Ferrari, Lucia
(2023)
From group equivariant to partial group equivariant non-expansive operators.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (997kB)
|
Abstract
Incorporating symmetries as an inductive bias into neural network architectures, Geometric Deep Learning (GDL) and Topological Data Analysis (TDA) have given an improvement in the development of deep learning models. In recent years, a line of research has emerged forming a bridge between GDL and TDA: a topological-geometrical theory of Group Equivariant Non-Expansive Operators (GENEOs). In the theory of GENEOs the collection of all symmetries is represented by a group, but in some applications, the group axioms are not maintained since real-world data rarely follows strict mathematical symmetries due to noisy or incomplete data or to symmetry breaking features. The main aim of this thesis is to give a generalization of the results obtained for GENEOs to a new mathematical framework where the property of equivariance is maintained only for some transformations, encoding a partial equivariance with respect to the action of the group of all transformations. To this end, we introduce the concept of Partial Group Equivariant Non-Expansive Operator (P-GENEO), extending the results obtained for GENEOs to a more general set-up, where the sets of transformations are represented by subsets with a weaker structure than the one of group.
Abstract
Incorporating symmetries as an inductive bias into neural network architectures, Geometric Deep Learning (GDL) and Topological Data Analysis (TDA) have given an improvement in the development of deep learning models. In recent years, a line of research has emerged forming a bridge between GDL and TDA: a topological-geometrical theory of Group Equivariant Non-Expansive Operators (GENEOs). In the theory of GENEOs the collection of all symmetries is represented by a group, but in some applications, the group axioms are not maintained since real-world data rarely follows strict mathematical symmetries due to noisy or incomplete data or to symmetry breaking features. The main aim of this thesis is to give a generalization of the results obtained for GENEOs to a new mathematical framework where the property of equivariance is maintained only for some transformations, encoding a partial equivariance with respect to the action of the group of all transformations. To this end, we introduce the concept of Partial Group Equivariant Non-Expansive Operator (P-GENEO), extending the results obtained for GENEOs to a more general set-up, where the sets of transformations are represented by subsets with a weaker structure than the one of group.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Ferrari, Lucia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
Group Equivariant Non-Expansive Operators,Partial equivariance,Topological Data Analysis,Geometric Deep Learning
Data di discussione della Tesi
31 Marzo 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Ferrari, Lucia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
Group Equivariant Non-Expansive Operators,Partial equivariance,Topological Data Analysis,Geometric Deep Learning
Data di discussione della Tesi
31 Marzo 2023
URI
Statistica sui download
Gestione del documento: