
1

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" -

DEI

TELECOMMUNICATION ENGINEERING

MASTER THESIS

in

Mobile Radio Networks

PROBABILISTIC REGRESSION AND ANOMALY DETECTION FOR

LATENCY ASSESSMENT IN MOBILE RADIO NETWORKS

Filippo Antonini

Supervisor:

Prof. Roberto Verdone

Co-Supervisor:

Ing. Marco Skocaj

Academic year 2022/23

2

Sommario
1. Introduction ..3

2. State of the art ...4

3. System model ...5

3.1. Datasets ..5

3.2. Available KPIs ...6

3.3. KPI selection ..6

3.3.1. Permutation importance algorithm ...7

3.3.2. Application and outcome of the permutation importance algorithm7

3.3.3. Final KPI selection ..8

3.4. Probability density function of the latency ..9

4. Instantaneous regression of the latency ... 11

4.4. Probabilistic Regression ... 11

4.5. Probabilistic Bayesian Regression .. 14

5. Anomaly detection .. 18

5.4. The anomaly detection task .. 18

5.5. Autoencoders ... 18

5.6. Evaluation phase .. 19

5.7. Variational autoencoders ... 19

5.8. Comparison between different types of autoencoders and variational autoencoders 20

6. Conclusions .. 24

7. Bibliography ... 25

3

1. Introduction

One of the prominent features of 5G is the flexibility: from the different available physical

layer configurations (many available formats of time slots and antenna configurations) to the

different kinds of application provided through network slicing. One of the pillars driving the

design and evolution of flexible next-generation 5G systems is the inclusion of autonomous

and proactive radio resource management capabilities. To this end, the concept of Zero-touch

networks aims to eliminate the need for costly and inefficient human intervention in network

management procedures. Within such type of networks, estimating the Quality of Service

(QoS) in advance becomes essential. Predictive QoS (PQoS) involves using advanced

analytics and machine learning techniques to anticipate network conditions, traffic patterns,

and user demands. By analysing historical and real-time data, predictive models can estimate

network performance metrics like latency, throughput, and packet loss.

In particular, there are some new applications, like V2X, that require fast and precise

forecasting of the latency made at the mobile network edge [1]. As will be shown in the

subsequent section, a plethora of forecasting solutions have been extensively examined in

recent years.

This work offers a comprehensive analysis and experimental findings of ML-based predictive

latency, with a particular focus on the task of probabilistic regression and anomaly detection.

The models developed for this purpose can serve as a valuable instrument for network

designers seeking to analyse the correlations between specific network Key Performance

Indicators and latency.

The experimental results presented in this work are:

 A Machine learning—aided selection of the main Key Performance Indicators

influencing the latency.

 The comparison between a probabilistic regression and a probabilistic Bayesian

regression of the latency

 The comparison between different architectures of autoencoders and variational

autoencoders for the anomaly detection of the latency

This work starts by illustrating the state of the art in latency prediction and anomaly detection,

then the KPIs and algorithms used are explained, concluding with the obtained results.

4

2. State of the art

Several studies focus on the implementation of ML learning and deep learning-based PQoS

within mobile radio networks.

Many researches utilize ML algorithms and fully-connected neural networks: a linear

regression model and a dense neural network are implemented in [2] to predict the throughput

in V2X. Still in V2X, linear regression, multilayer perceptron and random forest are used in a

similar scenario in [3], but the target metric is the latency; an instantaneous regression of the

latency is performed in [9], leveraging a probabilistic Bayesian neural network. The

advantages and limits of Bayesian and robust Bayesian learning applied in wireless networks

are analysed in [8].

Other studies focus on convolutional neural networks (CNN) and recurrent neural networks

(RNN) [4]. CNNs leverage compact convolutional kernels to capture localized information

within a restricted receptive field, rather than relying on fully connected layers. RNNs are

models designed to capture the dependencies in a time series, so they are widely used for

forecasting.

Additional studies [4] perform spatial–temporal predictions by combining CNNs and RNNs

or through Graph Neural Networks [9].

There are several techniques that have been used to detect anomalies, from probabilistic

neural networks to PCA and autoencoders. An autoencoder is leveraged in [9]. According to

[5] finding an appropriate scoring function is as important as finding an optimal algorithm.

Authors in [6] develop a variational autoencoder model, achieving remarkable performance.

5

3. System model

Key Performance Indicators (KPIs) are metrics used by the mobile network operators to

assess and measure the performance and quality of the network. In this study, the initial phase

involves constructing a dataset comprising the most relevant KPIs associated with latency in

the feature space, alongside a KPI that represents the latency itself in the target space.

In this work, anomaly detection is done leveraging autoencoders and variational autoencoders

(they will be explained in section 5), as done in [9] and [6], respectively. They are models that

process the points in the dataset in such a way that they can be identified as anomalies and

non-anomalies through a comparison with a threshold. This means that an additional dataset is

needed, similar to the first, but with all the entries labelled as anomalies or non-anomalies.

Probabilistic regression and probabilistic Bayesian regression are performed by implementing

a probabilistic neural network and a probabilistic Bayesian neural network (deepened in

section 4). A probabilistic neural network is a model able to reproduce a parametrized

probability distribution of the target value, hence able to quantify the aleatoric uncertainty of

the latency. A probabilistic Bayesian neural network provides a principled way to account for

a secondary source of uncertainty: the epistemic uncertainty, also referred to as model

uncertainty, i.e., the model predictive uncertainty caused by the limited amount of data. In

order to avoid model misspecification, a rigorous assumption on the probability density

function of the latency must be introduced.

3.1. Datasets

In this work, two datasets provided by TIM are employed. They contain measurements of

various KPIs collected from different base stations in different hours of the day. The first one

gathers two consecutive days of data from all the base stations in the province of Bologna,

with granularity of an hour, resulting in a quite large number of samples (107000 samples).

This first dataset is used for the instantaneous regression.

The second dataset contains data gathered in two other consecutive days, with a granularity of

15 minutes, instead of an hour but a coverage of only 25 base stations, resulting in a quite

smaller amount of data (7200 samples). The peculiarity of this second dataset is represented

by a concert that took place under the coverage of two of the base stations and lasted 4.5

6

hours. The samples falling in the time and geographical interval of the concert are labelled as

anomalies1 and the dataset is used for anomaly detection.

In both the datasets, the entries are filtered by considering only the traffic in the 1800 MHz

band.

3.2. Available KPIs

Both the datasets contain the same 67 KPIs, most of them belonging to two categories:

 average channel conditions

 network load (uplink and downlink) at each communication layer (physical, MAC,

RLC, PDCP, IP and RRC)

There are other KPIs describing the relative quantities of connections using each MIMO

format and finally, two additional KPIs, namely the average downlink latency of a PDCP

SDU (i.e., average time interval from a SDU available at the PDCP layer base station side to

the same SDU being made available to the upper layer by the PDCP layer UE side) in case of

QCI 1 and QCI 7. The latter KPI is chosen as the target KPI due to its effectiveness in

approximating the IP downlink latency and its relevance to the prevailing nature of mobile

radio network traffic, which predominantly consists of QCI7 traffic. All the other KPIs

(excluding the one referring to PDCP latency in case of QCI1) together represent the feature

space.

In order to simplify the models, a process of "feature selection" is implemented, resulting in a

reduction of the 65 KPIs of the feature space to a maximum of 10. This selection is carefully

performed while ensuring that the resulting feature space remains as representative as possible

of the target variable.

3.3. KPI selection

In the process of selecting an appropriate set of KPIs, an initial machine learning-based

approach is followed, utilizing the "permutation importance" algorithm from the scikit-learn

library. This selection is then reviewed through a "knowledge-based" approach, leveraging

insights from existing literature and established practices.

1 A concert is not an anomaly, but because of the high and unusual network load it generates, it can be simulated

as such.

7

3.3.1. Permutation importance algorithm

The Permutation Importance algorithm evaluates the impact of shuffling the values of a single

feature on the model's performance metric. It works by calculating a baseline performance

metric (e.g., R2 score) using the original dataset, then, the values of a particular feature are

randomly shuffled, breaking the relationship between the feature and the target. The model's

performance metric is recalculated using the shuffled dataset, measuring the drop in

performance caused by the shuffled feature. A higher drop in the performance metric indicates

that the feature is more important for the model.

This process is repeated for each feature, measuring the importance of each one in isolation.

The measured importance indicators can be sorted at the end, in order to obtain a list of

features from the most relevant to the least relevant. The fact that it is applied on a test set,

makes the importance measures realistic and not conditioned by possible overfitting.

The algorithm is applied on the first dataset (divided in a training and a test set), i.e., the one

employed for the instantaneous regression, but the resulting feature selection is transferred

also to the dataset utilized for anomaly detection.

As indicated by the documentation, prior to implementing the aforementioned algorithm, the

KPIs are partitioned into clusters using a clustering model based on Spearman's rank

correlation. Subsequently, only one feature per cluster is utilized in the permutation

importance algorithm. This step is necessary when dealing with datasets comprising

numerous columns, as it is highly probable that some of these columns exhibit strong

correlations with each other. Consequently, when a column within such a correlated set is

permuted, the decrease in score, and thus the measured importance, would be lower than the

actual importance, because the model would still benefit from another correlated feature.

The partitioning of the KPIs based on Spearman's rank correlation is meticulously performed

to yield 34 clusters. By selecting a single KPI from each cluster, the resulting set of 34 KPIs

ensures a satisfactory level of decorrelation. This decorrelation enables the application of the

permutation importance algorithm with optimal effectiveness.

3.3.2. Application and outcome of the permutation importance algorithm

Two ML models are chosen for the application of the permutation importance algorithm,

namely decision tree regressor and random forest regressor. The first one is among the most

popular regression algorithms; it uses a tree-like model to predict the value of a continuous

target variable by recursively partitioning the data into subsets based on the feature values.

The second one is an ensemble model that combines a number of decision tree regressors for

8

an improved performance (500 trees are chosen in this case). The two models are trained, then

the permutation importance algorithm is applied, obtaining the importance of each of the 34

features.

The last step is to assume that the other features in each of the 34 clusters have similar

importance with respect to one another. This assumption allows to build, for each of the two

models, an ordered list of all 65 features, from the most important to the least. Within Table 1,

both lists are truncated to include only the first 9 entries. The lists exclude KPIs associated

with MIMO formats due to their spurious correlations with latency. Interestingly, despite

appearing among the top 9 KPIs identified by the permutation importance algorithm, their

actual impact on latency is deemed minimal.

Table 1: Top 9 KPIs according to permutation importance algorithm (from the most to the least important)

Decision tree regressor Random forest regressor

average IP scheduled throughput in DL, QCI7 average IP scheduled throughput in DL, QCI7

average physical resource usage per TTI in DL average physical resource usage per TTI in DL

PDCP SDU Volume in DL PDCP SDU Volume in DL

average number of RRC connected UEs average PDCP cell throughput in DL

max number of RRC connected UEs PDCP SDU volume in UL

average PDCP cell throughput in DL average physical resource usage per TTI in UL

inter-frequency handover attempts average number of RRC connected UEs

PDCP SDU volume in UL max number of RRC connected UEs

average physical resource usage per TTI in UL RLC PDU volume in DL

3.3.3. Final KPI selection

In the literature, it is widely recognized that the KPIs that primarily influence latency are

those associated with network load and channel conditions [2], [9].

However, in both selections made using the permutation importance algorithm, the nine most

significant KPIs pertain to network load, while the KPIs addressing channel conditions are

regarded as comparatively less significant.

To encompass KPIs associated with both network load and channel conditions, a manual

selection process is employed. However, while considering the substantial significance

attributed to network load by the permutation importance algorithm, a greater emphasis is

placed on selecting KPIs related to network load. Consequently, six KPIs pertaining to

9

network load and two KPIs pertaining to channel conditions are chosen. Moreover, the time

instant is included as an additional KPI.

Table 2: Final KPI selection.

Time instant

Total number of RRC setup attempts

PDCP SDU volume in DL

average physical resource usage per TTI in DL

average physical resource usage per TTI in UL

average active UEs in DL

average RRC connected UE

average CQI

average SINR for PUSCH

3.4. Probability density function of the latency

Skocaj et. Al in [9] provide a comprehensive mathematical derivation of the probability

distribution function characterizing latency. Specifically, their analysis concentrates on U-

plane latency, which refers to the delay from a packet being available at the IP layer, UE or

base station side, to the same packet being available at the IP layer, base station or UE side.

Notably, the C-plane latency, involving the delay experienced by a UE transitioning from

RRC-idle to RRC-connected state, is not taken into consideration. This omission arises from

the fact that C-plane latency mostly depends on the random access procedure, which is a

procedure where the MNO does not have many degrees of freedom to perform optimization.

Additionally, the study concentrates on downlink grant-based scheduling, as it represents the

majority of the generated traffic. They define an expression for the U-plane latency:

 𝐿 = 𝜏𝑟𝑎𝑑𝑖𝑜 + 𝜏𝐻𝐴𝑅𝑄 + 𝑁 ∗ (𝜏𝑟𝑎𝑑𝑖𝑜
′ + 𝜏𝐻𝐴𝑅𝑄) , (1)

where 𝜏𝑟𝑎𝑑𝑖𝑜 denotes the delay of an IP packet transmitted through the Uu interface during the

initial transmission, encompassing scheduling and transmission delays. Similarly, 𝜏𝑟𝑎𝑑𝑖𝑜
′

represents the same delay but in the case of a retransmission following the reception of a

negative acknowledgement. Additionally, 𝜏𝐻𝐴𝑅𝑄 denotes the fixed delay introduced by the

Hybrid Automatic Repeat Request (HARQ) mechanism, while N represents the number of

retransmissions. It is determined that both 𝜏𝑟𝑎𝑑𝑖𝑜 and 𝜏𝑟𝑎𝑑𝑖𝑜
′ follow a negative exponential

distribution with rates 𝜆1 and 𝜆2, respectively. This is due to their composition of waiting and

service time in an M/M/1 queueing system. Furthermore, the number of retransmissions, N, is

10

geometrically distributed with a success parameter of 1−𝐵𝐿𝐸𝑅 (Block Error Rate). Since

𝜏𝐻𝐴𝑅𝑄 remains constant, it can be added to 𝜏𝑟𝑎𝑑𝑖𝑜 and 𝜏𝑟𝑎𝑑𝑖𝑜
′ , resulting in 𝜏𝑡𝑥 and 𝜏𝑟𝑡𝑥,

respectively. Both 𝜏𝑡𝑥 and 𝜏𝑟𝑡𝑥 continue to exhibit negative exponential distributions with

rates 𝜆1 and 𝜆2, respectively. Authors in [9] continue by rewriting (1) in this way:

 𝐿2 = 𝜏𝑡𝑥 · 𝑃0 + ∑ (𝜏𝑡𝑥 + 𝑗 · 𝜏𝑟𝑡𝑥) · 𝑃𝑗
𝑁𝑚𝑎𝑥
𝑗=1 (2),

where 𝑃𝑗 is the probability of having j retransmissions and 𝑁𝑚𝑎𝑥 is the maximum number of

retransmissions. The sum [𝜏𝑡𝑥 · 𝑃0 + ∑ 𝜏𝑡𝑥 · 𝑃𝑗]
𝑁𝑚𝑎𝑥
𝑗=1 is equal to 𝜏𝑡𝑥, so (2) reduces to:

 𝐿2 = 𝜏𝑡𝑥 + 𝜏𝑟𝑡𝑥 · 𝑃1 + 2 ∗ 𝜏𝑟𝑡𝑥 · 𝑃2 + · · · + 𝑜(𝑃𝑛) (3),

where all the terms in the sum are negative exponentially distributed, with rate 𝜆1 for the first

term and
𝑗∗𝜆2

𝑃𝑗
 for all the following terms. This results in a hypoexponential distribution

ℎ𝑒𝑥𝑝(𝜆1, . . . , 𝜆𝑁), i.e., a distribution that sums together negative exponential distributions

having different rates.

