Leoni, Luca
(2023)
Enhancing diagrammatic Monte Carlo via machine learning.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (15MB)
|
Abstract
Since their introduction in 1949 Feynman's diagrams have proven over time to be the most precise and intuitive way of approaching quantum field theory, quantum statistical mechanics, and many-body physics.
Feynman's diagrams approach is used in many physical problems, as they are able to simplify complex formalism and provide efficient tools for numerical simulations.
The Diagrammatic Monte Carlo (DMC) technique is one such computational methods, which stands tall among the most precise approximation-free Markov Chain integration methods.
Still, As all Monte Carlo approaches, the main limitation of DMC is the huge computational cost.
Thus, in this thesis work, we aimed to reduce the computational time by proposing new ways of constructing the diagrams Markov Chain to reduce correlation with respect to today's standard approaches.
This study has led us to the creation of two new proposals: an analytical approach that grants the minimum correlation possible in the Markov Chain, and a more general neural network protocol based on the Normalizing Flow architecture.
Both methods have been tested on different models showing effectiveness in reducing the correlation, and so the number of samples needed for convergence, giving a boost in performances if used in the proper context.
Abstract
Since their introduction in 1949 Feynman's diagrams have proven over time to be the most precise and intuitive way of approaching quantum field theory, quantum statistical mechanics, and many-body physics.
Feynman's diagrams approach is used in many physical problems, as they are able to simplify complex formalism and provide efficient tools for numerical simulations.
The Diagrammatic Monte Carlo (DMC) technique is one such computational methods, which stands tall among the most precise approximation-free Markov Chain integration methods.
Still, As all Monte Carlo approaches, the main limitation of DMC is the huge computational cost.
Thus, in this thesis work, we aimed to reduce the computational time by proposing new ways of constructing the diagrams Markov Chain to reduce correlation with respect to today's standard approaches.
This study has led us to the creation of two new proposals: an analytical approach that grants the minimum correlation possible in the Markov Chain, and a more general neural network protocol based on the Normalizing Flow architecture.
Both methods have been tested on different models showing effectiveness in reducing the correlation, and so the number of samples needed for convergence, giving a boost in performances if used in the proper context.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Leoni, Luca
Relatore della tesi
Scuola
Corso di studio
Indirizzo
MATERIALS PHYSICS AND NANOSCIENCE
Ordinamento Cds
DM270
Parole chiave
Monte Carlo,DMC,Feynman diagrams,many-body,Markov Chain,Computational Material Physics
Data di discussione della Tesi
26 Ottobre 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Leoni, Luca
Relatore della tesi
Scuola
Corso di studio
Indirizzo
MATERIALS PHYSICS AND NANOSCIENCE
Ordinamento Cds
DM270
Parole chiave
Monte Carlo,DMC,Feynman diagrams,many-body,Markov Chain,Computational Material Physics
Data di discussione della Tesi
26 Ottobre 2023
URI
Statistica sui download
Gestione del documento: