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Abstract

Incorporating symmetries as an inductive bias into neural network archi-

tectures, Geometric Deep Learning (GDL) and Topological Data Analysis

(TDA) have given an improvement in the development of deep learning mod-

els. In recent years, a line of research has emerged forming a bridge between

GDL and TDA: a topological-geometrical theory of Group Equivariant Non-

Expansive Operators (GENEOs). In the theory of GENEOs the collection

of all symmetries is represented by a group, but in some applications, the

group axioms are not maintained since real-world data rarely follows strict

mathematical symmetries due to noisy or incomplete data or to symmetry

breaking features. The main aim of this thesis is to give a generalization of

the results obtained for GENEOs to a new mathematical framework where

the property of equivariance is maintained only for some transformations,

encoding a partial equivariance with respect to the action of the group of

all transformations. To this end, we introduce the concept of Partial Group

Equivariant Non-Expansive Operator (P-GENEO), extending the results ob-

tained for GENEOs to a more general set-up, where the sets of transforma-

tions are represented by subsets with a weaker structure than the one of

group.
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Introduzione

Nell’ultimo decennio, lo sviluppo sempre maggiore del deep learning e la

complessità delle sue strutture hanno portato a un crescente interesse nella

ricerca di strumenti per esplorare meglio questa frontiera. In particolare,

diverse tecniche geometriche sono state incorporate nel deep learning, dando

origine al nuovo campo del Geometric Deep Learning (GDL).

Questo approccio geometrico al deep learning viene sfruttato con un duplice

scopo. Da un lato, la geometria fornisce un quadro matematico comune per

studiare le architetture delle reti neurali. Dall’altro, è possibile incorporare

un bias geometrico nel modello di deep learning, basato sulla conoscenza pre-

gressa dell’insieme di dati. In questo secondo caso, l’obiettivo del GDL è lo

studio delle simmetrie dell’insieme di dati, cioè delle caratteristiche che sono

invarianti sotto determinate trasformazioni. Per codificare queste proprietà,

lo schema generale della maggior parte delle architetture di deep learning

è modellato tenendo conto di una certa equivarianza di gruppo. Se consid-

eriamo un insieme di dati e un gruppo che codifica le sue simmetrie, cioè

le trasformazioni che portano dati legittimi in dati legittimi (per esempio

la rotazione o la traslazione di un’immagine), l’equivarianza di gruppo è la

proprietà che garantisce che tali simmetrie siano mantenute dopo l’azione

di un operatore sull’insieme di dati. In altre parole, un operatore è detto

equivariante se l’azione del gruppo sull’insieme di dati influisce nello stesso

modo sull’output.

Esiste una stretta connessione tra il Geometric Deep Learning e la Topologi-

cal Data Analysis (TDA). Negli ultimi anni si è assistito a un fiorente sviluppo

di entrambe le discipline e diverse comunità di ricercatori, come matematici,

ingegneri e informatici, hanno iniziato a lavorare su problemi in queste aree.

Partendo da un terreno comune geometrico, è stato possibile sviluppare un

modello matematico per l’equivarianza di gruppo che collega GDL e TDA

(si veda [3], [25], [8], [4] e [15]). L’obiettivo principale di questa teoria è lo
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studio dei Group Equivariant Non-Expansive Operators (GENEOs) da un

punto di vista topologico.

Nella teoria dei GENEO, l’insieme di tutte le simmetrie è rappresentato da

un gruppo, ma in alcune applicazioni gli assiomi di gruppo non sono neces-

sariamente validi, poiché i dati del mondo reale raramente seguono simmetrie

matematiche rigorose a causa di dati rumorosi o incompleti o di caratteris-

tiche che rompono le simmetrie. A titolo di esempio, possiamo prendere un

insieme di dati che contiene immagini di cifre e il gruppo delle rotazioni come

gruppo che agisce sui dati. Se prendiamo un’immagine della cifra ‘6’e la ruo-

tiamo di un angolo di π, otteniamo un’immagine che l’utente interpreterebbe

molto probabilmente come ‘9’. Allo stesso tempo, vogliamo essere in grado

di ruotare la cifra ‘6’ di piccoli angoli mantenendo il suo significato.

Figure 1: Esempio di rottura di simmetria. Applicando

una rotazione g di π/4, la cifra ‘6’ conserva il suo significato

(a sinistra), mentre g4 non è una trasformazione ammissibile,

poiché si ottiene la cifra ‘9’ (a destra).

È quindi auspicabile estendere la teoria dei GENEO, considerando gli

insiemi di trasformazioni con una struttura più debole di quella dei gruppi.

L’obiettivo principale di questa tesi è fornire una generalizzazione dei risul-

tati ottenuti per i GENEO ad un nuovo quadro matematico in cui la pro-

prietà di equivarianza è mantenuta solo per alcune trasformazioni, codif-

icando un’equivarianza parziale rispetto all’azione del gruppo di tutte le

trasformazioni. A tal fine, introdurremo il concetto di Partial Group Equiv-

ariant Non-Expansive Operator (P-GENEO). Nella nostra impostazione ma-

tematica, consideriamo due insiemi di dati e un altro insieme contenente

le trasformazioni ammissibili. Come insiemi di dati, prendiamo un insieme

contenente i dati originali e un altro insieme che racchiude le loro variazioni
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ammissibili; quindi definiamo l’insieme delle trasformazioni ammissibili come

un sottoinsieme di tutte le biiezioni che portano ogni elemento del primo in-

sieme di dati nel secondo insieme. Dopo aver definito su ciascuno di questi

insiemi una struttura topologica, definiremo i P-GENEO: triple di opera-

tori, ciascuno dei quali agisce su uno degli spazi considerati e legati dalla

proprietà di equivarianza. Illustreremo poi alcuni risultati sullo spazio dei

P-GENEO, che estendono alcuni risultati già noti contenuti nella teoria dei

GENEO. In sintesi, il concetto di P-GENEO viene introdotto per simulare il

ruolo dell’osservatore mantenendo le equivarianze solo dove necessario. Ciò

consente una maggiore libertà nella scelta delle simmetrie nei dati, a seconda

dell’applicazione considerata.
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Introduction

Over the past decade, the ever-increasing development of deep learning and

the complexity of its structures have led to a growing interest in researching

tools to better explore this frontier. In particular, several geometric tech-

niques have been incorporated into deep learning, giving rise to the new field

of Geometric Deep Learning (GDL).

This geometric approach to deep learning is exploited with a dual purpose.

On one hand, geometry provides a common mathematical framework to study

neural network architectures. On the other hand, a geometric bias in the deep

learning model, based on prior knowledge of the data set, can be incorpo-

rated. In this second case, the focus of GDL is the study of symmetries of

the data set, i.e., transformations that leave certain features unchanged or

invariant. In order to encode these properties, the general blueprint of many

deep learning architectures is modeled taking into account a certain group

equivariance. If we consider a data set and a group encoding its symme-

tries, i.e., transformations that take admissible data to admissible data (for

example rotation or translation of an image), the group equivariance is the

property guaranteeing that such symmetries are maintained after the action

of an operator on the data set. In other words, an operator is called equivari-

ant if the action of the group on the data set affects the output in the same

way.

There is a strict connection between Geometric Deep Learning and Topologi-

cal Data Analysis (TDA). The past few years have witnessed a flourishing de-

velopment of both these disciplines and different communities of researchers,

as mathematicians, engineers, and computer scientists, have started working

on problems in these areas. Building on a geometric common ground, it

has been possible to develop a mathematical model for group equivariance

connecting GDL and TDA (see [3], [25], [8], [4], and [15]). The main goal

of this theory is the study of Group Equivariant Non-Expansive Operators

5



Introduction

(GENEOs) through a topological point of view, in order to simulate the role

of the observer maintaining the invariances.

In the theory of GENEOs, the collection of all symmetries is represented by

a group, but in some applications, the group axioms do not necessarily hold

since real-world data rarely follows strict mathematical symmetries due to

noisy or incomplete data or to symmetry-breaking features. As an example,

we can take a data set that contains images of digits and the group of rota-

tions as the group acting on our data. If we take an image of the digit ‘6’

and rotate it by an angle of π, we obtain an image that the user would most

likely interpret as ‘9’. At the same time, we want to be able to rotate the

digit ‘6’ by small angles while preserving its meaning.

Figure 2: Example of a breaking symmetry feature. Ap-

plying a rotation g of π/4, the digit ‘6’ preserves its meaning

(left), while g4 is not an admissible transformation, since we

obtain the digit ‘9’ (right).

It is then desirable to extend the theory of GENEOs, by considering

the sets of transformations with a weaker structure than the one of group.

The main aim of this thesis is to give a generalization of the results ob-

tained for GENEOs to a new mathematical framework where the property of

equivariance is maintained only for some transformations, encoding a partial

equivariance with respect to the action of the group of all transformations.

To this end, we will introduce the concept of Partial Group Equivariant Non-

Expansive Operator (P-GENEO).

In our mathematical setting, we consider two data sets paired with sets con-

taining the admissible transformations. As data sets, we take a set containing

the original data and another set that encloses their admissible variations;
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then we define the set of admissible transformations as a subset of all the

bijections that change every elementof the first data set into an element of

the second set, by right composition. After defining on each of these sets a

topological structure, we will define P-GENEOs: triples of operators, each

acting on one of the considered spaces and linked by the equivariance prop-

erty. We will then illustrate some results on the space of P-GENEOs, which

extend some already known findings contained in the theory of GENEOs.

In summary, the concept of P-GENEO is introduced to simulate the role of

the observer by maintaining equivariances only where necessary. This allows

more freedom in the choice of symmetries in the data, depending on the

application considered.

An overview: Deep Learning, Geometric Deep

Learning and Topological Data Analysis

Deep Learning The essence of deep learning is to discover intricate struc-

tures in large data sets, by identifying different layers of representation. The

algorithms used are implemented as a backpropagation algorithm, meaning

that the machine learns how to change its internal parameters in each layer

by propagating the parameter values taken at higher-level layers. In par-

ticular, deep-learning methods allow to amplify the relevant aspects of the

input, deleting irrelevant variations. For example, in an image there are

many features that can be represented in different layers: the edges typically

are described in lower layers, while faces or letters are typically described in

higher layers. Artificial neural networks are a realization of deep multi-layers

hierarchies inspired by the processes of signals in the human brain.

In the real world, deep-learning algorithms have many applications, such as

computer vision (see [20]), speech processing (see [21]) and medical diagno-

sis (e.g., to detect carcinogens or for Alzheimer’s disease prediction, see [2]),

among many others. For further and more detailed information on deep-

learning algorithms, we refer to [22].

Geometric Deep Learning Over the past decade, one of the main fo-

cuses of deep learning research has been the study of signals such as images,

video and speech in a Euclidean domain. However, in recent years there has

been a need to deal with more complicated data set structures that reside
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in high-dimensional spaces or in non-Euclidean domains. Geometric Deep

Learning (GDL) is a branch of deep learning that includes a geometric ap-

proach in the study of these structures. In particular, there are two dual

relevant pathways in the field of GDL:

1. the study of the most successful neural networks architectures, such

as CNNs, RNNs, GNNs, and Transformers in a common mathematical

framework;

2. incorporate a geometric bias, based on prior knowledge of the data set,

into deep learning models.

The theory of GENEOs extends the geometric approach expressed in 2) from

data to observers.

There are many possible data set structures that can be used in different

applications: graphs are commonly used to represent data that are related to

each other and interact, such as social networks, molecular structures, and

road networks; point clouds are used to represent data in 3D space; mani-

folds are a general way to describe non-Euclidean spaces such as spheres or

hyperbolic spaces, used for example in computer vision.

The non-Euclidean nature of data implies that there are no familiar proper-

ties such as global parametrization, common system of coordinates or vector

space structure. Consequently, basic operations such as linear combination

or convolution, which are frequently used in deep-learning algorithms on

Euclidean data, are not well-defined in non-Euclidean domains. Moreover,

learning functions in high dimensions is a hard estimation problem. In fact,

the number of parameters in a deep neural network grows exponentially with

the dimensionality of the input space, making it difficult to train the network

efficiently. In these structures, a geometric approach can allow us to take ad-

vantage of the symmetries, i.e., transformations that leave certain features

of the data set unchanged or invariant., in order to remedy the problem of

working in these environments.

In most of the settings considered in GDL, the machine learning system op-

erates on data sets composed of signals (functions) on some domain X. The

set of symmetries is often represented by a group, since in many real-world

applications the group axioms are maintained. In the case of non-Euclidean

data, GDL methods use group convolutions or equivariant neural networks

to take advantage of the symmetries of the data and improve the perfor-

mance. Group convolutions apply a convolutional operation to a group of
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transformations that preserve the structure of the data, such as rotations or

translations. Equivariant neural networks, on the other hand, are designed

to be invariant to certain types of transformations while maintaining equiv-

ariance to others. In other words, equivariance refers to the property of an

operator to maintain the relationship between inputs and outputs even when

the input undergoes some transformation or perturbation. An operator is

called invariant with respect to a group if the action of the group on the

input does not change the output, and it is called equivariant with respect to

a group if the group action on the input affects the output in the same way.

More formally, we can consider a data set of Rm-valued signals on a domain

X, Φ := {φ : X → Rm} and a group G that encloses its symmetries.

An operator F defined on Φ is G-invariant if

F (φg) = F (φ),

i.e., if its output is unaffected by the group action on the input (e.g., Figure

3).

Figure 3: Example of invariance. Given an image of a

cube (top left), color variation does not affect the result

obtained by an edge detection operator (F ).

We can consider another set of Rk-valued functions on a domain Y , Ψ :=

{ψ : Y → Rk} and a group H representing its symmetries. Considering a

homomorphism T : G→ H, an operator F : Φ → Ψ is called T -equivariant if

F (φg) = F (φ)T (g),

9
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i.e., the group action on the input affects the output in the same way (e.g.,

Figure 4). We can observe that T -equivariance becomes invariance when T

Figure 4: Example of translation equivariance. Given an

image of a cube (top left), translating it by the element

g (top right) and then computing the feature map F , we

obtain an image (bottom right) that is equivalent to the

image obtained by first computing the feature map (bottom

left) and then translating the image (bottom right).

is the trivial homomorphism, whose image is the trivial group. For example,

a 3D object recognition network may be equivariant to rotations and trans-

lations, but invariant to changes in scale or illumination.

By exploiting the symmetries of the data in this way, GDL algorithms can

achieve state-of-the-art performance on a range of tasks, from graph clas-

sification to 3D point cloud segmentation. For more detailed information

see [7], [6], [24], [31], [14].

Topological Data Analysis An area of research strictly connected with

GDL is the study of data sets using topological techniques, called Topolog-

ical Data Analysis (TDA). TDA provides mathematical methods to encode

the complex geometry of data sets into a compact and easy-to-handle repre-

sentation. There are some key points to consider when applying topology to

data analysis.

A common goal of data analysis is to infer qualitative information from data,

and to understand its organization both from a global and a local perspec-
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tive. In this line topology offers the possibility of analyzing the connectivity

of a space and, more generally, its structural features, such as clusters, holes,

and voids, using methods such as homology and persistent homology.

Persistent homology (PH) is a mathematical tool that captures topologi-

cal information at multiple scales. The first step is to filter the data set,

commonly through the sublevels of a continuous function. In this way, one

obtains a family of nested topological spaces that captures the topological

information at different levels. In other words, we consider pairs composed

by a topological space and a continuous function defined on it, that induces

the sublevel set filtration. In general, PH allows us to study the birth and

the death of k-dimensional holes when we move in the sublevel sets of the

filtration. The topological persistence can informally be thought of as the

evaluation of the importance of topological features with respect to their re-

sistance to noise.

Another useful feature of topology is that it does not depend on the cho-

sen coordinates, but studies the intrinsic geometric properties of objects. In

TDA, the word “summaries” is referred to the topological features or char-

acteristics of a data set that are obtained through TDA methods such as

persistent homology. The final key point in the application of topology in

data analysis is that summaries provide a more robust and informative de-

scription of the underlying structure of the data set compared to selecting

individual parameters. In fact, summaries represent the topological features

of a data set in a way that is stable under different choices of parameters. For

further and more detailed information on TDA we refer to [10] , [16], [13],

and [12].

Relation between GDL and TDA With the increasing development

and use of deep learning techniques, the architecture of neural networks is

becoming more and more varied and intricate and data sets are often re-

siding on non-Euclidean domains, such as manifold, graphs or grids. GDL

and TDA share the common intent of using geometry and topology to study

complex data. TDA allows the addition of topological tools in the geometric

approach to deep learning.

Specifically, as in GDL, we can apply the topological techniques in two lines

of research, with a dual purpose: on one hand, TDA can be applied to deep

learning, performing a topological analysis of neural network architectures

and opening the way to alternative kinds of abstract representations. For ex-

11
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ample, a topological analysis can be performed to study how the information

is processed through the different stages of a convolutional neural network

(CNN). Suppose we want to analyze a CNN trained for image classification.

In this case, the objective of topological analysis could be to identify the

main geometrical or topological features of the different structures within

the network, such as connection patterns between neurons, the distribution

of link weights, etc (e.g. [17]).

On the other hand, we can apply deep learning to TDA, using prior topolog-

ical knowledge on the data set structure in order to feed the neural network

with a simplified input. An example is the classification of unstructured data,

such as text or biomolecules. In this case, topological analysis can be used to

generate topological representations of text or biomolecules, which can then

be used as input for deep learning models (e.g. [9]).

A bridge between GDL and TDA: GENEOs

In recent years, a line of research has emerged forming a bridge between

GDL and TDA: a topological-geometrical theory of Group Equivariant Non-

Expansive Operators (GENEOs).

This study operates within a general mathematical framework where any

agent capable of acting on a certain set can be formally described as a collec-

tion of operators acting on the data. The main goal of this model is to simu-

late the role of the observer maintaining the wanted invariances/equivariances.

In the setting considered, we will assume that our data are not studied di-

rectly, but through the action of agents that measure and transform them.

As in many other applications, we represent data by Rm-valued continuous

functions defined on some topological space. For the sake of simplicity in this

work we will focus on real-valued functions. Hence, we will consider data as

points of a space of functions (signals or measurements) defined on some

domain X, endowed with a certain topological structure. For example, take

as domain a two-dimensional n × n grid X = Zn × Zn, an image in a grey

scale φ (i.e. a signal φ : X → R) and a transformation F that subsamples

the image by coarsening the underlying grid. In our model, we want to pre-

serve topological features and symmetries of the signal after the application

of some transformation. The reason for this choice in the managing of data

is that we are more interested in the space of the observers transforming the

data, rather than the data themselves. This way of looking at data is often

12
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used in GDL, for example in convolution neural networks.

The theory that we are illustrating is the study of group equivariant non-

expansive operators (GENEOs) through the use of topological data analysis.

We have already described the importance of equivariance in GDL to be able

to maintain the symmetries of the data. To be more specific, equivariance

means that the observer wants to respect some intrinsic symmetries of the

set of admissible signals. In application, working on a space of equivariant

operators allows us to inject into the system pre-existing knowledge. This is

a remedy against the risk of high computational complexity since it gives us

the possibility to reduce the dimension while maintaining the discrimination

purposes. On the other hand, the non-expansiveness of an operator is the

property of maintaining or decreasing distances and it implies also the con-

tinuity of the operators. Formally, a function f from a pseudo-metric space

(P, dp) to a pseudo-metric space (Q, dq) is called non-expansive if

dq(f(x), f(y)) ≤ dp(x, y),

for every x, y ∈ P . This choice of working with non-expansive operators guar-

antees that, if the space of measurements is compact, the space of GENEOs

is also compact. From the point of view of applications, non-expansivity

models the need of compressing the information given to the operator as

input. Moreover, the space of GENEOs is convex if the space of measure-

ments is convex, allowing us to create a GENEO starting from a finite set

of preexisting ones. The theory of GENEOs presents also other methods to

build classes of GENEOs combining finite or infinite sets of known GENEOs

in order to produce new ones.

We said before that the purpose of this theory is to simulate the role of the

observer; indeed we focus not on the data itself, but in approximating the

way in which the observer looks at the data. To clarify this idea we give an

example: if we consider images representing skin lesions, we are not interested

in the images per se but rather in approximating the judgment given by the

doctors about such images. For further and more detailed information on the

theory of GENEOs and its applications we refer to [3], [25], [8], [4], [15], [11],

and [1].
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An example of application of GENEOs: protein pocket

detection

In [5] GENEOnet is introduced. It is a method to identify promising binding

sites in proteins, called pockets, a key problem in drug design. Over the past

few years, many researchers have focused on this problem, involving two main

tools: a geometrical analysis for detecting the empty regions within a protein

structure and a physicochemical analysis to characterize the interacting and

structural properties of the found pockets in order to prioritize them and to

identify the correct binding sites. Figure 5 illustrates the result obtained by

applying suitable GENEOs to the protein 2QWE.

Figure 5: Model predictions for protein 2QWE. The global

view of the prediction is shown, where different pockets are

depicted in different colors and are labelled with their scores.

(image courtesy of [5])

Figure 6 shows the comparison between the results obtained by the GE-

NEOnet and other state-of-the-art methods for pocket detection in proteins

(the higher the lines, the better). The use of GENEOs allows one to obtain

better results, despite using fewer parameters. Moreover, the method assigns

a druggability score for each identified pocket. In this way it is possible to

rank the pockets on the same molecule by scoring them in decreasing order.

In Figure 6 the notation Hj refers to the portion of correct recognitions by
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the j-th top ranked pocket:

Hj =
#(proteins whose true pocket is hit by the j − th top ranked)

#(proteins)
,

while Tj refers to the corresponding cumulative quantities

Tj =
#(proteins whose true pocket is hit within the j − th top ranked)

#(proteins)

=

j∑
i=1

Hj.

Figure 6: Results of comparison on a test set. In this

figure, the cumulative frequencies curves are shown. (image

courtesy of [5])

From full equivariance to partial equivariance

Incorporating symmetries as an inductive bias into neural network architec-

tures, Geometric Deep Learning and Topological Data Analysis have given

an improvement in the development of deep learning models. However, real-

world data rarely follows strict mathematical symmetries due to noisy or

incomplete data or to symmetry breaking features.

In the theory of GENEOs the collection of all symmetries is represented by

a group, but in some applications, the group axioms are not maintained. As
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an example, we can take a data set that contains images of digits and the

group of rotations as the equivariance group. As shown in Figure 2, if we

take an image of the digit ‘6’ and rotate it by an angle of π, we obtain an

image that the user would interpret as ‘9’. At the same time, we want to be

able to rotate the digit ‘6’ by small angles while retaining its meaning.

In such model for digit classification, equivariance should be given with re-

spect to a set that is not closed under composition, hence not a group. Thus,

in applications it may sometimes be more useful to consider only some trans-

formations and to ignore others. Another example is the simple translation

of an image: we can consider a data set that contains images located in a

rectangle of the screen and we want to transpose them into another rectangle.

In this case, the identity is not relevant, since we are not interested in the

original images, but in their transformations. Therefore, there is a necessity

to extend the theory of GENEOs, considering weaker structures than groups.

The main goal of this thesis is to generalize the known results of GENEOs

in this new mathematical framework.

Partial Group Equivariant Non-Expansive Operators (P-

GENEOs)

We introduce the concept of Partial Group Equivariant Non-Expansive Op-

erator (P-GENEO) in order to extend the results obtained for GENEOs to

a more general set-up. We consider the same mathematical framework de-

scribed for GENEOs: data are represented as functions defined on topological

spaces and they cannot be studied in a direct way, but only through the ac-

tion of agents that measure and transform them.

In this new model there are some substantial differences with respect to the

theory of GENEOs:

1. The user chooses two data sets in input: the set containing the original

measurements and another set that encloses the admissible variations

of such measurements, defined in the same domain. For example, in the

case where the function that represents the digit ‘6’ is being observed,

we define an initial space that contains this function and another space

that contains certain small rotations of ‘6’, chosen by the observer, but

excludes all others.

2. Instead of considering a group of transformations we will consider a
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set containing only those that do not change the meaning of our data,

i.e., only those bringing each original signal inside the set of admissible

variations of measurements. Therefore, by choosing the initial spaces,

the user defines also which transformations of the data set by right

composition are admissible and which are not.

3. Finally, we define the concept of P-GENEO as a weakening of the con-

cept of GENEO. In this way, depending on the application considered,

the observer also has the possibility of restricting the set of admissible

transformations.

With these assumptions in mind, in this thesis, we will proceed by extending

results obtained for GENEOs, following in particular [3] and [25]. We will

study topological and metric properties of P-GENEOs trying to formalize

the role of the observer in data analysis, with more freedom in the choice of

the environment in which he/she can operate and act. We will define suit-

able pseudo-metrics for the function spaces, the set of transformations and

the set of non-expansive operators. Grounding on certain topological struc-

tures, we will proceed by proving compactness and convexity of the space

of P-GENEOs, under the assumption that function spaces are compact and

convex. These are useful properties from a computational point of view: a

compact space can be approximated by a finite set and the convexity guar-

antees the possibility of creating new P-GENEOs, as convex combination

of some preexisting ones. Proceeding along this line, we will realize gen-

eral methods for building P-GENEOs, starting from a finite or infinite set of

known P-GENEOs.

Related works

The main motivation for this dissertation is that real-world data rarely fol-

lows mathematical symmetries. This problem is not new in GDL and some

steps has been already being made in this direction by researchers in different

fields (see [26], [28], [29], [30], and [18]).

Group restriction operation In [30] a group restriction operation is pro-

posed, that allows to realize network architectures which are decreasingly

equivariant with depth. This is useful, for example, for natural images which

show low level features like edges in arbitrary orientations but carry a sense

of preferred orientation globally. Each individual layer of a convolutional
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network should therefore be adapted to the symmetries present in the length

scale of its point of view and this loss of symmetry can be implemented by

restricting the equivariance at a certain depth. The group restriction opera-

tion yields models that are locally equivariant but are globally invariant only

to the level of symmetry present in the data and it is shown experimentally

that a restriction at later stages of the model improves the performance.

Approximately Equivariance An operator is called approximately equiv-

ariant when equivariance holds up to small variations. Formally, let Φ,Ψ be

sets of functions endowed with the uniform norm, and F : Φ → Ψ be an

operator between them. Let G,H be groups acting on Φ and Ψ respectively

and T : G → H an homomorphism. Consider a real number ε > 0. We say

that F is ε-approximately T -equivariant if for any g ∈ G and for any φ ∈ Φ

we have that ∥F (φg)−F (φ)T (g)∥∞ ≤ ε. Note that strictly equivariant func-

tions are 0-approximately equivariant.

To address the need for more interpretable priors, in [18] Residual Pathway

Priors (RPPs) are illustrated. This is a method for converting hard architec-

tural constraints into soft priors. Practically, RPPs allow to tackle problems

in which perfect symmetry has been violated, but approximate symmetry is

still present, as it is the case for most real-world physical systems. The core

implementation of RPP is to expand each layer in the model into a sum of

both a restrictive layer that encodes the hard architectural constraints and a

generic more flexible layer but it penalizes the more flexible path via a lower

prior probability.

In article [29] a new class of approximately equivariant networks for modeling

imperfectly symmetric dynamics is introduced, by relaxing equivariant con-

straints. This is made in order to perform both strictly equivariant networks

and highly flexible models in learning dynamics in the real world.

Partial Equivariance Formally, a set is partial equivariant with respect

to a group if the equivariance property is maintained for a subset of the group

and not necessarily for all transformations in the group.

The article [26] introduces the concept of Partial G-CNNs in order to rep-

resent a G-CNNs model with a partial equivariance to the group. Convolu-

tional Neural Networks (CNNs) are a widely used deep learning architectures

that are translation equivariant. Group equivariant CNNs (G-CNNs) extend

equivariance to other symmetry groups. The reasoning is the same as pre-

sented before: frequently, invariant transformations can be better represented

by a subset of a group than the whole group or a subgroup. Therefore, one
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should consider a model where data distribution respects equivariance par-

tially. Moreover, as in [30], the optimal level of equivariance may change per

layer depending on changes in the likelihood of some transformation for low

and high-level features. For example, the orientations of edges in a human

face can be represented by full rotation equivariance, while the poses of the

face with respect to the camera are better described by a subset of all rota-

tions. Nevertheless, manually tuning layer-wise levels of equivariance is not

simple and requires iterations over several possible combinations of equivari-

ance levels. Therefore, Partial Group equivariant CNNs are introduced, in

order to create a model able to learn optimal levels of equivariance directly

from data.

This approach is similar to the one considered in this thesis, but with some

differences. Instead of choosing the group elements that can act on the data

set, we decided to first define the set containing the admissible variations of

data. From this setting, we obtain the set of admissible transformations and

then the user can choose a subset, depending on the application considered.

In our model is also importart the role of the non-expansiveness. It is the

feature that allows to obtain compactness and approximability and that dis-

tinguishes our model from much existing literature on equivariant machine

learning.

Organization of the thesis

The structure of the thesis is the following.

Chapter 1 is dedicated to describe the mathematical setting. First, we define

the data sets Φ and Φ′ as real-valued function spaces endowed with the

uniform norm, where the functions are defined on some domain X. Φ is the

set containing the original measurements and Φ′ is the set that encloses the

admissible variations of such measurements. The admissible transformations

are defined as a set of bijections AutΦ,Φ′(X) in the domain X that, acting

on the right on every signal in Φ, transform the signals into measurements

belonging to Φ′, without getting out of it. We can observe that we can reduce

this setting to the case of GENEOs considering Φ = Φ′. We will consider

the space X and the space AutΦ,Φ′(X) as pseudo-metric spaces, defining two

different pseudo-metrics on both, inherited from Φ and Φ′. By choosing the

correct pseudo-metric each time, it is possible to prove some results about

the structure of the space of admissible transformations.
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Chapter 2 is dedicated to the definition of Partial Group Equivariant Non-

Expansive Operator (P-GENEO) and the proof of compactness and convexity

of the space of P-GENEOs, under the assumption that function spaces are

compact and convex. Since in the setting we have two different data sets in

input, a P-GENEO can be represented as a pair of non-expansive operators,

each acting on one of the data sets. These operators are different from each

other, but are connected by the equivariance property.

In Chapter 3 we present some methods to build P-GENEOs, starting from a

finite or an infinite set of known P-GENEOs. We conclude the dissertation

with some final observations and outlining some open issues that could be

the subject of future research.

Epistemological assumptions

The mathematical framework we have developed is motivated by an episte-

mological background that is based on the following assumptions:

1. Data are represented as functions defined on a space endowed with a

certain topology. In fact, stability requires a topological structure, and

only data that are stable with respect to certain criteria (e.g., with re-

spect to some kind of measurement) can be considered for applications.

2. We consider two different data sets: the set containing the original

measurements and another set that encloses the admissible variation

of such measurements, defined on the same domain. With admissible

variation, we intend the transformations of measurements that do not

change their meaning for the observer.

3. Data are not studied directly, but through the action of agents that

measure and transform them. Only the pair (data, agent) matters. In

our case the data in input are a pair of data sets and as a consequence

also the agent is represented by a pair of operators.

4. Agents are described in terms of how they transform data while main-

taining some kind of equivariance.

5. Data similarity depends on the output of the considered agent.
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Therefore, instead of just analyzing data, our setting is devoted to the study

of the pair (data, agent), where data are a pair of data sets and agents are a

pair of equivariant operators. Our purpose is to describe these operators from

a geometric and topological point of view, extending the results obtained in

the theory of GENEOs.
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Chapter 1

Mathematical setting

In our mathematical model, data are represented as function spaces, where

the functions are real-valued and defined on a topological space. Our aim is

to be able to analyze the case where data can only be transformed up to a

certain point. The reason for this setting is that in many applications the

data points can change meaning after a transformation. For example, the

digit ‘6’ rotated by an angle of π becomes the digit ‘9’, which is obviously

different. Therefore, instead of considering a group of transformations we

will consider a subset containing only those that do not change the meaning

of our data. In order to do this, it will be necessary to define two different

function spaces: the space of the initial data and the space in which these

data can vary, in an admissible way.

1.1 Data sets and operations

Consider a set X and the normed vector space (RX
b , ∥·∥∞), where RX

b is

the space of all bounded real-valued functions on X and ∥·∥∞ is the usual

uniform norm, i.e., for any f ∈ RX
b , ∥f∥∞ := supx∈X |f(x)|. On the set X

we consider transformations given by elements of Aut(X), i.e., the group of

bijections from X to itself. Then, we can consider the right group action R
defined as follows:

R : RX
b × Aut(X) → RX

b , (φ, s) 7→ φs.

Remark 1.1. For every s ∈ Aut(X), the map Rs : RX
b → RX

b , with Rs(φ) :=

φs preserves the distances. In fact, for any φ1, φ2 ∈ RX
b , by bijectivity of s,
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we have that

∥Rs(φ1)−Rs(φ2)∥∞ = sup
x∈X

|φ1s(x)− φ2s(x)|

= sup
y∈X

|φ1(y)− φ2(y)|

= ∥φ1 − φ2∥∞,

denoting y = s(x).

Our data sets are given by two sets Φ and Φ′ of bounded real-valued

measurements on X. In our model, X represents the space where the mea-

surements can be made, Φ is the space of permissible measurements, and

Φ′ is a space in which Φ can vary, without changing the meaning. In other

words, we want to be able to apply some admissible transformations on the

space X, so that the resulting changes in the measurements in Φ are con-

tained in the space Φ′. Thus, in our model, we consider operations on X in

the following admissible way:

Definition 1.2. A (Φ,Φ′)-operation is an element s of Aut(X) such that,

for any measurement φ ∈ Φ, the composition φs belongs to Φ′.

The set of all (Φ,Φ′)-operations is denoted by AutΦ,Φ′(X).

Remark 1.3. We can observe that the identity function idX is an element of

AutΦ,Φ′(X) if and only if Φ ⊆ Φ′.

For any s ∈ AutΦ,Φ′(X), the restriction to Φ of the map Rs takes values

in Φ′ since Rs(φ) := φs ∈ Φ′ for any φ ∈ Φ. We can consider the restriction

to Φ of the map R:

R : Φ× AutΦ,Φ′(X) → Φ′, (φ, s) 7→ φs

where R(φ, s) = Rs(φ), for every s ∈ AutΦ,Φ′(X) and every φ ∈ Φ.

Definition 1.4. Let X be a set. A perception triple is a triple (Φ,Φ′, S)

with Φ,Φ′ ⊆ RX
b and S ⊆ AutΦ,Φ′(X).

In our model, the subset S ⊆ AutΦ,Φ′(X) represents the space of all the

admissible operations that the observer is allowed to apply to the data set

Φ. Also the triple (Φ,Φ′,AutΦ,Φ′(X)) is a perception triple, called universal.
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Example 1.5. Given X = R2, consider two rectangles R and R′ in X. As-

sume Φ := {φ : X → [0, 1] : supp(φ) ⊆ R} and Φ′ := {φ′ : X → [0, 1] :

supp(φ′) ⊆ R′}. We recall that, if we consider a function f : X → R, the
support of f is the set of points in the domain where the function does not

vanish, i.e., supp(f) = {x ∈ X | f(x) ̸= 0}.
Consider S as the set of translations that bring R into R′. The triple

(Φ,Φ′, S) is a perception triple. This example could represent a model

where rectangular pictures can only be changed by translations belonging

to a bounded set.

1.2 Pseudo-metrics on data sets

In our model, data are represented as function spaces, that is, considering a

generic set X, a set Ω ⊆ RX
b of bounded real-valued functions ω : X → R.

We can endow the space X with an extended pseudo-metric induced by Ω:

DΩ
X(x1, x2) = sup

ω∈Ω
|ω(x1)− ω(x2)|

for every x1, x2 ∈ X.

Proposition 1.6. DΩ
X is an extended pseudo-metric.

Proof. We have that DΩ
X(x, x) = 0 for any x ∈ X and DΩ

X is symmetric. It

remains to show that triangle inequality holds:

DΩ
X(x1, x2) = sup

ω∈Ω
|ω(x1)− ω(x2)|

≤ sup
ω∈Ω

(|ω(x1)− ω(x3)|+ |ω(x3)− ω(x2)|)

≤ sup
ω∈Ω

|ω(x1)− ω(x3)|+ sup
ω∈Ω

|ω(x3)− ω(x2)|

= DΩ
X(x1, x3) +DΩ

X(x3, x2)

for any x1, x2, x3 ∈ X.

Remark 1.7. The choice of this pseudo-metric over X means that two points

can only be distinguished if they assume different values for some measure-

ments. For example, if Φ contains only a constant function and X contains

at least two points, the distance between any two points of X is always null.
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The pseudo-metric space XΩ := (X,DΩ
X) can be considered as a topolog-

ical space with the bases

BΩ = {BΩ(x0, r)}x0∈X, r∈R+ =
{
{x ∈ X : DΩ

X(x, x0) < r}
}
x0∈X, r∈R+ ,

and the induced topology is denoted by τΩ. The reason for considering a

topological space X, rather than just a set, follows from the need of formal-

ising the assumption that data are stable under small perturbations.

Remark 1.8. In our case, there are two collections of functions Φ and Φ′ in

RX
b representing our data, both of which induce a topology on X. So, in the

model, we will consider the pseudo-metric spaces XΦ and XΦ′ with the same

underlying set X.

In general the topologies induced on X by two different subsets of RX
b are

not comparable, but they are in this special case:

Proposition 1.9. If Φ ⊆ Φ′ ⊆ RX
b , then the topologies τΦ′ and τΦ′ are

comparable and, in particular, τΦ′ is finer than τΦ.

Proof. It will suffice to show that every open set U ∈ τΦ is also in τΦ′ . Since

DΦ
X(x1, x2) ≤ DΦ′

X (x1, x2) for every x1, x2 ∈ X, we have that

BΦ′(x0, r) = {x ∈ X : DΦ′

X (x, x0) < r}
= {x ∈ X : sup

φ∈Φ
|φ(x)− φ(x0)| ≤ sup

φ′∈Φ′
|φ′(x)− φ′(x0)| < r}

⊆ {x ∈ X : sup
φ∈Φ

|φ(x)− φ(x0)| < r}

= BΦ(x0, r)

for every x0 ∈ X, r ∈ R+. Then, considering an open set U ∈ τΦ, for every

x0 ∈ U there exists r > 0 such that x0 ∈ BΦ′(x0, r) ⊆ BΦ(x0, r) ⊆ U . Then

U ∈ τΦ′ and the statement is true.

Now, given a set Ω ⊆ RX
b , we will prove a result about the compactness

of the pseudo-metric space XΩ. Let us recall the following Lemma (see [19]):

Lemma 1.10. Let (P,d) be a pseudo-metric space. The following conditions

are equivalent:

1. P is totally bounded;

2. every sequence in P admits a Cauchy subsequence.
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Theorem 1. If Ω is totally bounded, then XΩ is totally bounded.

Proof. By Lemma 1.10 it will suffice to prove that every sequence inX admits

a Cauchy subsequence with respect to the pseudo-metric DΩ
X . Consider a

sequence (xi)i∈N in XΩ and take a real number ε > 0. Since Ω is totally

bounded, we can find a finite subset Ωε = {ω1, . . . , ωn} such that for every

ω ∈ Ω there exists ωr ∈ Ω for which ∥ω − ωr∥∞ < ε. We can consider

now the real sequence (ω1(xi))i∈N, that is bounded since Ω ∈ RX
b . From

Bolzano-Weierstrass Theorem it follows that we can extract a convergent

subsequence (ω1(xih))h∈N. Again, we can extract from (ω2(xih))h∈N another

convergent subsequence (ω2(xiht ))t∈N. Repeating the process, we are able

to extract a subsequence of (xi)i∈N, that for semplicity of notation we can

indicate as (xij)j∈N, such that (ωk(xij))j∈N is a convergent subsequence in R
for every k ∈ {1, . . . , n} and hence a Cauchy sequence in R.
By construction, Ωε is finite, then we can find an index ȷ̄ such that for any

k ∈ {1, . . . , n}

|ωk(xil)− ωk(xim)| ≤ ε, for every l,m ≥ ȷ̄.

Furthermore we have that, for any ω ∈ Ω, any ωk ∈ Ωε and any l,m ∈ N

|ω(xil)− ω(xim)| ≤ |ω(xil)− ωk(xil)|+ |ωk(xil)− ωk(xim)|
+ |ωk(xim)− ω(xim)|

≤ ∥ω − ωk∥∞ + |ωk(xil)− ωk(xim)|+ ∥ωk − ω∥∞.

We observe that the choice of ȷ̄ depends only on ε and Ωε, not on k. Then,

choosing a ωk ∈ Ωε such that ∥ωk−ω∥∞ < ε, we get ∥ω(xil)−ω(xim)∥∞ < 3ε

for every ω ∈ Ω and every l,m ≥ ȷ̄. Then,

DΩ
X(xil , xim) = sup

ω∈Ω
|ω(xil)− ω(xim)| < 3ε for every l,m ≥ ȷ̄.

Then (xij)j∈N is a Cauchy sequence in XΩ. For Lemma 1.10 the statement

holds.

Corollary 1.11. If Ω is totally bounded and XΩ is complete, then XΩ is

compact.

Proof. From Theorem 1 we have that XΩ is totally bounded and since by

hypothesis it is also complete, it is compact.
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Now, we will prove that the choice of the pseudo-metric DΩ
X on X makes

the functions of Ω non-expansive.

Definition 1.12. Consider two pseudo-metric spaces (P, dp) and (Q, dq). A

non-expansive function from (P, dp) to (Q, dq) is a function f : P → Q such

that dq(f(p1), f(p2)) ≤ dp(p1, p2) for any p1, p2 ∈ P .