11

4. Instantaneous regression of the latency

For both probabilistic regression and probabilistic Bayesian regression, the 80% of the entries

in the first dataset is used as training set, the remaining 20% as test set.

4.4. Probabilistic Regression

A probabilistic neural network (PNN) is a neural network made of a cascade of dense hidden

layers followed by a probabilistic layer. A dense layer, also known as a fully connected layer,

is a type of neural network layer where every neuron is connected to every neuron in the

previous layer, allowing for complex non-linear transformations in data.

For this task, the activation of each dense layer is set as a rectified linear unit, which is a

common choice to overcome the well known problems of vanishing and exploding gradients.

The probabilistic output layer is a function producing a parametrized distribution. The

parameters of this distribution are the inputs of the layer, so, before this output layer, an

additional dense layer, having as many neurons as the parameters of the distribution, must be

inserted.

As demonstrated in Section 3, the latency distribution conforms to a hypoexponential

distribution. In the Tensorflow library, there exists a distribution known as gamma, which

exhibits a shape resembling that of a hypoexponential distribution. However, it should be

noted that the gamma distribution is the sum of negative exponential distributions with the

same rate, in contrast to the hypoexponential distribution, which combines negative

exponentials with varying rates. This characteristic renders gamma a particular case of the

hypoexponential distribution.

The depth of the probabilistic network, i.e., the number of hidden layers, is set equal 3,

specifically, two dense layers, each one containing 16 nodes, followed by a dense layer of two

nodes that generates the parameters α and β for the probabilistic layer producing gamma.

Such number of layers and nodes per layer is already sufficient, and increasing the number of

layers or nodes per layer does not improve the performance further. The shape parameter α

determines how many negative exponential distributions are summed together, while the rate

parameter β determines the rate of each of the negative exponential distributions. Both of

them are learned during training.

When the output is a probability density function, the training of the neural network requires a

loss function that measures the discrepancy between the estimated distribution and the real

distribution, hence a negative loglikelihood

12

𝑁𝐿𝐿 = − log[𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃)] , (4)

where 𝑥𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑟𝑎𝑖𝑛 represent features and target of the training set and 𝜃 represents the

set of weights and biases of the network. During training, the model parametrized by the

vector of weights 𝜃 determines the output distribution from the input 𝑥𝑡𝑟𝑎𝑖𝑛. The likelihood is

the probability of obtaining the realization 𝑦𝑡𝑟𝑎𝑖𝑛 by sampling from the computed output

distribution. The logarithm of the likelihood is commonly used to simplify computations,

especially when dealing with small probabilities. The minus sign is added to the loglikelihood

to make it a loss function to be minimized.

At the end of the training process, the model is evaluated by computing the Mean Absolute

Error (MAE)2 and the NLL on both the training and the test set (table 3).

Table 3: Evaluation of the probabilistic neural network

To visualize the quality of the estimation in terms of median and confidence intervals, the first

500 entries of the test set are given as inputs to the PNN. In order to retrieve aleatoric

confidence intervals, a Monte Carlo experiment (100 repetitions) is performed. After

obtaining 100 values for the estimated latency for each of the 500 points, median and

confidence interval are computed over the 100 values for each of the points (figure 1).

As noticeable, the ground truth value confidently lies within the predicted confidence

intervals. However, MAE and NLL computed for the training are slightly lower than those

calculated for the test set. The cause is explained in [8]: by choosing gamma as output layer,

the real data distribution is mis-specified, i.e., the output layer generates a different

distribution to that of the test set, whose distribution is a hypoexponential. The consequence is

that the PNN identifies certain points as outliers, even if they are not outliers when

considering a hypoexponential distribution, but rather outliers in relation to a gamma

distribution. Predictions for such points exhibit higher MAE and NLL, resulting in higher

MAE and NLL values for the overall test set compared to the training set. However, the

disparity between the evaluation scores of the training and test sets is minimal, indicating that

the approximation of the hypoexponential distribution with gamma is quite accurate.

2 For each test point, MAE is calculated on a single realization of the output distribution.

 Mean Absolute Error Negative Loglikelihood

Training set 15.060 [ms] -2.021

Test set 15.272 [ms] -1.992

13

Figure 1: Plot for the probabilistic neural network: The x-axis represents the average

number of physical resources used per TTI in DL. This KPI is chosen for the plot, being

one of the most representative.

