Antonini, Filippo
(2023)
Probabilistic Regression and Anomaly Detection for Latency Assessment in Mobile Radio Networks.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Telecommunications engineering [LM-DM270]
Documenti full-text disponibili:
Abstract
This thesis provides a thorough examination and empirical results on the use of machine learning for predicting latency in mobile radio networks, specifically emphasizing probabilistic regression and anomaly detection tasks. After a ML-aided selection of the Key Performance Indicators that most influence the latency, different models are compared for both probabilistic regression and anomaly detection. Such models present network designers with a valuable instrument to explore the correlations that exist between particular network Key Performance Indicators and latency.
Abstract
This thesis provides a thorough examination and empirical results on the use of machine learning for predicting latency in mobile radio networks, specifically emphasizing probabilistic regression and anomaly detection tasks. After a ML-aided selection of the Key Performance Indicators that most influence the latency, different models are compared for both probabilistic regression and anomaly detection. Such models present network designers with a valuable instrument to explore the correlations that exist between particular network Key Performance Indicators and latency.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Antonini, Filippo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
PQoS,Deep Learning,Mobile Radio Networks,Probabilistic Regression,Anomaly Detection,Bayesian Learning,Latency
Data di discussione della Tesi
19 Luglio 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Antonini, Filippo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
PQoS,Deep Learning,Mobile Radio Networks,Probabilistic Regression,Anomaly Detection,Bayesian Learning,Latency
Data di discussione della Tesi
19 Luglio 2023
URI
Statistica sui download
Gestione del documento: