Minimum length metric and horizon area variation

Perri, Aldo (2024) Minimum length metric and horizon area variation. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (1MB)

Abstract

Most of the efforts in unifying general relativity and quantum mechanics come out with two consequences: the presence of a minimum length scale and the non-locality of the spacetime at small scale. The qmetric, or minimum length metric, is a bitensor (it embodies non-locality) acting as a renormalized metric tensor with a minimum length built in: at large scale it approximates the classical metric tensor while the more we approach small scales the more the effects of the presence of a minimum length are relevant. After a review of the general description we construct the qmetric explicitly for Euclidean space and Minkowski spacetime, studying what happens to the area and volume elements of a geodesic congruence cross section. The relevant result is the presence of an irreducible minimum area for the cross section of a geodesic congruence emanating from a point: we can give a notion of a transverse area around any event of the spacetime upholding past results in literature. We exploit this result in the context of black hole horizon area variation, in the approximation such that the flat description can be used locally, showing that the qmetric proves that the presence of a minimum length brings with it a minimum step of area variation, i.e. a quantum of area.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Perri, Aldo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
qmetric,Minkowski space,Area Quantization,Minimum length,Bitensors
Data di discussione della Tesi
23 Febbraio 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^