14

4.5. Probabilistic Bayesian Regression

The above descripted probabilistic neural network estimates the uncertainty given by the

latency, that is an aleatoric process. As mentioned in section 3, there is another type of

uncertainty called epistemic uncertainty, that refers to the uncertainty arising from a lack of

knowledge in predicting a given target value. Unlike aleatoric uncertainty, epistemic

uncertainty can be reduced by collecting more data. However, as highlighted in [8], in

wireless communications obtaining abundant data is not always feasible, especially at the

physical layer, in which the stationary intervals for data collection are short. Thus, the

solution in this case is not the reduction of the epistemic uncertainty but its estimation.

In a Bayesian neural network [7], the epistemic uncertainty is reproduced by treating the set

of weights and biases θ of the neural network not as a set of deterministic values but as

distributed according to a multivariate posterior distribution 𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛). Whenever the

model is tested, a distinct set of weights and biases is randomly drawn from the posterior

distribution. This is formally equivalent to a weighted ensemble model, where the probability

of each given weight is modeled by the posterior distribution and updated by means of

Bayesian inference.

During training, the posterior distribution is updated using Bayes theorem:

𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) =
𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃) ∗ 𝑝(𝜃)

𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛)
 (5)

The prior distribution 𝑝(𝜃) is arbitrary and the denominator is a known distribution that does

not depend on the model, hence, the variability of the network weights and biases, mostly

depends on how much 𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃) is a skewed distribution. Intuitively, a bigger and

more diverse training set (𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) can be reproduced with good approximation by

fewer neural network configurations. In that case 𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃) will be skewer, and

consequently, according to Bayes theorem, the output will be less variable. This is the way the

epistemic uncertainty is reproduced.

By maintaining a similar architecture to that of the probabilistic neural network, a

probabilistic Bayesian neural network (PBNN) is implemented. It is a model that captures

both epistemic and aleatoric uncertainty. The output probabilistic layer reproducing the

gamma distribution and the number of hidden layers and nodes per hidden layer remains the

same of the PNN, while the type used for the hidden layers changes from “dense” to “dense

variational”, following an approach called “variational inference”.

Variational inference allows the actual implementation of the Bayes theorem in a neural

network by approximating the multivariate posterior distribution 𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) (that can

15

be a very complex distribution) with a set 𝑞𝜆(𝜃) of parametrized distributions, one per

network weight or bias. The parametrized distributions are usually chosen as independent

Gaussian distributions, each parametrized by a mean and a variance, so the set of parameters λ

to be learnt is only twice the number of the network weights. As showed in [7], the loss

function that must be minimized is the KL divergence between 𝑞𝜆(𝜃) and the real posterior

distribution 𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛), hence,

𝐾𝐿[𝑞𝜆(𝜃)‖ 𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛)] (6).

By applying the definition of the KL divergence and then substituting the conditional

probabilities with the product between joint and marginal distribution, (6) becomes:

𝐾𝐿[𝑞𝜆(𝜃)‖ 𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛)] = ∫ 𝑞𝜆(𝜃)𝑙𝑜𝑔
𝑞𝜆(𝜃)

𝑝(𝜃|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛)
𝑑𝜃

= ∫ 𝑞𝜆(𝜃)𝑙𝑜𝑔
𝑞𝜆(𝜃)

𝑝(𝜃, 𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛)
𝑑𝜃 + ∫ 𝑞𝜆(𝜃)log[𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛)] 𝑑𝜃 .

The term log[𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛)] does not depend on 𝜃, so it can be taken outside the integral,

thus, the second integral becomes ∫ 𝑞𝜆(𝜃) 𝑑𝜃, that is equal 1. At this point, the first integral is

the only term of the loss that can be minimized:

𝜆𝑃𝐵𝑁𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∫ 𝑞𝜆(𝜃)𝑙𝑜𝑔
𝑞𝜆(𝜃)

𝑝(𝜃, 𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛)
𝑑𝜃}.

By substituting the joint probability with the product between conditional and marginal

probabilities, the above expression becomes:

𝜆𝑃𝐵𝑁𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∫ 𝑞𝜆(𝜃)𝑙𝑜𝑔
𝑞𝜆(𝜃)

𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃)𝑝(𝜃)
𝑑𝜃}

= 𝑎𝑟𝑔𝑚𝑖𝑛 {∫ 𝑞𝜆(𝜃)𝑙𝑜𝑔
𝑞𝜆(𝜃)

𝑝(𝜃)
𝑑𝜃 − ∫ 𝑞𝜆(𝜃)𝑙𝑜𝑔[𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃)]𝑑𝜃} .

Hence, the final expression for the loss used in a PBNN is:

𝜆𝑃𝐵𝑁𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐾𝐿[𝑞𝜆(𝜃)‖ 𝑝(𝜃)] − 𝐸Ѳ~𝑞𝜆
[𝑙𝑜𝑔[𝑝(𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛 , 𝜃)]]} (7)

The second term is the negative loglikelihood, seen in section 4.1. The first term, called

equalizer, is added by the dense variational layers, and it forces the parametrized

approximated posterior distribution to not diverge too much from the imposed prior

distribution. A set of independent normal distributions is chosen as the prior distribution, as it

is common choice.

The PBNN is trained, and then evaluated on both the training and the test set with MAE and

NLL (table 4), like done for the probabilistic neural network.

