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Abstract

Since their introduction in 1949 Feynman’s diagrams have proven over time to be the
most precise and intuitive way of approaching quantum field theory, quantum statisti-
cal mechanics, and many-body physics. Feynman’s diagrams approach is used in many
physical problems, as they are able to simplify complex formalism and provide efficient
tools for numerical simulations. The Diagrammatic Monte Carlo (DMC) technique is one
such computational methods, which stands tall among the most precise approximation-
free Markov Chain integration methods. Still, As all Monte Carlo approaches, the main
limitation of DMC is the huge computational cost. Thus, in this thesis work, we aimed
to reduce the computational time by proposing new ways of constructing the diagrams
Markov Chain to reduce correlation with respect to today’s standard approaches. This
study has led us to the creation of two new proposals: an analytical approach that grants
the minimum correlation possible in the Markov Chain, and a more general neural net-
work protocol based on the Normalizing Flow architecture. Both methods have been
tested on different models showing effectiveness in reducing the correlation, and so the
number of samples needed for convergence, giving a boost in performances if used in the
proper context.

The thesis is structured in 4 chapters, starting in Ch. (1) with a comprehensive con-
struction of both the model Hamiltonians used as tests and the Feynman’s diagrams
formalism used in DMC. DMC is the main focus of Ch. (2), where the theoretical sta-
tistical foundations are presented along with the description of the standard algorithm
for the wanted models. Ch. (3) is focused on the description of the Machine learning
model used in this work, introducing the most commonly used architectures to create
Normalizing Flows and how they can be adapted to DMC. At last, Ch. (4) presents the
two new chain construction methods and the results from their application. Results
obtained from computations implemented inside a C++ framework designed and coded
during the thesis work, named LLDMC, which is also presented in the beginning of the
chapter.
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Sommario

Dalla loro introduzione nel 1949 i diagrammi di Feynman hanno costituito il metodo più
preciso ed intuitivo per approcciare lo studio di varie aree della fisica come: teoria quan-
tistica dei campi, meccanica statistica quantistica e la fisica dei molti corpi. Il loro vasto
spettro di applicazioni ha generato nel tempo un interesse verso la creazione di routine
numeriche capaci di effettuare stime delle complicate equazioni matematiche che risul-
tano dall’applicazione di tale formalismo. Il metodo Diagrammatic Monte Carlo (DMC)
è una di tali tecniche computazionali, facendo parte delle più precise tra quest’ultime
in quanto metodo di integrazione approximation-free basato sulle Markov Chain. DMC
è quindi limitato solamente dai soliti problemi comuni ad ogni metodo Monte Carlo, e
quindi relativi principalmente all’elevato tempo necessario al risultato per convergere.
In questo lavoro di tesi si è quindi cercato un modo per velocizzare la convergenza di tale
algoritmo proponendo due nuovi metodi per costruire la Markov Chain di diagrammi atti
a ridurre la loro correlazione rispetto ai metodi standard usati oggi. Lo studio della sta-
tistica dei diagrammi ha portato a proporre due metodi in particolare: uno analitico che,
anche se limitato nelle applicazioni, è in grado di ridurre al minimo la correlazione, e un
secondo metodo più generale basato sulle reti neurali e in particolare sull’architettura
del Normalizing Flow. Entrambi i metodi sono stati testati su modelli differenti che
ne hanno mostrato l’effettiva efficacia nel ridurre la correlazione nella catena, e quindi
il numero di diagrammi necessario alla convergenza, portando un miglioramento delle
performance se usati nel giusto contesto.

La tesi è strutturata in quattro capitoli. Il capitolo (1) contiene un introduzione teor-
ica relativa alle Hamiltoniane dei modelli usati per effettuare i test, e sul formalismo dei
Diagrammi di Feynman usato all’interno del metodo DMC. Quest’ultimo viene quindi af-
frontato più nel dettaglio nel capitolo (2), dove le fondamenta teoriche relative alle pro-
prietà statistiche dell’algoritmo sono riportate insieme alla descrizione dell’algoritmo
standard che il nostro lavoro ha cercato di superare. Il capitolo (3), invece, si focalizza
sulla descrizione del modello di Machine Learning usato all’interno del lavoro, intro-
ducendo la principale letteratura riguardante i Normalizing Flow e come quest’ultima
possa essere modificata allo scopo di essere usata dentro DMC. Infine, il capitolo (4) è
usato per presentare i due nuovi metodi nella loro interezza mostrando anche i rispettivi
risultati ottenuti nelle loro applicazioni. I quali sono stati ottenuti da conti implemen-
tati attraverso un framework C++ pensato e scritto apposta per questo lavoro di tesi, e
chiamato LLDMC, che è presentato all’inizio del capitolo.
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1
Model Hamiltonians for condensed

matter

The theoretical modelling of materials is based on the study of matter as a quantum
many-body system composed by numerous electrons and nuclei interacting together.
First principles or ab-initio methods are used to solve numerically the Schröedinger
equation (SE) associated to an entangled many-body Hamiltonian. Techniques have
evolved to recent years in possessing a strong predictive power that, along with the in-
crease in computational resources, brought computational material physics to become a
wide research area and a standard practice in industries. Nevertheless, their applica-
tions are still limited from a series of approximations used to simplify certain interac-
tions to disentangle the problem, and making it computationally trackable. This creates
the needs of a framework that can be used when the standard methods fail to describe
the right behavior. Therefore, a brief review of the mains first principle SE methods
is presented focussing on their limitations. An alternative method to solve the many-
body interacting problem is based on model Hamiltonian, that can precisely account
for specific interactions, and allow for corrections of the first principles results, or to
access new systems’properties. In the framework of DMC methods this is achieved by
employing Feynman diagrams, which will be briefly introduced.

1.1 First principles methods in Many Body

We assume that matter is composed by a series of non-relativistic electrons, Ne, and
nuclei, Nn, that are interacting through electrostatic forces. In this way, is possible to
write down a total Hamiltonian that describe a generic material as

Ĥ =
Nn∑
α

P̂α

2Mα
+

Ne∑
i

p̂i

2m
+Unn

(
R̂

)+Uen
(
R̂, r̂

)+Uee (r̂) (1.1)

Where capital letters correspond to the nuclei properties while lower cases one to the
electrons, also taking into account how the masses of the former, Mα, can be different
from one another. The terms Unn, Une and Uee, instead, describes the interaction poten-
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tial between the components

Unn = 1
2

Nn∑
α̸=β

V
(
R̂α− R̂β

)
, Uen =−1

2

Ne∑
i

Nn∑
α

V
(
R̂α− r̂i

)
, Uee =

1
2

Ne∑
i ̸= j

V (r̂i − r̂i) , (1.2)

with V (r) that is usually taken as the Coulomb potential Q/r, but also screened versions
are used for certain cases. The goal of first principles ab-initio methods is to numerical
solve the many-body SE associated to Eq. (1.1), and describe the state of the system. In
order to accomplish this a first common approximation is used to separate the electronic
and nuclei degrees of freedoms called Born-Oppenheimer approximation. The idea is
to assume that, due to mass difference, the kinetic energy of electrons is much larger
than the nuclei one which can, therefore, be neglected to describe materials properties.
In this way, the nuclei are assumed to be frozen in space to certain positions becoming
parameters inside the simplified SE

[
Ne∑
i

p̂i

2m
+Unn(R)+Uen(R, r̂)+Uee(r̂)

]
|Ψ(r, {R})〉 = Ee(R) |Ψ(r, {R})〉 . (1.3)

The electronic energy obtained, Ee, as a function of the nuclei coordinates is the final
goal of the vast majority of the ab-initio methods for material modelling. In fact, further
contributions arising from the quantum treatment of the nuclei motion or phonons are
usually discarded, even if modifications of the Coulomb interaction due to nuclei motion
can be adopted to improve results [17]. At this point Eq. (1.3) still poses a challenge
due to the entanglement between electrons generated by Uee. Bringing to the second
needed simplification that modify the electron-electron interaction in a way that allows
for the r to be disentangled. Such a task is usually performed by rewriting the total
wave function as a combination of single particle orbitals

Ψ(r)= F
[
ψ1(r1),ψ2(r2), . . . ,ψNe (rNe )

]
, (1.4)

which is done differently depending on the method in question. For example, in density
functional theory (DFT) the ground state is described in terms of the electron density
n0(r) = ∑Ne

i

∣∣ψi(r)
∣∣2 [20, 27], while in the context of Hartree-Fock (HF) the function F

becomes the Slater determinant [47]. Then, the variational principle is used in order to
minimize the energy associated to the selected form, obtaining a set of Schrödinger like
equations defining the functions that better approximate the real ground state

[
− ℏ2

2m
∇2 +Unn(R)+Uen(R,r)+UH(r)+UXC(r)

]
ψi(r)= εi(R)ψi(r). (1.5)

This is exactly the form obtained inside the DFT formalism, but can be seen how the
general structure remains the same also in the HF one. In particular, one can notice
how the total Uee interaction has been split in two parts. The first is called Hartree po-
tential, UH , describing the interaction of the single electron with the cloud composed by
the others, forming kind of a zeroth order approximation for the interaction that is anal-
ogous to all methods. The exchange and correlation potential, UXC, instead accounts for
higher order effects of the electron-electron contribution and posses different forms de-
pending on the method we are using. In DFT, for example, a function of the local density
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and of its gradient is often used [42, 43], while for HF the exchange integral of the elec-
tron orbitals is present. Of course, none of them results in being an exact rewriting of
the interaction, but only an approximation that is able to account for: exchange, in the
case of HF, or approximated forms of exchange and correlation, DFT. Still, both are able
to give us good approximations and allows Eq. (1.5) to be solved using a self-consistent
scheme that can estimate both {ψi} and εi from which material’s ground state properties
are predicted.

From such description is possible to understand that several limitations to both the
applicability and the precision of the methods are intrinsically present. The first one
is that the number of equations to solve increase with the number of electrons in the
system. Meaning that the effective sizes of the system under study are limited by our
computational resources. Therefore, ab-initio methods can only study materials with
limited size unit cells, for larger cells only much less precise methods are available.
Making the study of defects or doped materials a challenge. Then, if the system under
investigation posses a strong electron-phonon coupling or electron correlation the ap-
proximations used fails to predicting the right material behaviors. Bringing to the need
of using heavier numerical approaches based on more complex theories that allows for
better approximations. Methods such as coupled cluster [29] or GW method [4] in order
to renormalize the energies and account for electron correlation, and density functional
perturbation theory (DFPT) [5] to take into consideration the electron-phonon interac-
tion. All powerful approaches that are able to give us precise predictions, but their cost
in computational time limits their applicability to small systems. Lastly, all plain first
principles methods previously described are constructed on top of the variational prin-
ciple, which can only describe the ground state of a system. Meaning that the results
are exact only at 0 K not giving information about the exited states appearing at higher
temperatures that becomes important in phase transitions phenomena.

All of those three weaknesses can be overcome by approaching the study of the many
body systems through the use of an effective Hamiltonian that explicitly quantize the
missing interactions in which we are interested. In particular, we want to focus our
attention on how we can account for the nuclei effects in the contest of electron-phonon
coupling and in the interaction with a two level system. Showing how we can use this
framework to evaluate correction to the energies arising from the coupling of electronic
and nuclei motion, and how partition function studies allows access to thermodynamics
properties at wanted temperatures.

1.2 Electron-Phonon coupling

It is known from experiments how atoms in solids positions themselves in order to gen-
erate highly symmetric configurations known as lattices. For these reason the nuclei are
usually thought as still in the positions that defines the lattice, {R0

α}, while the material’s
properties are described by the energy of the electronic motions. In reality thermal and
quantum effects makes so that the nuclei are never really still but constantly vibrates
respect to an equilibrium position given by R0. This implies that to describe the real
position of every nucleus, Rα, we need to decompose them into the equilibrium, lattice,
position and a displacement Qα. Where it’s important to notice how the collection of
R0 is a constant inside our system that describes the lattice, so that the real nuclear
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degrees of freedoms are now represented by Q. Now, we can insert such decomposition
inside the expression of the electron-nuclei interaction in Eq. (1.2) and expand through
Taylor expansion to obtain

Uen(R̂, r̂)=
∑
iα

V (R0
α+ Q̂α− r̂i)=

∑
iα

V (R0
α− r̂i)+

∑
iα

Q̂α ·∇V (R0
α− r̂i)+O (Q2). (1.6)

From Eq. (1.6) we can understand that neglecting the nuclear degrees of freedom in
the Born-Oppenheimer approximation is like counting only the zeroth order term of the
expansion. Even though such truncation can be ideal when small displacements are
present there exists situations where such interactions play an important role, such
as polarizable materials or superconductors. Therefore, we want to formally quantize
the nuclei motions in order to account for their effects on the electron properties by
introducing a second quantized effective Hamiltonian.

Quantization of nuclei motion
The motion of the nuclei can be described as a series of particles inside a binding po-
tential given by Ee(R), which has a minimum corresponding to the value of R0. That
allow us to write down the Hamiltonian describing the nuclei degrees of freedom in the
following way

Ĥn =
Nn∑
α

P̂α

2Mα
+Ee(R0 + Q̂). (1.7)

We can then expand the potential under study as a Taylor series around the minimum.
So that by truncating the expansion at the second order and by not counting the constant
energy shift given by zeroth order term we obtain

Ĥn ≈
Nn∑
α

P̂α

2M
+ 1

2

Nn∑
αβ

Q̂αΦαβQ̂β, Φαβ =
∂Ee

∂QαQβ

∣∣∣∣
Q=0

, (1.8)

where we have taken all nuclei masses to be the same for convenience. This is a system
of coupled Harmonic oscillators that can be recast in a decoupled one by switching the
problem to Fourier space. In particular, if we let the lattice be composed by N = NxNyNz
unit cells we can apply the Born-Von-Karman boundary conditions to obtain an infinite
lattice with periodicity of Ni cells in the i direction. Under such mathematical assump-
tions we can perform a discrete Fourier transform of the operators under study as

Q̂(R)= 1p
N

∑
k

Q̃(k)eik·R, Q̃(k)= 1p
N

∑
α

Q̂(Rα)e−ik·Rα , (1.9)

P̂(R)= 1p
N

∑
k

P̃(k)eik·R, P̃(k)= 1p
N

∑
α

P̂(Rα)e−ik·Rα . (1.10)

The values of k represents the N wave vectors of the first Brillouin zone. Since P̂ and Q̂
must be self-adjoint than the following identity holds

Q̃†(k)= Q̃(−k), P̃†(k)= P̃(−k). (1.11)

Also, using the translational invariance of the material’s lattice one can notice Φi j will
only depend on atomic distances, allowing for it to be written as function of type Φi j =
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Φ(Ri −R j). Inserting these new expressions for the operators in Eq. (1.8) bring us the
following form [16]

Ĥn =
∑
ν

∑
k

[∣∣P̃ν(k)
∣∣2

2M
+ M

2
ω2
ν(k)

∣∣Q̃ν(k)
∣∣2

]
. (1.12)

This is a sum of independent oscillators described by the mode of oscillation, given by k,
and for every polarization direction, indexed by ν. Also, every one of them has its own
characteristic frequency ων(k) that is obtained by solving the eigenvalue equation

Mων(k)2ϵν(k)=D(k)ϵν(k), D(k)=
∑
α

Φ(Rα)eik·Rα . (1.13)

D is also called dynamical matrix and ϵν(k) are its eigenvectors that defines the polar-
ization directions of the different modes, so that in this context ν tells which element of
the three space directions we are looking at.

From Eq. (1.12) it’s possible to see how the nuclei motion can be decoupled in a series
of collecting motions in k-space that contributes to the energy of the system with a form
that is analogous to the one of the simple Harmonic oscillator. These oscillations may
be treated as particles which can be created and destructed through the use of specific
operators taking the forms

b̂†
νk = ϵν(k) ·


− i√

2Mℏων(k)
P̃ν(k)+

√
ων(k)M

2ℏ
Q̃ν(k)


 , (1.14)

b̂νk = ϵν(k) ·

 i√

2Mℏων(k)
P̃ν(−k)+

√
ων(k)M

2ℏ
Q̃ν(−k)


 . (1.15)

It’s easy to see how such creation and destruction operators satisfy the commutation
relation

[
b̂νk, b̂†

ν′k′

]
= δνν′δkk′ meaning that atomic vibrations behaves like bosons that

are commonly called phonons. By inverting Eq. (1.14) and Eq. (1.15) we can rewrite
the Fourier components of momentum and displacement that can be inserted inside Eq.
(1.12) to obtain the main form used in literature for the Hamiltonian describing atomic
motion

Ĥn =
∑
ν

∑
k
ℏων(k)

(
b̂†
νkb̂νk+ 1

2

)
. (1.16)

A term like this will always appear when we are dealing with the study of lattice inter-
action describing its motion that will be coupled to other quantities through other terms
in the Hamiltonian, as we will see.

At last, it’s easy to see how the form of Q̃ and P̃ in terms of phononic creation and
destruction operators can be transformed back to obtain a form for the real space mo-
mentum and displacement operators

P̂(R)=− ip
N

∑
ν

∑
k

√
ℏMων(k)

2

[
b̂νk+ b̂†

ν−k

]
eik·R, (1.17)

Q̂(R)= 1p
N

∑
ν

∑
k

√
ℏ

2Mων(k)

[
b̂νk+ b̂†

ν−k

]
eik·R. (1.18)

This result will be of particular importance in the next description of the electron-
phonon coupling.
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Holstein Hamiltonian
To create a completely quantized model of the lattice we want to use expansion Eq. (1.6)
inside Eq. (1.1) and use the second quantization formalism to rewrite it with creation
and annihilation operators of a certain base within the Hilbert space. The best choice
that we can make is to use basis set of Block wave functions {|nk〉} that diagonalize the
electronic degrees of freedom

Ĥ e =
Ne∑
i

[
p̂i

2m
+

Nn∑
α

V (R0
α− r̂i)

]
+Uee(r̂)=

∑
nk
εn(k)ĉ†

nk ĉnk. (1.19)

With εn(k) the form of the n-th band dispersion that can be computed using ab-initio
methods, and the operators used are the creation and destruction ones for fermions.
This term can be added to Eq. (1.16) to account for both the independent motion of
nuclei and electrons. Nevertheless, to couple those degrees of freedom we shall need
to quantize also the first term of the electron-nuclei interaction using the same base,
having

Ĥ en =
∑
nn′

∑
kk′

〈
nk

∣∣∣∣
∑
α

Q̂α ·∇V (R0
α− r̂i)

∣∣∣∣n′k′
〉

ĉ†
nk ĉnk. (1.20)

To compute the matrix elements of such operator we take advantage of the periodicity
of the potential V (R0

α− r̂) inside Born-Von-Karman boundary conditions so that we can
write

V (R0
α− r̂)=

∑
q

Ṽ (q)eiq·(R0
α−r̂), ∇V (R0

α− r̂)=−i
∑
q

qṼ (q)eiq·(R0
α−r̂). (1.21)

By inserting it inside the matrix element along with the known expression for the
phonon displacement in Eq. (1.18) we can obtain, after some manipulations, the fol-
lowing result

〈
nk

∣∣· · ·
∣∣n′k′〉=

∑
Gq

∑
ν

−i(q+G) ·ϵν(q)Ṽ (q+G)

√
Nℏ

2Mων(q)

(
b̂νq+ b̂†

ν−q

)
×

× 1
VUC

∫

UC
drunk′+q+G(r)un′k′(r)δk,k′+q+G.

Where unk is the periodic part of the Block wave function, and G the reciprocal lattice
vectors. If we insert the result inside Eq. (1.20) and add the electronic and phononic
part the following general model Hamiltonian is obtained

Ĥ =
∑
nk
εn(k)ĉ†

nk ĉnk+
∑
ν

∑
k
ℏων(k)b̂†

νkb̂νk+
∑

nn′ν

∑
kqG

Mnn′ν
kG (q)ĉ†

nk+q+G ĉn′k

(
b̂νq+ b̂†

ν−q

)

(1.22)

The zero energy point given by the 1/2 was omitted in the expression and the interaction
strength of the electron-phonon coupling has been collected inside the vertex Mnn′ν

kG

Mnn′ν
kG (q)=−i

√
Nℏ

2Mων(q)
(q+G) ·ϵν(q)

Ṽ (q+G)
VUC

∫

UC
drunk+q+G(r)un′k(r). (1.23)
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In this way we have obtained a general model that is able to evaluate how the motion of
the nuclei influences the electronic properties inside a lattice.

The final form obtained in Eq. (1.22) is too general and complicated, and to perform
meaningful computations with it we shall make some assumptions on the specific sys-
tem under study. In particular, following the reasoning of Holstein in its seminal papers
[21, 22] we are going to make the following assumptions:

Dispersionless phonons We assume that only optical phonons give a contribution to elec-
tronic properties allowing to drop the ν subscript and use a Einstein model for the
dispersion giving ω(q)=Ω;

Single band The Vertex becomes small if two different bands n ̸= n′ are involved, mean-
ing that we can study the effects on one band at a time without counting the others
and dropping the n index;

Normal processes For similar reasons to the single band we are going to count only the
processes with G= 0;

Constant coupling The interaction between electrons and phonons is taken to be inde-
pendent of the phonon’s momentum so that one can simplify Mk(q)= g.

Inserting all of these considerations inside the Hamiltonian leave us with a form that is
known in literature as the Holstein Hamiltonian

Ĥ =
∑
k
ε(k)ĉ†

k ĉk+Ω
∑
q

b̂†
qb̂q+

gp
N

∑
kq

ĉ†
k+q ĉk

(
b̂q+ b̂†

−q

)
. (1.24)

As was shown by its developer, this model is able to describe the behavior of small
polarons quasiparticles. Giving information on their binding energy, εp(k), and effective
masses, mp(k). Meaning that from Eq. (1.24) we can estimate corrections εp(k) that can
be added to the ab-initio bands ε(k) in order to account for the electron-phonon coupling.
Such renormalization will modify the bands bending that will change the effective mass
of the electrons influencing the conduction properties of the material.

Inside this thesis work we are interested in a further simplified version of the model
that can be used as a test ground for new computational methods. We will so assume
that a single energy level ε is present, setting the system in the atomic limit

Ĥ = εĉ† ĉ+Ω
∑
q

b̂†
qb̂q+

gp
N

∑
q

ĉ† ĉ
(
b̂q+ b̂†

−q

)
. (1.25)

This form can be solved exactly by mean of the Lang-Firsov transformation [30] which
bring to the following diagonalized form [35]

Ĥ ′ = (
ε+εp

)
ĉ′† ĉ′+Ω

∑
q

b̂†
qb̂q, εp =− g2

Ω
. (1.26)

An exact correction for the energy level taken into account is obtained and can be used
as a numerical check to see if the evaluation obtained from the algorithm under study
is converging to the right value.
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1.3 Dissipative two level systems

Dynamical properties are often the ones that plays the most important roles when it
comes to applications of material physics. Nuclear magnetic resonance (NMR), inelas-
tic electron scattering or transport properties investigations, are all examples of tech-
niques that exploits the response over time, γ(t), of the system to an external force, ξ(t),
to control its dynamic. Theoretically, we can drive such experiments using models able
to describe γ(t) in terms of the time correlation function of the response. The way in
which this is usually done is by simplifying the complex many-body problem focussing
the attention on the few relevant dynamical variables that interacts with the rest of
the system. In NMR, for example, we can focus on the nuclei spins and how they dis-
tribute in time while they interact with each other and the phonons and electrons of
the material. Knowledge on this process can be retrieved using results from statistical
mechanics

P(t)=〈σ̂z(t)〉 = 1
Z

tr
[
σ̂ze−βĤ

]
, Z = tr

[
e−βĤ

]
, (1.27)

where Ĥ is the Hamiltonian describing the system, P(t) represent the probability of
a nucleus to be in state up at time t, and Z is the partition function of the system.
This type of dynamical studies are really challenging for first principles methods, if not
impossible, since they often cope with large systems or with temperature dependencies
that are complex to capture with ground state theories. Therefore, we want to introduce
a category of model Hamiltonians that are able to study such behaviors by thinking
at the interactions as a dissipative contribution to the energy of a reduced system. In
particular, focussing on a material perspective we will see how to introduce dissipation
as a phonon bath and how such environment can couple to a general two level system
(TLS).

Phonic bath with linear coupling
Let’s consider a system with few degrees of freedom coupled with a huge environment
composed of a series of harmonic oscillators. We can decompose the Hamiltonian for the
complete system in the sum of three contributions [52]

Ĥ = ĤS +ĤR +Ĥ I . (1.28)

Here ĤS represent the contribution given by the selected degrees of freedom, that we
assume being the ones of a particle with mass M in a potential V (q), and ĤR the Har-
monic reservoir

ĤS = p̂2

2M
+V (q̂), ĤR =

∑
α

(
p̂2
α

2mα
+ 1

2
mαω

2
α x̂2

α

)
. (1.29)

The choice of a particle in a potential was taken only for convenience, we will see how the
description of the interaction part Ĥ I will remain applicable to other kind of systems.
In fact, to write an expression for it, we only need to assume that the degrees of freedom
we are looking at couple with each single oscillator with an intensity proportional to the
inverse of the volume of the bath. Therefore, the coupling to an individual bath mode
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is weak and the strength of the interaction is built up by the large number of modes
that are present. In this assumption, it’s reasonable to assume that the coupling can be
described by a linear function of the type

Ĥ I =−
∑
α

Fα(q̂)x̂α+∆V (q̂), ∆V (q)=
∑
α

F2
α(q)

2mαω
2
α

. (1.30)

The potential variation ∆V (q) is present in order to avoid unwanted renormalization of
the potential V (q) that will bring to a modification of the physics, while the aim of this
interaction is only to add dissipation. Also, usually a further assumption is made to give
a simple expression to Fα(q) as linear functions of type Fα(q)= cαq, which is typical for
state independent dissipation. Then, by inserting it inside Eq. (1.30) the general form
for the global Hamiltonian is obtained

Ĥ = p̂2

2M
+V (q̂)+ 1

2

∑
α

[
p̂2
α

2mα
+mαω

2
α

(
x̂α−

cα
mαω

2
α

q̂α
)2]

. (1.31)

From this expression, is possible to see how a damped dynamic for the expectation val-
ues of the system q can be obtained in the form of a generalized Langevin equation [52]

Mq̈+V ′(q)+M
∫ t

0
dt′γ(t− t′)q̇(t′)= ξ(t). (1.32)

Where the dissipative effects generated by the coupling with the environment are en-
capsulated inside the memory friction coefficient γ and a random force ξ

γ(t)= Θ(t)
M

∑
α

c2
α

mαω
2
α

cos(ωαt), ξ(t)=
∑
α

cα
(
x0
α cos(ωαt)+ p0

α

mαωα
sin(ωαt)

)
. (1.33)

These two quantities encapsulate all the effects of the phononic bath on the system un-
der study by effectively dissipate its energy over time, and inducing state decoherence.

Usually, instead on focussing on the forms of γ and ξ to describe the environment a
simpler function is defined that can infer both called spectral density

J(ω)= π

2

∑
α

c2
α

mαωα
δ(ω−ωα). (1.34)

This form is chosen in order to be able to substitute it inside the expression of the friction
coefficient directly, and can be also showed that determines the correlation of the random
force 〈ξ(t)ξ(0)〉 = X (t). Assuming that ξ obeys a Gaussian statistics we can obtain all that
we need to know on the dynamic simply from knowing J

γ(t)= Θ(t)
M

2
π

∫ ∞

0
dω

J(ω)
ω

cos(ωt), X (t)= ℏ
π

∫ ∞

0
dωJ(ω)

[
e−iωt(1−n(ω))+ eiωtn(ω)

]
,

(1.35)

with n(ω) being the Bose-Einstein occupation of frequency ω. Eq. (1.35) narrows down
the information needed to describe the environment effects to the spectral density alone.
Thus, we can see how a better description of the function can be done, since the δ-peak
of Eq. (1.34) is a result of a discrete number of degrees of freedom inside the reservoir.
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In a realistic situation, like the one of a phononic lattice, the sum can be extended to an
integration and J will become a smooth function describing the coupling strength with
every oscillatory mode. To describe it a separation is usually made between low and
high frequency contribution using a cutoff function f (ω/ωc) as follows

Jl f (ω)= J(ω) f (ω/ωc), Jhf (ω)= J(ω)[1− f (ω/ωc)], (1.36)

so that J(ω) can be recovered by summing the two. The cutoff frequency ωc is usually
selected in the range of the Drude, Debye or Fermi frequency, so that we can focus on
the low-frequency regime being the one physically relevant. In fact, taking ω ≪ ωc
we can see how Jhf can be accounted through a renormalization of the mass ∆M ∝∫

dωJhf (ω)/ω3. A contribution that is assumed to still be negligible since in physical
systems J(ω) usually decays quickly for large ω. The dynamic is so dictated by Jl f
which is physically reasonable to assume as a power law of the type

Jl f (ω)=αω1−s
c ωsΘ

(
1− ω

ωc

)
, (1.37)

where α and s are parameters and the cutoff function f has been taken as a step one.
Eq. (1.37) is the standard form mostly used to describe various dissipation phenomena
in solid state and different dissipation regimes are obtained based on the value of s. In
particular, the most interesting case is for s = 1 called Ohmic regime since generates
a damping inside the system analogous to the one of the Drude model. From it, the
regimes are divided in super-Ohmic, s > 1, and sub-Ohmic, s ∈ (0,1), but the s = 1 case
remains almost ubiquitously met in real systems at low temperature. Thus, leaving us
with a really simple description of how to model the environment based on mainly two
real parameters ωc and α.

Spin-Boson model
Many physical and chemical systems can be described using a set of coordinates able
to map the problem into one with a double-well potential possessing two nearly degen-
erate minima. The motion of defect in crystalline solids, tunneling of light particles in
metals [34] and anomalous conductance in mesoscopic wires [8] are all possible exam-
ples. Such systems become especially interesting reaching low temperatures, when the
thermal fluctuations are much lower than the energy spacing of the low-lying states.
In that regime only the ground states of the two wells are involved in the physics of
the phenomena, leaving a simple two-dimensional Hilbert space that can act as a qubit
described by the well known two level system (TLS)

ĤTLS = ϵ

2
σ̂z +

∆

2
σ̂x. (1.38)

Where the σ̂i are the Pauli operators, ϵ gives the energy difference between the two
ground state and ∆ is the tunneling matrix element that can be related to the barrier
height V0 showed in Fig. (1.1). The popularity of such models has risen in the recent
years thanks to the race in improving quantum computing technologies bringing a lot of
effort in the search for new systems that can act as qubits. Still, the case described by

14



Two level system

q0/2−q0/2

Environment

Figure 1.1: Graphical description of the Spin-Boson model as a two level system that can interact with
the environment modelled as a phononic bath. Energy exchange by the two systems bring to excitations
in the environment and state flips in the two level state.

Eq. (1.38) is ideal, allowing to use external fields to bring the system into precise super-
positions of the ground states, |±〉, without decoherence. In fact, what really happens
is that the system is coupled with the environment surrounding it, giving rise to ran-
dom interactions that are difficult to control. In most experimental cases this coupling
can still be inserted inside the model using the approach described in Sec. (1.3.1) and
account for a linear interaction term in the coordinates of a phononic bath

Ĥ I = σ̂zP, P= q0

2

∑
α

cα x̂α. (1.39)

One might argue that we should consider the possibility of coupling with σ̂x and σ̂y op-
erators. Even if there are situations, like NMR, where such contributions are important
their influence on the system’s properties is still much lower compared to Eq. (1.39).
This is due to both the x and y Pauli matrices possessing only non-diagonal elements
in the σ̂z representation. Thus, any interaction proportional to them must also be pro-
portional to the overlap of |+〉 with |−〉 in coordinate space, i. e., giving a contribution of
order ∆ assumed to be an exponentially small energy [31]. Therefore, we can insert the
environment effects inside Eq. (1.38) obtaining a form that has come to be known as the
spin-boson model

ĤSB = ϵ

2
σ̂z +

∆

2
σ̂x +

1
2

∑
α

(
p̂α
mα

+mαω
2
α x̂2

α+ q0σ̂zcα x̂α
)
. (1.40)

In this way, by making the right choice for the spectral function J(ω), we can predict the
realistic behavior of qubit-like systems.

Looking at ĤSB from a condensed matter point of view allows us to reconduce p̂α
and x̂α to the same P̃(k) and Q̃(k) described in Sec. (1.2.1). Thus, by mapping α to a
one dimensional momentum variable q we can rewrite the Hamiltonian using bosonic
creation and destruction operators instead of the momentum and displacement ones.
Therefore, by Fourier transforming Eq. (1.17) and Eq. (1.18) in a 1D case a form for p̂q
and x̂q is obtained that transform Eq. (1.40) into

ĤSB = ϵ

2
σ̂z +

∆

2
σ̂x + σ̂z

∑
q
λq

(
b̂q + b̂†

q

)
+

∑
q
ωq b̂†

q b̂q. (1.41)
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This is the second quantized form of the spin-boson model, where the environment in-
teraction is encoded inside the spectral function taking the form

J(ω)=
∑
q
λ2

qδ(ω−ωq)=
q2

0

2

∑
q

c2
q

mqωq
δ(ω−ωq). (1.42)

The above expression being analogous to the one seen in Eq. (1.34) we can use the
same considerations as before in order to describe it by using the low-frequency regime
only. Phonon dispersion inside such limit can be also simply described by a linear model
approximating the usual acoustic phonon band, resulting in

J(q)= α

2
ωcqsΘ(1− q), ωq =ωcq. (1.43)

By assuming to be in the Ohmic regime we will have that the dynamic of the whole model
is defined by simply three parameters: the tunneling matrix ∆, the coupling strength α

and the cutoff frequency ωc.

1.4 Solving many-body problems with time evolution

All models presented so far exhibit a form that can be decomposed in an exactly solvable
part Ĥ0 and a perturbation V̂ . To obtain results from such Hamiltonians one usually
starts from the known results from the exactly solvable part and gradually insert the
troublesome perturbation. In practice this is done by rewriting the Hamiltonian in a
form where the intensity of V̂ can be controlled, like

Ĥη = Ĥ0 + e−η|t|V̂ , η> 0. (1.44)

In this way for t →±∞ the system can be described by the states of Ĥ0, while as t → 0
is approached they will be modified from the perturbation reaching the solution of the
interacting system. To take advantage of that we need to describe how quantum states
evolves in time under the influence of Eq. (1.44) by approaching the study of the time-
dependent SE

iℏ
∂
∣∣ψη(t)

〉

∂t
= Ĥη

∣∣ψη(t)
〉

. (1.45)

Therefore, knowing how the states
∣∣ψη(t)

〉
evolves we can take the states of Ĥ0, and

make them evolve from t =∞ to 0 to transform them in the interaction ones. For these
reasons we are going to tackle the time evolution problem within quantum mechanics
for a general interaction Hamiltonian. Ultimately, we are interested to see how time
evolution would bring insight on the energy spectrum of the systems and on the ther-
modynamical properties through the formulation of the Feynman diagrams. Also, from
now on all our treatment will assume to use the natural units ℏ = 1 since it will make
our equations much lighter.
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Interaction picture

Consider an Hamiltonian composed simply by Ĥ0 and a time dependent perturbation
V̂ (t), our goal is to find a way to formally describe the evolution of a state

∣∣ψ〉
described

by the following equation

Ĥ (t)= Ĥ0 + V̂ (t), i
∂
∣∣ψ(t)

〉

∂t
= Ĥ (t)

∣∣ψ(t)
〉

. (1.46)

It is known that such mathematical problem admits a solution in the form of a operator
Û (t, t′), which allows to describe the time evolution acting on the states

Û (t, t′)
∣∣ψ(t′)

〉=
∣∣ψ(t)

〉
. (1.47)

Using Eq. (1.46) can be shown that such operator exists and posses the following prop-
erties

Û (t, t)= 1̂, Û (t, t′′)Û (t′′, t′)= Û (t, t′), Û †(t, t′)= Û (t′, t)= Û −1(t, t′). (1.48)

Along with that, by inserting Eq. (1.47) inside Eq. (1.46), a Schrödinger-like equation
defining the form of the time evolution operator can be obtained as

i
∂Û (t, t′)

∂t
= Ĥ (t)Û (t, t′). (1.49)

This operator partial differential equation is a complex task to tackle analytically, but
simplifications can be made in order to reduce its complexity using pictures. The idea is
analogous to change the system of reference in classical dynamics, so that we can take
a general unitary transformation Û to redefine the state

∣∣ψ(t)
〉

and operators Ô as if we
were rotating the system of reference

∣∣ψ(t)
〉

U = Û
∣∣ψ(t)

〉
, ÔU = ÛÔÛ†. (1.50)

The new states will be associated to a modified SE describing the time evolution that de-
pends on the form of Û , so that by making the right transformation large simplifications
can be achieved.

Different kind of standard pictures are used inside different problems of quantum
mechanics: the trivial case given by Eq. (1.46) is called Schrödinger picture, the use of
Û = exp

(
iĤ t

)
describe instead a picture where Û (t, t′) = 1̂ having states frozen in time

but evolving observable, called Heisenberg picture. In our case, the evolution will be
formulated in the interaction picture defined by Û = exp

(
iĤ0t

)
so that we have

∣∣ψ(t)
〉

I = eiĤ0t ∣∣ψ(t)
〉

, ÔI(t)= eiĤ0tÔe−iĤ0t. (1.51)

To see how time evolution is affected by such choice we take the derivative of the new
state

i
∂
∣∣ψ(t)

〉
I

∂t
=−Ĥ0

∣∣ψ(t)
〉

I + eiĤ0t i
∂
∣∣ψ(t)

〉

∂t
= eiĤ0t

(
Ĥ −Ĥ0

)∣∣ψ(t)
〉= V̂I(t)

∣∣ψ(t)
〉

I . (1.52)
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This shows how the evolution is dictated only by the interactive part of the Hamiltonian.
A variation that is also seen inside the time evolution operator, whose form can be easily
seen to change into

Û I(t, t′)= eiĤ0tÛ (t, t′)e−iĤ0t′ , i
∂Û I(t, t′)

∂t
= V̂I(t)Û I(t, t′), (1.53)

while the properties inside Eq. (1.48) remains intact. A general solution to this equation
can now be found by simply integrating directly the expression having

Û I(t, t′)= Û I(t′, t′)− i
∫ t

t′
dt1V̂I(t1)Û I(t1, t′)= 1̂− i

∫ t

t′
dt1V̂I(t1)Û I(t1, t′). (1.54)

This integral equation cannot be solved analytically, but can be seen how Eq. (1.54) can
be inserted into itself recursively to obtain an expansion for the time evolution operator

Û I(t, t′)=
∞∑

n=0
(−i)n

∫ t

t′
dt1

∫ t1

t′
dt2· · ·

∫ tn−1

t′
dtnV̂I(t1) · · · V̂I(tn). (1.55)

Such form for Û I is known as Dyson expansion and represent a general solution that
can describe time evolution in every interacting systems.

For our purposes is better to rewrite Eq. (1.55) in a more compact form. To do that,
we introduce the time-ordering operator acting on time-dependent operator as follows

T̂
[
V̂I(t1)V̂I(t2) · · · V̂I(tn)

]= V̂I(t2)V̂I(t1) · · · V̂I(tk), t2 < t1 < ·· · < tk. (1.56)

Having that we can start the rewriting of the expansion taking the term of order two
and seeing how we can add it to its permutation using the Heaviside step function Θ as
∫ t

t′
dt1

∫ t1

t′
dt2V̂I(t1)V̂I(t2)= 1

2

∫ t

t′
dt1

∫ t

t′
dt2

[
Θ(t1 − t2)V̂I(t1)V̂I(t2)+Θ(t2 − t1)V̂I(t2)V̂I(t1)

]

= 1
2

∫ t

t′
dt1

∫ t

t′
dt2T̂

[
V̂I(t1)V̂I(t2)

]
.

Where it was seen how the form with the step functions acted as the T̂ operator. The
same form can be generalized to every order inside the Dyson expansion by accounting
for all n! permutations of the operators in that order. Leading to the most known time-
ordered form of the Dyson expansion

Û I(t, t′)=
∞∑

n=0

(−i)n

n!

∫ t

t′
dt1

∫ t

t′
dt2· · ·

∫ t

t′
dtnT̂

[
V̂I(t1) · · · V̂I(tn)

]
. (1.57)

In the next sessions we will be using this form in order to study the time evolution of
Eq. (1.44) and describe the effects of the interaction on the unperturbed system. Also,
we will always work with time independent Hamitlonians inside the interaction picture.
Therefore, we will assume that operators that shows time dependence are written in the
interaction picture without the need of the subscript.
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Interacting Green’s functions
Taking into consideration a general interaction Hamiltonian we can always cast it in a
form where the coupling is switched on in time like Eq. (1.44). Its time evolution can
then be described by the use of Eq. (1.57) allowing us to write the interacting eigenstates
|Ψi〉 from the non-interacting ones

∣∣ψi
〉

as

|Ψi〉 = lim
η→0

Ûη(0,−∞)
∣∣ψi

〉
, Ûη(0,−∞)=

∞∑
n=0

(−i)n

n!

∫ 0

−∞
dt1 . . .dtne−η

∑
i |ti |T̂

[
V̂ (t1) · · ·] .

(1.58)

Such approach is also called adiabatic switching on and can be shown to be an exact
approach in a rigorous way thanks to the Gell-Mann-Low theorem [14]. In particular,
the theorem states that an eigenstate of the interacting Hamiltonian can be obtained
from

∣∣ψi
〉

in the following form

∣∣Ψ j
〉= |Φi〉p〈Φi|Φi〉

, |Φi〉 = lim
η→0

Ûη(0,−∞)
∣∣ψi

〉
√〈

ψi
∣∣Ûη(0,−∞)

∣∣ψi
〉 . (1.59)

So that
∣∣Ψ j

〉
is the normalized eigenstate related to the j-th energy level inside the

interaction spectra. Is important to notice that the state j is generated using state i of
the unperturbed spectra. That is not an error but an important, if not the only, limitation
of this approach. We cannot know in advance if the perturbation will generate an energy
cross-over, as described in Fig. (1.2), changing the orders of the states in the spectrum.
In our case we are going to assume to work with simple perturbations, but that is not
always true like in the case of superconductivity.

Since, now, we have access to the eigenstates of the complete Ĥ the goal becomes to
extract information about the spectra and system properties. The best way to achieve
that is usually through the study of an object called Green function (GF) or propagator

Gk(t′− t)=−i
〈
T̂

[
ĉk(t′)ĉ†

k(t)
]〉

, (1.60)

where 〈·〉 represents the thermal average. For sake of simplicity we will pursue a de-
scription of such object in the limit of T → 0K, but all the arguments can be general-
ized to finite temperatures. In the zero temperature limit we can make the association
〈·〉 = 〈Ψ0|·|Ψ0〉. Giving Gk(t′−t) to be proportional to the probability amplitude of adding
a particle in a state k inside the ground state at time t and removing it from the same
state at a time t′. By using Eq. (1.59) we can obtain a general form for the electronic
Green function given by

Gk(t)=−i lim
η→0

〈
ψ0

∣∣∣T̂
[
ĉk(t)ĉ†

k(0)Ûη(∞,−∞)
]∣∣∣ψ0

〉

〈
ψ0

∣∣Ûη(∞,−∞)
∣∣ψ0

〉 . (1.61)

Both the numerator and the denominator, called vacuum polarization S, are further
expandable using Eq. (1.58) leading to

Gk(t)=− i
S

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1· · ·

∫ ∞

−∞
dtn

〈
ψ0

∣∣∣T̂
[
ĉk(t)ĉ†

k(0)V̂ (t1) . . . V̂ (tn)
]∣∣∣ψ0

〉
(1.62)
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Figure 1.2: Example of adiabatic switching on applied to a general spectrum. In the left figure one can
see how the levels remain in the same order with the interaction changing their energies, but on the right
the ground state of the unperturbed Hamiltonian is brought to the first exited state of the perturbed one
creating a cross-over.

The limit for η→ 0 has already been taken into account by not counting the exponents
inside the expansion, and an analogous form is contained inside S. In this form the term
inside the braket is not manageable, however a decomposition of it is always possible
using the Wick’s theorem [53]. To understand it we are going to take into consideration
the electron-phonon Hamiltonian in Eq. (1.24) so that the expansion will be constructed
by terms of the type

〈
ψ0

∣∣∣T̂
[
ĉk(t)ĉ†

k(0)ĉ†
k1+q1

(t1)ĉk1(t1)B̂q1(t1) . . .
]∣∣∣ψ0

〉
, B̂q(t)= b̂q(t)+ b̂†

q(t). (1.63)

What the Whick’s theorem allows us to do is to rewrite it as a sum of all the fully
contracted terms. Where a contraction of two operators is defined as T̂ [ÂB̂]− N̂ [ÂB̂],
with N̂ the normal-ordered operator that simply swaps positions to have the creator
ones on the left. For example, the first order term gets decomposed to

(〈
ψ0

∣∣T̂
[
ĉk(t)ĉ†

k(0)
]∣∣ψ0

〉 〈
ψ0

∣∣T̂
[
ĉ†

k1+q1
(t1)ĉk1(t1)

]∣∣ψ0
〉+

〈
ψ0

∣∣T̂
[
ĉk1(t1)ĉ†

k(0)
]∣∣ψ0

〉 〈
ψ0

∣∣T̂
[
ĉk(t)ĉ†

k1+q1
(t1)

]∣∣ψ0
〉) 〈

ψ0
∣∣B̂q1(t1)

∣∣ψ0
〉

.

Two main features can be seen for this result. The first is that by taking into ac-
count that the non-interacting phononic ground state is the vacuum, |0〉, follows that
〈0|B̂q|0〉 = 0. This means that no first order terms are present in the expansion, a fact
that can be generalized by seeing how the same form is obtained for every odd order.
This brings to the general result that inside the expansion of the electron-phonon
green function no odd order terms are present. The second point is that now all
the expressions only contains Green functions terms related to the unperturbed part of
the system, that we can compute. In fact, it’s easy to see how inside the interaction
picture the Heisenberg equation allows us to find

i
∂ĉk(t)
∂t

=
[
Ĥ0, ĉk

]
= εk ĉk, ĉk(t)= ĉke−iεkt, (1.64)
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the same holds also for b̂q with ωq instead of εk. Plugging them inside the definition of
the propagator we will obtain
〈
ψ0

∣∣T̂
[
ĉ†

k′(t)ĉk(t)
]∣∣ψ0

〉= δk′knk = δk′kG0
k(0+), (1.65)

〈
ψ0

∣∣T̂
[
ĉk′(t′)ĉ†

k(t)
]∣∣ψ0

〉= δk′kΘ(t′− t)e−iεk(t′−t) = δk′kG0
k(t), (1.66)

〈
ψ0

∣∣T̂
[
B̂q′(t′)B̂†

q(t)
]∣∣ψ0

〉= δq′q

(
Θ(t′− t)e−iωq(t′−t) +Θ(t− t′)eiωq(t′−t)

)
= δq′qD0

q(t). (1.67)

These objects are known as non-interacting GF, and they are the building blocks on
which the full interacting Gk is built, giving a complete analytical form to the expansion.

At this point one may start to wonder why going through all this trouble in order to
obtain the full electronic propagator of the system. In that regard, we shall now see how
the ground state properties can be inferred from Gk(t) in a really easy way. To do that
the imaginary-time GF is usually studied by performing a transformation that takes the
name of Wick’s rotation and maps it → τ to have

Gk(τ)=−〈Ψ0|T̂
[
ĉk(τ)ĉ†

k(0)
]
|Ψ0〉 . (1.68)

Moving from the real to the imaginary axis highly simplifies our studies since now all
the oscillating exponential will become simple decaying ones, for example

G0
k(τ)=−Θ(τ)e−εkτ, D0

q(τ)=−Θ(τ)e−ωqτ+Θ(−τ)eωqτ. (1.69)

Now, let {|Ψk〉} be the set of interacting eigenstates having the properties

Ĥ |Ψk〉 = εk |Ψk〉 , 1̂=
∑
k
|Ψk〉〈Ψk| . (1.70)

We can insert them inside the definition in Eq. (1.68) to obtain the result

Gk(τ)∝ 〈Ψ0|ĉk(τ)1̂ĉ†
k(0)|Ψ0〉 =

∑
k

〈Ψ0|ĉk(τ)|Ψk〉 〈Ψk|ĉ†
k(t)|Ψ0〉 , (1.71)

which can be easily written in a more compact form by expliciting the time dependence
of the operators. In particular, by recalling Eq. (1.51) and using the full Ĥ instead of
Ĥ0 to place us in the Heisenberg picture we can simply obtain

Gk(τ)=
∑
k

eε0τe−εkτ 〈Ψ0|ĉk(0)|Ψk〉 〈Ψk|ĉ†
k(t)|Ψ0〉 =

∑
k

e−εkτ
∣∣∣〈Ψk|ĉ†

k|Ψ0〉
∣∣∣
2
. (1.72)

Where ε0 was set to 0 since |Ψ0〉 is the vacuum state of the interacting system, which is
true in the low density limit that assumes the electron inserted as the only one present.
The GF has transformed into a sum of decaying terms leaded by the one possessing the
smallest εk corresponding also to the ground state for the electron inserted. In this way
the high-τ behavior of Gk(τ) will give us information about such properties since it’s
form becomes

Gk(τ)−−−→
τ→∞ Z0(k)e−ε

0
kτ, Z(k)=

∣∣∣〈Ψk|ĉ†
k|Ψ0〉

∣∣∣
2
. (1.73)

The quantity Z(k) is also called quasiparticle weight and describes the overlap between
the free particle state ĉ†

k |Ψ0〉 and the interacting state |Ψk〉. Basically tells us how close
to a quasi particle the inserted electron behaves. Therefore, we can now understand how
this can tell us a lot in cases like the Holstein Hamiltonian where the interacting ground
state is a polaron one. This method could retrieve both the polaronic character of the
electron inside the system Z0(k) and the binding energy of the polaron ε0(k) completely
describing the quasiparticle properties.
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Feynman diagrams
Feynman introduced the idea of using the GF interpretation as probability amplitude
of time propagation of a particle in state k to visualize them and give a graphical form
to mathematical expressions [13]. The idea was to create a set of rules working as a
vocabulary to translate from drawings to analytical form and vice versa, that in our
case would look like the followings:

1 The unperturbed electronic GF, G0
k(t′− t), becomes a solid line with an arrow that

goes from t′ to t and a k on top;

2 Phonons propagators, D0
q(t′ − t), are drawn as wiggly lines with a q on top, no

arrow is used in this case since can be seen how

D0
q(t′− t)= D0

−q(t− t′),

and since ωq = ω−q such propagator is symmetric in time, the direction in which
the phonon is propagating does not matter;

3 Every intersection between an electron and phonon line generates an interaction
vertex which correspond to a factor Mq inside the equation;

4 The factor nk is thought as a Green’s function where an electron propagates re-
turning to the same point in time and so forming a solid loop.

Starting from these simple concepts we want to make some examples by drawing some
second order terms of the electron-phonon GF. Thus, by applying the Wick’s theorem one
finds out that the following term is present

∑
q

∣∣Mq
∣∣2D0

q(t2 − t1)G0
k(t1)G0

k−q(t2 − t1)G0
k(t− t2) =

0 t1 t2 t
k k−q k

q

(1.74)

also called sunset diagram. It’s the diagram with the largest contribution at second
order and the only one that gives a contribution at all in the low density limit. In order
to see that we can have a look at the expression of another important diagram called
tadpole diagram taking the form

∑
k1

∣∣Mq→0
∣∣2D0

q→0(t2 − t1)(−nk1)G0
k(t2)G0

k(t− t2) =
0 t1 t2 t

k k

k1 q→
0 (1.75)

This is the second most important diagram and is proportional to the occupation of the
state k1. Nevertheless, by working in a situation where the non-interacting ground
state is the vacuum we have zero occupation in every level, so that no contribution
arise from diagrams with fermionic loops. This condition takes the name of low
density limit and will be our working regime. In this way, we even out a large portion of
diagrams in our computations, but still an even larger simplification needs to be done to
effectively make Eq. (1.74) the only contribution at n = 2. To understand this we can look
at Fig. (1.3) where the first diagrams in the expansion of Eq. (1.62) are drawn divided
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+ . . .
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Legend
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=
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Figure 1.3: Diagrammatic expansions of the Green’s function contribution at the numerator, denoted
as Gk, and denominator, the vacuum polarization S. A legend to the right is present to read the diagrams,
remembering that every vertex bring a factor Mq to the equation.

into numerator and denominator parts. In the former a second order term composed by
two separate parts can be noted, so that we want to focus a moment on it reporting here
its translation into equations

−
∑

k1,q1

∣∣Mq
∣∣2D0

q1
(t1 − t2)G0

k1+q1
(t1 − t2)G0

k1
(t2 − t1)G0

k(t)= .

0 tk

t1 t2

k1

k1 +q1

q1

(1.76)

By looking at the expression obtained it is possible to notice how the elements composing
it can be separated in two groups differentiated by the ones depending on the loop’s
variables and not. A distinction that allow us to factorize Eq. (1.76) into the following
product [

−
∑

k1,q1

∣∣Mq
∣∣2D0

q1
(t1 − t2)G0

k1+q1
(t1 − t2)G0

k1
(t2 − t1)

]
× [

G0
k(t)

]
, (1.77)

which is composed by two equations that can be easily translated back into diagram
forms. In fact, by doing that one can see how the expression inside the left bracket of
Eq. (1.77) describes a diagram composed by only the loop part of Eq. (1.76), as the one
shown in the expansion of the vacuum polarization in Fig. (1.3). The right bracket,
instead, can be seen to contain the simple unperturbed Green’s function diagram, the
first element of the Gk expansion. By noticing that we can transfer the factorization
of the expression directly in terms of diagrams, having that is possible to rewrite the
initial separated diagram as the following product of simple ones

.=

0 tk

t1 t2

k1

k1 +q1

q1

0 t
k × t1 t2

k1

k1 +q1

q1 (1.78)

Such diagrams are called disconnected and can be always factorized in the product of
a connected one and another diagram present in the expansion of S, as it’s happened
in this case. By accounting for the factorization of all possible disconnected diagrams
it’s possible to demonstrate that every connected diagram has a disconnected form with
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every element of the vacuum polarization. Bringing to the complete factorization of the
expansion also called linked cluster theorem

Gk(t)=−i
S
S

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1· · ·

∫ ∞

−∞
dtn

〈
ψ0

∣∣∣T̂
[
ĉk(t)ĉ†

k(0)V̂ (t1) . . . V̂ (tn)
]∣∣∣ψ0

〉
C

. (1.79)

This tells us how only connected diagrams contribute in the expansion so that the sunset
diagram not only becomes the only contribution at second order, but the whole expansion
is composed by repetitions of it

Gk(t)=
0 t

k +

0 t1 t2 t
k k−q k

q

+

0 t1 t2 t3 t4 t
k k

q1 q2

+ . . .
(1.80)

This is a much simpler form that allow us to study systems with generic electron-phonon
interactions, and was obtained thanks to the mathematical insight given by the dia-
grammatic representation.

Non-zero temperature
The entire treatment revolved around zero-temperature Green’s functions, but often
we are interested in the thermodynamic properties of the system. This can be easily
addressed through some simple generalizations of what was stated so far, extending the
use of diagrams also to thermal averages. To see that let Ô be an observable quantity
of the interacting system under study, we can so write its thermal average with the
gran-canonical Hamiltonian K̂ = Ĥ0 + V̂ −µN̂ as

〈O〉 = 1
Z

Tr
[
Ôe−βK̂

]
=

Tr
[
ÔÛS(β,0)

]

Tr
[
ÛS(β,0)

] =
Tr

[
e−βK̂0Û (β,0)Ô

]

Tr
[
e−βK̂0Û (β,0)

] =

〈
Û (β,0)Ô

〉
0〈

Û (β,0)
〉

0

. (1.81)

Where exp
(−βK̂

)
was interpreted as the time evolution operator in the Schrödinger

picture using imaginary time representation, as introduced in Sec. (1.4.2), and used
Eq. (1.53) to obtain ÛS(β,0) = exp

(−βK̂0
)
Û (β,0). Also, the cyclic property of the trace

has been used. Thus, we have written the interacting average as the fraction of two
non-interacting ones that, using Eq. (1.57), shows a form analogous to the GF one

〈O〉 = 1
Z

∞∑
n=0

(−1)n

n!

∫ β

0
dτ1· · ·

∫ β

0
dτn

〈
T̂

[
V̂ (t1) · · · V̂ (tn)

]
Ô

〉
0

. (1.82)

At this point, the Wick’s theorem can be applied to decompose the average in different
contracted terms forming finite temperature unperturbed GF as defined in Eq. (1.60).
Such function can be easily derived, and in the electron case we have

G0
k(τ)=−

〈
T̂

[
ĉk(τ)ĉ†

k(0)
]〉

0
=−Θ(τ)

〈
ĉk ĉ†

k

〉
0

e−(εk−µ)τ−−Θ(−τ)
〈

ĉ†
k ĉk

〉
0

e(εk−µ)τ

=−Θ(τ)(1+nk)e−(εk−µ)τ−Θ(−τ)nke(εk−µ)τ.
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Where we used the analytic form for the time-dependent destruction operator in Eq.
(1.64) with K̂0 instead of Ĥ0. One can understand that such result is much more com-
plex respect the one for 0 K, but the latter can be easily restored by taking the low
density limit as nk → 0 and µ→−∞. The phononic propagator, instead, assumes a more
complex form also in such simplified regime [35]

D0
q(τ)=−Θ(τ)

cosh[ωq(β/2−τ)]
sinh

(
ωqβ/2

) −Θ(τ)
cosh[ωq(β/2+τ)]

sinh
(
ωqβ/2

) . (1.83)

Still, it can be seen how it remains symmetric in time and for low temperatures, β→∞,
the form in Eq. (1.69) can be recovered. Therefore, from such simple considerations one
can understand how the same results as before are still valid in this regime, meaning
that the vacuum polarization can be factorized from both the numerator and Z, leaving
us with

〈O〉 =
∑∞

n=0
(−1)n

n!
∫ β

0 dτ1· · ·
∫ β

0 dτn

〈
T̂

[
V̂ (t1) · · · V̂ (tn)

]
Ô

〉
0,C

∑∞
n=0

(−1)n

n!
∫ β

0 dτ1· · ·
∫ β

0 dτn

〈
T̂

[
V̂ (t1) · · · V̂ (tn)

]〉
0,C

. (1.84)

Once again, only connected diagrams matters in this expansion and the rules to draw
them of course depends on the system under study.

So far we have worked with the Holstein model, showing the diagrams used in such
case. Now, to show how general the approach is, the Spin-Boson model will be taken
under study showing how the diagrams describing its thermodynamic averages look
like. We remember from Sec. (1.3.2) how the system is described by the Hamiltonian in
Eq. (1.41) that can be separated as

Ĥ0 =
ϵ

2
σ̂z +

∑
q
ωq b̂†

q b̂q, V̂ = ∆
2
σ̂x + σ̂z

∑
q
λq

(
b̂q + b̂†

q

)
. (1.85)

The interaction is so composed by the sum of two parts, which can be thought of as two
separate interactions: a tunneling one with strength ∆, and one with the environment
controlled by λ. By inserting it in the denominator of Eq. (1.84) we can look at the
expressions for the first order terms and elaborates how to treat them. Since only one
interaction is present we can ignore the time ordering operator having as first order
contribution 〈

V̂ (τ1)
〉

0 =
∆

2
〈σ̂x(τ1)〉0 +

∑
q
λq

〈
σ̂z(τ1)B̂q(τ1)

〉
0 , (1.86)

the same boson operator convention used in the GF formalism is present. Two contribu-
tions are obtained as expected, one for every of the two possible interactions. In order
to see their contribution to the whole expansion we can first focus on the first one and
write down explicitly its average as follows

∆

2
〈σ̂x(τ1)〉0 =

∆

2

〈
eĤ0τ1σ̂xe−Ĥ0τ1

〉
0
= ∆

2

〈
e
ϵ
2 σ̂zτ1σ̂xe−

ϵ
2 σ̂zτ1

〉
0

(1.87)

where the phononic variables simplifies since commutes with the spins ones and the
exponents can cancel each other outs. In this way the average can be performed only on
the spin variables, so that by choosing as a basis set the eigenvectors of σ̂z, defined by
σ̂z |±〉 =±|±〉, we can write
∆

2
〈σ̂x(τ1)〉0 =

∆

2

∑
s=±

〈s|e−Ĥ0βe
ϵ
2 σ̂zτ1σ̂xe−

ϵ
2 σ̂zτ1 |s〉 = ∆

2

∑
s=±

〈s|e− ϵ
2 σ̂z(β−τ1)σ̂xe−

ϵ
2 σ̂zτ1 |s〉 . (1.88)
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Using the Pauli matrices representation of σ̂x it’s easy to see how its effect on the basis
state is to swap them as σ̂x |±〉 = |∓〉, which bring us to

∆

2
〈σ̂x(τ1)〉0 =

∑
s=±

∆

2
e−

ϵ
2 (−s)(β−τ1)e−

ϵ
2 sτ1 〈s|−s〉 = 0. (1.89)

As a result we obtain that no contribution is given, but a lot of insight can be still ob-
tained from it. In fact, one can see how at all orders the spin and bosons terms inside
the interactions can be factored to always obtain the multiplication of two unperturbed
averages on the spin variables and on the bosonic ones. The former can always be ex-
panded as in Eq. (1.88) having that a zero contribution is obtained if an odd number of
σ̂x are present. Thus, we obtain that the number of tunneling interactions needs
to be even exactly in analogy to the bosonic ones as we have seen in Sec. (1.4.2). The
same result is still valid also in this case as we can see in the form of the second first
order term
∑
q
λq

〈
σ̂z(τ1)B̂q(τ1)

〉
0 =

∑
q
λq 〈σ̂z(τ1)〉0

〈
B̂q(τ1)

〉
0 =

∑
q
λq 〈σ̂z(τ1)〉0

∑
nq′

〈
nq′

∣∣B̂q
∣∣nq′

〉
. (1.90)

Where
〈
nq′

∣∣B̂q
∣∣nq′

〉
will give zero as for the zero temperature case. Therefore, we arrive

at the conclusion that only terms with an even number of phononic and field
interactions have a non-zero contribution. Still, this is not the only insight that
can be obtained from these equations. By looking carefully at Eq. (1.89) one can notice
how the expression already resembles the ones seen in the GF expansion. In fact, can
be seen how the time dependence of the spin variables inserts GF-like terms in the
expression interpretable as the time spin propagator Gs(τ) = Θ(τ)exp

(− ϵ
2 sτ

)
. The step

function is present since only forward propagation is possible in this formalism due
to time-ordering. At last, since phonons degrees of freedom interacts with the state
through σ̂z and not through momentum exchange we have that the resulting terms
with a phonon will always have a weight of type

〈
T̂ [σ̂x(τ1) · · · σ̂z(τi)σ̂z(τ j)]

〉
0

∑
qq′
λqλq′

〈
T̂ [B̂q(τi)B̂q′(τ j)]

〉
0
= 〈· · ·〉0

∑
q

∣∣λq
∣∣2D0

q(τi −τ j).

(1.91)
That separation allow us to insert such summation in the definition of the propagator
itself, and by taking the continuous limit we can use the spectral density in Eq. (1.42)
to have

D(τ)=
∫

R
dqJ(ωq)D0

q(τ)= αωc

2

∫ 1

0
dq qs cosh[ωcq(β/2−τ)]

sinh
(
ωcqβ/2

) . (1.92)

Where Eq. (1.43) has been used to represent J(ω) and the phononic spectra, and once
again τ is assumed positive since contribution for negative is the same thanks to symme-
try. Taking that into account a set of rules analogous to the one for the electron-phonon
interaction diagrams can be stated as follows

1 The spin propagators Gs(τ′−τ) are solid lines if the state is up, s = 1, or dashed
lines if it is down, s =−1, going from τ′ to τ assuming that τ′ > τ;

2 The tunneling interactions σ̂x(τ) are drawn as points in time that add to the ex-
pression a ∆/2 term and flips the spin state. It needs to be an even number;
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Figure 1.4: Examples of Feynman diagrams for the Spin-Boson model. On top the two second-order
diagrams are represented and a more complex generic 16-th order one on the bottom, to the right the
legend with the analytic expression is reported.

3 Phonons are described by wiggly lines that give a contribution D(τ′ − τ) along
with adding a sign given by the multiplication of the spin state at those times,
σ̂z(τ′)σ̂z(τ).

Using this set of rules all the diagrams for such system can be drawn as in Fig. (1.4),
allowing us to obtain the expression of all the contributions to the expansion just by
constructing a specific type of diagram.

One may still argue that the description done to obtain the diagram so far was based
on the expansion of the denominator, but also a numerator is present inside Eq. (1.84).
Such term differs from the former by only the presence of the Ô operator which is usually
diagonal in the base of Ĥ0, and so a contribution coming from every diagram can be
evaluated. To make an example we can study the magnetization inside the Spin-Boson
model by setting Ô = σ̂z(τ) and obtain

Tr
[
σ̂H

z (τ)e−K̂ τ
]
=Tr

[
eK̂ τσ̂ze−K̂ τe−K̂ β

]
=Tr

[
e−K̂ (β−τ)σ̂ze−K̂ τ

]
, (1.93)

where the operator is expressed in the Heisenberg picture so that the time dependence
was given by the whole grand-canonical Hamiltonian. Then we can add the exponential
related to the unperturbed part to obtain

Tr
[
σ̂H

z (τ)e−K̂ τ
]
=Tr

[
ÛS(β,τ)σ̂zÛS(τ,0)

]
= Z0

〈
Û (β,τ)σ̂z(τ)Û (τ,0)

〉
0

, (1.94)

where the relation ÛS(τ,τ′) = e−τĤ0Û (τ,τ′)eτ
′Ĥ0 was used. In this way the variation

to the diagrams’ contribution becomes clear, first we propagate to the wanted point in
time, then σ̂z is evaluated taking the state of the diagram at time τ to then continue the
propagation. Such result is usually written in a more compact form as a sum over all
the diagrams configurations C

〈σ̂z(τ)〉 =
∑∞

n=0
∫ β

0 dτ1· · ·
∫ β

0 dτn
∑

Cn s(τ)W(Cn)
∑∞

n=0
∫ β

0 dτ1· · ·
∫ β

0 dτn
∑

Cn W(Cn)
=

∑∫
C s(C )W(C )
∑∫

C W(C )
. (1.95)

Where the term (−1)n/n! vanishes since only even orders are present and combinatorial
properties simplify the factorial. Also, we introduced a set of symbles to simplify the
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notation: Cn for the connected diagrams of a certain order, W(C ) describe the weight of
the diagram computed using the known rules, and

∑∫
to indicate that the presence of both

sums and integration over the finite and real variables of the diagrams respectively. The
final result in Eq. (1.95) is really general and can be generalized for whatever observable
Ô by placing the right function O(C ) instead of s(C ).
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2
Diagrammatic Monte Carlo

Feynman’s diagrams expansions can be used in order to estimate several quantities in
different fields of quantum mechanics using the same mathematical framework. Which,
leaves us with an abstract form that can be used to express a general quantity Q(y),
depending on a set of variables y, by decomposing it into [44]

Q(y)=
∞∑

n=0

∑
T

∫
dx1 · · ·

∫
dxnQ(y,n;x1, . . . ,xn)W(y,n,T;x1, . . . ,xn). (2.1)

Q is so turned into a sum of contributions coming from the observable and diagrams
weights W , both depending on external variables, such as y and order n, and internal
ones, as xi, and topology T. Performing such integration is of course a challenging
problem which cannot be tackled analytically. Over the years different computational
approaches have been created in order to numerically compute such quantities [48, 36],
but all poses some limits to either system sizes or precision. In this chapter we will
introduce a computational approach able to generally compute such expansions by an
approximation-free Monte Carlo algorithm taking the name of Diagrammatic Monte
Carlo (DMC). We first discuss the basic aspects of general Monte Carlo integration to
then specialize it in the case of the Holstein GF integration and for the Spin-Boson
thermal averages.

2.1 Monte Carlo integration

Monte Carlo integration is a computational technique that uses random numbers in
order to numerically integrate functions in general dimensions [37]. In order to under-
stand how this is can be done we can take a general function f : D → R, with D ⊂ RM ,
and a probability density function (PDF) p : D →R+ and write

∫

D
dx f (x)=

∫

D
dx

f (x)
p(x)

p(x)=
〈

f
p

〉

p
,

∫

D
dx p(x)= 1. (2.2)

The integral has been rewritten as the expectation value of an observable f (x)/p(x) over
the p distribution. This allow us to compute it by approximating the average as the
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arithmetic mean over a set of samples {xi}N
i=1 distributed following p

〈
f
p

〉

p
= lim

N→∞
1
N

N∑
i=1

f (xi)/p(xi)≈
1
N

N∑
i=1

f (xi)/p(xi), xi ∼ p. (2.3)

Such approach allows for an estimation of the integral with a precision given by the
variance of the estimation that, by assuming the samples to be independent between
each other, becomes

σ2 = 1
N

[〈(
f
p

)2〉

p
−

〈
f
p

〉

p

]
= 1

N2

N∑
i=0

[(
f (xi)
p(xi)

)2
− f (xi)

p(xi)

]
. (2.4)

Now, this quantity can be decreased in two ways: increase N generating more statistic,
or by selecting a PDF that facilitate the convergence. In fact, can be demonstrated
[45] that a distribution that minimize σ keeping N fixed exist and is p(x) = f (x)/

∫
D f ,

assuming f as positive. So, the best choice is to sample directly from a distribution
with the same form of the function itself. In order to do that we are going to introduce
the concept of Markov Chain (MC) that will allow us to obtain samples from a general
function at the cost of correlation between them.

Markov Chain Monte Carlo

Let {X1, . . . , XN } be a sequence of random variables in RM , we define such a sequence to
be a Markov Chain if the conditional probabilities associated to every X i satisfy

P(X i|X i−1, . . . , X1)= P(X i|X i−1). (2.5)

That is, the probability of obtaining a certain value for X i depends only on the random
variable immediately before it and not the others. For simplicity, we are going to assume
that X i can only possess a discrete number of values, so that X i ∈ {x1, . . . ,x j, . . . }. In this
way we can describe the probability distribution and the conditional probabilities of such
variables using a vector and a matrix respectively

P(X i)=
[
p(i)(x1), . . . , p(i)(x j), . . .

]
, P(X i|X j)=




p(x1,x1) · · · p(x1,xk)
... . . . ...

p(xk,x1) · · · p(xk,xk)


 . (2.6)

Where one can see how inside the matrix the function that defines the entries, Pi j, does
not depend on which variables in the sequence we are using thanks to the Markovian
properties of the chain. One can also see how these associations give some interesting
properties to both p(i) and P, having that ∀i they satisfy

∑
j

p(i)
j = 1,

∑
k

Pi j = 1, (2.7)

thanks to the normalization properties of PDFs. Now, let’s imagine starting the se-
quence from a variable with a known distribution p(0). Thanks to the knowledge of P
it’s easy to understand how the distribution for the next X i in the chain can be obtained
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simply by applying it to the vector density. A process that can be repeated giving a
recursive way of describing the statistic of the chain

p(i+1)
j =

∑
k

Pik p(i)
k . (2.8)

For this reason P is also called transition matrix and, under very general condition, com-
pletely defines the properties of the chain. In order to see these we need to assume that
the matrix is ergodic, so that Pi j > 0 for every entry allowing every possible values inside
the space we are studying to appear. Under such condition, is possible to demonstrate
[18] that the sequence defined by Eq. (2.8) reaches a stationary point p independent of
p(0). In general the form of p is unknown, but an equation defining it can be obtained as

Pi j p j = P ji pi where pi =
∑

j
Pi j p j. (2.9)

This equation is referred to as the detailed balance condition and can tell us at which
PDF will the samples from the chain converge to.

Such mathematical framework is really flexible, powerful, and can be generalized to
continuous variables by simply substituting summation with integration. In this way, p
will become a PDF and P a kernel function π :RN ×RN →R+ that defines the chain as

p(i+1)(x)=
∫

RN
dyπ(x,y)p(i)(y), π(x,y)p(y)=π(y,x)p(x). (2.10)

Knowing that what we want to achieve is a form for π that allows to converge the chain
to a selected p. Such problem was studied first by Metropolis [37] and then generalized
by Hastings [19] obtaining at the end a general solution given by

π(x,y)=Γ(x→ y)A (x,y), A (x,y)=min
{

1,
Γ(y→ x) f (y)
Γ(x→ y) f (x)

}
. (2.11)

Where Γ(x → y) is an update function meaning how we can go from x to y and output
the probability of such process, while A is usually called acceptance ratio and f a non-
negative function. It’s possible to demonstrate that by assuming

Γ(x→ y)> 0,
∫

dyΓ(x→ y)= 1, (2.12)

the transition kernel in Eq. (2.11) is ergodic and satisfies the detailed balance condition

π(x,y)
f (y)∫

dx f (x)
=π(y,x)

f (x)∫
dx f (x)

. (2.13)

This means that by evolving the elements in the chain through such kernel we will
obtain that a sequence of samples {xi}N

i=1 where after a certain t large enough, also
called thermalization time, we will have

xi ∼
f (x)∫

dx f (x)
for i > t. (2.14)

Thus, such idea constitutes a general way of sampling from every possible probability
distribution by simply know it’s unnormalized form f .
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Figure 2.1: Graphical representation of the application of Metropolis-Hastings algorithm transforming
a general prior distribution to a latent one, on the left (adapted from [54]). On the right a schematic
representation of the general algorithm to perform a step inside the chain.

The last thing left to understand is how we can recreate the process of applying
π(x,y) on a computational level in order to obtain general sampling. Fortunately, thanks
to the freedom left to the choice of Γ, it can be done in a really simple way that also
becomes really cheap to perform. The idea is to start from a sample x0 taken from the
prior distribution p(0) and modify it locally to propose a new sample y that can become
x1 with a probability A (x0,y). For example, one can do the following

y= x0 +ϵ, ϵ∼ 1p
2π

e−ϵ
2/2, (2.15)

obtaining a new sample proposal that deviates little from the previous one thanks to a
Gaussian displacement. Then, a random number ξ is sampled from a uniform distribu-
tion in the unitary interval, U(0,1), and used to determine the next element in the chain
as

x1 =
{

y ξ<A (x0,y)
x0 ξ>A (x0,y)

, A (x0,y)= e−ϵ
2/2 f (y)

e−(−ϵ)2/2 f (x0)
= f (y)

f (x0)
. (2.16)

Defining a computational routine that will mimic the effect of applying the Metropolis-
Hasting kernel constructed using Γ(x→ y)= exp

(−(y−x)2/2
)

to achieve a sampling from
the posterior distribution f . Of course this is only an example, and the possible choices
for Γ are infinite, but the main idea behind the process remains the same for all of them
giving rise to the Metropolis-Hastings algorithm (MH) that we will use extensively as
reported in Fig. (2.1).

Correlation and convergence
Using Markov Chains to sample from a general function always comes at a price, and
that price is correlation. To understand what we mean by that we shall first describe in
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more details how to compute errors inside a Monte Carlo integration. Therefore, we will
look at a situation where we want to numerically evaluate an observable and its error
in the following way

〈O〉 =
∫

dxO(x)p(x), σ2
O = 〈

O2〉−〈O〉2 , (2.17)

with p a general PDF. Let now {xi}M
i=1 be a thermalized Markov Chain that samples

from p, we can obtain estimates for both the quantities from the sequence as

Ō = 1
M

M∑
i=1

Oi, σ2
Ō = 〈

Ō2〉−〈
Ō

〉
, (2.18)

where we used Oi = O(xi). It is possible to understand how Ō will converge to the real
mean in the limit of M →∞ thanks to the central limit theorem. In fact, using it we can
identify the arithmetic mean as a random variable distributed as a Gaussian with the
following form [18]

fŌ(x)= 1√
2πσ2

Ō

e−(〈O〉−x)2/2σ2
Ō . (2.19)

Showing how we obtain a more reliable result as σŌ becomes lower, and to achieve that
we can give a form to it as

σ2
Ō = 1

M2

〈∑
i j

(
OiO j −〈Oi〉

〈
O j

〉)
〉
= 1

M2

〈∑
i

(
O2

i −〈Oi〉2)+2
∑
j>i

(
OiO j −〈Oi〉

〈
O j

〉)
〉

.

(2.20)
By defining the correlation function as

χ|i− j| ≡
〈
OiO j

〉−〈Oi〉
〈
O j

〉
, (2.21)

we can see how the variance related to the arithmetic mean can be rewritten from Eq.
(2.20) into

σ2
Ō =

σ2
O

M
[1+2τO] , τO =

M−1∑
k=1

(
1− k

M

)
χk

χ0
, (2.22)

where τO is usually called correlation time. This shows us how in the limit M →∞ the
variance tends to zero, having that Eq. (2.19) becomes a delta distribution on the real
mean and so Ō converges to the right result. Still, the rate at which this convergence
happen depends on how large the numerator is, and consequently on σO and χk. The
former is a statistical property of the observable and cannot be touched, while the cor-
relation χk depends on how the samples are generated. In the best case scenario all the
samples are independent so that

χk = 〈OiOi+k〉−〈Oi〉〈Oi+k〉 = 〈Oi〉〈Oi+k〉−〈Oi〉〈Oi+k〉 = 0, (2.23)

but inside a MC the sample Oi is generated by modification of the previous one so that
their product mean cannot be separated. This property propagates along the chain giv-
ing rise to a non-zero correlation function that decrease as k increase, so that some
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Figure 2.2: Representation of the exploration of the domain of a multidimensional function f (x) using
the MCMC algorithm. It’s possible to see how the effect of the local updates are only able to move the
state by little steps giving the possibility of getting stuck limiting the exploration, while global updates
can move freely even for complicated functions.

statistical information is loss. In particular, a set of M samples drawn independently
bring the same information and error as M(1+2τO) samples from a Markov Chain.

Knowing that, we may want to understand how to reduce at most the samples’ cor-
relation to improve the convergence of our algorithm. To see exactly how to do that we
can study the probability of having k consecutive rejections in the Metropolis-Hastings
algorithm

ρ(k)=
〈

k∏
i=1
1rej(i)

〉
≈ 1

M−k

M−k∑
j=1

k∏
i=1
1rej( j+ i). (2.24)

This quantity can be understood as a correlation function itself since the numerical
estimator for χk/χ0 take the form [56]

χk

χ0
=

1
M−k

∑M−k
i=1

(
Oi − Ō

)(
Oi+k − Ō

)

1
M

∑M
i=1

(
Oi − Ō

)2 . (2.25)

Not only Eq. (2.24) is consistent with such definition, but can be demonstrated that
χk/χ0 → ρ(k) in the limit of M →∞ [1]. A result that tells us how to maximize the effi-
ciency inside our Markov Chain Monte Carlo integration we need to focus on finding an
update function Γ that maximize A . And it’s easy to see how the best possible scenario
is given by Γ(x→ y)= p(y), which gives

A (x,y)=min
{

1,
Γ(y→ x)p(y)
Γ(x→ y)p(x)

}
=min

{
1,

p(x)p(y)
p(y)p(x)

}
= 1. (2.26)

In this case no correlation will be present, and the samples obtained can be thought
as sampled directly from the right distribution. Nevertheless, updates of this type are
difficult to construct since involves the modification of several entries of x if not the
entire vector, and for this are called global updates. Instead, local updates are usually
used by slight modifications of single entries inside x that allow for simpler and efficient
routines that insert correlation in the chain.
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On a more practical level the difference between the two approach can be seen in Fig.
(2.2), where a sampling from a two mode function is depicted. Can be seen how the local
updates can only move the state of the chain by little getting stuck on local maxima of
the target function f . This is due to A becoming small when we try to move from a high
point to a lower one, creating situations where only one part of the all phase space is
explored efficiently, a known problem that takes the name of critical slowing down [55].
One can thus understand why correlations arises, and more samples are needed for
convergence. On the other hand, using global updates the state can make large jumps
that will always be accepted, bringing to a more complete and efficient exploration that
has a faster convergence. For these reasons we shall generally prefer to work with global
updates when we have the possibility.

2.2 Integrating diagrammatic expansions

Inside Sec. (1.4) we have seen how interacting Green’s functions and thermal averages
can be written as a sum over connected diagrams contributions as in Eq. (2.1). These
type of expansions can be viewed under a Monte Carlo perspective by making the fol-
lowing connection

〈O(y)〉 =
∑∫

C O(C )W(C )
∑∫

C W(C )
=

∑∫
C O(C )


 W(C )

∑∫
C W(C )


= 〈O(y)〉W , (2.27)

where we used the same form as in Eq. (1.95). That shows how a thermal average can
be seen as a mean over the distribution of the diagrams, a quantity of which we can
have an exact numeric estimation by employing what we have seen in Sec. (2.1). In
particular, we can create a Markov Chain of diagrams {C i}M

i=1 sampled following their
weight function in order to obtain

〈O(y)〉 ≈ 1
M

M∑
i=1

O(C i), C i ∼W(y,n,T;x1, . . . ,xn). (2.28)

The only thing that is left to complete the workflow is finding a suitable update function
Γ(C → C ′) that allow us to efficiently and ergodically sample the diagrams specific to
the model under study.

Here we will introduce the standard series of local updates that is used for the study
of the single site Holstein model and the Spin-Boson model. We will also show how for
the latter a problem arises from the oscillating form of the diagrams’ weight giving rise
to the infamous sign problem.

Single site Holstein
Let’s focus on the simplified version of the Holstein Hamiltonian introduced in Eq. (1.25)
that we rewrite here

Ĥ = εĉ† ĉ+Ω
∑
q

b̂†
qb̂q+

gp
N

∑
q

ĉ† ĉ
(
b̂q+ b̂†

−q

)
. (2.29)
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Such form highly simplifies the diagrams in the expansion since no phononic or elec-
tronic dispersion is present. In this way the electrons can only have one value of the
momentum associated to the energy ϵ, so that we should not account for k inside the
electronic lines. Also, since no correlation between phonons and electron momenta is
present we can directly integrate the former inside the weight. To understand it better
we can have a look at the weight of the sunset diagram in this regime

= g2

N

∑
q

Dq(τ2 −τ1)G0
k(t1)G0

k−q(t2 − t1)G0
k(t− t2)

= g2

N

∑
q

e−Ω(τ2−τ1)e−ετ1 e−ε(τ2−τ1)e−ε(τ−τ2)

= g2e−Ω(τ2−τ1)e−ετ.

0 t1 t2 t
k k−q k

q

No k or q dependence is present in the final weight, allowing us to say that the only vari-
ables that we need to represent are the creation and annihilation times of the phonons
in the system. This also allows us to easily evaluate the weight of a certain diagram by
looking simply at the number of phonons present n, their start bi and end e i, and the
electron’s time of flight τ

W(τ,n;b1, e1, . . . ,bn, en)= g2ne−ετ
n∏

i=1
e−Ω(e i−bi), (2.30)

which will be the final form we will use in our computations.
From the form of W we can start thinking at an effective update function Γ(C →C ′),

able to sample from the whole diagrams’ space, to use inside the Metropolis-Hasting
algorithm. In general a single local update cannot be ergodic, making it necessary to use
a series of updates that changes one part of the diagram each {Γi}N

i=1, all normalized as
in Eq. (2.12). In this way an ergodic update can be constructed from them by summing
them up as

Γ(C →C ′)= 1
N
Γ1(C →C ′)+·· ·+ 1

N
ΓN(C →C ′)= 1

N

N∑
i=0
Γi(C →C ′). (2.31)

One can see how a function defined in this way is still and update since will still have
Γ(C →C ′)> 0 and

∑∫
C ′Γ(C →C ′)= 1

N

N∑
i=0

∑∫
C ′Γi(C →C ′)= 1

N

N∑
i=1

1= 1. (2.32)

Therefore, we are constructing an ergodic update from a series of non-ergodic ones,
which translate in practice into choosing one update at random, k ∼U(1, N), and sam-
pling C ′ from the selected one, C ′ ∼Γk(C →C ′). Thus, we can focus on the construction
of simple updates that changes the diagrams variables one at a time, and in this case
only three of them are needed to reach ergodicity:

Change τ. The simplest possibility is to change the time of flight of the electron, and to
do that we need to choose a new value τ′ so that τ′ ∈ [en,∞] in order to respect time
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Add

Remove 0 τ
0 τb1 e1

b1 ∼U(0,τ)
e1 ∼U(b1,τ)

i ∼U(1,n)

Change τ
0 τb1 e1 0 τ′b1 e1

τ′ ∼ E(e1,∞)

τ∼ E(e1,∞)

Figure 2.3: Representation of the updates inside the single site Holstein model, with the Add and
Remove update working together to satisfy the detailed balance on top and the change τ on the bottom.

ordering. The best way to do that is by drawing it from an exponential distribution us-
ing the inverse CDF method, described in App. (A). So by using it on p(τ)= exp(−ετ),
after normalizing it inside the domain [en,∞], the inverse CDF would be

τ′ = en −
1
ε

ln(u). (2.33)

In this way τ′ ∼ E(en,∞) and the update function becomes Γchg(τ→ τ′)= exp
(−ετ′)/C,

with C the normalizing constant. Considering that we can also easily compute the
acceptance rate to see its effectiveness as

A (τ,τ′)= Γchg(τ′ → τ)W(τ′,n; . . . )
Γchg(τ→ τ′)W(τ,n; . . . )

= e−ετe−ετ
′

e−ετ′ e−ετ
= 1, (2.34)

a perfect acceptance rate is obtained, meaning that the sampling is performed directly
from the exact diagrams’ distribution. Also, it’s important to point out how this up-
date has the capability of returning to the same point, meaning that both Γchg(τ→ τ′)
and Γchg(τ′ → τ) are > 0. Updates of such kind are called self balanced, and we will
soon see with the next updates that often updates works in couples since one may be
able to go in one direction but not coming back.

Add and Remove n. The next step is to change the number of phonons inside the dia-
gram, and to do that two updates are used: one for adding one phonon, and one for
removing it. It’s easy to understand how one update balance the other since the for-
mer will have Γadd(n → n+1) > 0 but Γadd(n+1 → n) = 0 not being able to balance
itself, while the other one is the contrary. Now, the implementation of the two up-
dates is generally really simple. For adding a phonon what can be done is uniformly
drawing the beginning and the end of the phonon as

bn+1 ∼U(0,τ), en+1 ∼U(bn+1,τ), (2.35)
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where it can be seen how en+1 > bn+1 respecting the time ordering. For removing it,
instead, one can easily randomly select one phonon as i ∼U(1,n) and eliminating it.
In this way we will have the following expressions for the updates functions

Γadd(n → n+1)= τ−1(τ−bn+1)−1, Γrem(n → n−1)= n−1, (2.36)

with the constraint Γrem(0 → −1) = 0 for obvious reasons. Thus, we can once again
obtain the acceptance rates of the two type of updates analytically as follows

A (n → n+1)= Γrem(n+1→ n)W(τ,n+1; . . . )
Γadd(n → n+1)W(τ,n; . . . )

= g2e−Ω(en+1−bn+1)τ(τ−bn+1)
n+1

, (2.37)

A (n → n−1)= Γadd(n−1→ n)W(τ,n−1; . . . )
Γrem(n → n−1)W(τ,n; . . . )

= g−2eΩ(e i−bi) n
τ(τ−bi)

. (2.38)

Where we can see how the acceptance rate is different from unity, meaning that these
are the updates that will generate correlation inside our chain.

Now, it’s easy to demonstrate how these updates, summarized in Fig. (2.3), satisfy the
wanted normalization condition and together are able to generate an ergodic Γ(C →C ′).
Which we will use inside our study to sample from the single site Holstein distribution.

Spin-Boson
Once again, we shall start the study of the update function by remembering the model
Hamiltonian that we want to study, and for the Spin-Boson model we obtain in Sec.
(1.3.2) the form

Ĥ = ∆
2
σ̂x +

∑
q
ωq b̂†

q b̂q + σ̂z
∑
q
λq

(
b̂q + b̂†

q

)
. (2.39)

Where the separation between the ground state has been set to zero, ϵ = 0, following
the approach of [9]. Before trying to find out a good set of updates for this model
we need to notice that all that has been said so far assumed W > 0. This is easy to
understand, because if W ∈ C then we could not interpret A as a probability and the
Metropolis-hastings algorithm cannot be performed. With that being said, one should
remember how the diagrams’ weight for the SB system, even though not possessing
complex phases, can be negative

= s(b1)s(e1)
(
∆

2

)2
D(e1 −b1)=−

(
∆

2

)2
D(e1 −b1).

0 b1τ1 e1 τ2 β
(2.40)

Where the spin propagators were set to unity, Gs(τ) = 1, since ϵ= 0. In this way we are
not able to create a Markov chain that directly sample from W , but we can decompose it
into it’s sign and modulus in order to rewrite Eq. (2.27) as

〈O(y)〉 =
∑∫

C
O(C )W(C )

∑∫
C

W(C )
=

∑∫
C

O(C )S(C )|W(C )|
∑∫

C
S(C )|W(C )|

= 〈OS〉|W |
〈S〉|W |

. (2.41)

Therefore, we can overcome the problem by performing a Monte Carlo average on the
modulus of the diagrams’ weight at the cost of having to evaluate the fraction of two
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oscillating averages. This needed trade off takes the name of sign problem in literature
since the convergence of Eq. (2.41) is exponentially worse respect to the normal case
[33]. Still, this is the only way we have available to compute such averages, and so we
shall understand how to sample from |W | in this case.

Knowing all of this we can start approaching the construction of the right set of up-
dates in order to achieve ergodicity in a way analogous to the one used in the single site
Holstein case. In particular, for the SB diagrams the variables that we are interested
to modify are the number of tunneling interaction nx and the number of phonons in
the system np. No variation on the β variable of the diagram is needed here since that
would mean change the temperature of the system and one is mainly interested in the
property at a selected one. Once we have taken that into account, it’s easy to understand
that the type of updates that we need in total are two add and remove couple to change
np and nx.

Addp and Removep. The approach is similar to the one discussed for the Holstein model.
So that we go from np to np+1 by sampling the beginning and end of the new phonon
from uniform distributions as in Eq. (2.35), while to remove one of them is randomly
selected as i ∼U(1,np). This would lead to the same update functions as in Eq. (2.36),
but a change is present inside the acceptance rates since the propagator has changed
leading to

A (np → np +1)=
Γremp (np +1→ np)

∣∣W(β,np +1; . . . )
∣∣

Γaddp (np → np +1)
∣∣W(β,np; . . . )

∣∣ =
β(β−bnp+1)

np +1
D(enp+1 −bnp+1),

(2.42)

A (np → np −1)=
Γaddp (np −1→ np)

∣∣W(β,np −1; . . . )
∣∣

Γremp (np → np −1)
∣∣W(β,np; . . . )

∣∣ = np

β(β−bi)
1

D(e i −bi)
. (2.43)

In this way we can sample through the different bosonic variables of the diagram
following the modulus of the weight, as we described before.

Addx and Removex. Even if the idea is similar to the one for the bosonic degrees of
freedom here we need to keep in mind that the number of interaction needs to be
even. This means that we will need to add two interaction at a time, so that the idea
is to select one of the interaction time as i ∼U(0,nx), with τ0 = 0, and sample the two
time in between [τi,τi+1] as described in Fig. (2.4). For the elimination instead we can
still use the same approach as before by selecting an interaction as i ∼U(1,nx−1) and
then eliminate τi and τi+1. In this way one can easily understand how the updates
functions will become

Γaddx(nx → nx +2)= [(nx +1)(τi+1 −τi)(τi+1 −b)]−1, Γremx(nx → nx −2)= (nx −1)−1,
(2.44)

once again we put Γremx(0 →−2) = 0. At last, the acceptance rates can be computed
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Addx

Removex
0 τ1 τ2 β 0 τ1 τ2 τ3 τ4 β

i ∼U(0,nx)
b ∼U(τi−1,τi+1)
e ∼U(b,τi+1)

i ∼U(1,nx −1)

Addp

Removep
0 τ1 τ2 β 0 τ1 τ2 βb1 e1

b1 ∼U(0,β)
e2 ∼U(b1,β)

i ∼U(1,np)

Figure 2.4: Representation of the updates used inside the Spin-Boson model, both of them are add and
remove update that balance each other. On top the one that modify the number of tunneling interaction
adding two at a time, and on the bottom the one that changes the number of phonons in the system.

also for such updates obtaining the simple form of

A (nx → nx +2)= Γremx(nx +2→ nx)
∣∣W(β,nx +2; . . . )

∣∣
Γaddx(nx → nx +1)

∣∣W(β,nx; . . . )
∣∣ =

(
∆

2

)2
(τi+1 −τi)(τi+1 −b),

(2.45)

A (nx → nx −2)= Γaddx(nx −2→ nx)
∣∣W(β,nx −2; . . . )

∣∣
Γremx(nx → nx −2)

∣∣W(β,nx; . . . )
∣∣ =

(
∆

2

)−2 1
(τi+2 −τi−1)(τi+2 −τi)

.

(2.46)

Allowing us to modify ergodically the spin variables inside the diagrams.

Thus, also here one can demonstrate how such updates are normalized so that summing
them up all together we will give rise to an ergodic Γ(C →C ′) that will allow us to obtain
a Markov Chain with samples from |W |.

2.3 Observable

After understanding how to sample diagrams from the wanted distribution we only need
to define the observable that we are interested in and construct the functions O(C ) to
use in the MC average. We have considered the following observables in the two models
under study: Green function G(τ) and polaron energy εp for the single site Holstein, and
the magnetic susceptibility χ(β) in the Spin-Boson. For the first two the same approach
used in [38] will be used to introduce the concept of exact estimator for DMC. While, the
susceptibility will be obtained from simple results of linear response theory that can be
easily translated into Monte Carlo form.
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Green function
The exact diagrammatic expansion of G(τ) was introduced inside Sec. (1.4.3), and using
the weights obtained in Sec. (2.2.1) we can limit the integration to the form

G(τ)=
∞∑

n=1

∫ τ

0
db1

∫ τ

b1

de1 · · ·
∫ τ

0
dbn

∫ τ

bn

denW(n,τ;b1, e1 . . .bn, en). (2.47)

Now, this analytic equation it’s not the best option for our DMC computational protocol.
The reason for it is that the Green’s function written as in Eq. (2.47) would correspond
to the normalization factor of the diagram distribution at a fixed time of flight

p(Cτ)=W(Cτ)/G(τ), G(τ)=
∑∫

Cτ

W(Cτ). (2.48)

This implies that, to reconstruct the whole GF we would need to perform a series of
simulations where τ is kept fixed, Cτ, by not using the change τ update, and obtain an
estimate for the normalization constant of the distribution at different diagram lengths.
We can avoid the need of multiple simulation by simply notice that the equation can be
rewritten using the Dirac delta function as

G(τ)=
∞∑

n=1

∫ ∞

0
dτ′

∫ τ′

0
db1

∫ τ′

b1

de1 · · ·
∫ τ′

0
dbn

∫ τ′

bn

denδ(τ−τ′)W(n,τ′;b1, e1 . . .bn, en). (2.49)

Now a further integration of the external variable τ is present allowing us to simply
rewrite the all expression as a DMC average as

G(τ)= C
〈
δ(τ−τ′)〉W , C =

∑∫

C
W(C ). (2.50)

In this way, we can reconstruct the form of the function by collecting the average number
of diagram with a certain value of τ inside the complete simulation that also updates
the time of flight. Nevertheless, in a numerical simulation it’s not possible to exactly
evaluate δ(τ−τ′) due to finite precision of floating numbers. That bring us to perform a
simple approximation for it called histogram method. Instead of the delta function we
can use the indicator function to estimate G(τ) as follows

G(τ)≈ C
〈
1∆(τ−τ′)〉W , 1∆(x)=

{
1 x ∈ [−∆/2,∆/2]
0 x ∉ [−∆/2,∆/2]

, (2.51)

with the approximation becoming better as ∆→ 0. Using this estimator is, therefore,
equivalent to take the range in which we want to evaluate the Green’s function, [0,τM],
and divide it in a set of bins with width ∆ and centers {τi}= [∆/2,3∆/2, . . . , (1+2i)∆/2, . . . ].
Then, a histogram {hi} is constructed during the simulation by counting the numbers of
diagrams possessing a τ inside the i-th bin as in Fig. (2.5). Following this procedure we
will obtain that

G(τi)≈ C
〈
1∆(τ−τ′)〉W = Chi/M, (2.52)

with M the total number of diagrams sampled. We only need to find out a form for C/M
to obtain an unbiased estimate of the whole G(τ). That can be done easily by using a
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Figure 2.5: Histogram method to construct the unnormalized Green’s function. Here we can see the
binned axis and how one diagram is confronted with it so that the hi corresponding to the one where τ
falls in is increased by one.

known property of all the Green’s functions of being unity at zero propagation time, in
fact

G(0)=−
〈
T

[
ĉ(0)ĉ†(0)

]〉
=−

〈
ĉ† ĉ

〉
+〈1〉 = 1. (2.53)

This is especially interesting for us because using the knowledge of the unnormalized
GF at the different centers with {hi} we can extrapolate its value at zero using a linear
form of type

G̃(τ)≈ b+aτ for τ≪ 1. (2.54)

Where G̃ was used to describe the unnormalized GF approximated by {hi}. By our com-
putation we can impose the following conditions

G̃(∆/2)≈ h0, G̃(3∆/2)= h1, (2.55)

giving a linear system that allows us to compute b giving its value at zero to obtain

G̃(0)= M
C

G(0)= M
C

= h0 −
h1 −h0

2
. (2.56)

Therefore, by constructing the diagram during a single simulation we are able to obtain
an evaluation of the complete G(τ) that becomes more accurate as we set ∆ smaller,
giving us arbitrary accuracy.

Polaron energy
As we have seen inside Sec. (1.4.2) the ground state information of the polaronic state
are contained inside the long time behavior of the polaron propagator. In particular,
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we have seen how in the general case an exponential behavior of the kind exp
(−ε0

kτ
)

is
retrieved from it. Thus, we already have a choice for the estimator given by fitting G(τ),
obtained as in Sec. (2.3.1), to an exponential behavior for sufficiently large times. Nev-
ertheless, this approach brings an error in the final result that is difficult to evaluate
through statistic alone. For this reason, Mishchenko et. al. [38] introduced a mathemat-
ical procedure that allows for the creation of unbiased observable able to extrapolate
that behavior more easily.

Let us consider the log time behaviour of the ratio between the propagator with a
stretched form of it where τ is expanded by a small factor 1+λ

lim
τ→∞

Gk((1+λ)τ)
Gk(τ)

= e−ε
0
k(1+λ)τ

e−ε
0
kτ

= e−ε
0
kλτ. (2.57)

We can get an expression for the left side of the equation by looking at how the expansion
changes as

Gk((1+λ)τ)=
∞∑

n=1

∫ (1+λ)τ

0
db1· · ·

∫ (1+λ)τ

bn

denW(n, (1+λ)τ;b1, . . . , en), (2.58)

where W is the weight of the diagrams in the general Holstein model, which can be
easily expressed by the formula

W(n,τ;b1, . . . , en)= g2n ∏
i=1

e−εki∆τi
n∏

j=1
e−ωq j (e j−b j). (2.59)

Where n is the number of phonons and the sum on i runs over all electronic propagators.
Inside this general context we can simplify Eq. (2.58) by making a change of variable
and set τ= (1+λ)τ̄ so that one obtains

Gk((1+λ)τ)=
∞∑

n=1

∫ τ̄

0
db̄1· · ·

∫ τ̄

b̄n

dēnW(C ), W(C )= (1+λ)2nW(n, τ̄; b̄1, . . . , ēn). (2.60)

Knowing that we can substitute the expression inside the ratio in order to obtain it as a
Monte Carlo average of the following type

Gk((1+λ)τ)
Gk(τ)

=
∑∫

C
W(C )

∑∫
C ′ W(C ′)

=
∑∫

C

W(C )
W(C )

W(C )
∑∫

C ′ W(C ′)
=

〈
W(C )
W(C )

〉

W

. (2.61)

This allows us to focus on the ration between weights and see how can be written in a
simple form as

W(C )
W(C )

= (1+λ)2n ∏
i

e−λεki∆τi
n∏

j=1
e−λωq j (e j−b j) = (1+λ)2n exp

[
−λ

∑
i
εki∆τi −λ

n∑
j=1

ωq jν j

]
,

(2.62)
where the j-th phonon length was indicated as ν j. Having this form we can simply take
λ as small as we want allowing us to Taylor expand the expression at first order and
obtain

W(C )
W(C )

= (
1+2nλ+O (λ2)

)
[

1−λ
(∑

i
εki∆τi +

n∑
j=1

ωq jν j

)
+O (λ2)

]

= 1−λ
(∑

i
εki∆τi +

n∑
j=1

ωq jν j −2n

)
+O (λ2).

(2.63)
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By doing the same with the exponential behavior at long time of flight so that exp
(−λε0

kτ
)=

1−λε0
kτ+O (λ2) and insert both of them inside Eq. (2.57) we will get

ε0
k = lim

τ→∞

〈∑
i
εk
∆τi

τ
+

∑
j
ωq

ν j

τ
− 2n

τ

〉

W

= lim
τ→∞〈E(C )〉W . (2.64)

Where the limit for λ→ 0 was performed to obtain the final expression. This expression
is revealing us a way to obtain an unbiased estimate for the ground state energy of
our polaronic system by simply sampling from the whole distribution and compute the
average so that

ε0
k ≈ 1

M

∑
τ>τm

E(Cτ). (2.65)

So that we let also τ change, but we evaluate the observable only for τ large enough with
a threshold set using a constant τm.

Inside the single site Holstein model Eq. (2.64) gets simplified a lot, since εk = ε and
ωq =Ω, becoming

ε0 = ε+ lim
τ→∞

〈
Ω

∑
j

ν j

τ
− 2n

τ

〉

W

. (2.66)

By confronting it with the known ground state energy of that model given by ε+εp we
can obtain a direct estimator for the polaron binding energy in that simple approxima-
tion as

εp = lim
τ→∞

〈
Ω

∑
j

ν j

τ
− 2n

τ

〉

W

. (2.67)

Which will be the unbiased estimator that we are going to work with.

Magnetization
In magnetic systems the physical observable carrying the majority of the information is
generally the magnetic susceptibility χ(τ). Such quantity is usually studied through the
formalism on linear response theory, where is possible to connect it to the spin-spin time
correlation function as

χ(τ)= 〈σ̂z(τ)σ̂z(0)〉−〈σ̂z(τ)〉〈σ̂z(0)〉 . (2.68)

This function has been widely used in physics mainly to detect phase transitions. In
fact, its static value χ(0) has the same properties of an order parameter, and sudden
changes with temperature indicate a modification of the system state generating critical
behaviors. Thus, we will focus on the description of the static magnetic susceptibility to
study the critical behaviors of the Spin-Boson model

χ= 〈
M2〉−〈M〉2 . (2.69)

Where we simply made the association of 〈M〉 = 〈σ̂z〉 and also for its squared value.
Therefore, we shall focus on the discussion of their evaluation within the version of the
SB model of our interest where we placed the external field ϵ to zero.
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Figure 2.6: A diagram for the Spin-Boson model drawn as defined on top and presented using a circular
form by connecting the end. In the circular form is easier to see how by changing the position of the bar
defining the point where the circle was connected we obtain another diagram with the same weight.

To evaluate the magnetization inside our system we can use the same approach
introduced inside Eq. (1.95), but a better statistical alternative for it can be obtained.
The idea is to notice how the weight of the diagram is invariant under time translation.
That can be seen in Fig. (2.6) where a circular representation for the diagram is used
showing how shifting the starting point of the diagram, and so rotating the connection
point in the circle, the weight of the configuration doesn’t change. This means that for
every diagram generated we can identify a set of diagrams {C i} that have the same
statistical weight as the sampled one. The contribution from such set is really easy to
write for the magnetization observable σ̂z(0) and is given by

Mi =
∑

i
s(τi)pW (C i)=

[
s(0)+ s(dτ)+·· ·+ s(β)

]
pW (C )=

[∫ β

0
dτs(τ)

]
pW (C ). (2.70)

Basically, by using that pW is the same for every diagram in the set we obtained that the
contribution of the set is given by the integral sum of the spin state along the sampled
configuration. This allows us to rewrite the sum changing the contribution of every
diagram to an average that gives the same result as before

Mi =
∑

i

[
1
β

∫ β

0
dτs(τ)

]
pW (C i)=

[
1
β

∫ β

0
dτs(τ)

]
pW (C i)

∑
i
=

[∫ β

0
dτs(τ)

]
pW (C ), (2.71)

where we used that the size of the set is simply given by
∫ β

0 dτ = β. In this way the
contribution of every diagram contains information from the all set leading to more
statistical information obtained for every sample. For this reason the best choice we can
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make for the magnetization observable is the following

〈M〉 =
〈

1
β

∫ β

0
dτσ̂z(τ)

〉
,

〈
M2〉=

〈(
1
β

∫ β

0
dτσ̂z(τ)

)2〉
. (2.72)

Using them the static magnetic susceptibility can be computed with much better result
than in the naive way.

Taking into consideration the case under study where ϵ is zero one can also notice
another thing. Inside the weight, as described in Eq. (2.40), no contribution changes
if we switch the initial state of the diagram. That is, if we take a diagram starting in
spin down C− then we have p|W |(C−) = p|W |(C+). This result gives us the possibility of
constructing a larger set of diagram with equal probability given by {C i−,C i+}. Thus, by
keeping into account how the size of set now is 2β we can evaluate the total contribution
to the magnetization of this group as

Mi =
∑

i

[
1
β

∫ β

0
dτs(τ)

]
p|W |(C i+)−

∑
i

[
1
β

∫ β

0
dτs(τ)

]
p|W |(C i−), (2.73)

where the subtraction appears since the whole spins are flipped between the two sub-
sets. By doing as before we can see how

Mi =
[∫ β

0
dτs(τ)

]
p|W |(C+)(1−1)= 0, (2.74)

namely, the magnetization of the system needs to go to zero for no external field. From
this result we can also see how we can skip the computation of 〈M〉 in practice and focus
on

〈
M2〉, for which we obtain that

M2
i =

[∫ β

0
dτs(τ)

]2

p|W |(C+)(1+1)=
[∫ β

0
dτs(τ)

]2

2p|W |(C+). (2.75)

Meaning that we can simply take into account only diagrams starting with spin since
using the same idea one can see how

2p|W |(C+)= 2
|W(C+)|

∑∫
C
|W(C )|

= 2
|W(C+)|

∑∫
C−

|W(C−)|+∑∫
C+

|W(C+)|
= |W(C+)|

∑∫
C+

|W(C+)|
. (2.76)

So that a statistics with only diagrams with starting spin up can be used for the evalu-
ation, cutting the studied phase space in half. Therefore, by remembering how the SB
model has sign problem we can write down the final form of the estimator of the squared
magnetization, and so of the susceptibility, by using Eq. (2.41) and insert the form of O
found out here having

〈
M2〉= 1

〈S〉|W |+

〈(
1
β

∫ β

0
dτσ̂z(τ)

)2

S

〉

|W |+
. (2.77)

Where |W |+ was used to say that only spin up diagrams are needed in the computations
and S represent the sign of the diagram.
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3
Normalizing Flow

We have discussed how the fastest way to converge a Monte Carlo simulation is to com-
pute averages from samples taken from a distribution proportional to the target func-
tion. Nevertheless, sampling from such general distribution is generally considered too
complex employing analytic exact methods. Still, we can aim to sample from an approx-
imated form of such complex distribution trading a small error in the final result with
a trackable PDF. Such idea is at the core of the Machine Learning (ML) architectures
called generative models. In recent years several types of generative architectures have
been proposed, but we will focus on one of the most general and powerful between them
called flow-based generative model or normalizing flow (NF). NF has been extensively
studied and used mostly in the context of image processing [51, 3] with some interesting
applications to quantum chemistry [39] and lattice field theory [1, 46]. Here, instead,
we want to focus on the use of such architecture for describing the Feynman diagrams
distribution inside the diagrammatic Monte Carlo framework. In order to do that an
introduction to NF mathematical base and current architecture is presented, following
the general review of Papamakarios et. al. [40]. Subsequently, we will introduce the
main ideas that will allow the approximation of diagrams distribution.

3.1 Approximating general PDF

The normalizing flow architecture has its foundation in one of the most known result
in mathematical analysis, the change of variable formula. To be more specific, in its
application to probability theory, giving the possibility to map one initial distribution
pz : RD → R+ to another one px : RD → R+. The way in which this is done is by taking a
diffeomorphism T :RD →RD so that the following relation is true

∫

RD
dz pz(z)=

∫

RD
dx pz ◦T−1(x)

∣∣det JT−1(x)
∣∣=

∫

RD
dx px(x). (3.1)

Where the change of variable formula in high dimensions was used, and from the result
can be seen how through the use of T the PDF pz has been mapped into

px(x)= pz ◦T−1(x)
∣∣det JT−1(x)

∣∣, x= T(z). (3.2)
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This result is giving us a lot of information since, assuming that pz is a simple distribu-
tion from which we are able to sample, we can find out both the value of px and a way
to sample from it. The former directly given by Eq. (3.2) and the latter simply obtained
by sampling z ∼ pz and then take x = T(z) so that x ∼ px. With that px is completely
known and can be used to compute averages or to use as an update for a Markov Chain.

The final aim of NF is to approximate the transformation mapping one initial simple
distribution to a complex target one, using a Neural Network (NN). Thus, one may argue
that if such transformation exist in the first place and then how we can create a model
effectively able to learn the form of a probability distribution. Here we shall first show
the existence of T for every choice of pz and px possible, and then introduce the basics
concepts behind NF architecture.

Expressiveness of transformations

To show that a diffeomorphism T : RD → RD mapping pz and px exists in general, one
should start by setting as a target distribution

px(x)= 1, px : (0,1)D →R+. (3.3)

Basically, we want to map a general PDF to the uniform distribution on the open hy-
percube of dimension D. In order to do that we assume all conditional probabilities
pz(zi < c|z<i) of pz to be differentiable respect to (zi,z<i), where we used zi to indicate
the i-th component of z. In this way, we can use the chain rule of probability in order to
decompose the distribution as

pz(z)=
N∏

i=1
pz(zi|z<i), pz(zi|z<i)=

∫

R
dzN · · ·

∫

R
dzi+1 pz(z). (3.4)

By assuming pz(z)> 0 inside all RD we can say that this is true also for every pz(zi|z<i).
In this way we can define the transformation F : z → x ∈ (0,1)D whose i-th element is
defined by the cumulative distribution of the i-th conditional

xi = Fi(zi,z<i)=
∫ zi

−∞
dtpz(t,z<i)= pz(t ≤ zi|z<i). (3.5)

It’s easy to understand that Fi is completely differentiable and increase monotonically
since pz(zi|z<i) is positive, meaning that is also invertible. Also, xi doesn’t depend on z j
with i < j meaning that we can invert it element-by-element having that the following
transformation can be defined

zi = F−1
z<i

(xi)= F−1(xi,z<i). (3.6)

This expression posses a simple lower triangular Jacobian since ∂Fi/∂z j = 0 for i < j
giving us a simple form for the determinant as

det JF (z)=
D∏

i=1

∂Fi(z)
∂zi

=
D∏

i=1
pz(zi|z<i)= pz(z). (3.7)

In this way we have created a diffeomorphism with a trackable Jacobian and, using
known results from analysis, also the inverse is completely defined with a Jacobian
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given by 1/JF . Knowing that, we can use such result inside Eq. (3.2) and obtain that the
resulting PDF obtained is

px(x)= pz(z)|det JF (z)|−1 = 1, z= F−1(x), (3.8)

implying that x is effectively uniformly distributed inside the open hypercube (0,1)D .
Therefore, we are able to define such diffeomorphism for every well-behaved PDF. Mean-
ing that we can now let pz and px be general probability functions, and we can so define
F(z) and G(x) that maps the two to the hypercube. Concatenating the two transforma-
tion as T = G−1 ◦F generate a diffeomorphism, since a composition of diffeomorphisms
is one itself, that applied gives us

pz ◦T−1(x)
∣∣JT−1(x)

∣∣= pz(z)|JG(x)|
∣∣JF−1(G(x))

∣∣= pz(z)|JG(x)||JF (z)|−1 = px(x), (3.9)

where the notation z = T−1(x) was used along with the identity T−1 = F−1 ◦G. In this
way we can be certain that the transformation for mapping the two PDFs exists.

The result obtained not only tells us that a solution always exists, but is also telling
us how to construct it using integrals in Eq. (3.5). Still, it’s easy to understand how such
numeric forms become unmanageable as the dimensionality increase and the storing
space needed for one element increase as O (DD). For this reason a Neural Network that
approximate them appears to be a viable option to make it available, also because can
be seen how the solution proposed is not the only one. An example of this is given by the
Box-Muller transform [6] to map the uniform distribution in two dimension to a diagonal
Gaussian as

x1 =
√

−2ln z1 cos(2πz2), x2 =
√

−2ln z1 sin(2πz2). (3.10)

Where z1, z2 ∼ U(0,1), and can be seen how the transformation T defined in this way
has a different form respect to the one in Eq. (3.5) since its Jacobian is not lower trian-
gular. Nevertheless, by computing it and use the change of variable formula, one can
see how arrives at the same result. Therefore, a general NN could be able to explore the
space of all possible solution searching not only for the one that approximate the various
integrals, but also for other unknown possible forms.

Machine learning diffeomorphisms
A Normalizing Flow model is defined by a prior, or latent, probability distribution pz in
RD and a parametric transformation T(•;θ) :RD →RD defining a diffeomorphism. Based
on the parameters the transformation will map pz to a model distribution

p̃x(x;θ)= pz ◦T−1(x)
∣∣det JT−1(x;θ)

∣∣. (3.11)

The final objective of the model is to find the right set of parameters θ0 so that p̃x
approximate correctly a wanted target distribution px. In order to do that we need
mainly three things: 1) a loss function estimating the distance between p̃x and px, 2) a
structure for T able to explore all the possible transformations, 3) make the sampling
computationally cheap.
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Finding an efficient loss function inside the contest of generative models is a known
problem whose solution is generally given by the use of the Kullback-Liebler (KL) diver-
gence [28]. In particular, by taking two PDFs p and f their divergence is given by

KL(p∥ f )=
〈

log
(

f
p

)〉

p
=

∫
dx p(x) log

(
f (x)
p(x)

)
, (3.12)

such quantity is not a distance in functional space, but has the wanted properties of

KL(p∥ f )≥ 0, KL(p∥ f )= 0⇐⇒ p = f . (3.13)

Thus, we can write down its explicit form in our case of interest, so by inserting the
model distribution and the target distribution one will get as a result

KL(px∥p̃x)= 〈log px− log p̃x〉px =−〈log p̃x〉px +const. (3.14)

Where the average relative to log px will not depend on the parameters θ and therefore
will remain constant in the minimization. Now we can approximate the average assum-
ing to have a database of {xi}N

i=1 of samples from the target distribution px, so that by
using the known form of p̃x one gets

KL(px∥p̃x)≈− 1
N

N∑
i=1

log pz(T−1(xi;θ))+ log
∣∣det JT−1(xi;θ)

∣∣+const. (3.15)

This can be defined as the loss of our model L (θ) and minimized by using the gradient
descend algorithm, directly computable as

∇θL (θ)=− 1
N

N∑
i=1

∇θ log pz(T−1(xi;θ))+∇θ log
∣∣det JT−1(xi;θ)

∣∣. (3.16)

By following such gradient we can search for the minima in parameter space θ0 giving
the best approximation for the wanted transformation. This approach is called forward
KL divergence, and assumes that we are able to obtain a large enough set of samples
from the wanted distribution in order to evaluate L with good precision. This is not
always the case, and for this reason another approach can also be taken by using the
reverse KL divergence

KL(p̃x∥px)= 〈log p̃x− log px〉 p̃x = 〈log pz〉pz −〈log |det JT(•;θ)|〉pz −〈log px ◦T〉pz . (3.17)

Here a change of variable is implicitly used in order to write the expectation value in
terms of the latent probability. In this way the first average becomes a constant, while
the others two gives the wanted loss function that can be approximated once again using
the samples from the simple latent distribution as

L (θ)=− 1
N

N∑
i=1

log |det JT(zi;θ)|+ log px(T(zi;θ))+const. (3.18)

Now we have a way to search for the optimal solution by knowing the form of px, still it’s
common for such function to be written as px = p̄x/C with C an unknown normalizing
constant. Thus, if only p̄x is available that does not pose a problem since we will have
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z∼ pz(z) x∼ px(x)

z∼ pz(z) z1 = T1(z) z2 = T2(z1) x∼ px(x)

T1 T2 T3

Figure 3.1: Schematic example of a Normalizing Flow generic architecture. On top, a neural network
tries to approximate directly the complete transformation, while on the bottom the task is subdivided in
a series of smaller transformations all given by a different NN.

that the constant can be taken out of the logarithm and incorporated inside the constant
part of L having

L (θ)=− 1
N

N∑
i=1

log |det JT(zi;θ)|+ log p̄x(T(zi;θ))+const. (3.19)

Allowing us to find the wanted transformation by simply knowing the unnormalized
form of the distribution we want to reach.

We are now able to search for the minimum of the distribution, still we need to find
a way to give a neural network enough freedom to explore all possible T during train-
ing. The best way to approach this problem is not to focus on the search of a particular
effective architecture, but to exploit the composition properties of diffeomorphisms. Ba-
sically, by knowing that taken T1 and T2 diffeomorphisms we have that T2 ◦T1 is still
invertible and differentiable we can search our T by using a series of NN transforma-
tions {Ti}M

i=1 and compose them. In this way we can avoid the creation of a big single
model and focus instead on using a series of smaller ones as described in Fig. (3.1). The
only complication of using this approach is given by the computation of the Jacobian
determinant of the complete transformation, which is now given by using the chain rule
on the total one

T = TM ◦TM−1 ◦ · · · ◦T1, det JT(z;θ)= det JT1(z;θ1)det JT2(T1(z;θ1);θ2) · · · . (3.20)

This can be easily inserted inside both Eq. (3.19) and Eq. (3.15) so that the log deter-
minant will become the sum of the ones of every intermediate transformation, allowing
us to compute the loss easily. Thanks to this we can increase the expressiveness of our
network by simply increasing M.
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The possibility of making our T more general by using an increasing number of
simple intermediate transformations allow us to tackle the problem of computational
efficiency by focussing on the single Ti. Three main requirements are needed for the
NN model to represent Ti effectively:

Invertible network. The network needs to be an invertible function, so that the change of
variable formula can be applied using it. That can also be seen inside the expression
of the losses. In fact, if this property is not present then det JT can become zero so
that log |det JT |→∞ not allowing us to train the model.

Trackable Jacobian. To estimate the value of p̃x and the loss of the model itself we
need to evaluate det JT . Now, the standard computation of a determinant is usually
a O (D3) operation, which is too expensive as the dimensionality increase. For this
reason, the other requirement is that we shall be able to reduce JT to a triangular-
like form giving the possibility of compute the determinant in linear time complexity.

Expressiveness. It would be better to have a transformation with already the possibil-
ity of describing a large potion of the solution space, in this way a lower number of
concatenations will be needed inside the complete form.

By constructing a Ti that respect such necessities we will be able to perform our com-
putations on general PDFs and create general architectures for our studies that we will
describe in detail in the next section.

3.2 Architectures

In Sec. (3.1.2) we have seen how constructing an effective architecture for normalizing
flow is not an easy task, the network used not only needs to be invertible but have a
Jacobian that can be computed in an inexpensive way. In order to obtain all of that
a common strategy has developed through the years called autoregressive flow [24, 25].
The idea is based on the construction for the theoretic transformation done in Sec. (3.1.1)
so that we define T bringing z to z′ element wise as

z′i = τ(zi;hi), hi = ci(z<i;θ), (3.21)

where τ is called transformer and ci the i-th conditioner, which will depend on the model
parameters θ. Creating this division allow us to obtain an invertible transformation if
and only if τ is invertible, as shown in Fig. (3.2). Thus, we need to put attention on the
form of the transformer, but once that is defined we have an invertible transformation
that also possess an easy to compute det JT . In fact, it’s easy to understand how

J i j
T =

dz′i
dz j

= dτ(zi; ci(z<i;θ))
dz j

=





∂τ(zi ;ci(z<i;θ))
∂z j

∂ci(z<i;θ)
∂z j

j < i
∂τ(zi ;ci(z<i;θ))

∂z j
j = i

0 j > i

, (3.22)

giving rise to a lower-triangular matrix whose determinant is easily computable using
the known relation

det JT(z;θ)=
D∏

i=1

∂τ(zi;hi)
∂zi

, hi = ci(z<i;θ). (3.23)
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Figure 3.2: Illustration of the architecture inside a general Ti inside a flow, adapted from [40]. It’s
possible to see how the main properties of the function are given by τ dictating the direct transform
and the inverse one, so that ci can have the form we want giving us the freedom of movement of using
traditional NN models.

Therefore, all the main requests for the creation of an effective transformation are al-
ready satisfied, the only thing remained is expressiveness. Which, can be obtained by
noticing that no constraint on the function ci were imposed during this construction. For
this reason, we can use the conditioner as the real expressive part of the transformation
by using a general NN in order to compute the inputs hi. In this way when we will train
the model what we are going to improve is the estimate done by the conditioner on the
input parameter for the transformer.

One may think that such general architecture can solve all of our problems. In fact,
we can easily obtain invertibility and efficiency while construct expressibility by using
larger networks for ci or by composing more Ti together. Even if that may seem true
it’s not that easy when you try to apply the model in practice. The expressibility, in
particular, does not only depend on the number of transformations used or by the depth
of ci, but the form of τ plays a big role on what we can represent and what not on
a practical level. Also, the efficiency becomes a trick matter when the dimensionality
increase often leading to the choice of simpler models specialized in the sampling process
or in the inference one. For these reasons it’s important to keep in mind the different
possibilities for both τ and ci, for which we are going to describe the most popular ones
leaving the interested reader to the complete review [40] for other examples.

Conditioners
Conditioners ci can be in principle constructed as any function of z<i, meaning that each
conditioner can be implemented as an arbitrary model depending on a set of parameter
θ. However, a naive implementation where a different model is used for every entry
of the input vector z would scale poorly with the dimensionality D. In fact, it would
require the evaluation of D separate models each with an average vector size of D/2.
In addition, such approach would result in being memory expensive since we shall also
store θ for every model. Based on the early works on flow based models [7] define the
autoregressive transformation approach as prohibitively expensive. Nonetheless, all of
those problems can be addressed nowadays by sharing parameters across ci or combin-
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Figure 3.3: Construction of a Masked conditioner starting from a fully connected feed forward neural
network to which we apply the masks in order to cut the wanted connections ending with hi depending
only on z j with j < i. In the masks the black squares are the zero and the white ones the ones.

ing them into a single model, giving rise to the masked conditioner [15] and coupling
conditioner [10] approaches.

Masked conditioner Instead of using set of conditioners in order to compute every
hi we can use a single feed forward NN with the property

c(z;θ)= [h1,h2, . . . ,hD],
∂hi

∂z j>i
= 0. (3.24)

To construct such a network we can use masks in order to cut the connections between
the output hi with the inputs z>i. Where, a mask is a binary matrix that can be applied
to a network in order to cut out certain connections between layers defining a masked
network. The application of such masks is done by simply doing the element by element
multiplication of the matrices of the layer’s weight with the one of the mask

W⊙MW =




W11 · · · W1n

... . . . ...
Wm1 · · · Wmn


⊙




M11
W · · · M1n

W
... . . . ...

Mm1
W · · · Mmn

W


=




W11M11
W · · · W1nM1n

W
... . . . ...

Wm1Mm1
W · · · WmnMmn

W


 .

(3.25)
So that, M i j

W is 1 if we want the i-th output and the j-th input to be connected or 0 if
we want to eliminate such weight from the final function. Thus, by selecting the right
masks we can effectively obtain a network that respects the property in Eq. (3.24), like
the one represented in Fig. (3.3).

Such architecture will allow us to evaluate all the parameters to perform the trans-
formation T with only one evaluation of c(z;θ), an operation that can be easily paral-
lelized using the GPU capabilities. Giving rise to a fast forward evaluation that allows
for fast sampling from the approximated distribution x= T(z). However, the evaluation
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of the inverse transformation, instead, becomes more troublesome using such condition-
ers. For example, we may want to perform statistical inference to a certain value x0 to
know if it’s likely to obtain it or not as

px(x0)≈ p̃x(x0)= pz ◦T−1(x0)
∣∣det JT(T−1(x0;θ))

∣∣−1
. (3.26)

In this case we need to transform x0 using the inverse transformation, but in order to
do that we cannot make only a single evaluation of c. This is because the parameters
hi needed to obtain zi = τ−1(z′i;hi) cannot be computed until all z<i is known. Meaning
that we should start by taking h1, which is a constant, and obtain z1 = τ−1(z′1;h1) that
can be used to evaluate

c(z1, z′2, . . . , z′D ;θ)= [h1,h2,h′
3, . . . ,hD]. (3.27)

From it, we can take h2 and evaluate z2 to repeat the operation and obtain z3 and so
on. In this way, the evaluation of the inverse transform is an operation that requires
D evaluations of the network, leading to an expensive computation that can become too
costly for high dimensional data. For this reason, masked conditioner are generally used
inside models that need to perform only one type of operations between sampling and
inference, or with low dimensional models.

Coupling conditioner This other model for conditioners arises from the need of cur-
ing the asymmetry inside the masked conditioner architecture in order to obtain both
fast sampling and inference. To achieve that one can work by choosing an index d < D
for the input variables and define a conditioner that work as

c(z≤d;θ)= [h1, . . . ,hd,hd+1(z≤d), . . . ,hD(z≤d)]. (3.28)

So that h≤d are constants and the other ones are computed by simply using only the z≤d
inputs. In this way the final transformation will of course posses the wanted property of
having a triangular Jacobian and the evaluation of the direct or inverse transformation
would be equally simple to compute evaluating c only once. This is explained graphically
in Fig. (3.4), where a particular implementation is used where the transformation is set
in order to have that

z′ = [z1, . . . , zd,τ(zd+1;hd+1), . . . ,τ(zD ;hD)], c(z≤d;θ)= [hd+1, . . . ,hD]. (3.29)

In this way we can reduce the number of computations needed in our model not only to
find z′, but also for the computation of the Jacobian determinant since we have

det JT = det
(

I 0
A D

)
= detD=

D∏
i=d+1

∂τ(zi;hi)
∂zi

. (3.30)

Both transformation and determinant gets simplified to a O (D−d) operation. Account-
ing that along to the fast computation for both forward and inverse transform make this
method much more generally accessible compared to the masked conditioner.

Still, this particular architecture possess only one major downside, the expressibility.
In fact, the increase in performances are paid through the fact that the entries z≤d are
not transformed and the ones z>d gets conditioned only by the previous entries and do
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C C

Figure 3.4: Representation of the coupling conditioner mechanism where the input vector is split in
two part z≤d and z>d so that only the latter is transformed with parameters computed from z≤d . Image
adapted from [40].

not account for interactions between them. This highly limit the expressibility of the
final network, but a good result can be restored by inserting inside the set of all the
transformations {Ti} a series of permutations. Can be easily seen how permutations P
are diffeomorphisms with the properties of

P(z)= [zP(1), zP(2), . . . , zP(D)], det JP = 1. (3.31)

Basically, by changing only the order of the entries inside the vector the volume of the
space is not changed, leading to a Jacobian with unit determinant. We can use that in
order to have transformations inside the final flow T that changes the position of the el-
ements so that the entries inside z≤d change and every entry can get conditioned by the
others. Also, such solution results in being computationally really cheap since no varia-
tion to the final Jacobian determinant is obtained. Anyway, even if this solution seems
to give us the possibility of making the flow expressible at will, also highly increases the
number of transformations needed in order to obtain a good a result. An overhead that
needs to be taken into account when selecting between masked conditioner and this one.

Transformers
The transformation τ is the most important piece inside the whole architecture since it
does not only determine the invertibility of the whole T, but also the expressibility and,
most importantly, the complexity. In fact, τ determines the form of hi implicitly defining
the dimensionality of the output layer of the conditioner c, which should be constructed
based on that. Thus, one can imagine how the more complex τ is the larger hi will look
like, giving us a more complex T with a larger expressiveness potential. Therefore, a
balance between the two aspects needs to be achieved based on the application we are
interested in. Here we are going to introduce two of the most popular choices present in
literature that also represent the extremes of expressiveness vs complexity: the affine
transform [11] and the spine-based transform [12].

Affine transform This transformation was thought in order to have the simplest pos-
sible invertible transformation that we can think of, giving rise to the following linear
function

τ(x;a,b)= xexp(a)+b. (3.32)
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T−1
1 (z1;h)

T3(z2;h)

T−1
2 (z2;h) T−1

3 (x;h)

pz p̃x

Figure 3.5: Example of use of NF to transform a bidimensional diagonal Gaussian into a correlated two
moon distribution by mean of several affine transformations. In particular, this flow has been obtained
using 6 transformations each using a coupling transformer and each one was followed by a permutation
that swapped the two entries of the variable. Such model has been obtained using the LLDMC library
[32].

Such transformation requires only two parameters to be computed, having h = [a,b],
and is of course invertible thanks to exp(a)> 0 so that the inverse is

τ−1(x;h)= (x−b)exp(−a), (3.33)

where only multiplications and sums are involved in both forward and inverse, giving
an incredibly optimized and stable operation to perform. Not only that, but if we look at
the logarithm of the Jacobian determinant of such transformation we will find that

log |det JT(z;h)| = log

∣∣∣∣∣
D∏

i=1

∂τ(zi;ai,bi)
∂zi

∣∣∣∣∣= log
D∏

i=1
exp(ai)=

D∑
i=1

ai, (3.34)

showing how also this quantity, needed for the training, can be obtained in no time
when using Eq. (3.32) as τ. Such properties have made affine transformers vastly pop-
ular with several applications reaching also state-of-the-art models such as Glow [26].
Nevertheless, its simplicity also undermine its expressiveness, something that can be
easily seen by taking the case where z follows a multivariate Gaussian. Then, each z′i
conditioned by z′

<i will also follow a Gaussian distribution, having that a single affine
transformation cannot ve a universal approximator. Nonetheless, expressive flows can
still be obtained by stacking multiple transformations together as seen inside the re-
sults shown in Fig. (3.5), but is still unknown if affine flows composed by multiple layers
are effectively universal approximators or not.

Spline-Based transform The other option is to aim at having a really high expres-
siveness by using a τ that is able alone to approximate every possible monotonic in-
creasing, and so invertible, function and leave behind optimization. In order to achieve
that the idea is to use a rational quadratic spline gθ(x), i.e. a picewise function consist-
ing of K segments, where each segment is a simple function that is easy to invert. To
construct such object we need a set of node {(xi, yi)}K−1

i=1 and the values of the derivates
on such points {δi}K−1

i=1 , that together will constitute the input parameters of the trans-
former. Basically, in such architecture the transformer will take the form

τ(zi;hi)= ghi (zi), hi = [x1, y1,δ1, . . . , xK−1, yK−1,δK−1], (3.35)
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hh

Figure 3.6: Example of a rational cubic spline transformation as described in this section. On the left
the value of the transformation where all the derivative on each node were set positive and the inputs
outside the given domain have been transformed through the identity. On the right the derivative of the
transformation is displayed. Image adapted from [12].

showing a much larger increase in the degree of complexity coming from a high dimen-
sionality for hi leading to large networks for the conditioner. Still, the greatest enhance-
ment in complexity is the evaluation of the function itself. In fact, in order to compute
gh(x) one should first find out in which of the K segments the input x is and then com-
pute the value of the function present in that part of the domain. Therefore, we need
first to use a quick search algorithm, like binary search having O (logK) complexity, in
order to find the interval zi ∈ [xk, xk+1] and then compute the spline as

gh(zi)= yk +
(yk+1 − yk)[skξ

2 +δkξ(1−ξ)]
sk + [δk+1 +δk −2sk]ξ(1−ξ) . (3.36)

Where we implicitly used the following notation

sk =
yk+1 − yk

xk+1 − xk
, ξ= zi − xk

xk+1 − xk
, (3.37)

in order to make the expression for the rational quadratic spline less heavy. Even if Eq.
(3.36) may look really complex has still the handy properties of possessing an analytical
form both for the derivative and for the inverse. In particular, by setting all δi > 0
one can obtain a general monotonically increasing function with both det Jgh and g−1

h
available for direct computation. Inside Fig. (3.6) an example of such transformation
is shown where some practical simplifications have been made. First, the starting and
final nodes have been fixed to the values of (−B,−B) and (B,B) possessing a unitary
derivative. Then, a generalization of the method is used in order to deal with the entries
that are not inside the domain [−B,B] by assuming that

gh(x)= x, x ∉ [−B,B]. (3.38)

In this way we can deal with all R while also being able to approximate a vast array of
invertible functions inside the [−B,B] domain. Thus, the transformation has a strong
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potential for approximate even complex distribution without the need of stacking a lot
of transformations together, but such freedom results in a much more complex and com-
putationally expensive structure if compared to the affine one.

3.3 Tackle DiagMC distribution

Let the distribution of interest be the one of diagrams inside a general model, which is
defined by the expression

pW (C )=W(C )/Z, Z =
∑∫

C
W(C ). (3.39)

Where we assume that the diagram C can be represented as a vector containing the
main information needed to compute the weight and the observables, such as: order,
time of flight and interaction times of the different type of interactions

C = [
n,τ,τ1

1,τ1
2, . . . ,τ2

1,τ2
2, . . .

]
. (3.40)

In principle, one can think that we should be able to obtain information about pW by
using the methods discussed so far. In fact, it’s easy to see how Eq. (3.39) give rise to
a distribution of which we know the unnormalized form, leaving us the possibility of
minimizing the reverse KL divergence loss in Eq. (3.19). As a matter of facts using W
inside our loss is not enough to obtain the complete distribution out of a classic flow
model. That is, W does not contain the complete information on the distribution, which
is highly influenced by the time ordering constraint that can be stated as

τ
j
i+1 > τ

j
i , τ

j
i > 0, τ> τ j

i . (3.41)

These are domain requirements that changes the normalization of the various distribu-
tions of the single variables, giving an important contribution to the total pW . Alongside
that we also have that inside all possible pW we will always have the order variable n,
which is integer, giving rise to a distribution with both integer and real variable which
so far has not been studied inside NF literature.

Therefore, here I want to address such problems by proposing possible ways of avoid
them that has been studied during this thesis work. We will start by focusing on the
integer distribution problem, for which a literature still exist, and then move to the
novel problem of imposing time ordering.

Integer distributions
The approximation of integer distribution through Normalizing Flow is a known issue
in literature due to the limitations that the change of variable formula has on discrete
domains. In particular, by taking a map T : A → B, with A and B subsets of ZD , and an
initial distribution pz we would have that the application of T lead us to [40]

px(x)=
∑
z∈ω

pz(z), ω= {u|T(u)= x}. (3.42)

This relation is defined for a general map, but it’s easy to understand that if one takes
T to be bijective, then ω must be composed by only one value having px(T(z)) = pz(z).
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Figure 3.7: Example of dequantization transformation with a uniform q or a flexible one, taken from
[23]. It’s possible to see how the value of the continuous model, obtained from the flow, gets mapped into
the same integer probability distribution in both cases. Still, for the flexible distribution less uncertainty
is presence for the inverse transformation, helping the train when the forward KL is used.

Basically, we have that flows of integer variables can only permute the probabilities
of the starting distribution between the different vectors of the space. Therefore, it is
not always true that a transformation exist that bring whatever two distributions into
each others, placing a theoretical limit to our expressiveness. That seems to pose a
problem that cannot be solved, limiting us to try to sample only the real variables of
the diagram leaving the integer ones as parameters, but that is not true. During this
thesis work two main possible solutions have been thought that can help overcome this
problem. The first is using a mathematical trick called dequantization [23, 49] and tries
to treat the discrete variables as real, while the other one consists in separate the order
sampling directly using the data.

Dequantization Mathematically the reason why the integer flows are so limited is
the absence of the Jacobian contribution in the change of variable formula of Eq. (3.42).
Thus, to give more expressibility to such construction we need to find a way to add
that inside the transformations acting on such variables. Such problem is studied in
literature in order to perform image processing, where colored images are described by
a set of pixels with integers values describing the color x= {0, . . . ,255}D . So, the standard
way to work with such type of data is to add a particular layer, called quantization layer,
at the end of the flow that is able to transform the integer values into real one. In this
way we can work with a pz that treat them as real variables and transform them as
such having expressible transformations, but also remapping them to integer at the
end obtaining the real px. This approach was first proposed by Theis et.al. [49] and
then evolved over the years, but the core of dequantization is to use a transformation
D :R→N inside the flow defined as

D(zi)= floor (zi), D−1(x)= x+v. (3.43)

Where v ∈ [0,1] is a random value extracted by some distribution q(v|x). It’s easy to
understand how such transformation is not bijective, having that all the values inside a
[n,n+1] range are mapped into n. That would mean that no inverse is present for such
function, in fact D−1 is not the real inverse but is known in literature as statistically
exact inverse. Can be seen that by adding a random noise to the integer entries, so that
n gets mapped back inside the range [n,n+1] randomly, the KL divergence loss obtained
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is still ≤ to the real one thus leading to the same result obtained by minimization [49].
Knowing that, we can choose the distribution we want in order to implement D ranging
from the simple uniform one, U(0,1), or a more flexible parametrized one that can be
optimized as one wants, Fig. (3.7).

This approach can be used in our study of the diagrams’ PDF letting us treat the
order as a real variable and then, only at the end apply a dequantization layer that
only modifies the order variable inside our C vector. Also, the choice of q(v|x) is not
important in such application since we are going to use the inverse KL loss in order to
train and the form of q mainly influences training using the forward one. Therefore, we
can simply stick with using the naive uniform distribution as inverse without lowering
our training performances.

Direct data sampling The other approach that can be taken is to treat the diagram
order separately to the other variables. Basically, we have that the order statistics is
usually fast to converge and collect giving us the possibility of performing a first run of
our model in order to collect it with few million steps in the chain. Once one has collected
pW (n) sampling from it is really easy since it’s an integer distribution and so the CDF
inverse algorithm, see App. (A), is really cheap to perform. In this way we can have
access to the exact sampling of n that can then be used as a parameter inside the flow.
Meaning that we can construct a model where we first sample n and then construct
a flow that takes it as an external parameter p̃W (C |n). So that every transformation
present inside it changes based on the order inserted, but does not act on it

[
n,τ,τ1

1,τ1
2, . . .

]→ [
n,T (τ;n) ,T

(
τ1

1;n
)
,T

(
τ1

2;n
)
, . . .

]
, (3.44)

creating an architecture called conditional flow [2] which allow us to switch from sam-
pling from the distribution of diagrams with different orders using the same model. In
this way we would have as a final model distribution a function composed of two parts

p̃W (C )= pW (n)p̃W (C |n), (3.45)

an exact one related to the order, and the one coming from the conditional flow to de-
scribe all the other variables. That gives us a way to obtain the final estimate of the total
probability for obtaining a certain diagram, resulting in being a much simpler solution
respect to quantization at the additional cost of running a relatively cheap simulation
to collect the order statistic.

Time ordering
Imposing an order between the variable of a distribution is important in order to de-
termine the final properties of the latter. That is a known fact in statistic that gives
rise to a certain branch of PDFs called order distribution, and the simplest example of
them all is given by the uniform distribution. If one takes a set of random variables
X = {X i}D

i=1 all uniformly distributed along with U(0,1) the final PDF would simply be
p(x) =∏D

i=1 pxi (xi). But, if we now impose that X i+1 > X i the probability of obtaining xi
for the i-th variable needs to take into account the probability of having the one before
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sampled smaller than it, and vice versa for the one after. That would give us a final
expression for the PDF that can be written as

p(xi)= pU (xi)
i−1∏
j=1

F j(xi)
D∏

j=i+1

[
1−F j(xi)

]
, F j(x)=

∫ x

0
dy pU (y), (3.46)

where F j is the cumulative distribution function of that particular random variable,
that can be easily written for a U(0,1) distribution as F j(x) = x. The final form of
the distribution obtained is quite complicated, even if it is constructed from the sim-
ple uniform distribution, showing us how such information is essential to describe dia-
grams’distributions.

From the previous discussion one should be able to understand how if we train our
model by simply using W only information about the distribution of the single vari-
ables are inserted. This leaves us with the need of telling the flow to also order them,
generating an order distribution with every pτi following the form given by the given
propagator. In order to do that one can again choose between two main possible solu-
tions: constraining the architecture to generate an ordered vector, or modify W in order
to insert time ordering directly in it.

Architecture constrain This method mainly consist in hard coding the constraint
directly inside the architecture by using an invertible transformation that maps the
generated variables into the wanted domain. For example, imagine describing the cre-
ation, b, and destruction, e, of a particle with a certain propagator D(e−b). In this case
we would need to have e > b along with b, e > 0, both conditions can be obtained in a
model by simple known transformations. To do that, let b and e be random variable in
R obtained from a series of transformations. We can easily transform them in order to
bring them into R+ by mean of a softplus function, which is invertible and can describe
a flow that we can add to our model defined as

τ(zi;β)= 1
β

log
(
1+ eβz−i

)
, logτ′(zi;β)=−βτ(−zi). (3.47)

So that by adding a layer with such transformation at the end of the model we would
satisfy the second condition of having b and e positive. From there a really simple
manipulation can be performed to order them by using a cumulative sum, namely the
transformation

τ(zi)=
i∑

j=1
z j, logτ′(zi)= 0. (3.48)

By placing such transformation after the softplus layer we would have that the final
vector results in being order with zi+1 > zi. In this way, we would be able to satisfy both
the conditions we imposed on b and e with the simple cost of adding two cheap final
layers to the complete flow.

Such approach results in being computationally cheap and simple to perform, since
both functions are well known and usually optimized version are present in all machine
learning frameworks. Nevertheless, it comes at a price inside the stability and express-
ibility of the constructed model. In particular, the softplus is not a too flexible function
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is good at approximate exponential like distribution, but having a hard time with more
general shapes. That often brings instability in the parameter β, becoming too high, or
in the parameters of previous layers. A drawback that should be kept in mind when
choosing the ordering approach inside the model.

Weight modification Another more elegant approach to retain time ordering is to
insert it inside the weight by changing W into a function that gives zero if the entries are
not ordered. To explain it we can take, again, the example of creation and destruction of
a particle with propagator D(e−b). In that case one would set W to D giving to the model
the information on the shape of the distribution, but to also tell about the ordering one
should modify it as

W(e,b)=
{

D(e−b) e > b∧ e,b > 0
0 otherwise

. (3.49)

In this way, a loss constructed using such function will be able to take into account the
order between the variables since a zero probability is associated to the unordered case.
Nevertheless, Eq. (3.49) is not suited to perform a model training since it’s not stable.
In fact, since it’s possible to obtain 0 from such function we would have that if during
the first phases of the training the model generates a set of non-ordered variables the
loss will diverge to ∞ stopping the process. In order to avoid that we should modify the
form of the weight in order to allow the machine to train, and the best way to do that is
by using a step function as

W̃(e,b)= D(e−b)σα(e−b)σα(b), σα(x)= 1
1+ e−αx . (3.50)

Now, by mean of two simple sigmoid functions, we have a way to write down the weight
so that it quickly decays as the generated variables do not respect the order. In particu-
lar, the decay is controlled by the value of the hyperparameter α which will modify the
form of the distribution we are approximating, tending to the original one in the limit
α→∞. Therefore, using Eq. (3.50) to create the loss we can train the model in a stable
way allowing us to use any known architecture without any constraint and obtain an
approximated form of the real distribution. Also, the expression can be easily modified
in a more general form and write it for a set of ordered variable simply as

W̃(z)=W(z)
D−1∏
i=1

σα(zi+1 − zi). (3.51)

A really simple form that if inserted inside the loss of the system becomes logW̃ , so that
the added sigmoids will translate into simple softplus functions. Meaning that also in
this case, the computational overhead is reduced to the minimum thanks to optimized
versions of the softplus function easily accessible.

Thus, this approach is able to let the flow posses much more freedom and expressive-
ness respect to the other one, but the distribution we are approximating is an approxi-
mate version of W itself giving potentially more error at the end. A drawback that can
be controlled by tuning the α parameter and setting it higher to obtain a more reliable
result, but making also the training less stable and leaving us with the task of trying
higher values until we don’t reach a limit.
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4
Global updates for DiagMC

In this chapter we will focus on the results obtained from the study of global updates
inside the Diagrammatic Monte Carlo algorithm. Starting with an analytical study of
the diagrammatic distribution aimed to obtain insight on the form of the pW function
for both the spin-boson and single site Holstein model, leading also at an analytical
form of the global updates. Then, the construction of a global update for the single site
Holstein model using a normalizing flow architecture is described highlighting the chal-
lenges that such task poses. In both cases the resulting update are tested performing a
correlation study to show how effective the approach is at improving convergence. Also,
all the results showed during the discussion were obtained through the use of the C++
LLDMC package [32], whose structure is briefly described right ahead.

4.1 LLDMC Implementation

LLDMC is a general purpose Diagrammatic Monte Carlo package created for this work
thesis, and was thought to constitute a flexible platform that allows to study different
models with different update types. Such goal was so obtained by the implementation
of several archetypical classes that composes the building blocks of the main DMC loop
structure. Which is really easy to understand provided a proper knowledge of the main
theory behind its statistical properties described in Ch. (2). In particular, once the
configuration of the diagram C , the set of updates {Γi}N

i=1, and the set of observables
{Oi}M

i=1, have all been defined; the working loop can be constructed as

1 auto rng = init_random_num_gen ();
2 auto walker = init_configuration ();
3 auto updates = create_update_list ();
4 auto observables = create_observ_list ();
5

6 for(int i = 0; i != Steps; i++){
7 // Randomly select an update
8 int which = rng() % updates.size();
9

10 // Obtain acceptance rate and proposed diagram
11 auto [acc_rat , new_walker] = updates[which ]( walker);
12
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13 // Perform MH decision
14 if (acc_rat < std:: uniform_real_distribution ()(rng))
15 walker = new_walker;
16

17 // Collect data when chain is thermalized
18 if (i > Thermalization_step)
19 for (auto ob : observables)
20 ob.eval(walker);
21 }
22

23 // Study of the data collected in observables list ...

That is all the coding one needs to do in order to perform DMC computations once the
starting building blocks have been defined. What LLDMC tries to do is to automatically
build such structure using the classes constructed by the user, allowing for models to
be studied quickly and with high freedom. In addition to that, a submodule has been
inserted inside the package in order to allow the user to create normalizing flow models
with the aim of creating global updates. Such module is called LLNF and is written on
top of PyTorch C++ API [41], giving some general classes in order to create the backbone
of a flow.

Here we want to briefly introduce the main features of LLDMC and LLNF in a way
that hopefully would allow the interested reader to try them. So that, the building blocks
of both the main parts will be introduced piece by piece as if we were constructing an
example together.

Making a DMC simulation
As described previously, to construct a DMC simulation we need: the configuration used
as walker in the chain, the updates that randomly modify the walker, and the observ-
ables that we want to evaluate. All of these three subclasses constitute a building block
of the simulation and posses a counterpart inside the LLDMC package as a pure virtual
class. So that, the user is able to define a configuration inside the package by simply
creating the data structure wanted for its specific case and then make it inherit the as-
sociated primitive virtual class. To make an example we can write down the simple form
of the Holstein diagram configuration class, which would have a form like the following.

1 #include <LLDMC/Archetypes.h>
2

3 class Holstein : public LLDMC :: Configuration {
4 public:
5 Holstein (): Configuration("Configuration name"){}
6

7 void set_param(std::map <std::string , double > param) override{
8 g = param["g"], o = param["o"], e = param["e"];
9 }

10

11 public:
12 // Diagram variables
13 int order {0};
14 double elec_fly_time {0};
15 double ph_beg [1000] , ph_end [1000];
16
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17 // Hamiltonian parameters
18 double g, o, e;
19 };

This data structure will be used as walker inside our algorithm and should contain all
the information about the system we are working with. In our case we have inserted
the data that would describe the diagram: order that tells the number of phonons,
elec_fly_time describe τ, and arrays giving the start, ph_beg, and end, ph_end, of all
the phonons contained. But, along that, also the values of the Hamiltonian’s parameters
are present, with electron-phonon coupling strength g as g, phonon frequency Ω as o,
and electron energy ε as e. Such values are often changed in different simulations in
order to study the different regimes of the model, and so the possibility of changing
them without recompiling the program results in being quite useful. That is the reason
for the presence of the set_param function implemented here, which will be called at
the start of the simulation to initialize the Hamiltonian parameters as defined by the
user in the LLDMC ini file that will be described afterwards. Once that such function is
defined the first building block has been constructed, and now we have a data structure
containing all the information needed on the system under study that is accessible to all
the program.

The next step is to construct the updates needed for the modification of the walker in
the chain. Such objects inside LLDMC are a little different respect to the general simple
case described inside the general DMC loop above. That is because inside the package
updates are interpreted as objects that can directly modify the walker diagram without
the need of giving in output a new one every time, which would be computationally
really expensive. To show how that work in practice the implementation of Γadd for the
Holstein model is reported next.

1 class add_n : public LLDMC ::Update <Holstein > {
2 public:
3 add_n(): Update("Update name", "Balancing update name"){}
4

5 // Store the modification and give the acc_rate for such
6 double atempt () override{
7 new_b = std:: uniform_real_distribution <double >(0, dia ->t)(rng);
8 new_e = std:: uniform_real_distribution <double >(0, dia ->t)(rng);
9

10 if (new_e < new_b)
11 std::swap(new_e , new_b);
12

13 // Acceptance rate
14 return 0.5 * std::pow(dia ->g * dia ->t, 2)
15 * std::exp(- dia ->o * (new_e - new_b)) / (dia ->n + 1);
16 }
17

18 // In case it’s accepted modify the diagram
19 void accept () override{
20 dia ->ph_beg[order] = new_b;
21 dia ->ph_end[order ++] = new_e;
22 }
23

24 private:
25 double new_b , new_e;
26 };
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From the example one can notice how every update is composed of two main methods:
the first being atempt, and accept the second. The former has the role of sampling
the new modification that we try to perform to the current diagram and store it into its
local variables. Then, it needs to output the acceptance rate of the sampled change so
that the package is able to perform the Metropolis-Hasting step and accept or reject the
update. Getting accepted means calling the accept function and effectively performing
the sampled modification. In our case this implies adding a phonon to the diagram by
inserting the new beginning and end into the arrays, and then increase the order that
gives the total number of phonons. It’s important to notice how inside the class all the
variables dia and rng are used without never defining them. The reason is that LLDMC
updates comes with an already initialized pointer to the walker diagram, called dia,
used to modify it or access models variable and random number generator, named rng,
that can be used for sampling. Once all of that is understood it becomes really simple
to define updates for every type of situations, the only difficult part becomes getting the
acceptance rate right. In particular, here a slight variation of the update introduced
inside Sec. (2.2.1) is used that makes it more efficient. Instead of sampling the start
from U(0,τ) and then the end using U(b,τ) they are both sampled from U(0,τ) and then
ordered by swapping them if the end is lower than the start. This simplifies the form
of the acceptance rate giving as final result the one showed in the code, which does not
depend on the value of the sampled beginning, as was the one introduced in Sec. (2.2.1),
making it more efficient.

The last step that needs to be done is the definition of the wanted observables, which
will give the real object of study of the model under consideration. The way in which such
object are constructed inside LLDMC is really similar to the updates, sicne they also
possess the dia and rng variables and a similar syntax. Nevertheless, some differences
are present and to see them through we prepared as example the class defining the
observable for the εp value as follows.

1 class Ep : public LLDMC::Observable <Diagram > {
2 public:
3 Ep(): Observable("Observable name"){}
4

5 // Add the current value to the counter
6 void eval() override{
7 // Need high t limit
8 if (dia ->elec_fly_time < 7) return;
9

10 double res = 0;
11 for (int i = 0; i != dia ->order; i++)
12 res += dia ->ph_end[i] - dia ->ph_beg[i];
13

14 val += (dia ->o * res - 2 * dia ->order) / dia ->elec_fly_time;
15 n++;
16 }
17

18 // Periodically save mean in history
19 void conv() override {hist.push_back(val / n);}
20

21 // Instruction to print the results
22 void print(const std:: string &path) override{
23 FILE * file = fopen(path.data(), "a");
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24

25 for (auto x : hist)
26 fprintf(file , "%f ", x);
27 fprintf(file , "\n");
28

29 fclose(file);
30 }
31

32 private:
33 double val{0}, n{0};
34 std::vector <double > hist;
35 };

The way in which the class will get used is simple. Basically, the eval method is called
after every update so that the data can be collected and the current value for the εp is
added to a general sum and a counter is increased. In this way the final value for the
mean can be accessed in every moment by simply dividing one by the other, allowing
for the creation of a history for the convergence of the value. In fact, the method conv
is called not every step but after a fixed period that can be decided by the user, and
here is used to insert values inside the convergence history without creating a too large
array that would slow down the program. At last, the print function needs to be defined
and gets used at the end of the simulation in order to print out its results. To be more
precise, once the simulation comes to its end the program will call the print function of
all the observables present passing as input the path "progr_path/Obs_name.dat". In
this way the user can decide how to print the data from the simulation as it wants inside
a separate file and analyzing them as he wants.

After defining all the wanted updates and observables the simulation can be setup
and performed. To do that inside LLDMC one needs to use the manager template class,
which constitutes a simple user interface in order to quickly initialize every type of
simulation in just few lines. To see that the code used to lunch every Holstein simulation
has been reported in the following listing.

1 LLDMC::Manager <Holstein > manager;
2

3 manager.add_update <chg_t >();
4 manager.add_update <add_n >();
5 manager.add_update <rem_n >();
6

7 manager.add_observable <Ep >();
8 manager.add_observable <Green >();
9

10 manager.simulate("path/to/the/ini/file");
11

12 manager.print("path/for/printing");

Just a few self-explanatory commands are all that is needed in order to start the sim-
ulation using a Holstein object as walker and modify it using the wanted update or
observables by easily add or remove one line. In this way we are able to experiment ev-
ery possible combination of updates with ease, especially because the loop performed by
the manager class is more sophisticated respect to the simple example described previ-
ously. In particular, it automatically collects the statistical properties of the chain such
as the acceptance and reject rates of every update along with the correlation of the ac-
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ceptance along the chain. So that we don’t even need to construct specific observable for
them since are general enough to be collected automatically for every model. Still, such
feature can be turned off inside the same standard input file that is used in order to
initialize the diagram and the simulation itself. To complete our example, and introduce
such file, the input for a general Holstein simulation is reported next.

1 [Configuration]
2 g = 0.5
3 o = 1.0
4 e = 1.0
5

6 [Simulation]
7 THE_STEP = 5E6
8 MAX_STEP = 1E7
9 CONV_CKP = 1E4

10 GET_CORR = 1

The input file is written in a standard .ini format, with a first part related to the
initialization of the Hamiltonian’s parameters for the walker diagram, and a second
one for the simulation’s specifics. The former contains the names and the values that
are then used inside the set_param function of the configuration. While, the latter is
defining several specific values such as:

THE_STEP Number of thermalization steps before the observables starts to get collected;

MAX_STEP Total number of steps inside the chain before the end of the simulation;

CONV_CKP Number of steps after calling the conv method of the observables;

GET_CORR Boolean that tells if the correlation needs to be collected or not.

These are only a bunch of all the possible simulation options that can be used in the
package, to see them all one can check the SimOptions.h file where all are reported.

Once the manager object and the input file are defined the simulation can be run as
wanted, selecting the regime of the system by simply modifying the coupling or phonon
frequency in the input file. The architecture leaves also room for parallelization, since
it’s easy to define a different manager object in every thread and then let every one of
them run in parallel. In this way several chains can be created at the same time with
results that can be printed at different locations to be analyzed separately.

Normalizing Flow module
The LLNF module was thought to give the user a set of tools to build general NF ar-
chitectures focussing only on the PDFs they want to use and the transformations they
want to apply. A goal achieved by the use of a FlowManager class that is able to con-
struct a complete flow by the knowledge of: 1) a starting PDF, 2) the target one, 3) the
list of transformations to apply. All of them can be defined using the primitives types of
the module, giving rise to a structure similar to the one of the LLDMC simulations. So
that, we will apply the same approach used for the previous part and construct a simple
example of a flow together.

The first step in the construction of a NF is the definition of the two PDFs that are
used: the starting distribution and the target one. To define them we shall use the pure
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virtual classes Distribution and TargetDistribution, which are really similar to one
another with the only difference that the target one does not require the definition of a
sample method. In order to understand that better we show next the definition of the
diagonal Gaussian distribution present between the standard distributions available
inside the package.

1 #include <LLNF/Archetypes/distribution.h>
2

3 class GaussianImpl : public Distribution {
4 public:
5 GaussianImpl(int n_dim , torch :: TensorOptions option = torch:: kFloat64

){
6 mean = register_buffer("mean", torch::zeros(n_dim , option));
7 std = register_buffer("std", torch:: ones_like(mean));
8 }
9

10 torch:: Tensor sample(uint num_sample = 1) override {
11 auto samples = torch ::randn({ num_sample , get_dim ()}, mean.options ()

);
12 return samples * std + mean;
13 }
14

15 torch:: Tensor log_prob(const torch :: Tensor &z) override {
16 return -get_dim () * 0.9189385332046727 - (std.log() + 0.5 * ((z -

mean) / std).pow (2)).sum(1);
17 }
18

19 private:
20 torch:: Tensor mean , std;
21 };
22

23 TORCH_MODULE(Gaussian);

The influence of the Torch package should be now clear by the use of the TORCH_MODULE
macro needed in order to give the defined class all the properties of a module. Notice
that the only things that the user is required to do in this process is to define how
to sample from the distribution and input the log probability of the distribution itself.
Once those information are provided the distribution is complete and can be used inside
the model. For the target distribution the process is even simpler since it’s not required
for the sampling mechanism to be inserted in the class definition, unless it is needed for
the training method one intend to use. Anyway, in the definition of a base distribution
there is also the possibility of defining a cond_sample method which takes as input a
tensor of conditional parameters that can be used to create conditional NF architectures.
Basically it can be used to give parameters to the distribution that can change its form
or be passed to the transformations in order to condition their form. A strategy that will
be better discussed, and used, in Sec. (4.3.1) during the construction of the model.

After the PDFs have been defined one can focus on the transformations by defining
them through the Flow virtual class. The latter simply needs the definition of a forward
method, which that transforms the input vector and compute the log determinant of the
performed operation, and an inverse one with equal functionalities but with the inverse
operation. A simple example of an implementation is given by an Affine transformer
associated to a coupling conditioner, which can be written in the following way.
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1 class CouplingAffineImpl : public Flow{
2 public:
3 ToyAffine(int hidden = 50): cond(std::vector <int >{1, hidden , 2}){
4 cond ->to(torch::kF64);
5 register_module("cond", cond);
6 T_ = register_parameter("T", torch:: zeros(1, torch::kF64));
7 S_ = register_parameter("S", torch:: zeros_like(T_));
8 }
9

10 std::tuple <torch ::Tensor , torch ::Tensor > forward(const torch:: Tensor
&z) override{

11 auto&& h = cond ->forward(z.slice(1, 1)).chunk(2, 1);
12

13 auto S = torch::cat({h[0], S_.expand_as(h[0])}, 1);
14 auto T = torch::cat({h[1], T_.expand_as(h[1])}, 1);
15

16 return {S.exp() * z + T, S.sum (1)};
17 }
18

19 std::tuple <torch ::Tensor , torch ::Tensor > inverse(const torch:: Tensor
&z) override{

20 auto&& h = cond ->forward(z.slice(1, 1)).chunk(2, 1);
21

22 auto S = torch::cat({h[0], S_.expand_as(h[0])}, 1);
23 auto T = torch::cat({h[1], T_.expand_as(h[1])}, 1);
24

25 return {(-S).exp() * (z - T), -S.sum (1)};
26 }
27

28 private:
29 LLNF::MLP cond;
30 torch:: Tensor S_, T_;
31 };
32

33 TORCH_MODULE(CouplingAffine);

Here the flow in question assumes that the input vector has dimension 2, so that the
input vector ca be easily split in half and only the first entry is used inside the multi
layer perceptron (MLP) to obtain the transformation parameters. Thus, this object con-
stitutes a flow on its own that is able to transform half of the vector under study and
can learn by training the parameters present inside the MLP object that works as con-
ditioner. This is the approach that one should have inside the construction of every type
of transformer inside the LLNF library.

Once the transformer has been defined correctly one has all the pieces needed for
the construction of the complete FlowManager, which defines the complete model. In
fact, that object posses a series of useful methods that can be used in order to perform
general operations on the flow, such as: sampling, computing the log probability of a
certain sample, evaluating the forward and reverse KL divergence, and so on. That is
useful especially in the context of training the model, where the KL divergence is the
key quantity to compute and inside our package we can do it using this simple code.

1 // Define the bits of the flow
2 auto base = CreateBasePDF ();
3 auto target = CreateTargetPDF ();
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4 std::vector <std::shared_prt <Flow >> flows = CreateFlowList ();
5

6 // Construct the manager
7 LLNF:: FlowManager flow(base , flows , target);
8

9 // Compute divergence
10 auto loss = flow.reverse_KL (1E5 /* = num_sample */);

In this procedure the model will automatically sample the wanted number of samples
from the approximated distribution and use the log probability of the target in order
to compute the mean loss as in Eq. (3.19). This creates a final form that can be easily
inserted into a training loop and allow us to freely experiment on the model composition
by modifying only the external function CreateFlowList. This was exactly what was
done in the work that will be presented in Sec. (4.3.1) to test the different models and
search for the best hyperparameters.

4.2 Analytical global updates

Inside Sec. (2.1.2) we discussed how the main property of a global update is the one
of possessing a unitary acceptance rate A , bringing it to be always accepted inside a
chain. Also, in our discussion was also shown how that condition is satisfied if the
update Γ(x → y) is equal to the target distribution p(y) itself, giving no dependence on
x and therefore no correlation. Knowing that, we can study the form of pW inside DMC
by using the condition described inside Eq. (2.26) and a vector representation of the
diagrams, C = [x1, . . . , xD], to write

pW (C )W(C ′)
pW (C ′)W(C )

=
W(C ′)

∏D
i=1 pW (xi|x<i)

W(C )
∏D

i=1 pW (x′i|x′
<i)

= 1. (4.1)

Where we directly used pW as the form of our update, and decomposed it using the chain
rule of probability. Using such decomposition it’s possible to focus on the modeling of the
single conditional, one at a time, which results in a better approach when dealing with
diagrams. In fact, the weight can be often decomposed by a series of contributions given
by the different variables that allow us to have

W(C ′)
∏D

i=1 pW (xi|x<i)

W(C )
∏D

i=1 pW (x′i|x′
<i)

=
∏D

i=1 f i(x′i)pW (xi|x<i)
∏D

i=1 f i(xi)pW (x′i|x′
<i)

. (4.2)

Basically, this lead us to something that can be simplified, in principle, by setting the
conditional to be proportional to f i. Nevertheless, such form is not always obtainable
and also the constraint of time ordering make so that the final distribution is more
complex than a simple proportionality due to domain definitions. Still, the best way to
understand such concept is by application, and for this reason we will first study the
test case of the single site Holstein model to show to obtain pW in a simple case. Then,
the same approach will be applied in the more interesting case of the spin-boson model
showing how such approach is not restricted to toy models.
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Single site Holstein
The single site Holstein model is a really simple test case characterized by a disper-
sionless phononic and electronic spectrum that reduces the weight function to the form
discussed in Eq. (2.30). Such form gives us a really simple way of representing the
diagram through a vector containing all the needed variables to compute the weight

C = [τ,n;b1, e1, . . . ,bn, en], W(C )= g2ne−ετ
n∏

i=1
e−Ωe i eΩbi . (4.3)

Where, the absence of momentum inside the diagram make it so that W is composed by
functions that only depends on one variable at a time. That allow us to use the form
in Eq. (4.2) to start describing the conditionals of pW one at a time by looking at the
following form of A

e−ετg2n′ ∏n′
i=1 e−Ωe′i eΩb′

i
∏2n+2

i=1 pW (xi|x<i)

e−ετg2n ∏n
i=1 e−Ωe i eΩbi

∏2n′+2
i=1 pW (x′i|x′

<i)
= 1. (4.4)

Notice how the time of flight was taken equal in both x′ and x, that is because we
already have discussed of an update having A (τ→ τ′) = 1 in Sec. (2.2.1). That allow
us to think at τ as a conditional parameter inside our distribution and modify it using
that update that still does not add correlation to out chain. The Eq. (4.4) is still one
piece of the total information, to complete the picture we will also need the domain of
definition for every variable. Such constrains can be obtained from the diagrams rules,
understanding how we need to place a certain variable respect to the others in order to
obtain a valid diagram. The best example is the time ordering constraint, meaning that
we can’t have a destruction time larger than a creation one, giving b < e, or that, again,
we cannot have a electron-phonon interaction after the destruction of the electron, so
b, e < τ. Understanding that, one would easily understand the definition of the following
domains

n ∈N, bi ∈ [0,τ], e i ∈ [bi,τ], (4.5)

where the only addition to what was already sad is that b, e > 0 since before the electron
is not present. Eq. (4.5) and Eq. (4.3) shows how the couple {bi, e i} related to one
phonon has no connection with the ones related to the others. In fact W is composed
by independent phononic propagators, whose value only depends on bi and e i, and the
respective domains are not entangled so that e i and e j do not pose constraint on each
others, same for bi and b j. Based on that, one can drop the complete dependence on the
whole x<i inside such variables and simply assume that

pW (bi|x<i)= pW (bi|τ), pW (e i|x<i)= pW (e i|bi,τ), (4.6)

since those are the variables that enters the domain or the propagator. Taking that into
account we can isolate the part related to such functions inside Eq. (4.4) and focus on
describing the phononic contribution to the distribution

e−Ωe′i eΩb′
i

pW (b′
i|τ)pW (e′i|b′

i,τ)
pW (bi|τ)pW (e i|bi,τ)

e−Ωe i eΩbi
. (4.7)
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To satisfy this first requirement we can start from the distribution of e i and simply
assume that is proportional to exp(−Ωe i). In this way we can easily obtain a form for its
PDF by normalizing it inside the defined domain, obtaining

pW (e i|bi,τ)= Ω
C

e−Ωe i , C =
∫ τ

bi

dxΩe−Ωx = e−Ωbi − e−Ωτ. (4.8)

The final distribution is conditioned by τ and bi through the normalizing constant,
which represent the complexity added by the time ordering of the variables. By us-
ing this form inside Eq. (4.7) one can simplify the elements in the relation that depends
on e i and arrive at

1− e−Ω(τ−b′
i)

pW (b′
i|τ)

pW (bi|τ)
1− e−Ω(τ−bi)

, (4.9)

where can be noticed how the contribution of bi has changed by mean of the normal-
ization constant, becoming more complex. Nevertheless, the same idea as before can be
used in order to eliminate bi from the expression, so that we define as PDF for such
variables the function

pW (bi|τ)= 1
C

[
1− e−Ω(τ−bi)

]
, C = τ+ 1

Ω

[
1− e−Ωτ

]
. (4.10)

Once this is inserted in Eq. (4.9) it’s easy to see how the fraction goes to unity, meaning
that we have obtained the right expression for the conditional describing phonon’s vari-
ables. After this discussion one would assume that the next step would be inserting Eq.
(4.10) inside Eq. (4.4) and obtain a final form for the conditional of pW (n|τ), but that
would be an error. The error being assuming that the probability of having a diagram
with phonons given by the set {bi, e i}n

i=1 can be obtained from

pW ({bi, e i}n
i=1)=

n∏
i=1

pW (bi|τ)pW (e i|bi,τ). (4.11)

That is not true, because every permutation P of the indices defines a new set {bP(i), eP(i)}n
i=1

who leads to the same diagram. What this is telling us is that the order of the phonons
inside the vector representation doesn’t matter, and so the probability of having a cer-
tain set of phonons is given by the sum all possible permutations. In our case doing that
is simple since all the permutation have same probability bringing so a simple n! factor
in front of Eq. (4.11). Knowing that we can correctly insert the distribution inside Eq.
(4.4) and obtain that the two series of product simplifies into

λn′
/n′!

pW (n′|τ)
pW (n|τ)
λn/n!

, λ= g2

Ω2

[
τΩ+1− e−Ωτ

]
. (4.12)

This show how by choosing the number of phonons as distributed following a Poissonian,
with mean given by λ, the value of pW (n|τ) simplifies the last term reaching a unity
acceptance rate. Therefore, by studying one variable at a time, the full statistic of the
phonons variables of a diagram, given a τ, was obtained. Where, we now know how
number and positions of phonons are distributed as

pW (n|τ)= λn

n!
e−λ, pW (bi|τ)= 1− e−Ω(τ−bi)

τ+ 1
Ω

[
1− e−Ωτ

] , pW (e i|bi,τ)= Ωe−Ωbi

e−Ωbi − e−Ωτ
.

(4.13)
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That allows us to create an update that directly sample the correct distribution by using
known numerical routine, such as the CDF inverse method in App. (A), to sample n,
bi and e i as with the needed PDFs. Thus, the final update Γph(n → n′) will sample a
new number of phonons, n′, for the diagram from pW (n′|τ) and then sample the values
{b′

i}
n′
i=1 from pW (b′

i|τ) that are needed to sample {e′i}
n′
i=1 from pW (e′i|b′

i,τ). Once that it
is constructed one can take the Γchg(τ→ τ′), that we discussed in Sec. (2.2.1), and add
it to the newly created update in order to have a full ergodic global update that would
always be accepted

Γg(C →C ′)= 1
2

[
Γchg(τ→ τ′)+Γph(n → n′)

]
. (4.14)

The effectiveness of the method Γg was tested by directly implementing it inside the
LLDMC package alongside the previously seen local set of updates in order to compare
the convergence properties. Also, a third scheme of updates has been tested alongside
them containing both global and local updates with a modification to Γph to reject the
update if

∣∣n′−n
∣∣ = 1. Such requirement is present in order to simplify the detailed

balance condition when an update goes from n to n+1, where if both local and global
were present without limitations one would have

Γg(n → n+1)= 1
N

[
Γph(n → n+1)+Γadd(n → n+1)

]
, (4.15)

or remove in the case of n going to n−1, N is the number of updates in the set. The
form in Eq. (4.15) needs to be taken into account inside the acceptance rate, making it
much more complex and less effective. To avoid that we set Γg(C → C ′) to 0 when the
two diagrams in question differs by only one phonon. That makes Γg simplify inside the
previous expression leading to unmodified expressions for the acceptance rate of both
global and local updates, bringing the possibility of their simultaneous use in a mixed
global-local update. This leaves us with three possible update schemes: 1) the local one
used nowadays as standard, 2) the global one that will always be accepted, 3) a mixed
scheme that uses both the previous ones at the same time.

To test the convergence of the three proposed updates a series of 13 parallel simu-
lations were performed for each update setting the Hamiltonian parameters at ε = 1,
Ω = 1 and g = 0.5. In this way, it was possible to look at the evolution of εp, defined in
Eq. (2.67), at every step generating a set {εi

p(n)}M=13
i=1 of 13 independent estimates of the

same observable after n updates. From them one can compute statistical average and
deviation of the polaron energy at a certain point in the simulation for the three updates

ε̄p(n)= 1
M

M∑
i=1

εi
p(n), σ2

ε(n)= 1
M

M∑
i=1

[
εi

p(n)−εp(n)
]2

. (4.16)

Thus, the value of ε̄p(n) gives us an average evolution of the observable and σε(n) ap-
proximate the error that one might expect for the observable in that point of the chain.
By comparing how fast a certain set of updates reaches on average the exact value of
−g2/Ω and how large the σε(n) is we can give a quantitative estimation of the conver-
gence performances. The results of such analysis for the three different update schemes
are reported in Fig. (4.1) where is’s also reported the value of the correlation along the
chain computed as in Eq. (2.24). By looking at the results can be clearly seen how lower-
ing the correlation inside the chain bring a great advantage to the overall convergence,
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Figure 4.1: Evolution of the estimate for εp inside the single site Holstein polaron for the local, global
and mixed update schemes, with the correct analytical result represented as the black dashed line. All the
simulations were performed atΩ= 1, ε= 1 and g = 0.5 with 1E6 thermalization steps. For all the schemes
the results from 13 parallel chains were collected to compute the average behavior and the deviation. The
former is represented as a solid line, while the colored area between dashed lines is the confidence interval
obtained by adding and subtracting the standard deviation. A zoom on the last part of the convergence is
present in the bottom right of the main plot, while on the right the correlation of a diagram with the one
obtained after k steps is shown computed using Eq. (2.24).

as we expected from the discussion in Sec. (2.1.2). Still, here we can clearly see how the
local update scheme posses the largest correlation between the three possibilities lead-
ing to the highest σε and to a much larger number of steps needed before the average
approaches the real value. In particular, the global scheme seems to reach the correct
result in the first two million steps while the local observable is still away even after ten
million. Also, the deviation associated to the former, represented as the dashed area in
the figure, results in being ∼ 2.9 smaller than the local updates one. This value is consis-
tent with the expected increase of 2τO obtained in Sec. (2.1.2) since the correlation time
obtained from the chain is ∼ 1.5. Therefore, the global scheme has a total advantage on
the local one under a statistical point of view, but still can be understood how perform-
ing such update is more costly given that more random number needs to be generated
every time. Such computational overhead can become important when the average or-
der of the diagram increases, but still the enhancement in statistical behavior make it
the better choice also for larger coupling. Still, in order to avoid even the increase in
computational complexity we constructed the mixed update scheme. By using both the
global update and the local ones we obtain a set of updates that perform a series of
computationally cheap operations followed by global costly ones that reduces the chain
correlation. The result is a final update that is on average cheap to perform, like the
local one, and posses better statistics respect to simple local case. In fact, in Fig. (4.1)
we can see how also for the mixed case ε̄p reaches the exact result much faster and with
a σp that is ∼ 2 times smaller than the local one. The overall result is that the mixed
scheme will outperform the classical one at all the possible couplings being as efficient
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Figure 4.2: Results for the simulation done at different coupling constant g using the same setup
of the simulation presented in Fig. (4.1). On the left the value of the Green function is reported in log
scale with the average value between the 13 run in bold line and the confidence interval showed using
the colored area. On the right, instead, the value of the correlation time as a function of g is presented
showing how the mixed scheme is always better than the local one.

but with better statistical properties. In order to see how such claim holds true a series
of computations for different values of g were performed using the same setup as before,
but now computing the Green’s function of the polaron and the total correlation time.
The results are shown inside Fig. (4.2) and shows the correlation time evaluated for the
ρ observable as a function of g for the mixed and local update, the global update is not
reported since is identically zero. Such quantity shows how the mixed update is always
less correlated then the local one at every step, showing how it’s effectively the better
choice at all coupling regime. Still, it’s interesting to see how the correlation of both
decreases rapidly as g increases. That is due to a larger average number of phonons in
the system that make it so that the add-n and rem-n updates obtain a higher acceptance
rate. Such behavior can be also seen in the estimation of the Green’s function, where
we can see how the standard deviation evaluated form the 13 runs gets lower for every
τ value as g increases. Still, one last thing that can be noted is that the σ inside the G
estimate is nearly the same for all the updates, as can be seen in the zoom on the left
part of Fig. (4.2). That is because, even if the mixed and global updates have an overall
less correlation all three schemes uses the same approach to update the external vari-
able τ. In fact, τρ is not a real estimate of the correlation of the variable τ, but a general
way to look at the correlation of the chain. Thus, since the scheme used to update that
variable is the same, and is a global update with unity acceptance rate, the correlation
in the evaluation of the G observable is equally low for all the schemes. Therefore, it is
true that the mixed and global update always leads to better converging estimates of the
observable respect to the local ones. But, is also possible that the latter has already low
correlation on particular variables that can lead to similar performance in the compu-
tation of averages depending only on them. Like the Green’s function estimator in Eq.
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(2.52) depended only on the value of τ, which was treated equally in our local and global
approaches leading to the same correlation and equal performances in G(τ) estimation.

Spin-Boson
The same approached adopted so far can be used in order to describe also the PDF of
the spin-boson model without further modifications. Such model was introduced in Sec.
(1.3.2) and the description of their diagrams, in Sec. (2.2.2), showed how the model was
affected by sign problem forcing us to work with |W | instead of W . Thus, by looking at
the absolute value of the weight we can see how the diagrams can be easily described
by using two set of variables: the times of the tunneling interaction {τi}

nx
i=1, and the

creation and destruction time of the phonons {bi, e i}
np
i=1. Using them, one can create a

vector representation of the diagram similar to the one used in the Holstein one, that
can be used to evaluate the weight as

C = [β,nx,np;τ1, . . . ,τnx ,b1, e1, . . . ], |W |(C )=
(
∆

2

)nx np∏
i=1

D(e i −bi). (4.17)

Once again the functions composing the target weight depends on one variable at a
time, satisfying once again the form of Eq. (4.2) that we can use to construct p|W |. In
particular, here we can see how there is a complete separation of the spin and phonons
degrees of freedom, leaving us with the possibility of separating the main function into

|W |(C )=
[(
∆

2

)nx
][ np∏

i=1
D(e i −bi)

]
=S (β,nx;τ1, . . . ,τnx)P (β,np;b1, e1, . . . , enp ). (4.18)

This suggests that also the complete distribution can be separated in two parts that
describe the statistics of spin, pS , and of phonons, pP , respectively. In the following
description we will obtain expression for both of them, allowing us to create two global
updates that would allow us to directly sample a spin state {τi} or a phonon state {bi, e i}
by using one or the other.

We will start by focussing on the spin part of the weight and work as for the Holstein
model, so that we shall first describe the domain of integration for the variable, having
that

nx ∈N2, τi+1 ∈ [τi,β]. (4.19)

Where β does not have a domain of definition since is taken as a constant describing the
temperature of the simulation, also N2 is used to identify all even integers. Still, once
again the correlation between the variable is inserted purely through the time ordering
constraint, meaning that we could start the process of continuous integration of the
p(τi|β,τi−1) conditionals as done in the previous subsection. Nevertheless, in this case a
much cleverer way of obtaining the exact result can be used by doing the following. Let
all the τi be sampled from the uniform distribution U(0,β), then through the use of a
sorting algorithm we can obtain a sorted set {τ j}

nx
j=1 that respects the wanted boundary

conditions. Mathematically speaking such approach is equivalent to sample nx uniform
random variable from the same distribution, and then select the one between the nx!
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permutations that bring the generated vector in the wanted order. As a result, the final
PDF that is generated is given by

pS (τi, . . . ,τnx |β)= nx!U(0,β) · · ·U(0,β)= nx!β−nx , (4.20)

where the factor nx! comes out by the same reasoning used for the Holstein’s phonons
distribution, that we need to add the possibility of sampling all the permutation of the
same vector since they bring to the same result. Next, we can insert such form inside
the decomposition condition of Eq. (4.2) so that by separating the spin variables one
would obtain

(∆/2)n′
x pS (nx|β)pS (τi, . . . ,τnx |β)

(∆/2)nx pS (n′
x|β)pS (τ′i, . . . ,τ

′
nx |β)

=
(
∆β/2

)n′
x /n′

x!
pS (n′

x|β)
pS (nx|β)(
∆β/2

)nx /nx!
= 1. (4.21)

Thus, the form that the distribution of the orders should take to reach unitary accep-
tance rate has the same form of a Poisson distribution. Nevertheless, we can’t directly
sample nx from a naive Poisson since it needs to be even, a constraint that can be set
inside the distribution by normalizing it as

1
C

∑
n∈N2

λn

n!
= 1

C

∞∑
n=0

λ2n

(2n)!
= 1

C
cosh(λ). (4.22)

Meaning that to normalize the distribution we shall set C equal to the hyperbolic cosine
of the average. Knowing that is really easy to construct a numerical routine that directly
sample from such distribution, so that we have obtained a form for pS from which can
easily sample from as

pS (nx|β)=
(
∆β/2

)nx

nx!
cosh−1

(
∆β

2

)
, pS (τi, . . . ,τnx |β)= nx!β−nx . (4.23)

With a sampling process that starts by sampling an order from the even Poissonian
and then sample nx times uniformly distributed in between [0,β] to pass to a sorting
algorithm to obtain the final {τi}

nx
i=1 ordered set.

Next, to describe the distribution of phonons the best way is to make a slight change
of variable and describe them not using the creation and destruction time, but using
creation and length as

P (β,np;b1,ν1, . . . ,νnp )=
np∏
i=1

D(νi), νi = e i −bi. (4.24)

From that we can now start the description of the distribution as before by recalling the
variables domains, that in this case are

np ∈N, bi ∈ [0,β], νi ∈ [0,β−bi], (4.25)

which are analogous to the one of the Holstein model in Eq. (4.5). That analogy tells us
that the distribution would have a similar form, but instead of depending on the expo-
nential function we will have to deal to the integral propagator defined in Eq. (1.92). So,
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by following the Holstein model case we can start by defining the pP (νi|bi,β) conditional
as proportional to D and normalize by computing the integral

C(bi,β)=
∫ β−bi

0
dxD(x)= αωc

2

∫ β−bi

0
dx

∫ 1

0
dq qs cosh[ωcq(β/2− x)]

sinh[ωcqβ/2]
. (4.26)

Such integral can be simplified by switching the two integration and use the hyperbolic
function properties to obtain the form

C(bi,β)= αωc

2s
+ αωc

2

∫ 1

0
dq qs−1 sinh[ωcq(β/2−bi)]

sinh[ωcqβ/2]
. (4.27)

Having that form the conditional can be written using pP (νi|bi,β) = D(νi)/C(bi,β). So
that, by isolating the Phonons variables as in Eq. (4.7) and substituting the conditional
for the length of the phonons one can see how the distribution of the creation pP (bi|β)
must now be proportional to C(bi,β). To transform that function into a PDF we shall
normalize it once again in the wanted domain by computing the integral

λp =
∫ 1

0
dx C(x,β)= αβωc

2s
+ αωc

2

∫ 1

0
dq

qs−1

sinh[ωcqβ/2]

∫ β

0
dxsinh[ωcq(β/2−bi)]=

αβωc

2s
,

(4.28)
where we use the fact that sinh is an odd function giving a zero integral. Once again
we can define the conditional of the phonon creation times as pP (bi|β) = C(bi,β)/λp
that we can plug in inside the equation for the acceptance rate and add the usual np!
contribution to have

[∏n′
p

i=1 D(ν′i)
]

pP (np|β)np!
∏np

i=1 pP (bi|β)pP (νi|bi,β)
[∏n′

p
i=1 D(ν′i)

]
pP (n′

p|β)n′
p!

∏n′
p

i=1 pP (b′
i|β)pP (ν′i|b′

i,β)
=

λ
n′

p
p /n′

p!

pP (n′
p|β)

pP (np|β)

λ
np
p /np!

= 1. (4.29)

Without much surprise, we obtain that the distribution of the number of phonons is a
simple Poissonian with λp as average, giving us the complete picture of the distribution
as

pP (np|β)=
λ

np
p

np!
e−λp , pP (bi|β)= C(bi,β)/λp, pP (νi|bi,β)=D(νi)/C(bi,β).

(4.30)
From which all the variables can be sampled once again using a standard Poisson sam-
pler and the numerical CDF inverse approach.

Therefore, from this discussion we have obtained two different global updates de-
scribed by pS and pP respectively. The former describing the statistics of the spin vari-
ables and giving a way to sample them directly, ΓS (C → C ′), while the latter ΓP (C →
C ′) act in the same way for the phononic degrees of freedom. Both of them have been
implemented inside the LLDMC framework along the local updates described in Sec.
(2.2.2) to once again compare the performance. Also, a mixed update has been intro-
duced in the performance study once again by using the same approach as before and
simply using both spin and phonons global updates along the local ones but reject the
global ones if

∣∣n′
x −nx

∣∣ = 1 or
∣∣n′

p −np
∣∣ = 1 respectively. All the simulations were per-

formed setting the tunneling strength to unity, ∆ = 1, so that all the quantities are
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Figure 4.3: Evolution of the estimate for the squared magnetization inside the spin-boson model for
the local, global and mixed update schemes. All the simulations were performed with ωc = 10, s = 1 and
∆= 1 using 1E6 thermalization steps, while keeping β and α to the values of 20 and 0.5. Once again 13
parallel runs were performed for every update to compute the average evolution and deviation, displayed
as in Fig. (4.1). Also in this case the chain correlation observable is reported on the right side of the
image.

expressed in units of ∆. In particular, by following the same approach used in Ref. [9]
the bath cutoff frequency was set to ωc = 10∆ and the regime assumed to be homnic,
s = 1. Again, every simulation is performed using 13 parallel thread to obtain separate
uncorrelated estimate of the same observable, that in the SB case is the squared mag-
netization

〈
M2〉. Thus, we studied the behavior of such observable, and it’s dispersion,

along the chain using the idea used previously inside Eq. (4.16) to highlight the sta-
tistical behavior of the different updates. A first simulation was performed using this
approach by setting the temperature at β = 20 and the coupling strength α = 0.5 with
results shown inside Fig. (4.3). Inside it, we can see how once again the global and
mixed update outperform the local one in terms of precision reached at the end of the
chain. Anyway, the increase in precision showed in this case results to be much lower
compared to the gain expected from the decrease in correlation. In fact, by comparing
the dispersion of the update schemes as was done for the previous model only a lowering
of a factor ∼ 2 and ∼ 1.1 for global and mixed updates respectively are obtained. This is
unexpected since the correlation time for the local updates in that regime is estimated
to be ∼ 2.8 for the local update and ∼ 1 for the mixed scheme. Based on them, one should
expect an increase in performance of a factor of ∼ 6 if using the global update and of ∼ 3
for the mixed one. Such lower gains respect to the theoretical once can be imputed to
a cause analogous to the one that brought to the same performance in the evaluation
of the Green’s function inside Fig. (4.2). Namely, value of the correlation given by τρ is
only a simplistic approximation of the correlation inside the observable and in our case〈
M2〉 posses a complex estimator given by Eq. (2.77). Such value is composed by the

rate of two separate estimates: the sign of the diagram itself, and the sign modulated
squared magnetization. This generates a complex equation that posses a correlation
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Figure 4.4: Results for the simulation done at different coupling constant α and temperature β using
the same specific of the simulation presented in Fig. (4.3). On the left the value of the squared magne-
tization is reported with the average value between the 13 run in bold line and the confidence interval
showed using the colored area. On the right, instead, the value of the correlation time as a function of α
and β is presented in log scale showing how the mixed scheme is always better than the local one.

with both spin and phononic degrees of freedom that is not well approximated by our
estimate. Meaning that such decrease in performance, compared to the local updates,
of our global schemes is mainly due to the presence of the sign problem inside the SB
model that bring to a more complex and unstable estimator for

〈
M2〉. Still, that does

not mean that the local update results in being better than our global ones. In fact, one
can see how the global schemes are able to perform better as the phase space increase,
being more stable in situations where the local one struggles. To see that, a series of
simulations for all the schemes were performed by sweeping both the value of β and α

in order to see the evolution of the correlation times and of the observable estimates.
In particular the results for the

〈
M2〉 and its σM2 between the usual 13 parallel simu-

lations for every scheme and couple of parameters are shown in Fig. (4.4). The image
shows how the results for the schemes are completely analogous for low value of both β

and α, meaning high temperatures and low coupling regimes. In those cases, the phase
space is smaller making it easy to converge for all of them with smaller errors depending
on the correlation. When the temperature start to decrease also the integration domain
expands and the estimates become less precise as the coupling increases, but can be
seen how where the local update are not able to obtain the right shape the global results
are more well-behaved. That can be seen in the β = 30 curve, where on the α = 0.7 en-
try the blue and orange line are able to maintain the correct shape, while the red local
one have a sharp jump. This shows how, even if the decrease inside the dispersion is
lower than expected, the enhancement in the statistics given by the decorrelation of the
sample can allow obtaining results that shows the right qualitative shape, even if the
correlated case gives completely oscillating results.
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Curing SB sign problem

The decrease in precision inside the estimate of
〈
M2〉 showed by all the update schemes

in Fig. (4.4) limits our possibilities in exploring the low temperature regime of the spin-
boson system to a limit of β ∼ 30 for high coupling. Such limit is mainly due because
of the sign problem that the system has that requires the Monte Carlo average to take
into account the sign of the diagrams transforming the direct estimator into the rate of
two different observables. In fact, it has been shown how such form gives a much worse
convergence complexity respect to the O (N−1/2) of the usual Monte Carlo integration.
Having that, as the value 〈S〉 becomes smaller the deviation, σO, of the observable start
to grows exponentially with the size of the phase space, making the all computation an
NP-hard problem [50]. Such wall is not something that can be fought by simply reducing
the sample correlation inside a simulation, having that even if we set τO to zero the
value of σO inside Eq. (2.22) would still be too high. Nevertheless, the information
that we obtained about the distribution in order to create the global updates can give us
insight on how to cope with such a problem and eliminate it completely.

When we talked about the magnetization observable we have described how was
possible to obtain better converging estimators by looking at the subsets of diagrams
with same probabilities and take the subset average as estimator for them. Here we can
do the same by looking at the sign of the diagram more closely and notice that taken a
certain spin configuration, given by S = {τi}

nx
i=1, then the sign of the diagram is defined

by the positions of the phonons as

S(S ;b1, e1, . . . ,bnp , enp )=σ(b1)σ(e1) · · ·σ(bnp )σ(enp ). (4.31)

Still, one can understand that such result can be written as a product of the sign of every
single phonon inside the system by rearranging the product as

S(S ;b1, e1, . . . ,bnp , enp )=
np∏
i=1

σ(bi)σ(e i)=
np∏
i=1

S̃(S ;bi, e i). (4.32)

So, if we look at a case with a single phonon inside the system one can notice how, as
long as S is fixed, the position of the phonon does not change the value of |W | but only
the sign. That can be easily seen since D depends only on the phonon length νi and not
on starting point. This is giving us a set of diagrams that can be used in order to obtain
an average estimator by first separating spin and phononic degrees of freedom as

〈
M2〉=

∑∫

C
M2(S )S(S ;P )p|W |(C )=

∑∫

S
M2(S )pS (S )

∑∫

P
S(S ;P )pP (P ), (4.33)

where we wrote P = {bi, e i}
np
i=1 and used the result obtained previously that the PDF can

be separated in spin and phonon parts. Now we can focus on the phonons and for now
assume that only one phonon is inside the diagram, so that by calling Pν the subset of
diagrams having the phonon with length ν we can write the sign as

S(S )=
∫ β

0
dν

∑∫

Pν

S̃(S ;Pν)pP (Pν)=
∫ β

0
dνpP (ν)

∑∫

Pν

S̃(S ;Pν). (4.34)

Where we used the fact that the complete pP must depend only on the length of the
phonon, so that is equal for all the diagrams inside Pν. In this way, one can simply
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understand that the diagrams inside Pν are simply the ones where the phonon creation
b is shifted inside the range [0,β−ν], having that

S(S )=
∫ β

0
dνpP (ν)

∫ β−ν

0
dbS̃(S ;Pν). (4.35)

Now, the same trick used for the magnetization can be used in order to rewrite the
estimate using an average value of the sign along all of those diagrams as

S(S )=
∫ β

0
dνpP (ν)

∫ β−ν

0
〈S(S ;ν)〉 , 〈S(S ;ν)〉 = 1

β−ν

∫ β−ν

0
dbS̃(S ;Pν). (4.36)

So that, an expression completely analogous to the one of Eq. (2.70) is obtained having
so an estimator that allow us to collect a better statistics than the basic one during the
simulation. In such description, the reader may ask how the phononic PDF can be cast
in order to depend only on ν starting from the form that we have obtained in Eq. (4.30).
That is a simple question that can be answered easily by understanding how pP (ν)
needs to describe the probability of having a phonon with a certain length. Therefore,
to obtain that we shall add up all the probabilities of having a phonon with such length
created in every possible position, so that basically such probability will take the form

pP (ν)=
∫ β−ν

0
db pP (b|β)pP (ν|β,b)=

∫ β−ν

0

C(b,β)
λp

D(ν)
C(b,β)

= (β−ν)
λp

D(ν). (4.37)

Which can be seen to be effectively normalized by integrating inside [0,β] giving the
effective probability of one phonon of having a certain length. Knowing that we can now
release the condition of having only one phonon inside the diagram, a step that is easy
to handle since all the phonons are independent of each others. Meaning that, we know
how the total p|W | is composed by the product of the different conditional probabilities
related to the different phonons. In this way we can write down the expectation value of
the sign S(S ) in a complete way by using

S(S )=
∞∑

np=0
pP (np|β)

np∏
i=1

∫ β

0
dνi pP (νi)

∫ β−ν

0
db 〈S(S ;νi)〉 . (4.38)

One can understand how the contribution inside the product can be easily computed nu-
merically by mean of numerical integration routines. That allow us to further simplify
the contribution to the sign even further by noticing how the final integral will depend
only on S so that

S(S )=
∞∑

np=0
pP 〈S(S )〉np , 〈S(S )〉 =

∫ β

0
dνi pP (νi)

∫ β−ν

0
db 〈S〉 (S ;νi). (4.39)

From this result we can go further by explicitly using the form of the order PDF in Eq.
(4.30), and see how a closed form can be obtained as

S(S )=
∞∑

np=0

(λp 〈S(S )〉)np

np!
e−λp = exp

(−λp [1−〈S(S )〉]
)
. (4.40)
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Figure 4.5: Results for the squared magnetization evaluated in the same conditions of Fig. (4.3),
but now also the data obtained form the integrated sign-free scheme are shown. Is possible to see how
the latter outperform all the other even if the correlation in the chain is still high, increasing above the
common local scheme for large value of k.

Such result correspond to the final value of the phononic contribution to the diagram
weight, generating a positive average sign that modifies the normal weight of the sim-
ple diagrams constituted by only spin degrees of freedom. To see that we can better
write down how the final observable looks like once Eq. (4.40) is used inside Eq. (2.77)
obtaining

〈
M2〉=

∑∫
C

M2(S )S(S ;P )p|W |(C )
∑∫

C
S(S ;P )p|W |(C )

=
∑∫

S
M2(S )pS (S )

∑∫
P

S(S ;P )pP (P )
∑∫

S
pS (S )

∑∫
P

S(S ;P )pP (P )

=
∑∫

S
M2(S )e−λp[1−〈S(S )〉] pS (S )
∑∫

S
e−λp[1−〈S(S )〉] pS (S )

=
∑∫

S
M2(S )

e−λp[1−〈S(S )〉] pS (S )
∑∫

S
e−λp[1−〈S(S )〉] pS (S )

=
∑∫

S
M2(S )pW (S ).

Basically, since the final form of the sign obtained is always positive it was possible to
interpret the product of S and pS as a probability distribution and use the denominator
of the average as the normalization constant. In this way we have completely eliminated
the need of the phononic variables inside our system curing the sign problem having
now a simple direct form to estimate the wanted observable. One can so think at the
final result as a way to rewrite the problem as a simple spin system with a diagram’s
weight that is modified from the simple case by the presence of an external environment
through an exponential factor as

W(S )=
(
∆

2

)nx

e−λp[1−〈S(S )〉], (4.41)

with the mean value obtained as in Eq. (4.39). That means, we can perform the simu-
lation by still using the Γaddx and Γremx that we defined inside Sec. (2.2.2) and simply
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Figure 4.6: Results for the magnetization observable at different values of β and α reaching both
low temperature and high coupling regime. Value of reference are taken from the work [9] while the
integrated scheme is the one created inside this work and is the mean of 13 independent simulations
giving rise to an error that is smaller than the size of the line. Every simulation was run for 1E7 steps
after 1E6 thermalization ones, and also the correlation time was collected and reported on the right.

change the weight we are using. In this way we would have an ergodic update that
samples all the spin diagram distribution arriving to the same result as our previous
scheme containing also an integration over the phonons.

After all this effort to obtain such sign problem free scheme we want to test its per-
formance against the one seen so far and see how much can improve the statistics.
Therefore, the same simulation used to obtain the results inside Fig. (4.3) has been
performed also for the local integrated scheme. The results obtained for the observable〈
M2〉 collected are shown alongside the previous ones in Fig. (4.5). From such figure,

one can see how the sign-free scheme completely outperform all the other one that we
have created. The error obtained from it is lower than the final one of the global scheme
already in the first few thousand steps. All while retaining a high correlation in the
chain, that is larger than the simple local scheme for long range sample, meaning high
k. That is, eliminating the need of the sign we have not only reduced the dimension of
the phase space to explore in order to converge, but we have also obtained an observ-
able with an intrinsic deviation, σO from Eq. (2.20), much smaller. In fact, it’s known
how the more an observable O(C ) oscillate inside the space and more the uncertainty
will be higher. Before, with the value of M2 we needed also to multiply for S so that
negative and positive value could appear making it oscillate rapidly also for small mod-
ification the diagram. Here such behavior is erased obtaining an incredible boost in the
performances which allow us to push the study of the system at lower temperatures. In
particular, a series of simulations have been performed in order to recreate the data for
the single qubit case inside [9] gently given to us by Andrey Mishchenko. So, by using
the same values of the ∆, s and ωc values used so far we have performed a sweep for the
α and β value. For each couple of values the usual 13 simulations have been performed
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to obtain once again the average behavior and the error on it, which are reported along-
side the reference in Fig. (4.6). We can see how our scheme perfectly corresponds to the
reference data reported in Ref. [9] where they used a complex path-integral formulation
of the integration scheme that has also brought them to a sign-free scheme. Neverthe-
less, the reported time needed for the results at β= 100 to converge is one day in their
work, while for the scheme obtained by pure statistical consideration few minutes were
enough to perform the same task. A large boost in performances that can be increased
further by a more optimized update scheme. In fact, from the plot of τρ it is possible to
see how the correlation time highly increase as the coupling becomes larger, a behavior
that is expected near phase transitions as in this case. Thus, this reformulated sign-free
version of the spin-boson problem would be a good test case to see a large performance
boost coming from a global update. Nevertheless, the new weight function in Eq. (4.41)
is too complicated to tackle it analytically as we have done so far.

4.3 Neural global updates

So far we were able to easily describe the statistics of the models under investigation
by direct inspection of their analytical form. Nevertheless, we have also seen how such
approach is really limited only to simple cases where the diagram’s weight is simple
and, most importantly, separable. This has to be seen as a large limitation, especially
considering how the use of global updates becomes more valuable the more the chain
is correlated. Something that mainly happens inside more complex cases, as we have
seen in the integrated version of the SB model. Therefore, in order to overcome such
barrier we want to switch to a numerical approach that gives access to the complete
distribution. For that we adopt the Normalizing Flows architecture discussed in Ch.
(3). Such architecture has the potential to give us a way to both sample from and infer
pW , giving us the possibility of creating global updates that can be used to construct an
uncorrelated Markov Chain even in complex cases.

Here we will explain the approach that we have used in order to create such model
for the single site Holstein case, focussing on the challenges present in using these ar-
chitectures for approximating diagrammatic distributions. Then, the results obtained
for the update created form the model are shown and confronted with the exact ones
obtained from the theory.

Model construction
We have already pointed out, in Sec. (3.3), how a standard Normalizing Flow architec-
ture would not be able to catch the correct behavior needed to represent a diagram’s
distribution. Common network are not able to reproduce the integer variables part of
the distribution, and do not take into consideration time ordering of interaction times.
Still, possible solutions for both problems were introduced by simple modifications of the
architecture and loss that would make the algorithm converge to the right result. Thus,
our goal now is to show how such claim is indeed true by using them on a model and
successfully apply it in the context of the single site Holstein polaron.

To see how we can describe the distribution of the Holstein diagrams we can recall
their representation defined inside Eq. (4.3). The diagram is written as a vector whose
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dimension depends on the order of the diagram itself, with an n-th order diagram trans-
formed into an n+2 dimensional vector. In Machine Learning terms, that would mean a
really complicated architecture depending on a hyperparameter defining the maximum
possible order of the generated diagrams. Meaning the Network would work with a fixed
dimensional vector, given by the maximum order, but only the variables corresponding
to the order under inspection would be modified. Such a treatment would easily lead
to overtraining of certain part of the network or instabilities based on how the order
is treated. Luckily, in this case, that can be avoided by using the trick of direct data
sampling, described in Sec. (3.3.1), that will ease the work by first sampling the order
and then using it to tell the model what to do. In particular, if we also sample the elec-
tron’s time of flight τ by using its global update Γchg then the only variables left out for a
complete description of the diagram are all the phonons’ creation and destruction times
{bi, e i}. We know how such set of variables are independent of one another, meaning that
we only need to approximate the distribution of the couple p(b, e|τ) and then sample the
wanted amount of phonons from it. In the end, the final model we are going to consider
will only depend on three variables [b, e,τ], with τ treated as a parameter that modify
the transformations performed, while n would give us the number of phonons. So that,
the final PDF that we will construct would have the form

p̃(n, {bi, e i}n
i=1|τ)= pW (n|τ)n!

n∏
i=1

p(bi, e i|τ), (4.42)

with the needed n! coming from the arbitrary ordering of the phonons sampled, as we
have seen also in the analytic work. Such form highly simplifies the amount of work
of the NF model, so that now it only needs to focus on a parametrized two variable
distribution of which we know the unnormalized form of the PDF. In fact, from the
discussion in Sec. (3.3) we know how W(C ) represent such function, but since only the
phonons’distribution needs to be approximated only the phononic propagator is needed.
Meaning that we can perform the training using the revers KL divergence as in Eq.
(3.19) substituting exp[−Ω(e−b)] at p̄. Still, that does not give a complete picture since
we also need time ordering between the creation and destruction of the phonons. To
insert that we selected the weight modification approach leading to follow Eq. (3.51)
and use the following expression as our target propagator

W̃(bi, e i;τ)= exp(−e i)exp(bi)σα(bi)σα(e i −bi)σα(τ− e i), (4.43)

where Ω was set to unity to have results comparable with the ones in Sec. (4.2.1). Using
such a form for the weight inserts a hyperparameter in the model, α, describing how
close the modified weight is to the original one. In our study the value of 50 was selected
for α and used throughout the work, that value allow for the learning algorithm to
remain stable while retaining a good agreement with the real weight, as can be seen
in Fig. (4.7). In this way all the main problems for the approximation of the complete
distribution were solved, leaving us with the task of training different model to select
the structure that reaches the best result.

In order to construct out flow model we needed to make the choice of the condi-
tioner and the transformer selecting between the various possibilities presented in Sec.
(3.2). Thus, we have started by choosing the conditioner as the standard masked au-
toregressive approach. Such choice was guided by the low dimensionality that the final
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Figure 4.7: Representation of the 2D densities that are obtained by using the exact Holstein weight W
or the modified W̃ containing also the time ordering information, which is inserted by mean of sigmoids.
The effect of such functions can be seen in the presence of a white front in W̃ due to a more graduate
decrease of the function respect to the real step one. Both images are obtained by setting the electron
time of flight at 10 and the modified uses as hyperparameter α= 50.

simplified model has, in this way using the coupling conditioner would give no benefit
since it’s less expressive and would require the use of permutation layers. The masked
conditioner doesn’t need additional layers and is equally fast in low dimensions. For
these reasons we used a masked linear NN as conditioner in every layer of the model
to compute the parameters h of the transformer. In particular, these networks are com-
posed by: an input layer that takes τ and b as inputs, an output layer that gives [hb,he],
and a hidden layer with a variable number of neurons given by 2×η. This is a struc-
ture selected for simplicity, since allows us to easily divide the vector in separate groups
depending on the variables on which they depend, so that we have an evolution of the
type

[τ,b]−→ [
{ci(τ)}ηi=1, {ci(τ,b)}ηi=1

]−→ [hb(c(τ)),he(c(τ), c(τ,b))] . (4.44)

In this way we are sure to have an ending set of parameters where hi depends only
on the variable < i, as needed in an autoregressive flow, but leaving us the freedom of
increasing the expressiveness by increasing η. The selection of the transformer, instead,
wasn’t so straightforward since no prior assumptions on which would perform better
in terms of computational cost vs approximation can be done. Thus, we used the C++
Normalizing Flow framework implemented in LLDMC to construct and train various
autoregressive models using both affine and spline-based transformers, and see who
performs better. So, for both cases a flow of the type seen in Fig. (4.8) was created,
where a diagonal Gaussian was used as initial distribution and the final target was
W̃ . The training, instead, was performed in every model by sampling a batch of 1×104

samples from the model and compute the average loss out of them, from which the
stochastic gradient descend algorithm with varying learning rate was used to minimize
it. Specifically, we used a learning rate of 1×10−4 for the affine training and the first
3×104 steps of the spline one, after which we switched to a learning rate of 1×10−5.
At last, since the model needs to successfully approximate the distribution at different
values of τ, the training has been performed in order to have the time of flight of the
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the best model using affine and spline-based transformer respectively, with also the loss evolution during
training compared.

1×104 samples homogeneously distributed in the range [0,20]. To do that we divided
the wanted range into 10 equally spaced points and extracted 1×103samples for every
one of the 10 value of τ. In this way the model would be equally trained in the whole
domain of interest of τ. Since the training domain is restricted to [0,20] we have set the
boundary value for the spline domain to 22, so that the whole variable domain is covered
and only the number of bin inside such domain needs to be selected as hyperparameter.
Therefore, the main hyperparameters we needed to tune by training different models
were: the value of η, the number of transformation to stack, and the number of bins
used in the spline transformation.

A lot of different combinations of hyperparameters have been tried in order to see
which lead to the best model for both spline and affine transformers, and the results
are shown in Fig. (4.8). The affine result has been obtained stacking 4 transformations
together while using an η of 50, while the spline only needed two transformations and
an η of 20 with 5 bins. This leads to similar performances on the computational level,
even if the spline one is still slower by a factor of ∼ 1.2 but leading to much better
results. In fact, by comparing the densities obtained for τ = 10 to the one of the exact
W̃ , reported in Fig. (4.7), we can clearly see how the one obtained from the spline is
much closer to the wanted result. Also, this can be seen by comparing the losses where
the one of the spline is more than two times smaller than the affine one. Where the
fact that both are negative, even if the KL divergence is positive definite, is due to the
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use of the unnormalized density for our target. All of these reasons lead us to believe
how the much greater expressiveness of a spline-based transformer makes it the better
candidate at describing a complex non-linear distribution such as the one of this model.
Thus, in the next and last part of this work we are going to use the spline-based model to
construct a global update since was revealed to bring the best results in approximating
the target distribution.

We now have a way to generate the phonons by approximating p(b, e|τ) using NF, but
to complete the model we also need to define the pW (n|τ) of Eq. (4.42). Such distribution
can be constructed using numerical methods by collecting the statistics of the orders
from a quick simulation depending on the value of τ. This allows us to directly sample
from it using the CDF inverse, see App. (A), and evaluate the probability of a certain
order value. Still, this approach would be completely analogous to use the exact form
for such distribution that we obtained previously inside Eq. (4.13). For this reason the
exact distribution has been directly used to sample the number of phonons instead of
the order, so that the final PDF of the model was given by

p̃(P |τ)=λn
n∏

i=1
p(bi, e i|τ), λ= g2 [

τ+1− e−1τ] . (4.45)

Where, once again, Ω was set to unity for compatibility with previous results and P

was used to represent the phonons’variable. Such form completes our model, allowing
us to directly sampling the number characteristic of all phonons inside the diagram
depending on the time of flight of the electron. Which can be sampled inside the chain
using the already known and optimized update.

Neural Markov Chain
Once the wanted model has been created using it to generate a Markov Chain is a
straightforward process. In fact, NF architecture gives us access to both sampling from,
and evaluation of, the approximated version of the target PDF that will give rise to an
update of the type

Γneu(C →C ′)= p̃(C ′)= pz ◦T−1(C ′)
∣∣det JT−1(C ′)

∣∣. (4.46)

Where pz is the starting distribution of the model, while T is the final complete bijection
that maps to the wanted PDF. It’s so easy to see how the diagrams proposed in this way
are sampled in an independent way respect to the current one in the chain, and their
acceptance rate inside it can be directly written as

A (C ,C ′)=min
{

1,
W(C ′)Γneu(C ′ →C )
W(C )Γneu(C →C ′)

}
=min

{
1,

W(C ′)p̃(C )
W(C )p̃(C ′)

}
. (4.47)

Thus, if the model is ergodic, the chain can be completely and efficiently constructed
by simultaneously sample a set of diagrams with respective probabilities and accepting
or rejecting them inside the chain one by one, In this way, if p̃ well approximate W ,
the acceptance rate should be high enough to eliminate correlation, or at least reduce it
significantly respect to a simpler local update.

In our construction of the single site Holstein model we have used a final architecture
which is not completely ergodic. As a matter of facts, our model is able to sample only
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Figure 4.9: Evolution of the estimate for εp and correlation inside the single site Holstein polaron for
the local, global, mixed and neural mixed update schemes, with the correct analytical result represented
as the black dashed line. All the specific of the simulations and the results for the global, mixed and local
curves are the same as in Fig. (4.1).

the phononic variables of the diagram in question while the electron’s time of flight is
obtained from the already known global update. Meaning that the final ergodic form
of the update is given by Γ(C → C ′) = [

Γneu(C →C ′)+Γchg(C →C ′)
]
/2, analogous to

the one used in the analytical study of Sec. (4.2.1). Such choice allowed for a great
simplification of the model construction, but leaves behind a slower sampling for the
chain entries. That being due to the form of T which depends on τ as a parameter,
so that p̃ itself changes based on the time of flight of the previous diagram. Meaning
that, it’s not possible to directly sample a set of diagrams based on it since we need to
know the current value of τ to correctly sample or evaluate p̃(C |τ). This limits us to a
sequential approach every time the Γneu update is called that is composed as follows

1 Collect the current value of τ by the last diagram in the chain;

2 Use such value to sample the phononic variables starting by the number, from
pW (n|τ), and then all the phonons from the model p(b, e|τ);

3 Compute the probability of the new and current diagram’s phonons by mean of Eq.
(4.45), using the current τ;

4 Evaluate the diagrams’weights and compute the acceptance rate of the new dia-
gram.

A lot of extra steps are needed respect to an ergodic model approach, or the usual local
update one where the acceptance rate was given by an analytical formula much quicker
to compute than the whole weight. That is hinting us how the construction of the chain
through Γneu and Γchg alone would be too much slower respect the other possibilities
at our disposal. For that reason instead of focussing on the complete global update we
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Figure 4.10: Representation of the Green function and correlation time for different coupling constant
with the data for global, local and mixed are the same of Fig. (4.2) and the neural ones were computed
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have directly studied the mixed version of that update, constructed by both the neural
and the local updates as in Sec. (4.2.1). That allowed for a much faster update that
we wanted to compare on a statistical level with its analytic counterpart to see how
effective our model was at approximating the real distribution. Thus, we used the fi-
nal mixed neural update to construct 13 parallel Markov Chains that have been used
in order to evaluate ε̄p and σε following the same specifics of Sec. (4.2.1). The results
obtained are shown in Fig. (4.9) along with the ones previously obtained for the other
analytical updates. From their comparison we can easily see how the neural update is
performing in a way that is nearly identical to the analytical mixed update. That can be
seen both in the evolution of the observable’s standard deviation and in the estimator of
the correlation along the chain. In both cases the two update schemes nearly overlap,
with a slight increase in the initial value of σε, where the analytical mixed seems to
perform better. Such similarity in the performance of the two can be better seen in Fig.
(4.10) with the results of the Green function and correlation time evaluated for different
coupling strength. In particular, from the evolution of τρ one can see how the corre-
lation in the chain for the mixed and neural update is the same for low coupling and
diverges as it grows larger. That is an expected result since at lower coupling the order
remains smaller and so also the electron’s time of flight, thus remaining in the range
of τ where the model better approximates the real PDF. Higher order means that more
phonons needs to be sampled at a time, so that if the value of p(b, e|τ) contains a certain
error respect to the real pW sampling n phonons from it means n-th time the error of a
single sampling. Bringing us to a worst performance compared to the exact update as
g increases. Still, the results obtained showed how the neural update can successfully
reduce the correlation inside the chain to a significative amount, generating a mixed
update that performs much better than the local one with performances close to the an-
alytical counterpart. This shows how the model was able not only to approximate the
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correct PDF, but also with a good enough precision to reach the same statistics of the ex-
act result. On a computational point of view, instead, the neural update remains much
slower respect to the exact one, as anticipated. With an overhead in complexity that in-
creases the time needed to perform the update by a factor of more than 10 respect to its
competitors. That brings a really large decrease in performances, even compared to the
simple local updates, mainly due to the simplicity of the model that makes normal up-
dates much quicker to perform. In a more complex model, with larger data structures or
higher correlation, usual updates may increase in complexity while the neural approach
would remain nearly the same.
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5
Conclusions

The work done in this thesis aimed to investigate new approaches to the construction of
updates for the Diagrammatic Monte Carlo algorithm that could improve performances
respect to today’s alternatives. To achieve that, a careful study of the theory behind
Feynman diagrams formalism at both zero and finite temperature has been conducted
in Ch. (1). The Holstein and Spin-Boson models were also introduced by deriving the
associated model Hamiltonians that have been used as test cases for applying our new
updates. Such updates, were constructed in order to reduce sample correlation inside
the Markov Chain of diagrams used to evaluate the observables averages. That is be-
cause, as shown in Ch. (2), correlated samples result in less statistical value, requiring a
larger chain to reach the same precision of uncorrelated ones. Thus, we have shown how
one possible way of alleviating such problem is the use of the so-called global updates, a
kind of updates with a unitary acceptance rate proposing new diagrams directly follow-
ing the target distribution. Here two proposal for constructing such type of updates were
done: an analytical based approach, and a Machine Learning driven one. The updates
produced from both the approaches were successfully implemented in the newly devel-
oped LLDMC C++ package [32] and tested respect to the normal local update approach,
also implemented using the same framework.

At first, the analytical global updates were constructed on both the introduced tests
models obtaining the complete form of the diagrams’probability distribution pW . Such
updates were tested by using them to construct Markov Chains of diagrams and study
their statistical properties against the one constructed with the local approach. Con-
verged results were obtained, with a decrease in the number of samples needed in order
to obtain a wanted accuracy related to the decrease in the correlation time τρ of the
chain. In particular, an improvement of ∼ 3 and ∼ 2 times in the value of the observable
dispersion was obtained for the Holstein and SB models respectively. Such reduction
showed how the number of sampled needed to obtain the final estimate using the global
approach is reduced by the same amount respect to a chain constructed with the usual
local one. All this results in a great boost in performances, showing how the approach
proposed is indeed effective giving an improvement that depends on the specific model
under investigation. Still, the advantages of this approach are not limited to the decor-
relation of the chain, but giving us insight on pW further simplifications to the integra-
tion can be obtained. In fact, we used such knowledge in order to directly integrate the
phonons variables inside the SB model, allowing for counting only spin diagrams with a
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modified weight and curing the sign problem. That brought to a tremendous increase of
the convergence properties that allowed for the study of the model magnetization even
at really low temperatures.

Anyway, even if the approach was deemed as fruitful it is still not applicable on a
general way, but only limited to models possessing a simple and separable weight func-
tion W(C ). This brought us to the idea of implementing a second, data-driven, approach
able to construct such global updates in a more general contest starting simply by the
knowledge of the weight function W . In order to do that we introduced the Normalizing
Flow (NF) architecture inside Ch. (3) proposing it as a way to numerically approximate
pW and sample from the final model PDF p̃. The general model proposed was then
successfully applied in order to approximate the single site Holstein distribution and
used as a global update to construct the Markov Chain. This approach showed conver-
gence properties slightly inferior to the one of the analytical counterpart, proving how
the approach can produce a p̃ that is effectively close to the real pW reducing sample
correlation. Still, even if the applicability of this numerical approach is more wide re-
spect to the analytic case it is also computationally much more expensive. The time
needed to sample from a NF model was estimated to be ∼ 10 times higher respect to
usual sampling method, making the performance increase obtained from decorrelation
meaningless. Nevertheless, such a harsh increase was mainly due to our specific case
where the final specific architecture used didn’t allow us to exploit the parallelization
potential of the NN, and the simplicity of the model made the correlation not so high.
For these reasons, interesting future developments to make this approach more inter-
esting and valuable comprehend: the creation of an ergodic model whose sampling can
be parallelized, and the application to more complicated models with really high τρ val-
ues. For example a good possible application would be the creation of a global update
for the integrated SB model, where the form of W becomes too complex to be handled
analytically and the correlation time skyrocket at low temperatures.
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A
Sampling through CDF inverse

When working with Monte Carlo algorithms being able to efficiently sample from a gen-
eral 1D distribution is always a matter of interest that can have huge impact on the
performance of a software. Because of that, the subject has been extensively studied
over the years and now the most extensively used method to perform such a task is the
Commulative Distribution Function inverse, or CDF inverse, algorithm. To understand
it let A be an interval of R and p :A→ R+ a PDF defined in such domain. Now, we can
define the CDF of such distribution as a function of the type F :A→ [0,1] by using the
following integral expression

F(x)=
∫ x

m
dt p(t), m =min

x
A. (A.1)

Defined in this way it’s easy to see how F results in being monotonically increasing due
to the positive definiteness of p that bring a derivative of type

F ′(x)= p(x)> 0, x ∈A. (A.2)

Since the function is monotonic it means that is also injective and so invertible in its
domain, giving rise to a map F−1 that bring the entries inside the interval [0,1] into A.
That is pretty interesting because standard PRNG are able to quickly sample random
variable uniformly distributed inside [0,1], giving rise to a uniform distribution U(0,1).
Having now access to a bijection that translates the unitary interval into the wanted
domain we can recall the change of variable trick, discussed in Sec. (3.1), and see how

∫

[0,1]
du pU (u)=

∫

[0,1]
du 1=

∫

A
dt F ′(t)=

∫

A
dt p(t), t = F−1(u). (A.3)

Meaning that, if sample u drawn from U(0,1) is transformed using F−1 the statistic of
the new random variable t = F−1(u) will follow the form of p. That’s a powerful tool,
since by knowing the form of p one can easily construct F by numeric integration inside
the domain of definition, or analytical integration where is possible. After that, the
inverse can be obtained through the use of the bisection algorithm to create a lookup
table that approximates the CDF inverse with a wanted precision depending on the
number of bins used to represent A. In this way w can use standard PRNG to uniformly
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sample in the unitary domain and then, at the cost of a simple lookup, apply F−1 to
obtain a random variable as was sampled from p.

To make an example we can have a look at the sampling from an exponential dis-
tribution, which is simple enough to be completely treated analytically. So, imagine we
want to sample from an exponential distribution of the type f (x)= exp(−αx) in the range
[a,b]. In order to do that we shall normalize f in the wanted domain, so that we can
easily obtain the normalization constant by integration

C =
∫ b

a
dx e−αx = 1

α

(
e−αb − e−αe

)
. (A.4)

Thus, the PDf we are working with has the form p(x) = f (x)/C and knowing it we can
write down the CDF by simply using the definition as

F(x)=
∫ x

b
dx p(x)= e−αb − e−αx

e−αb − e−αe , (A.5)

where the explicit form of C was used. In this case, we can also easily invert such
function analytically thanks to the simplicity of the expression and obtain the complete
expression as

F(x)= e−αb − e−αx

e−αb − e−αe = u. (A.6)

Then, by using some algebra one can obtain the following inverted expression

x =− 1
α

log
[
e−αb −u

(
e−αb − e−αe

)]
= F−1(u), (A.7)

so that the inverted CDF can be written analytically and used to transform a uniform
random variable in the unitary interval into an exponential one in an interval of choice.

A similar approach can be used also in the case of integer distributions, which still
leads to some simplifications since no inversion of the CDF is needed in that case. In par-
ticular, by letting A= {a0,a1, . . . } an ordered subset of N and p a probability distribution
on it, the CDF is given by

F(n)=
n∑

i=0
p(ai), F :A→ [0,1]. (A.8)

Once that is constructed applying the inverse it’s really easy and no table needs to be
constructed. The idea is simply to define F−1 as a step function of the type

F−1(u)= ai if F(i)< u < F(i+1), (A.9)

which is really easy to apply through a single while loop, allowing us to sample a uniform
rel value inside [0,1] and obtain an integer one distributed as p.
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