architectures lead to better average performance on these tasks, which is
likely a result of better algorithmic alignment.

2.3.2 Asynchronous algorithmic alignment

The customary assumption behind the message passing GNN architecture requires that all mes-
sages are generated, sent, and received at the same time. We call this kind of GNN synchronous.
[DvGPV24] derives conditions under which synchronous GNNs are invariant under a hypothetical
asynchronous execution. This is relevant because, as stated in the paper, in many dynamic program-
ming tasks modeled by graphs, only small parts of the aforementioned graphs are changed at each
step. A synchronously executed GNN that is trained on these tasks must learn the identity function
many times over, which leads to brittleness and wasted computational resources. On the other hand,
an asynchronously executed GNN would be more aligned with these algorithms and thus achieve a
better performance. The work in [DvGPV24] aims to reproduce these performance improvements on
synchronous GNNs by imposing asynchrony invariance constraints.

The authors of [DvGPV24] revise the model explored in [DV22] so that it includes a message
function ψ that generates messages based on gathered arguments (see Fig. 2.7 (a) for the update
diagram). Moreover, the authors argue that it is best to consider GNNs where every graph component
that has a persistent state is elevated to the status of node, whereas transient computations are carried
out along edges. The resulting GNN can be described by the diagram in Fig. 2.7 (b), where ϕ is the
transit function that updates the persistent state of each node, and δ is the function that computes
the arguments needed to generate the next messages.

(a) (b)

Figure 2.7: Diagrams describing the message passing GNN architecture discussed in [DvGPV24].
(Images taken from [DvGPV24].)

It is argued in [DvGPV24] that invariance under asynchrony can be modeled by giving both
arguments and messages monoidal structures. For instance, let pM, 1, ¨q be the message monoid and
let pA, 0,`q be the argument monoid. Then, if S is the set of persistent states, state update and
argument generation can be modeled as a function MˆS Ñ SˆA which maps pm, sq ÞÑ pm‚s, δmpsqq.
Invariance under asynchronous message aggregation is obtained by defining ‚ as a monoidal action of
M on S. However, [DvGPV24] shows that this is meaningful if and only if the argument generation
function δ is compatible with the unitality and associativity equations of the action. This can only
happen if δ : m ÞÑ δm is a 1-cocycle.
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Definition 45 (1-cocycle). A map δ : M Ñ rS,As is a 1-cocycle if and only if the following are
satisfied:

1. δ1psq “ 0 for all s P S;
2. δn¨mpsq “ δnpm ¨ sq ` δmpsq for all s P S.

Proposition 46. The state update function δ described above is asynchronous with respect to message
passing if and only if it is a 1-cocycle.

[DvGPV24] also proves the following.

Proposition 47. Under the hypotheses described above, a single-input message function ψ supports
asynchronous invocation if and only if ψ is a homomorphism of monoids.

We will not describe the whole formalism of [DvGPV24], but we will show (without proof) its
implications on GNN architecture design.

Example 48. Consider the message passing GNN architecture:

x1
u “ ϕ

˜

xu,
à

vPNu

ψpxu, xvq

¸

,

where ‘ is a message aggregator. The authors of [DvGPV24] derive conditions under which this
architecture is invariant under asynchronies in message aggregation, node update, and argument gen-
eration: the GNN is trivially invariant under asynchronous message aggregation if messages pM, 0,‘q

are given a commutative monoidal structure; invariance under asynchronies in node updates is ob-
tained by selecting an update function ϕ which satisfies the associative law ϕps,m‘nq “ ϕpϕps,mq, nq

for all m,n P M and for all s P S; finally, invariance under argument generation is obtained if δ satisfies
the 1-cocycle equations (Def. 45). These conditions are all satisfied if ‘ is commutative, M “ A “ S
and δmpsq “ ϕpm, sq “ m ¨ s “ m‘ s.

2.4 Future directions and related work

In this section we provide a brief introduction to the theory of differentiable causal computations
and the theory of sheaf neural networks. These two lines of work are adjacent to the main theme
of this chapter - relating classical computer science to modern machine learning - and they highlight
possible directions for future research into categorical deep learning and the application of integral
transforms to neural networks.

2.4.1 Differentiable causal computations

A trained RNN can be seen as a casual function according to the following definition ([SK19]).

Definition 49 (Causal function). Let A and B be sets. A function f : AN Ñ BN is causal if and
only if, for all sequences x,y P AN and for all n P N, if xm “ ym for all m “ 0, 1, . . . , n, then
fpxmq “ fpymq for all m “ 0, 1, . . . , n.

[SK19] studies the differential properties of causal computations, offering valuable insight into the
formal properties of RNNs. The paper focuses on sequences tfkuk“0,1,... of functions fk : Sk ˆ Xk Ñ

Sk`1 ˆ Yk which represent computations executed in discrete time k, where, at each tick k of the
clock, fk takes an input xk and the current state sk, and uses this data to compute an output yk and
a new state sk`1. In symbols, fkpsk, xkq “ psk`1, ykq. Such sequences are given a nice compositional
structure using the formalism of double categories.
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Definition 50 (Category of tiles). Let C be a Cartesian category. Define DblpCq as the double category
with the following data:

1. there is only one 0-cell, which we represent with the ¨ symbol;
2. the horizontal and vertical 1-cells are the objects of C;
3. a 2-cell (tile) with horizontal source S, horizontal target S1, vertical source X, and vertical target

Y is a morphism f : S ˆX Ñ S1 ˆ Y which we represent with the symbol f : X
S

ÝÑ
S1

Y .

It is handy to also represent 2-cells f as the tile string diagrams in Fig. 2.8 (a). The horizontal and
vertical composition laws for 2-cells are consistent with the tile diagrams. Refer to [SK19] for more
information.

Definition 51 (Category of stateful morphism sequences). Let C be a Cartesian category. Define
StpCq as the category with the following data:

1. the objects of StpCq are sequences X “ tXkuk“0,1,... of objects of C;
2. the morphisms X Ñ Y are pairs pf , iq, where f “ tfkuk“0,1,... is a sequence of tiles in DblpCq

such that fk : Xk
Sk

ÝÑ
Sk`1

Yk, for some sequence S of states, and i : 1 Ñ S0 selects an initial state.

The morphisms of StpCq are known as stateful morphisms sequences and are represented using string
diagrams as in Fig. 2.8 (b).

Stateful morphisms sequences can be easily truncated and unrolled as one would expect, and it is
proved in [SK19] that there is a bijection between stateful morphism sequences in StpSetqprAs, rBsq and
causal functions AN Ñ BN (here rAs is the constant sequence of objects tA,A,A, . . . u). More generally,
given any StpCq, we can restrict our attention to constant sequences rAs and stateful sequences of

morphisms in the form prf s, iq, where f : X
S

ÝÑ
S

Y is a tile in DblpCq. This yields a subcategory

St0pCq whose morphisms can be thought of as Mealy machines that take in an input and produce an
output based on an internal state which is updated after every computation. The new state is fed back
to the machine after the computation, so that a new computation can take place. This is represented
by the diagram in Fig. 2.8 (b).

(a)

(b)

Figure 2.8: (a) String diagrams for a tile in DblpCq. (b) String diagrams for a stateful morphism in
StpCq and one of its truncation. (Images taken from [SK19].)
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The authors of [SK19] go on to define a delayed trace operator, which provides a rigorous formal-
ization for feedback loops such as the one in Fig. 2.9 (a). As stated in the paper, the delayed trace
operator is closely related to the more popular trace operator ([JSV96]) and shares many of the same
properties. Finally, the authors of [SK19] show how both StpCq and St0pCq can be given the structure
of a CDC (Def. 14), as long as C is itself a CDC. This differential structure is conceptually clear,
rigorously defined, and compatible with the dealyed trace operator. We do not have space to describe
the details of these definitions, but we report the relevant string diagrams in Fig. 2.9 (b),(c).

(a) (b)

(c)

Figure 2.9: String diagrams (a) representing a delayed trace in StpCq as a delayed feedback loop, (b)
representing the derivative of a morphism in St0pCq, (c) representing the derivative of a delayed trace
in St0pCq. (Images taken from [SK19].)

The work in [SK19] provides a theoretical foundation for the technique of backpropagation through
time (BPTT), which consists in computing the gradient of the k-th unrolling of an RNN in place of
the gradient of the RNN at discrete time k. Despite the alleged ad hoc nature of BPTT, [SK19] proves
that the technique does not just “involve differentiation” but is an actual “form of differentiation” that
can be reasoned about in the formalism of CDCs. Nevertheless, as stated in the paper, the differential
operator of StpCq does not compute explicit gradients, and deriving the latter from the former would
be computationally infeasible when there are millions of parameters.

It is interesting to compare the approach of [SK19] with the framework of categorical deep learning:
both CDL and the work in [SK19] synthetically describe RNN architectures, but, while CDL focuses
on weight sharing mechanics and the (co)inductive nature of the definition, [SK19] focuses on the
differential properties of these architectures. However, neither categorical framework deals with the
problems that come up when computing gradients of unrolled RNNs, such as the presence of vanishing
or exploding gradients (see e.g. [Han18]).
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2.4.2 Sheaf neural networks

The theory of sheaf neural networks ([HG20], [BDGC`22], [Zag24]), or SNNs, is informed by
both topology and category theory, and aims to improve the GNN architecture by endowing graphs
with cellular sheaf structures. In particular, SNNs are designed to solve two main issues that are
encountered when training GNNs: oversmoothing, which is the tendency of deep GNNs to spread
information too far in the graph to be able to effectively classify nodes, and the poor performance
characteristic of GNNs when applied on heterophilic input graphs, i.e., input graphs where the nodes
features are diverse in structure and attributes.

Definition 52 (Cellular sheaf). A cellular sheaf F associated with a graph G “ pE, V q consists of the
following data:

1. a vector space Fpvq for every node v P V ;
2. a vector space Fpeq for every edge e P E;
3. a linear map FvĲe : Fpvq Ñ Fpeq for each incident node-edge pair v Ĳ e.

The vector spaces associated to nodes and edges are known as stalks. The linear maps associated to
incident node-edge pairs are known as restriction maps. The direct sum C0pG,Fq of all node stalks
is known as space of 0-cochains, and the direct sum C1pG,Fq of all edge stalks is known as space of
1-cochains.

As stated in [Zag24], the node stalks assigned by F serve as spaces for node features, while the
restriction maps allow the data that resides on adjacent nodes to interact on edge stalks. Given
a cellular sheaf F , we can define a coboundary map δ which measures the amount ‘disagreement’5

between nodes. The coboundary map can then be used to define a sheaf Laplacian which can be used
to propagate information in the graph ([HG20]).

Definition 53 (Coboundary map). Let F be a cellular sheaf on a directed graph G “ pE, V q. The
coboundary map associated with F is the linear map δ : C0pG,Fq Ñ C1pG,Fq that maps δpxqe “

FvĲepxvq ´ FuĲepxuq for each edge e : u Ñ v.

Definition 54 (Sheaf Laplacian). Let F be a cellular sheaf on a directed graph G “ pE, V q and
let δ be the associated coboundary map. The sheaf Laplaciant associated with F is the linear map
LF “ δT ˝ δ : C0pG,Fq Ñ C0pG,Fq. The normalized sheaf Laplacian associated with the sheaf is the

linear map ∆F “ D´ 1
2 ˝ LF ˝D

1
2 , where D is the diagonal of LF .

Remark 55. The coboundary map and the sheaf Laplacian associated with a cellular sheaf F are
generalizations of the more commonly known incidence matrix and Laplacian associated to a graph
(see e.g. [WJL`22]).

There are many kinds of SNN architectures ([HG20], [BDGC`22], [Zag24]). Due to space con-
straints, we only give a short description of the first one to appear in the literature: the Hansen-Gebhart
SNN proposed by [HG20], as described by [Zag24].

Definition 56 (Sheaf neural network). Suppose G “ pE, V q is a directed graph and F is a cellular
sheaf on it. Suppose the stalks of F are all equal to Rdˆf , where d is the dimension of each feature
vector and f is the number of channels. Then, C0pG,Fq is isomorphic to Rndˆf , where n is the number
of nodes, and its elements can be represented as matrices X. The sheaf neural network proposed by
[HG20] uses the following transition function to update this features:

Y “ σppInd ´ ∆F qpIn bW1qXW2q,

where σ is a non-linearity, I refers to identity matrices, ∆F is the normalized sheaf Laplacian, b is
the Kronecker product, and, finally, W1 P Rdˆd and W2 P Rfˆf are weight matrices.

5There is a close link between SNNs and the theory of opinion dynamics. See [Zag24] for further information.
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Remark 57. The values of f , n, d, and the restriction maps are all hyperparameters. Choosing
W2 P Rf1ˆf2 allows the SNN layer described above to change the number of features from f1 to f2.

As observed by [BDGC`22], the SNN architecture proposed by [HG20] can be seen as a discretiza-
tion of the differential equation

9Xptq “ ´∆FXptq,

which is known as sheaf diffusion equation and is analogous to the heat diffusion equation used in graph
convolutional networks ([BDGC`22]). Studying the time limit of the sheaf diffusion equation yields
important results about the diffusion of information through the graph after repeated application of
the transformation in Def. 56. In particular, [BDGC`22] argues that, in the time limit, node feature
tend to values that ‘agree’on the edges. Hence, “sheaf diffusion can be seen a synchronization process
over the graph”. [BDGC`22] goes on to study the discriminative power of different classes of cellular
sheaves and proposes strategies to learn the restriction maps themselves. [Zag24] extends the work of
[BDGC`22] by analyzing non-linear sheaf Laplacians and the associated sheaf diffusion process.

It is important to notice that SNNs can be considered a strict generalization of GNNs since the
latter are nothing but instances of the former where the sheaf structure is trivial ([BDGC`22]). Thus,
although we are not aware of any work applying SNNs to neural algorithmic reasoning, given the
success enjoyed by GNNs in this area of research, we hypothesize that SNNs are be even more effective
at executing algorithms. To the best of our knowledge, no one has ever explicitly described SNN
architectures using integral transforms either. However, a passing remark in [DvGPV24] hints that
the message passing dynamic of GNNs is very similar to sheaf diffusion and thus such a generalization
should be all but impossible. Hopefully, future research will shed light on these conjectures.





Chapter 3

Functor Learning

All categorical machine learning frameworks examined in the previous chapters represent machine
learning models, both trained and untrained, as morphisms in some category. Morphisms capture the
core idea of compositionality and are thus a very good choice in many contexts; nevertheless, there
are also cases where a simple morphism is unable to interface with the structure that one might want
preserved. For instance, different datasets might be linked using morphisms in an appropriate category
(see e.g. [Spi12], [Gav19]) or sets containing machine learning data could be given a categorical
structure, where elements are objects and morphisms capture relations between such objects (see e.g.
[Lam99]). In these and other cases, learning functors instead of morphisms is advantageous as it allows
us to preserve the aforementioned structure during the learning process. In this chapter we examine
various approaches that testify to the usefulness of this insight: we will see how functors can be used
to separate different layers of abstraction in the machine learning process ([Gav19]), to embed data in
vector spaces ([SY21], [CSC10],[Lew19]), to carry out unsupervised translation ([SY21]), and to impose
equivariance constraints and pool data effectively ([CLLS24]). As we will illustrate, functors can be
learned by gradient descent, just like morphisms, as long as we have appropriate parametrizations
([Gav19]) or specialized objective functions ([SY21], [CLLS24]).

3.1 Using functors to separate layers of abstraction

The author of [Gav19] takes inspiration from the field of categorical data migration ([Spi12]) to
create a categorical framework for deep learning that separates the development of a machine learning
model into a number of key steps. The different steps concern different levels of abstraction and are
linked by functors.

3.1.1 Schemas, architectures, models, and concepts

The first step in the learning pipeline proposed by [Gav19] is to write down the bare-bones structure
of the model in question. This can be done by using a directed multigraph G, where nodes represent
data and edges represent neural networks interacting with such data. Constraints can be added at
this level in the form of a set X of equations that identify parallel paths (see e.g. Fig. 3.1).

Definition 58 (Model schema). The schema of a model represented by a multigraph G is the freely
generated category FreepGq.

The schema of a model does not contain any data nor does it do any computation, but it encodes
the bare-bones structure of such model. If „ is the path congruence relation induced by the equations
in X , we can take the module FreepGq{„ to impose the constraints represented by X . Depending

31
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Figure 3.1: Schema for the cycleGAN architecture. (Image taken from [Gav19].)

on the context, the word schema will refer either to FreepGq or to FreepGq{„. As we will discuss
later, each equation in X can be associated with a specific loss function and these losses can be used
to teach models to abide by „.

Given a schema FreepGq, we can choose an architecture for the model, that is, we can assign
to each node a Euclidean space and to each morphism a parametric map. This procedure yields an
untrained neural network.

Definition 59 (Model architecture). Let FreepGq be a model schema. An architecture for such schema
is a functor Arch : FreepGq Ñ ParaˆpSmoothq (see Def. 6 and see Ex. 16).

Arch maps objects to Euclidean spaces. These might be interpreted as the spaces data will live in,
but it is wiser to put data outside the Para machinery and in the simpler Set category, as this allows
for better compartmentalisation. Thus, [Gav19] also defines an embedding functor, which agrees with
Arch on objects but exists independently of it.

Definition 60 (Model embedding). Let FreepGq be a model schema and let Arch be a chosen archi-
tecture. An embedding for such schema is a functor E : |FreepGq| Ñ Set which agrees with Arch on
objects1.

Now that we have a model, we must find a way to assign specific values to the parameters, so
that the model can be optimized by gradient descent. Consider the function p : pP, fq ÞÑ P , which
takes the parameter space out of a parametric map in ParaˆpSmoothq. We can use it to define the
function

P : Arch ÞÑ
ź

f :GenFreepGq

ppArchpfqq,

where GenFreepGq is the set of generating morphisms of the free category on the multigraph G. The
function P takes and architecture and returns the parameter space. Given P, we can define the notion
of parameter specification function.

Definition 61 (Parameter specification function). Let FreepGq be a model schema and let Arch be a
chosen architecture. A parameter specification function is a function PSpec which maps a pair pArch, pq

- comprised of an architecture Arch and some p P PpArchq - to a functor Modelp : FreepGq Ñ Smooth.
The functor Modelp takes the model schema and returns its implementation according to Arch, partially
applying pf to each Archpfq, so that we obtain an actual smooth map.

The functor Modelp takes a schema and implements it replacing nodes with Euclidean spaces and
arrows with appropriate smooth functions. Although we need to choose an architecture and specific

1The reason why the domain E is the discretized schema |FreepGq| instead of the original schema FreepGq is clarified
in Rem. 63.
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values for its parameter in order to define Modelp, the latter directly acts on the schema and does not
pass through the architecture. See Fig. 3.2 for a srting diagram that depicts the relationship between
Arch and Modelp.

Figure 3.2: Functors are used to link different layers of abstraction in the framework of [Gav19].
(Image taken from [Gav19].)

Now, if we hope to train the model we have defined, we will need a dataset. [Gav19] suggests that
a dataset should be represented as a subfunctor of the model embedding functor.

Definition 62 (Dataset). Let E be a model embedding. Then, a dataset is a subfunctor DE :
|FreepGq| Ñ Set which maps every object A of the discretized free category |FreepGq| to a finite
subset DEpAq Ď EpAq.

Remark 63. The reason why [Gav19] defines E and DE on discretized categories is because it often
happens in practical machine learning that the available data is not paired. In these cases, it would be
meaningless to provide an action on morphisms because they would end up being incomplete maps.

Given a node A of G, we have associated to A a Euclidean space EpAq and a dataset DEpAq. A
dataset may be considered a collection of instances of something more specific than just vectors; for
instance, if we have a finite dataset of pictures of horses, we are clearly interested in the concept of
horse, that is in the set of all possible pictures of horses, which is much larger than our dataset but still
much smaller than the vector space used to host such pictures. It makes thus sense to define another
set CpAq representing such concept: this set will satisfy the inclusion relations DEpAq Ď CpAq Ď EpAq.
Moreover, since concepts are assumed to be complete, we can extend C to a functor.

Definition 64 (Concept functor). Given a schema FreepGq{„, an embedding E and a dataset
DE, a concept associated with this information is a functor C : FreepGq{„ Ñ Set such that, if
I : |FreepGq| Ñ FreepGq{„ is the inclusion functor, DE Ď I # C Ď E.

As [Gav19] states, C is an idealization, but it is a useful idealization as it represent the goal of the
optimization process: given a dataset DE : |FreepGq| Ñ Set, we wish to learn the concept functor
C : FreepGq{„ Ñ Set. More concretely, we want to train a model Modelp which is as close of an
approximation of C as possible2. Total achievement of such goal is clearly impossible as, even in the

2Notice that Modelp and C have different domains and codomains. The difference of codomains is not an issue: we
can just forget the differential structure of the codomain of Modelp, which yields a functor Hp with image in Set (see
Fig. 3.2). The difference of domains, on the other hand, is by design as Modelp can only approximate the constraints
imposed by „. This is not an issue in practice as we are only interested in the performance of the image of the trained
model Modelp.
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simplest of cases (such as linear regression on synthetic linearly generated data), finite arithmetics and
the finite nature of the learning iteration prevent us from obtaining a perfect copy of the generating
function. Nevertheless, it is often possible to design an optimization process which makes the model
converge towards the ideal goal.

Now that we know what the optimization goal is, we can define tasks. The task formalism brings
together what has been defined in this section in an integrated fashion.

Definition 65 (Task). Let G be a directed multigraph, let „ be a congruence relation on FreepGq and
let DE : |FreepGq| Ñ Set be a dataset. Then, we call the triple pG,„, DEq a task.

Once we are assigned a machine learning task pG,„, DEq, we have to choose an architecture, an
embedding and a concept compatible with the given multigraph, equations and dataset. Then, we
specify a random initial parameter with an appropriate parameter specification function. Now we can
choose an optimizer, but we must be careful to design an appropriate loss function. The loss function
should incorporate both an architecture specific loss and a path equivalence loss. The former penalizes
wrong predictions while the latter penalizes violations of the constraints embodied by „.

Definition 66 (Path equivalence loss). Let pG,„, DEq be a task. Let Modelp be an associated model.
Then, if f „ g : A Ñ B in G, we define the path equivalence loss associated with f , g and Modelp as

Lf,g
„ “ Ea„DEpAqr}Modelppfqpaq ´ Modelppgqpaq}s.

Definition 67 (Total loss). Let pG,„, DEq be a task. Let Arch be an associated architecture, let
Modelp be an associated model, and let L1 be an architecture specific loss. Suppose γ is a non-negative
hyperparameter. Then, we define the total loss associated with the task, the architecture, the model,
and the hyperparameter as

L “ L1 ` γ
ÿ

f„g

Lf,g
„ . (3.1)

We can now proceed as usual, computing the loss on the dataset for a number of epochs and
updating the parameter p each time.

It is important to notice that, while the learning iteration employed by [Gav19] is nothing new,
the functor approach is actually novel, in that the usual optimization process is used to explore a
functor space instead of a simple morphism space. This point of view offers two main advantages:
on one hand, it separates different layers of abstraction are separated, which provides much needed
conceptual clarity; on the other hand, it offers an explicit treatment of constraints, which are often
only described implicitly and hidden away in the architecture of the model or in the loss function.

3.1.2 Datasets influence the semantics of tasks

[Gav19] centers its investigation around the powerful cycleGAN architecture ([ZPIE17]), which is
described using an appropriate task consisting of the cycleGAN schema (see Fig. 3.1), the cycle con-
sistency equations, and a cycleGAN dataset, that is, a dataset with two sets A and B containing data
which is essentially isomorphic, such as pictures of horses and zebras. This description is particularly
insightful because it can be used to prove a very important point: the choice of dataset influences the
semantics of the learned task in non-trivial ways. In other words, changing the dataset functor can
result in semantically different tasks even if the same schema and equations are retained.

For instance, combining the cycleGAN schema with the cycleGAN equations and a cycleGAN
dataset yields a task whose semantics can be described as learn maps that turn horses into zebras and
vice versa. Now consider replacing the cycleGAN dataset with a new dataset consisting of two sets A
and B, where A contains pictures depicting two elements X and Y together, and B contains separate
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images of X and Y . The resulting task has very different semantics: learn how to separate X from
Y . [Gav19] follows this paradigm and shows how the CelebA dataset can be used to train a neural
network able to remove glasses from pictures of faces, and one able to insert them.

This example is especially relevant to the present discussion because it shows how important the
categorical structure of Set can be to machine learning. We can interpret pairs (face, glasses) as
elements of the Cartesian product of the set of faces and the set of glasses. On the other hand,
the set of pictures of faces with glasses can instead be considered another categorical product of
the aforementioned sets. Since categorical products are unique, we know that there must be a unique
isomorphism between the two products. The task at hand can thus be interpreted as find the canonical
isomorphism. [Gav19] labels this task as product task.

3.2 Categorical representation learning

We now discuss frameworks where the categorical structure of data is not only used to integrate
data distributed among different sets (as in [Gav19]) but also to model relationships within the data.
Functorially preserving and exploiting this structure can lead to marked improvements in effectiveness
and efficiency of the models in question because the structure of data is often closely linked with its
semantics (see e.g. [SY21]), especially in the field of natural language processing, or NLP (see e.g.
[CSC10], [Lew19]).

The field of categorical representation learning ([CSC10], [Lew19], [SY21]) aims to learn vectorial
representations endowed with a categorical structure mirroring the one of the original data, so that
models trained on these representations can use the structure efficiently. This is often a symbol-to-
vector transformation, which poses conceptual and computational challenges (see e.g. [CSC10]). We
will examine two examples of categorical representation learning: the approach of [SY21], which uses
the obtained representations to carry out (partially) unsupervised translation, and the approaches of
[CSC10] and [Lew19], which develop a compositional distributional model of meaning for NLP.

3.2.1 Unsupervised functorial translation

We now illustrate the approach of [SY21] showing how it is applied to the same example described
in the original paper: unsupervised translation of the names of chemical elements from English to
Chinese. The authors are tasked with converting between two identical chemical compound datasets,
one labeled in English and the other in Chinese. Both datasets can be given a categorical structure
by considering elements as objects and chemical bonds as morphisms. Suppose C and D are the
resulting categories. The authors of [SY21] leverage the shared structure by training a model to learn
a translation functor F : C Ñ D. To this aim, they functorially embed these categories into the vector
space category defined below, which contains representations as objects.

Definition 68 (Vector space category). Let n P N. Let R be the category whose objects are the vectors
in Rn and such that, for all u, v : R,

Rpu, vq “ tM P Rnˆn s.t. v “ Muu.

Composition is ordinary matrix multiplication and the identity on v is idv “ vvT

|v|2
.

The embedding of C into R is a C Ñ R functor which maps each object a to a vector va and each
morphism f to a matrix Mf . The actual mapping can be learned with a neural network consisting of
two separate embedding layers: one mapping objects to vectors and one mapping relations to matrices.
The authors of [SY21] train the embedding layers using co-occurrence statistics and negative sampling
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to make sure that the embedded morphisms actually represent the same relations as the original
morphisms. Here, the authors of [SY21] take on a distributional point of view, positing that co-
occurrence must encode such relations. In the authors’ words, “co-occurrence does not happen for no
reason”. The training strategy used in the paper is the following: given two embedded words a and
b, model the probability of co-occurrence as P pa Ñ bq “ sigmoidpzpa Ñ bqq, where the logit zpa Ñ bq
is defined as

zpa Ñ bq “ F

˜

à

f

vTaMfvb

¸

.

Here, F is non-linear and ‘f represents concatenation (or more sophisticated forms of aggregation)
over all morphisms in C. Taking on a probabilistic perspective allows us to represent non-strict
relations, which is often necessary in machine learning. From this point of view, the likelihood of
f : a Ñ b is proportional to the degree of alignment between vb and Mfva are closely aligned. The
latter can be computed as vTaMfvb, and the non-linearity F reads out these measurements into a single
value. Now, the actual co-occurrence probability ppa, bq of two objects a, b : C can be approximated
directly from the dataset. Given a negative sampling distribution pN on objects unrelated to a, we
can implement the negative sampling objective

L “ Epa,bq„ppa,bq

`

logP pa Ñ bq ` Eb1„ppb1q logp1 ´ P pa Ñ b1qq
˘

.

The embedding network can then be trained by maximizing this objective function. The embedding
of D into R can be defined and trained in the same way.

Remark 69. Strictly speaking, morphisms in category should have a specific domain and a specific
codomain but, in the case of the vector space category of Def. 68, a single matrix M can be in many
hom-sets of R. This is mirrored by C and D, where morphisms correspond to classes of chemical bond
and the same morphism can link different objects. From this point of view, morphisms in R, in C,
and in D behave more similarly to relations on sets than to morphisms in categories. Although this
line of thinking does not strictly adhere to the definition of category, it helps our intuition and greatly
reduces the size of the model. We will see a possible formal solution to this problem later on in this
section, when we discuss the approach of [CSC10] and [Lew19].

The procedure described above can be been applied to both C and D to obtain meaningful vectorial
representations of both datasets. An English to Chinese translation functor F : C Ñ D can be similarly
embedded as an R Ñ R functor by precomposition with the C Ñ R embedding and postcomposition
with the inverse of the D Ñ R embedding. Such functor must equate chemical bonds of the same
kind, for example, if f is a covalent bond so is Fpfq. It is argued in [SY21] that this functor can
be represented by a matrix VF so that vFpaq “ VFva and MFpfq “ VFMf . This representation is
only meaningful if (i) VFMf “ MFVF for all f , (ii) VFMida “ MidFpaq

for all a, and (iii) VFMf˝g “

VFMfVFMg for all f, g. This is not true for all choices of VF but, if we choose every va to be a unit
vector, and if we constrain VF to be orthogonal, (ii) and (iii) are trivially satisfied. Requirement (i),
on the other hand, can be learned by minimizing the following structure loss:

Lstruc “
ÿ

f

}VFMf ´MFpfqVF}2.

As the authors of [SY21] remark, this loss is universal, in the sense that it does not depend on any
specific object, but acts on the morphisms themselves. While this approach is very elegant and does
indeed return a functor, it might not produce the functor we expect because VF is not unique if the
Mf happen to be singular. Thus, it is better to integrate the structure loss with a second alignment
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loss that introduces some supervision to the unsupervised translation task. For instance, if the value
of Fpaq is known for a set A for objects, we can define

Lalign “
ÿ

aPA

}VFva ´ vFpaq}.

Then, the total loss can be written as a weighted sum

L “ Lalign ` λLstruct, (3.2)

where λ is a hyperparameter that regulates the relative importance of the two losses.

Remark 70. It is interesting to compare the total loss in Eq. 3.2 to the one in Eq. 3.1. In both
cases, the total loss is obtained as a linear combination of a model specific loss and a second more
abstract loss. Both abstract losses enforce equality between morphisms but the abstract loss in Eq.
3.2 does not enforce functoriality because Modelp is already a functor by definition in the framework
of [Gav19]. This highlights the main difference between the approach of [Gav19] and the approach
of [SY21]: the latter requires functoriality to be learned from the structure of data, while the former
takes functoriality as a given.

According to [SY21], the categorical approach described above can also be strengthened by endow-
ing the categories C, D, and R with monoidal products that make combining objects into higher-level
structures possible. In particular, the monoidal structure b1 of R can be given as

va b1 vb “ Θpva b vbq,

Mf b1 Mf “ ΘpMf bMgq,

where b is the Kronecker tensor product and Θ is a learned operator that sends the products back
into the original spaces. This monoidal structure can then be used to mine categorical structure on
multiple levels: for instance, in the running example of unsupervised translation of chemicals, it can
be used to derive vectorial representations for functional groups or even whole compounds. If the data
has a non-obvious high-level structure, [SY21] suggests a bootstrap approach where different possible
links are randomly tested and the stronger ones are selected.

It is shown in [SY21] that the categorical representation learning framework described in the paper
and the associated functor learning architecture for unsupervised translation can be successfully im-
plemented. Benchmark tests against traditional sequence-to-sequence models show that the functorial
paradigm leads to marked improvements in efficiency of learning. In particular, the authors compare
the functorial model described in the paper with a GRU cell model of similar performance, noting that
the former needs 17 times more parameters than the latter to learn to translate element names with a
similar accuracy. The authors also compare their approach with the multi-head attention mechanism
of [VSP`17], arguing that the matrices Mf are essentially equivalent to the products QT

fKf , where
Qf is a query matrix and Kf is a key matrix. Keeping Mf united emphasizes the important role of
functoriality and provides intuition concerning the nature of the vectorial representations of objects:
in fact, it makes sense to interpret each Mf as a metric that distorts the space Rn and makes two

vectors va and vb closer if and only if there is a high likelihood that a
f

ÝÑ b.

3.2.2 Compositional distributional model for NLP

There are two general approaches to natural language processing (NLP): the compositional (also
known as distributional) approach and the contextual approach. The former aims to exploit the
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symbolic structure of grammar to understand text, while the latter posits that many aspects of text
can be understood from distributional properties of the words ([AACFM22]). While compositionality
has been very popular with theoreticians due to its elegance and its abstract structure, contextuality
has been successfully applied by practitioners, yielding remarkably effective NLP models that learn the
meaning of words and utterances by embedding them in vector spaces based on contextual information.
The fact that both compositionality and contextuality are successful in their domains hints that the
two approaches should be seen as complementary and that it would be desirable to integrate them
both in a single compositional distributional framework3 (see e.g. [AACFM22], [Mar19]).

There have been numerous attempts to develop such a framework in the last few decades. For
instance, [CP07] proposes to represent both text and the structural roles of its constituents as vectors,
which can then be combined using sums and tensor products. We will focus on the approach of [CSC10],
whose authors take inspiration from the ideas in [CP07] and propose a framework that uses the
language of compact closed categories to unite symbolic grammar rules with concrete representation
vectors. Grammar is represented as a pregroup category, whereas vectorial representations are learned
on vector spaces which are then organized within FVect, the category of finite dimensional real vector
spaces4. We start by defining pregroup categories.

Definition 71 (Pregroup). A pregroup is a monoidal poset category P where each object a has a left
adjoint al and a right adjoint ar. The adjoints must be such that the following are true:

ala ď1 ď aal,

aar ď1 ď ara,

where 1 is the monoidal unit of P .

The use of pregroups to model grammatical structures dates back to [Lam99]. The key idea is
that we can define a grammar category as the free pregroup P generated by an initial set of basic
grammatical roles. Then, we can represent various parts of speech using basic objects, their adjoints,
and their monoidal products. The poset structure of the pregroup serves as a system of reduction
rules which can be used to prove if a sentence is grammatical. Consider the following example (taken
from [Lew19]).

Example 72. Suppose n represents the role of a noun and s represents the role of a sentence. Then,
an English transitive verb can be represented by the product nrsnl in the free pregroup P generated
by s and n. Thus, the grammatical structure of the sentence “Dragons breathe fire.” is

npnrsnlqn “ nnrsnln “ pnnrqspnlnq ď 1s1 ď s. (3.3)

The pregroup axioms show that the structure of “Dragons breathe fire.” can be reduced to the sentence
type s. This is proof that the sentence is grammatical. More complex patter can be modeled by adding
more grammatical types or by combining types in other ways. These kinds of computations have a
nice representation in the form of diagrams such as the ones of Fig. 3.3.

The pregroup grammar framework is useful to analyze the basic structure of language but gives
no access to the actual meaning of words and sentences. The compositional distributional model of

3Cognitive science faces a similar challenge in integrating the competing connectionists and symbolic models of the
human mind. This is the central theme of [SL06], whose approach inspired [CP07] (discussed in this section). The
important role of language in cognition suggests that advances in the development of a compositional distributional
model of language may yield advances in cognitive science and vice versa.

4We work under the same assumption as [CSC10], namely, that each vector space in FVect is endowed with a scalar
product x´,´y.
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(a) (b)

Figure 3.3: Two diagrammatic representations of the grammatical structure of the sentence “Dragons
breathe fire.” (Images taken from [Lew19].)

[CSC10] solves this problem by building a functor Φ : P Ñ FVect. Given a certain pregroup grammar
category P , for every grammatical type x : P, we can associate a vector space X : FVect containing
vectorial representations of utterances of type x. Φ can be defined so that it preserves the pregroup
structure of P thanks to the following proposition ([CSC10]).

Proposition 73. Consider the category FVect of finite-dimensional real vector spaces. Suppose b is
the tensor product of vector spaces. Then, pFVect,R,bq is a monoidal category. For all V : FVect,
define V l “ V r “ V and consider the (co)unit linear maps:

ηlV “ ηrV : R Ñ V b V, 1 ÞÑ
ÿ

i

ei b ei,

ϵlV “ ϵrV : V b V Ñ R,
ÿ

i,j

cijei b ej ÞÑ
ÿ

i,j

cijxei, ejy,

where e1, . . . , en is a basis for V . Then, pFVect,R,b, p´ql, p´qr, ηl, ηr, ϵl, ϵrq is a compact closed
category.

Now, pregroups have a trivial compact-closed structure as well. Thus, the functor Φ can be defined
so that it preserves the shared compact-closed structure just by mapping the poset relatioins of P to
the appropriate linear maps of FVect. In practice, Φ can be used to take a formal reduction in P and
implement it in FVect as a series of operations on vectorial representations. The goal of this process
is to take vectorial representations of single words in a sentence and obtain the vectorial representation
of the meaning of the sentence. The compositional distributional model is thus compositional because
it is build around the compositional structure of grammar and distributional because it allows us to
encode distributional information in vectorial representations of words and sentences.

Example 74. The reduction of Eq. 3.3 can be seen as a morphism nnrsnln Ñ s. The image of this
morphism through Φ is a linear map N bN b S bN bN Ñ S.

Remark 75. Differently from [SY21], [CSC10] does not prescribe a specific method for learning the
representations of individual words (some possible strategies are listed in the original paper), but it
specifies a strategy to combine existing representations to generate representations of more complex
utterances up to the level of whole sentences. It is interesting to notice that both papers suggest using
tensor products in order to combine representations of lower-level structures into representations of
higher-level structures.

String diagrams such as the ones in Fig. 3.3 can be written down as binary trees thanks to the
associativity of the monoidal products of P and FVect. [Lew19] proposes to exploit this fact and
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augment the compositional distributional model of [CSC10] by implementing the (co)unit maps of
FVect as one or more recursive neural network (TreeRNN) cells. The paper argues that the use
of TreeRNN cells should make the model easier to train and more robust. To our knowledge, such
proposal has not yet been implemented, although TreeRNNs have already been applied to NLP many
times (see e.g. [ASM19]).

3.3 Equivariant neural networks as functors

Warning 76. We warn the reader that the paper [CLLS24], whose contents are discussed in this
section, has been withdrawn by the authors citing issues with the references. We decided against
omitting the paper from this thesis because we think its research direction is intriguing and potentially
highly valuable. Hopefully, future research will soon clarify the epistemological status of the ideas
hereby discussed.

[CLLS24] presents a categorical framework that describes neural network layers as functors and uses
their functorial nature to impose invariance and equivariance constraints. In particular, equivariance
constraints are used to effectively transport unary operators from the dataset into a latent embedding
layer. It is shown that this enables the creation of models that account for shift and imbalance in
covariates when training on pooled medical image datasets. In this section, we describe the framework
of [CLLS24] and we draw a short comparison with the work of [PAS24], which also deals with the
transport of algebraic structure into embedding layers.

3.3.1 An equivariant classifier to diagnose Alzheimer’s disease

The authors of [CLLS24] consider a data category S whose objects s are data points and whose
morphisms f : s1 Ñ s2 represent differences in covariates. An example considered in the paper is the
following: suppose the objects s are comprised of brain scans and associated information concerning
patient age and other covariates. The goal is to develop a model trained to diagnose Alzheimer’s
disease from the scans. An example of morphism in such a data category is fx : s1 Ñ s2, which
indicates a difference of x years in age: s2.age “ s1.age`x. Notice that this kind of operator is clearly
endowed with an algebraic structure as fx # fy “ fx`y. Since we are dealing with a classification task,
the dataset at hand has labels. It is important not to include the labels in the data category, else any
classifier model would just read such labels instead of learning to predict them. Use the notation ys

to represent the label associated to s.
Now, if we consider another category T , we can use a functor F : S Ñ T to project S onto T .

Learning this functor instead of a simple map between objects is advantageous because the functoriality
axioms imply that F automatically satisfies equivariance constraints. This is trivial: if g : s1 Ñ s2,
then

F pgq : F ps1q Ñ F ps2q. (3.4)

Invariance with respect to g is not much harder to define: it suffices to impose F ps1q “ F ps2q and
F pgq “ idF ps1q.

Remark 77. Eq. 3.4 is a categorical generalization of the more usual group-theoretical notion of
invariance, as defined in Def. 38. To be precise, Def. 38 is equivalent to Eq. 3.4 if S, T are Borel
spaces and g, F pgq are group actions, as highlighted in [CLLS24].

The authors of [CLLS24] solve the Alzheimer’s disease diagnosis task using a classifier that actively
exploits the equivariant nature of functors. The proposed architecture consists of two modules: an
invertible functor F : S Ñ T that embeds the data into a latent space, and a functor C : T Ñ FreepNq
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that does the actual classification (see Fig. 3.4 for a diagrammatic representation). Here, T acts as
a latent space and the equivariance of F forces the representations in T to be robust with respect to
covariate shifts and imbalances, so that the actual classification operated by C can be more effective
at diagnosing the disease. The whole model can be compactly represented as F # C : S Ñ FreepNq.
Although the inverse of F does not appear in the formula, its existence is needed to ensure that the
latent space accurately represents the data.

Figure 3.4: Classifier model proposed by [CLLS24] (Image taken from [CLLS24].)

The classifier described above is implemented using similar tools as the ones employed by [SY21].
The latent space T can be defined as a vector space category as in Def. 68. The functor F is realized
as the encoder of an appropriate autoencoder, and the decoder portion of this autoencoder acts as
the inverse F´1. The maps f : Sps1, s2q can be embedded as matrices as described in the previous
section. In particular, [CLLS24] suggests using orthogonal matrices F pfq “ Wf so that the resulting
transformations can be efficiently inverted. Finally, C can be implemented as a MLP classifier.

Now that the architecture has been specifies in terms of neural networks, the resulting model can
be trained using gradient descent and a linear combination of three separate losses: L “ γ1Lr `γ2Lp`

γ3Ls, where γ1, γ2, and γ3 are hyperparameters. Here, Lr is a reconstruction loss, which makes sure
that F is invertible and that its inverse accurately reconstructs the original data; Lp is a prediction
loss, which makes sure that F #C accurately predicts the labels of the data; Ls a structure loss, which
makes sure that F acts as a functor and not just a map. In formulas,

Lr “
ÿ

s:S
}s´ pF´1 ˝ F qpsq}22,

Lp “
ÿ

s:S
crossentropypys, pC ˝ F qpsqq,

Ls “
ÿ

s1,s2:S
f :s1Ñs2

}WfF ps1q ´ F ps2q}22.

Remark 78. Notice that the amount of equivariance constraints imposed can vary with no substantial
changes to the proposed architecture: it suffices to add or remove terms from Ls. This is in stark
contrast with approaches such as [LCRS22], where handling multiple covariates requires a complicate
multi-stage model.

The authors of [CLLS24] test the validity of the proposed approach with two interesting exper-
iments: a proof of concept trained on the MNIST dataset, and a working classifier trained on the
ADNI brain imaging dataset. The proposed MNIST model implements equivariance with respect to
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increments, rotations, and zooming. It is shown in the paper that representing the associated mor-
phisms with orthogonal matrices allows such morphisms to be inverted and combined in the latent
space. A subsequent application of F´1 shows the results of the aforementioned manipulation in
human-understandable form. Such results are indeed very promising: the authors are able to combine
rotations and scaling successfully, even though the network was only trained to apply them separately
(see Fig. 3.5) for an example. The ADNI classifier model also shows promising results which are
on par with state-of-the-art models that do not use categorical tools. The comparison takes place
according to accuracy of prediction, maximum mean discrepancy, and adversarial validation.

Figure 3.5: The authors of [CLLS24] applied rotations and scaling on MNIST images using the op-
erators learned in the latent space. Despite being learned separately, the two transformations were
successfully combined. (Image taken from [CLLS24].)