16

Table 4: Evaluation of the probabilistic Bayesian neural network.

 Mean Absolute Error Negative Loglikelihood

Training set 15.730 [ms] -1.982

Test set 15.850 [ms] -1.951

Median and confidence interval of the PBNN are computed in the same way as done with the

PNN, so by repeating each prediction 100 times.

In Figure 2, the estimated medians and confidence intervals of the PNN and the PBNN are

superimposed. The median values and confidence intervals between the two models exhibit

negligible differences, indicating that both the PBNN and the PNN converge equally well.

Focusing on the evaluation results, the MAEs and NLLs are higher than in the only

probabilistic case. This is due to the estimation of the epistemic uncertainty, which, despite

the model convergence, remains non-zero for latency values that are underrepresented in the

dataset. Such points contribute to the deterioration of the MAEs and NLLs.

Just like the PNN, the mis-specification of the output distribution results in slightly higher

MAE and NLL for the test set compared to the training set. In the case of the PBNN, the

points that are wrongly identified as outliers by the mis-specified distribution, are also

predicted with a very high epistemic uncertainty, because the model is not able to generalize

on them. In [8] this aspect is identified as one of the weaknesses of Bayesian learning.

However, considering that the suboptimality of the gamma distribution may impact the

epistemic uncertainty, the confidence intervals computed by the PBNN using gamma may

only be larger than those computed by a PBNN using a hypoexponential distribution. This

could be advantageous when estimating the epistemic uncertainty of the latency using a

conservative approach.

17

Figure 2: Comparison between PNN and PBNN: The medians and confidence

levels of both PNN and PBNNs are represented here

18

5. Anomaly detection

5.4. The anomaly detection task

Anomaly detection refers to the identification of anomalies among the target points. This is

done through a model parametrized with a set of weights and biases 𝜃. When the model is

tested on a point (x,y), a probability density function 𝑓(𝑥, 𝑦|𝜃) is computed [9]. If the

probability density function is lower than a likelihood threshold, the point is identified as an

anomaly.

There are two alternative approaches. According to the first one, the probability density

function is the likelihood 𝑝(𝑦|𝑥, 𝜃), hence the model to be used is a probabilistic or a

probabilistic Bayesian neural network. According to the second one, the probability density

function is a joint distribution 𝑝(𝑦, 𝑥| 𝜃) learnt by the model. The models that follow the

second approach are not probabilistic networks, but deterministic networks that try to

reproduce the (x,y) points according to the learnt joint distribution. In this case, the threshold

cannot be directly set on 𝑝(𝑦, 𝑥| 𝜃), but only on the output reconstruction error, i.e., the error

in reproducing (x,y), hence, those points reconstructed with error higher than the threshold are

labelled as anomalies. However, the output depends on the learnt joint distribution, so this is

equivalent to set the threshold on 𝑝(𝑦, 𝑥| 𝜃) and considering points falling below the

threshold as anomalies.

In this work the second approach is adopted, and some autoencoders and variational

autoencoders are compared to each other.

5.5. Autoencoders

An autoencoder (AE) is composed of two parts: an encoder, that compresses input data into a

lower-dimensional representation, and a decoder, that usually has a specular architecture with

respect to the encoder and reconstructs the original input from the compressed representation.

The final layer of the encoder produces the input for the decoder. This layer, called latent

layer, generates a latent space, a representation of the autoencoder input. The latent layer

typically has less dimensions than the input layer, this is why the latent space is a compressed

representation of the input space.

As anticipated in section 3, datasets containing points labelled as anomalies and non-

anomalies are used for anomaly detection. The training set contains only non-anomalies, so

the model learns only the distribution of the non-anomalies and encodes it in the latent space.

Therefore, after training, if tested on a non-anomaly, the model reproduces it with a low

19

reconstruction error, but if tested on an anomaly, the model is not able to rightly reproduce it

and the resulting reconstruction error will be higher.

The metric chosen to measure the reconstruction error is the Mean Squared Error (MSE):

𝑀𝑆𝐸[(𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 , 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑), (𝑥, 𝑦)] = 𝐸 {[(𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 , 𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) − (𝑥, 𝑦)]
2
}. (8)

MSE is used also as loss function for training the autoencoder.

5.6. Evaluation phase

For the evaluation, the relative quantities of true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN) must be considered. In the used dataset (as generally

happens when dealing with anomalies), the non-anomalies are much more than the anomalies,

and moreover, the anomalies span a much larger reconstruction error interval. The only way

to find an optimal threshold is not to arbitrarily set its value, but to leave it as a parameter to

be tuned after training. This is done by creating a custom score to be minimized after training,

the expression is the following:

𝑐𝑢𝑠𝑡𝑜𝑚 𝑠𝑐𝑜𝑟𝑒 =

𝑇𝑁
𝑇𝑁 + 𝐹𝑃 + 𝛽 ∗

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

1 + 𝛽
 (9),

the first term at the numerator is the specificity score, and the term that multiplies 𝛽 is the

recall score. These two terms are chosen to make the difference between the quantities of

positives and negatives irrelevant. Their average is weighted on a parameter 𝛽, that acts as a

scaling constant against the difference in the intervals of the reconstruction errors of the

positives and the negatives. 𝛽 must be tuned together with the threshold, to minimize the

custom score.

5.7. Variational autoencoders

A variational autoencoder (VAE) is an AE with a variational latent space, learnt with

variational inference [10]. Thanks to the Bayesian theorem, a VAE exhibits greater efficacy in

capturing the data distribution compared to an AE. With VAEs, labelling anomalies and non-

anomalies in advance is unnecessary, allowing the anomaly detection task to be reformulated

as an unsupervised problem [6]. In this reformulated approach, anomalies are detected by

identifying their dissimilarity in relation to the learned distribution.

20

However, the VAEs employed in this study are utilized with a labeled dataset, thereby

retaining a supervised nature for the problem. This approach ensures a fair comparison

between AEs and VAEs built with similar architectures.

Unlike PBNNs, in VAEs variational inference is not implemented by using a dense variational

layer but working “from scratch”. In practice, a prior multivariate distribution is defined,

consisting of a collection of untrainable, independent normal distributions. The distribution

𝑞𝜆(𝜃), that approximates the real posterior distribution of the latent space, is the latent layer,

and it is directly derived from the prior, by adding the mean and multiplying for the variance.

Mean and variance are the multidimensional outputs of two additional dense layers, both

having as input the last hidden layer of the encoder.

The network is trained by finding the minimum λ for (7). The second term of the equation is

now substituted with the MSE, because the model is no more probabilistic but deterministic3.

The equation (7) is further modified by incorporating a scaling factor 𝑤 to multiply the

regularizer. This modification provides the ability to control and decrease the variability of the

latent space, as it enforces proximity to the prior distribution as closely as possible. In fact,

the objective of the VAE is not the representation of the epistemic uncertainty, but the

reproduction of the data distribution. Here is the expression of the loss used for training

VAEs:

𝜆𝑉𝐴𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑤 ∗ 𝐾𝐿[𝑞𝜆(𝜃)‖𝑝(𝜃)] − 𝑀𝑆𝐸[(𝑥𝑡𝑟𝑎𝑖𝑛
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 , 𝑦𝑡𝑟𝑎𝑖𝑛

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑), (𝑥, 𝑦)]} (10)

When tested, each variational autoencoder undergoes 100 Monte Carlo experiments

producing 100 reconstruction errors for each point of the test set. Subsequently, evaluations

are conducted by minimizing the custom scores, similar to the approach used for standard

autoencoders.

5.8. Comparison between different types of autoencoders and

variational autoencoders

In this section, two distinct architectural configurations are tested. The first configuration

comprises an encoder and decoder, each composed of two hidden layers consisting of 16

nodes. The latent layer in this configuration has two dimensions. In contrast, the second

configuration uses four hidden layers, with each layer containing 16 nodes, for both the

3 This approximation perfectly works, in fact the reconstruction error is itself related to a discrepancy between

truth and estimation, conditioned by the network weights and biases, like it is for the NLL.

21

encoder and decoder. Additionally, the latent dimension in the second configuration is set to

16.

Table 5: Comparison between different types of AEs and VAEs

For both the architectures, three networks are tested: an AE, a VAE trained with scaling factor

from (10) 𝑤 = 1, and a VAE trained with 𝑤 = 2. The results are synthetized in the table 5.

Remembering that both the threshold and β are tuned by minimizing the custom score after

training, all the models appear to prefer 𝛽 = 0.5, thus penalizing the recall score in the (9).

This means that all the networks solve the problem of the higher concentration of negatives

by penalizing the positives. The consequence can be seen in figure 3: all the networks tune a

high threshold on the MSE, minimizing the number of false positives. This may be useful in a

typical scenario where anomalies are rare events and thus too many false alarms would

negatively impact the QoS.

When comparing the two architectures, it's hard to determine a clear winner. The first

architecture appears to outperform the others for the AE, as indicated by a higher custom

score. However, for the VAE, the second architecture seems to be more effective.

Another observation is that the custom score is fairer than both the accuracy and the F1

scores; for example, according to the F1 score, the AE with the second architecture would

perform better than the other AE, while the relative quantities of FP and FN say the opposite,

giving credit to the custom score.

MODEL Tuned

threshold

Tuned

β

Training

accuracy

Test

accuracy

Test

F1

score

TP TN FP FN Test

custom

score

First architecture (4 hidden layers, latent space dimension = 2)

AE 0.556 0.5 0.963 0.966 0.735 36 693 24 2 0.960

VAE

(w=1)

3.883 0.5 0.990 0.986 0.870 3509 70946 754 291 0.967

VAE

(w=2)

9.886 0.5 0.998 0.997 0.973 3600 71700 0 200 0.982

Second architecture (8 hidden layers, latent space dimension = 16)

AE 0.450 0.5 1 0.984 0.813 26 717 0 12 0.895

VAE

(w=1)

6.067 0.5 0.996 0.994 0.937 3565 71456 244 235 0.977

VAE

(w=2)

9.886 0.5 0.999 0.997 0.973 3600 71700 0 200 0.982

22

Finally, the most important observation is about the better performances of VAEs with respect

Figure 3: Anomaly detection: Mean Squared Errors (logarithmic scale) for all the points of the
test set (VAEs are tested 100 times, so, for each point, 100 MSEs are traced as a vertical line

that traverses a point representing their mean). The red points above the threshold are TP, those
falling below are FN. The blue points above the threshold are FP, those falling below are TN.