3.3.2 Transporting algebraic structure into embedding spaces

Although stated in terms of equivariance conditions, the work of [CLLS24] can be seen from an
algebraic point of view as a framework that allows to transport unary operators from a space of data
to an embedding space. This line of thinking has also been explored by [PAS24]. While [PAS24] deos
not use category theory, the authors themselves state that their approach could be easily categorified
using the language of categorical algebras (Def. 27). The main innovation of [PAS24] is the use of
mirrored algebras to fill the gaps between original data and the embeddings.

Consider a pre-trained autoencoder consisting of an encoder E : S Ñ L and a decoder D : L Ñ S,
where S is a data space endowed with an algebraic structure, such as a monoidal product ‚S , and where
L “ Rn is a latent space. Suppose we want to transport this algebraic structure to Rn through E, that
is, we want to find a monoidal product ‚L over L so that E acts as a pS, ‚Sq Ñ pL, ‚Lq homomorphism.
While finding a product ‚L that makes pS, ‚Sq and pL, ‚Lq homomorphic might be easy, there is
no guarantee that E is an actual homomorphism with respect to this choice of algebraic structure.
[CLLS24] solves this problem for unary operators by learning appropriate orthogonal matrices, but
it is not clear how this approach could be scaled to operators with arities greater than 1. [PAS24]
suggests an alternative approach consisting in learning a bijection ϕ between the latent space and a
copy M “ Rn of this space. Endow M “ Rn with a product ‚M which enjoyes similar properties as
‚S (see Fig. 3.6). We will say that pM, ‚Mq is the mirrored algebra of pS, ‚Sq. Now train ϕ so that
E is pS, ‚Sq Ñ pL, ‚Lq homomorphism, where ‚L is defined by

l1 ‚L l2 “ ϕ´1pϕpl1q ‚M ϕpl2qq.
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Figure 3.6: Method proposed by [PAS24] to transport algebraic structure. (Image taken from [PAS24].)

As stated in [PAS24], the bijection ϕ can be implemented as an invertible neural network and can
be trained using a loss in the form

L “
1

N

N
ÿ

i“1

dpDppLi pEps1q, . . . , Epsniqqq, pSi ps1, . . . , sniqq

where the pSi are algebraic expressions sampled from the set of expressions over pS, ‚Sq, the sj are
sampled from S, pLi pl1, . . . , lniq is defined as ϕ´1ppMi pϕpl1q, . . . , ϕplniqqq, pMi is the translation of pSi in
terms of the algebraic structure of pM, ‚Mq, and d is an appropriate distance function.

We only presented a sketch of the work in [PAS24]: the original paper presents the framework
in terms of any general algebraic structure, deals with laws that regulate the interaction of different
operations, proves theoretical guarantees, and explores the limitations of the proposed approach. It is
shown in the paper that it is not always possible to find a mirrored algebra whose operations satisfy
the same laws of the source algebra, which means that it is not always possible to transport this
algebraic structure in its entirely. Nevertheless, the authors carry out experiments that prove that
there are tangible advantages even in transporting a subset of the algebraic laws. The experiments
support the following conjecture: “learned latent space operations will achieve higher performance if
they are constructed to satisfy the laws of the underlying source algebra” ([PAS24]).





Chapter 4

Detailed Representations of Neural
Networks

Figure 4.1: Schematics for a transformer as they were presented in the original paper [VSP`17]. The
annotation are from the author of [Abb24]. (Image taken from [Abb23].)

One of the main concerns arising from machine learning research is low reproducibility. This is not a
simple issue and investigation by many authors (see e.g. [Raf19], [PVLS`21], [GCKG22]) has suggested
that many factors might be at play (e.g., bad incentives, unsatisfying experiment design, incorrect
evaluation practices, and so on). Source code availability is a recurring theme in these discussions:
for instance [GCKG22] observes that “code describes implementation details perfectly and is required
for outcome reproducibility for experiments of some complexity”. Similarly, [PVLS`21] describes
efforts of the NeurIPS19 conference to improve reproducibility by requiring authors to provide source
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code. The paper justifies this requirement by speculating that the reproducibility issues affecting
machine learning research might be partly caused by a reporting problem within the community, as
machine learning papers often do not report all the details needed to reimplement the models they
describe. For instance, it is argued that hyperparameters are often missing, together descriptions of
entire components of the models at hand and descriptions of the pipeline and external tools employed.

While making code and datasets as available as possible can certainly be considered a good practice,
it is argued in [Abb24], [KLLWM24], and [PH22] that over-reliance on code is detrimental to research.
In fact, while it is tautologically true that code perfectly describes implementation, code is hardly
effective at capturing the essential structure of a machine learning model. Even high-level code (like
Python or R code) tends to be excessively verbose and drowns important details in a sea of instructions
that have little to do with the theory at play. Hence, the question remains: how should machine
learning researches represent their models? This question is extremely relevant in deep learning, where
the size and complexity of models is ever increasing. For instance, even the ubiquitous transformer
introduced by [VSP`17] is a complex piece of machinery with many components, and it is very
challenging to provide a satisfying description.

Many authors describe their models through equations, but this becomes more and more difficult
as the size of the models grows. This is especially true especially if complex tensor operations need to
be carried out as ordinary tensor notation is not very readable ([XKM23]). Interestingly, the number of
equations contained in a paper has been found to be negatively correlated to reproducibility ([Raf19]).
An alternative approach that is becoming increasingly common is the use of specially crafted diagrams.
For instance, Fig. 4.1 shows the transformer blueprint as provided in the original paper [VSP`17]
(the annotations are not from the original authors). Ad hoc diagrams are intuitive but, as argued in
[Abb24] and [KLLWM24], they suffer from a lack of systematicity and do not usually have significant
mathematical properties. Moreover, important information is often omitted from the diagrams and
the reader has to carefully parse the text to (hopefully) find or deduce it. For instance, the diagrams
in Fig. 4.1 do not provide any information concerning the size of the matrices Q, K, and V , nor is it
clear across which dimension the softmax should be computed.

The ad hoc diagrams often employed by machine learning researchers should be compared with
the monoidal string diagrams that are almost standardized across applied category theory (see e.g.
[BGK`22]). We have already seen many such diagrams in the previous chapters, especially when de-
scribing optics (see e.g. Fig. 1.2). On top of being standardized, monoidal string diagrams have precise
categorical semantics and can thus be used to write down rigorous mathematical proofs and compu-
tations. Given these good properties, it is reasonable to ask whether the systematic use of monoidal
string diagrams to represent machine learning models might be helpful. Regrettably monoidal string
diagrams are also very inefficient at representing the details of tensor operations. The reader can
appreciate this from Fig. 1.5, where dimensionality is all but hidden. This is the price that needs
to be paid for generality, as monoidal string diagrams can represent mathematical objects that go
well-beyond tensors. Nevertheless, there have been attempts by [Abb23] and by [KLLWM24] to adapt
the box-wire notation of monoidal string diagrams so that it can perfectly represent a neural network
architecture without leaving out important details. Category theory can then be used to provide
rigorous semantics to these diagrams. Hopefully, such diagrams will be able to convey the information
that is necessary for implementation and theoretical analysis, leading to improved insight and better
reproducibility.

In this chapter, we discuss the two aforementioned categorical diagrammatic approaches and we
compare them with other non-categoric and even non-graphical approaches to the problem of repre-
senting a neural network. The papers we discuss measure the validity of their approaches against the
problem of representing the transformer architecture, which is both well-known and highly non-trivial.
We will reproduce some of the diagrams in questions to give an idea of how the approaches compare.
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Regrettably, we lack the necessary space to fully describe the categorical semantics of the diagrams in
question, but the reader can find complete accounts of each approach in the respective papers.

4.1 Neural circuit diagrams

[Abb23] proposes to compensate for the shortcomings of monoidal string diagrams by introducing
a novel kind of string diagrams: neural circuits diagrams. neural circuits diagrams are a specialization
of a broader class of powerful string diagrams known as functor string diagrams, developed in order
to represent objects, morphisms, functors, natural transformations, and products in a single diagram.
In this section, we provide a brief description of both classes of diagrams, and we show how neural
circuits diagrams can be used to describe the transformer architecture.

4.1.1 Functor string diagrams

Despite their unquestionable usefulness, monoidal string diagrams have are fundamentally limited
by their inability to represent functors and natural transformations. [Mar14] and [Nak23] solve this
issue by relying on colors and symbols, but this only shifts the problem as their diagrams are unable
to effectively represent products ([AZ24]). Functor string diagrams follow a different approach: they
represent both objects and functors as wires and both morphisms and natural transformations as
boxes1. These diagrams are built on two fundamental principles, which are already observed in
traditional string diagrams. Following these principles ensures that the diagrammatic syntax stays
consistent with the underlying categorical structure as it becomes more expressive.

Principle 79 (Vertical section decomposition). A string diagram can be divided into vertical columns.
A single vertical columns must either contain only objects or only morphisms. Object columns and
morphism columns must alternate each other.

Principle 80 (Equivalent expression). Every newly introduced piece of graphical notation must be
expressible using the notation already present in a compatible manner.

In accordance with these principles, [Abb23] introduces notation that represents a functors as wires
that lie above objects wires and natural transformations as boxes that lie above morphism boxes, as
in Fig. 4.2 (a), (b). In standard string diagrams, a wire running through a morphism column is
interpreted as an identity morphism. Similarly, in the notation of [Abb23], a wire running where a
natural transformation is supposed to be is interpreted as an identical natural transformation. This
diagrammatic notation is already effective enough to write a graphical proof of the Yoneda lemma, and
can be easily adapted to represent product bifunctors: it suffices to stack two rows (one per category
envolved) and to seprate them using a double dashed line, as in Fig. 4.2 (c). Finally, monoidal
products can be represented by using a single dashed separation line or no line at all (as in Fig. 4.2
(d)). These pieces of diagrammatic notation are also in perfect compliance with the vertical section
decompositionl principle and the equivalent expression principle.

4.1.2 Neural circuit diagrams

Neural circuit diagrams are a specialization of functor string diagrams designed to represent precise
schematics for deep neural network architectures. The idea is to capture all information relevant
to the implementation and analysis of the aforementioned architecture without using any specific

1In functor string diagrams, the actual box is often not drawn for the sake of simplicity. In these cases, the box is
replaced by a single letter, but we still use the word “box” for lack of better terminology.
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(a) (b)

(c)

(d)

Figure 4.2: Functor string diagrams associated with (a) a functor, (b) a natural transformation, (c) a
product bifunctor, (d) a monoidal product. (Images and annotations taken from [AZ24].)

programming framework. In this sense, neural circuits diagrams can be compared to pseudocode.
Although neural circuit diagrams can be learned and applied without any reference to category theory
(this is the perspective adopted in [Abb24]), the fact that these diagrams are just an instance of
the wider class of functor string diagrams is not just a curiosity, but proof that they have rigorous
categorical semantics. In other words, every well-formed neural circuit diagrams corresponds to a
well-defined neural network, and neural circuit diagrams can be composed intuitively.

Differently from the string diagrams seen in e.g. [Gav24b] or [WZ22], neural circuit diagrams
explicitly keep track of dimensionality and indexing. This allows them to represent complex archi-
tectures that involve convolutions, residuality, and so on. Crucially, neural string diagrams provide
convenient notation to represent broadcasting, which is of fundamental importance in deep learning
but is rarely adequately represented by ad-hoc diagrams.

Neural circuit diagrams represent tensor axes as parallel wires and decorate each wire with the
associated number of dimensions (see Fig. 4.3 (d)). Indexing is implemented by assigning a spe-
cific value to the wire representing the axis in question (see Fig. 4.3 (b)). Finally, broadcasting is
represented by running a wire that represents the additional axis over the morphism that is to be
broadcasted (see Fig. 4.3 (c)). Mathematically, tensors are constructed as hom-functors over the
real line and broadcasting is just the action of these functors on morphisms (Fig. 4.4). This is all
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representable using functor string diagrams: neural circuit diagrams are just the result of omitting
unnecessary detail from the latter. See [Abb24] for more information regarding neural circuit diagrams
and see [Abb23] for more information regarding the relationship between neural circuit diagrams and
functor string diagrams.

(a)

(b)

(c)

Figure 4.3: Neural circuit diagram formalisms for (a) representation of tensors, (b) indexing of tensors,
(c) broadcasting. (Images and annotations taken from [Abb24].)

[Abb24] proves the usefulness of neural circuit diagrams by drawing schematics (Fig. 4.5) for the
powerful transformer architecture proposed by [VSP`17]. Comparing these schematics with the ones
presented in the original paper (Fig. 4.1) shows the wealth of detail that is easily encoded by the
former but is completely absent from the latter. Neural circuit diagrams for additional architectures
can be found in [Abb24].
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Figure 4.4: From functor string diagrams to neural circuit diagrams. (Image taken from [AZ24].)

4.2 Diagrams with universal approximators

[KLLWM24] also develops a string-diagrammatic language capable of giving detailed unambiguous
descriptions of neural network architectures. It is only natural to compare the approach of [KLLWM24]
with the neural circuit diagrams of [Abb23] discussed in the previous section. Despite their unques-
tionable similarity, the two approaches differ on one key point: while neural circuit diagrams leave
little space for abstraction and only allow equational rewrites, [KLLWM24] develops a semantics based
on the notion of universal approximator that allows to abstract away details and compare different
architectures based on shared abstractions. In this section, we give a brief overview of the approach
of [KLLWM24] and we discuss interesting experimental results presented by the paper. We do not
discuss the precise categorical semantics of the diagrams introduced [KLLWM24] because we lack the
space necessary to do so, but the reader can find a full account of them in the appendices of the
original paper.

4.2.1 The diagrammatic approach of [KLLWM24]

Neural circuit diagrams effectively describe neural network architectures, but the aboundance of
detail they convey also means that it can be challenging to extract the fundamental structure of an
architecture from its complete schematics. [KLLWM24] attacks this problem by drawing different
diagrams for different levels of abstraction so that complete schematics (like the ones encoded in
neural circuit diagrams) become only the end of a spectrum that begins with a purely abstract black
box. The same fundamental grammar underpins all these diagrams, and appropriate rewrites can be
used to seamlessly move between layers of abstraction.

Let us begin by discussing the most concrete end of the aforementioned specturm. [KLLWM24] de-
scribes computations in the Cartesian category CartSp of Euclidean spaces and continuous functions,
and follows the basic conventions of Cartesian monoidal string diagrams. A sketch of the language
can be found in Fig. 4.6. Unlike neural circuit diagrams, the diagrams of [KLLWM24] represent
broadcasting using SIMD boxes (Same Instruction applied to Multiple Data), (Fig. 4.6 (b)), which
are also used to represent tensor contractions (Fig. 4.6 (c)). Finally, syntactic sugar is offered to
represent reshaping operations (Fig. 4.6 (c)).

The reader can compare Fig. 4.5 against Fig. 4.8 to see how both neural circuit diagrams and the
approach of [KLLWM24] can be used to describe the transformer architecture in detail. While both
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Figure 4.5: Neural circuit diagram of a transformer. (Image taken from [Abb23].)

formalisms shine in accuracy of representation, they also both suffer from low readibility: one might
ask whether adopting such systems is even worth the trouble given that simpler diagrams such as the
one in Fig. 4.1 seem to be better at communicating basic ideas despite their lack of detail. [Abb23]
compensates for this by annotating its diagrams and by encapsulating portions of the architectures
at hand into dedicated boxes. On the other hand, [KLLWM24] proposes to abstract away detail by
replacing portions of the graph representing specific implementations with filled boxes that represent
universal approximators with the same inputs and outputs.

Definition 81 (Universal approximators). A universal approximator for a class C of functions is a
neural network architecture able to approximate any element of C to any desired precision.

Many well known results concern the existence and characterization of such approximators (see e.g.
[Cyb89]). [KLLWM24] uses universal approximators to rigorously represent “typed holes” that need
to be filled with an appropriate operator. Replacing detailed structures with these holes allows us to
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Figure 4.6: Basic elements of the diagrammatic syntax proposed by [KLLWM24]. (Image taken from
[KLLWM24].)

climb the ladder of abstraction. This can be combined with the omission of dimensional information
that is not necessary to understrand the architecture at hand, but only to implement it. [KLLWM24]
showcases this process in the diagram of Fig. 4.9, which highlights the fundamental structure of
the attention mechanism proposed by [VSP`17]. Notice how colors are used to distringuish between
dimensions that are fixed as hyperparameters and dimensions that vary with the length of the sequence
that is being processed.

4.2.2 Comparing attention mechanisms

The universal approximator abstraction can also be used to compare different architectures. Two
architectures that only differ at a point can be considered as descendents of a commmon ancestor
architecture, and this common link allows us to compare them. For instance, [KLLWM24] derives all
known attention mechanisms as descendents of a prototype “primordial attention”, forming a sort of
evolutionary tree of attention (see Fig. 4.10). The process of filling in a universal approximator with a
more specialized structure is called by [KLLWM24] an “expressivity reduction”, as it reduces number
of architectures represented by the given schematics. Expressivity reductions can be formalized as
string diagrammatic rewrites, which implies that the categorical semantics of these diagrams have a
central role in the comparative analysis of architectures.