23

to AEs, according to every scoring functions. The reconstruction errors generated by VAEs

are much higher, but the separation between anomalies and non-anomalies is clearer. This

confirms that the latent distribution of the non-anomalies learnt with variational inference is

more realistic than the one learnt by the AEs, as stated in [6], and thus, anomalies are better

recognized. In particular, the VAE trained with w=2 performs better than the one weighted

with w=1. The former has a very low variability (for almost all the test points, the 100

reconstruction errors of the Montecarlo experiment coincide), so it is forced to learn a latent

distribution that is the most similar possible to the prior, and such approximation improves the

detection.

24

6. Conclusions

This study started with a machine learning-based KPI selection process, which revealed that

the KPIs related to the network traffic have a greater influence on the latency compared to the

KPIs related to the channel conditions.

Probabilistic regression was employed using a probabilistic neural network generating a

parametrized gamma distribution as the output. Remarkably, gamma proved to be a reliable

approximation of the hypoexponential distribution of latency, as the mis-specification of such

output distribution had minimal impact on the test scores.

The implementation of probabilistic Bayesian regression involved transforming the dense

layers of the PNN into dense variational layers. The convergence of the resulting PBNN

closely resembled that of the PNN, albeit with slightly higher MAE and NLL attributed to

certain data points exhibiting epistemic uncertainty. Notably, this uncertainty is occasionally

overestimated due to the mis-specification introduced by the gamma distribution. However,

only Bayesian learning can offer an estimation, albeit sometimes conservative, of the

credibility of a result, rendering the representation of PBNNs more realistic.

For instance, a base station estimating latency and making decisions based on such estimates

can weigh its choices according to the levels of aleatoric and epistemic uncertainty.

Regarding anomaly detection, six models were examined: an autoencoder and two variational

autoencoders, each with two different architectures. VAEs definitely appear to outperform

AEs. The improvement achieved by incorporating variability into the latent layer is

significantly greater than that achieved by adjusting the number of layers and nodes per

hidden layer. In particular, the VAE trained with a loss regularized by a factor 𝑤 = 2 is the

one giving the best results, regardless of the number of hidden layers and nodes per hidden

layers.

25

7. Bibliography

[1] A. Zappone, M. Di Renzo and M. Debbah, "Wireless Networks Design in the Era of Deep

Learning: Model-Based, AI-Based, or Both?", in IEEE Transactions on Communications, vol.

67, no. 10, pp. 7331-7376, Oct. 2019, doi: 10.1109/TCOMM.2019.2924010.

[2] M. Boban et al., “Predictive Quality of Service: The Next Frontier for

Fully Autonomous Systems,” IEEE Network, 2021.

[3] D.C. Moreira et al., “QoS Predictability in V2X Communication with

Machine Learning,” in Proc. 91st Annual Int. Veh. Technol. Conf., 2020.

[4] Weiwei Jiang, “Cellular traffic prediction with machine learning: A survey”,

Expert Systems with Applications, Volume 201, 2022

[5] A. Garg, W. Zhang, J. Samaran, R. Savitha and C. -S. Foo, "An Evaluation of Anomaly

Detection and Diagnosis in Multivariate Time Series", in IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no. 6, pp. 2508-2517, June 2022, doi:

10.1109/TNNLS.2021.3105827.

[6] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu,

Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and Honglin Qiao. 2018.

“Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web

Applications”, in Proceedings of the 2018 World Wide Web Conference (WWW '18).

International World Wide Web Conferences Steering Committee, Republic and Canton of

Geneva, CHE, 187–196.

[7] Oliver Dürr, Beate Sick, with Elvis Murina “Probabilistic deep learning”

[8] M. Zecchin, S. Park, O. Simeone, M. Kountouris and D. Gesbert, "Robust Bayesian

Learning for Reliable Wireless AI: Framework and Applications", in IEEE Transactions on

Cognitive Communications and Networking, doi: 10.1109/TCCN.2023.3261300.

[9] M. Skocaj, F. Conserva, N. Sarcone Grande, A. Orsi, D. Micheli, G. Ghinamo, S. Bizzarri,

and R. Verdone, “Data-driven Predictive Latency for 5G: a Theoretical and Experimental

Analysis using Network Measurements”

[10] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv

preprint arXiv:1312.6114 (2013)

	1. Introduction
	2. State of the art
	3. System model
	3.1. Datasets
	3.2. Available KPIs
	3.3. KPI selection
	3.3.1. Permutation importance algorithm
	3.3.2. Application and outcome of the permutation importance algorithm
	3.3.3. Final KPI selection

	3.4. Probability density function of the latency

	4. Instantaneous regression of the latency
	4.4. Probabilistic Regression
	4.5. Probabilistic Bayesian Regression

	5. Anomaly detection
	5.4. The anomaly detection task
	5.5. Autoencoders
	5.6. Evaluation phase
	5.7. Variational autoencoders
	5.8. Comparison between different types of autoencoders and variational autoencoders

	6. Conclusions
	7. Bibliography