Just like biological taxonomy classifies species based on their evolutionary history, we can use the
tree in Fig. 4.10 as a blueprint for the classification of attention mechanisms. This undertaking is
analogous to the one of [GLD`24], where recurrent neural network cells are classified based on the
classical data structures and automata they are related to. Both taxonomies serve to systematize the
scattered panorama of machine learning research, but may also inspire new architectures. The authors
of [KLLWM24] pursue this line of thinking and explore a space of possible attention mechanisms freely
constructed from five generators (represented as abstract diagrams). This large space is reduced in
size by rewriting sections that would lead to overparameterization. This results in a selection of eleven
possible attention mechanisms, which the authors of [KLLWM24] go on to test: the mechanisms are
embedded in a decoder-only transformer and trained on a Penn-Treebank task. Interestingly, the 11
mechanisms (among which there are known architectures such as the one proposed by [VSP`17]) all
perform comparably well, with only one having a slightly better performance than the others. The
authors entertain the conjecture that the aforementioned results might be a sign that the choice of
attention mechanism matters little, as long as data is exchanged between tokens. While there is no
uncontrovertible evidence that this is the case, these experiments prove the usefulness of the approach
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(a)

(b)

(c)

Figure 4.7: Syntax proposed by [KLLWM24] for (a) dimensionality, (b) SIMD boxes, (c) copys, reshape
operators, and contractions. (Images taken from [KLLWM24].)

Figure 4.8: Blueprint of the encoder part of a transformer according to [KLLWM24]. (Image taken
from [KLLWM24].)

of [KLLWM24] and, more generally, of the usefulness of string diagrams in machine learning.

4.3 Future directions and related work

The amount of implementational detail conveyed by neural circuit diagrams and the diagrams
in [KLLWM24] suggests that it should be possible to find a 1-to-1 correspondence between these
diagrams and code. It is even argued in [Abb23] that neural circuit diagrams are expressive enough to
be considered a high-level language with explicit memory management. Hopefully, future research will
lead to the creations of tools that convert neural circuit diagrams into working models, not unlike the
library developed by [CGG`22] that allows programmers to code using parametric lenses. Another
interesting direction of research is the application of methods analogous to the ones of [KLLWM24]
to the exploration of other classes of architectures.

We conclude the chapter by briefly discussing a few alternative approaches to the problem of
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Figure 4.9: Abstract blueprint for the self-attention mechanism for the transformer architecture of
[VSP`17]. (Image taken from [KLLWM24].)

unambiguous representation of neural networks. While these approaches are not categorical (yet), we
believe there are fruitful comparisons to be drawn between the latter and the categorical approaches
discussed in the previous sections. We also believe that these all these methods can be fruitfully
integrated on various level, as discussed below.

4.3.1 Tensor networks

The enormous importance of tensors in quantum physics lead to the development of tensor networks
(pioneered by [P`71]), in which tensor operations are represented as graphs, where tensors are nodes
and modes are represented as edges coming out of the nodes. Given the importance of tensors in deep
learning, it makes sense to try to adapt tensor networks to represent neural networks. This is done
in [XKM23] and [Tay24]: the two papers introduce similar conventions that endow tensor networks
with dedicated notation for non-linear activation functions and copy maps, which are not present in
ordinary tensor networks.

The main difference between tensor networks and the string diagrams described in this chapter is
that the latter represente data as boxes and processes as wires, whereas the former do the opposite.
In tensor network an edge linking two tensors represents a tensor contradction: this choice yields
intuitive representations for sophisticated tensor operations such as the Tucker product ([XKM23])
and for various tensor decompositions tecniques ([Tay24]), but it also makes it much more difficult to
conceptualize how data moves through a model. For instance, the reader can observe Fig. 4.11 to
understand how much more difficult it is to represent copy maps in the notation of [Tay24]. Moreover,
while the diagrams of [Abb23] and [KLLWM24] have sophisticated categorical semantics, the notation
of [XKM23] and [Tay24] mainly relies on human intuition2.

Despite their weaknesses, tensor networks can be of great usefulness to deep learning practictioners
as they can offer clear insight into tensorization processes. Tensorization is an architecture design
patter that aims to reduce the number of parameters of a neural network without compromising its
expressivity: this can be done by replacing large matrices with appropriately decomposed low-rank
tensors. Owing to the redundance of ordinary fully connected layers (see e.g. [SKS`13]), this strategy
leads to remarkable levels of compression ([NPOV15], [XKM23]). The improved efficiency comes at
the price of human intuition, as it is much more difficult to think in terms of tensor operations across
many modes than in terms of matrix-vector multiplication ([XKM23]). Diagrams can help bridge this
gap.

2We see no reason why the diagrams in [XKM23] and [Tay24] should not be interpreted under the lens of category
theory. Refer to [BCJ11] for a categorical approach to tensor networks.
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Figure 4.10: Evolutionary tree of attention mechanisms according to [KLLWM24]. Child nodes are
obtained by applying rewrites to parent nodes. (Image taken from [KLLWM24].)

4.3.2 Non-diagrammatic notations

An alternative to diagrammatic notation is the enhancement of algebraic notation. For instance,
[CRB21] proposes to give English labels to tensor axes to make it easier to keep track of them.
Following this convention, known as named tensor notation, the dot-product self-attention mechanism
of [VSP`17] can be represented with the equation (which we lift from [CRB21]):

AttentionpQ,K,Vq “

¨

˝softmax
seq

Q d
key

K

a

|key|

˛

‚ d
seq
V, (4.1)

where key represents the axes dedicated to query and key features, and seq represents the axis of
sequence tokens. The authors argue that their named tensor notation is an improvement over the
popular Einstein notation for sums as axes with English names allow the reader to immediately
understand what kind of information they encode; moreover, they claim that named tensor notation
limits repetition of indices and thus makes equations cleaner.

Another viable alternative approach is described in [PH22], where it is suggested that neural
network architectures should be represented using pseudocode analogous to the one used in algorithm
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Figure 4.11: Tensor network representing the GPT-2 architecture. (Image taken from [Tay24].)

design and analysis (see e.g. [CLRS22]). The authors claim that writing pseudocode distills each
architecture down to its fundamental components and removes incidental distractions, all the while
preserving the detail necessary for implementation. One disadvantage of using pseudocode is that
the structure of the involved tensors and the flow of information are partially obscured, which is
detrimental to intuition. More generally, one can argue that pseudocode is readily implementable but
hides away mathematics and structure.

4.3.3 A multifaceted approach

In our opinion, the problem of representing neural network architectures is best solved by using a
combination of methods. For instance, there is no reason (aside maybe from space concerns that could
be mitigated by the use of appendices) why the same architecture cannot be described with a string
diagram, a tensor network, named tensor equations, pseudocode, and even code in the same paper.
One or more string diagrams might be designed using either of the two approaches described in this
chapter; tensor networks and named tensor equations might be employed to clarify the dynamics of
complex tensor operations3; pseudocode could be provided so that practitioners can readily implement
the architecture; finally, providing source code might clarify any ambiguity left by these high-level
representations.

3Since the edges of tensor networks represent axes, we see no reason why they cannot be themselves labelled, effectively
integrating the approaches of [XKM23] and [CRB21].



Conclusions

When discussing applications of category theory outside of pure mathematics, one might ask
whether formalizing a concept in categorical terms is really worth the effort. Does a categorical
formalization yield any novel insight? Does there exist some aspect of the subject at hand which can
be analyzed with category theory more easily or elegantly than without? Experiments confirm that it
possible to elegantly model gradient-based learning with parametric lenses; they confirm that thinking
in terms of integral transforms leads to better algorithmic alignment; finally, they confirm that functor
learning techniques preserve expressivity while reducing the number of parameters. It also appears
clear that string diagrams can effectively describe neural network architectures. Hence, in the light
of the many categorical approaches discussed in this thesis, we believe that categorical thinking can
indeed be productive even in an applied field like deep learning.

Category theory is not the only area of mathematics that has been proposed to attack the open
problems of deep learning and machine learning in general. For instance, both topology (see e.g.
[HMR21]) and mathematical physics (see e.g. [RYH22]) seem to be good contenders, and linear
algebra and probability theory are so foundational to the field that it is hard to imagine that they
will not yield important advancements in the future. However, category theory holds a position of
high regard in the hierarchy of mathematics because it can be used to build bridges between disparate
fields. Thus, while no prediction about the future can be certain, it seems reasonable to expect that,
on top of providing important techniques on its own, category theory will be used to build bridges
between non-categorical approaches. Hopefully, bringing all these contributions together will lead us
to a general theory of deep learning and machine learning at large.
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mation theory–based compositional distributional semantics. Computational Linguistics,
2022.

[Abb23] Vincent Abbott. Robust Diagrams for Deep Learning Architectures: Applications and
Theory. PhD thesis, Honours Thesis, The Australian National University, Canberra,
2023.

[Abb24] Vincent Abbott. Neural circuit diagrams: Robust diagrams for the communica-
tion, implementation, and analysis of deep learning architectures. arXiv preprint
arXiv:2402.05424, 2024.

[AC09] Samson Abramsky and Bob Coecke. Categorical quantum mechanics. Handbook of
quantum logic and quantum structures, 2009.

[ASM19] Mahtab Ahmed, Muhammad Rifayat Samee, and Robert E Mercer. Improving tree-lstm
with tree attention. In 2019 IEEE 13th international conference on semantic computing
(ICSC), 2019.

[AZ24] Vincent Abbott and Gioele Zardini. Functor string diagrams: A novel approach to
flexible diagrams for applied category theory. arXiv preprint arXiv:2404.00249, 2024.

[BBCV21] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
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[VB21] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2021.
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