We call NE(P,Q) the space of all non-expansive functions from (P, dp) to

(Q, dq).

Proposition 1.13. Ω ⊆ NE(XΩ,R).

Proof. For any x1, x2 ∈ X we have that

|ω(x1)− ω(x2)| ≤ sup
ω∈Ω

|ω(x1)− ω(x2)| = DΩ
X(x1, x2).

Then, the topology on X induced by DΩ
X naturally makes the measure-

ments in Ω continuous. In particular, since the previous results hold for a

generic Ω ⊆ RX
b , they are also true for Φ and Φ′ in our model.

Remark 1.14. The topology on X induced by the pseudo-metric of one of

the function spaces does not make the functions of the other continuous: a

function φ′ ∈ Φ′ may not be continuous from XΦ to R and a function φ ∈ Φ

may not be continuous from XΦ′ to R.

Example 1.15. Assume X = R and for every a, b ∈ R consider the functions

φa : X → R and φ′
b : X → R defined by setting

φa(x) =

{
0 if x ≥ a

1 otherwise
, φ′

b(x) =

{
0 if x ≤ b

1 otherwise
.

Suppose Φ := {φa : a ≥ 0} and Φ′ := {φ′
b : b ≤ 0}, and consider s ∈

AutΦ,Φ′(X) as the symmetry with respect to the y-axis, i.e., such that s(x) =

−x. We can observe that the function φ1 ∈ Φ is not continuous from X ′
Φ to

R; indeed DΦ′
X (0, 2) = 0, but |φ1(0)− φ1(2)| = 1.

However, if Φ ⊆ Φ′, we have that the functions of Φ maintain continuity

on XΦ′ , indeed:

Proposition 1.16. If Φ ⊆ Φ′, then Φ ⊆ NE(XΦ′ ,R).
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Proof. By Proposition 1.13 the statement trivially holds since Φ ⊆ Φ′ ⊆
NE(XΦ′ ,R).

We recall that the initial topology τin is the coarsest topology that makes

all functions in Ω continuous. Under the assumption that Ω is totally bounded,

there is another interesting result which gives us a connection between τΩ and

the initial topology τin with respect to Ω, when we take the Euclidean topol-

ogy τe on R.

Proposition 1.17. If Ω is totally bounded, then the topology τΩ coincides

with τin.

Before proceeding with the proof we show the following Lemma:

Lemma 1.18. If Ω is totally bounded, then for every δ > 0 there exists a

finite subset Ωδ of Ω such that

0 ≤ sup
ω∈Ω

|ω(x1)− ω(x2)| −max
ω∈Ωδ

|ω(x1)− ω(x2)| ≤ 2δ

for every x1, x2 ∈ X.

Proof. Since by hypothesis Ω is totally bounded, there exists a finite subset

Ωδ := {ω1, . . . , ωn} of Ω such that for each ω ∈ Ω we can find ωi ∈ Ωδ for

which ∥ω−ωi∥∞ < δ. Hence, for every x ∈ X, we have that |ω(x)−ωi(x)| < δ.

Considering two points x1, x2 ∈ X, for any ε > 0 we can choose a ωε ∈ Ω

such that

sup
ω∈Ω

|ω(x1)− ω(x2)| − |ωε(x1)− ωε(x2)| ≤ ε.

Now, for any ω ∈ Ω we can take an index i ∈ {1, . . . , n} for which ∥ω−ωi∥∞ <

δ and we have that

|ω(x1)− ω(x2)| = |ω(x1)− ωi(x1) + ωi(x1)− ωi(x2) + ωi(x2)− ω(x2)|
≤ |ω(x1)− ωi(x1)|+ |ωi(x1)− ωi(x2)|+ |ωi(x2)− ω(x2)|
< |ωi(x1)− ωi(x2)|+ 2δ

≤ max
ωj∈Ωδ

|ωj(x1)− ωj(x2)|+ 2δ.

We have found the inequality

|ω(x1)− ω(x2)| ≤ max
ωj∈Ωδ

|ωj(x1)− ωj(x2)|+ 2δ,
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for every ω ∈ Ω. Then, we have that

sup
ω∈Ω

|ω(x1)− ω(x2)| ≤ max
ωj∈Ωδ

|ωj(x1)− ωj(x2)|+ 2δ.

On the other hand, since Ωδ ⊆ Ω, we have that

sup
ω∈Ω

|ω(x1)− ω(x2)| ≥ max
ωj∈Ωδ

|ωj(x1)− ωj(x2)|.

Hence, the statement is proved.

We are now ready to prove Proposition 1.17:

Proof. We already know, because of Proposition 1.13, that every function ω

of Ω is continuous with respect to τΩ. Hence, τΩ is obviously finer than τin.

Consider two bases respectively for the topology τΩ and the topology τin:

BΩ = {BΩ(x0, r), x0 ∈ X, r > 0},

Bin =

{⋂
i∈I

ω−1
i (Ui), |I| <∞, Ui ∈ τe, ωi ∈ Ω for every i ∈ I

}
.

In order to prove our statement it will suffice to show that the topology

τin is finer than the topology τΩ. Then, considering x0 ∈ BΩ(x0, r) ∈ BΩ,

we want to prove that there exists a set V =
⋂

i∈I ω
−1
i (Ui) ∈ Bin such that

x0 ∈ V ⊆ BΩ(x0, r).

Since Ω is totally bounded then, because of Lemma 1.18, for every δ > 0

there exists a finite subset Ωδ := {ω1, . . . , ωn} of Ω such that

0 ≤ sup
ω∈Ω

|ω(x1)− ω(x2)| −max
ω∈Ωδ

|ω(x1)− ω(x2)| ≤ 2δ (1.1)

for every x1, x2 ∈ X. Consider now

Bδ(x0, r) :=

{
x ∈ X

∣∣∣ max
ωi∈Ωδ

|ωi(x0)− ωi(x)| < r

}
for every x0 ∈ X and every r > 0. We can choose r, δ > 0 such that

2δ < r. Consider x0 ∈ BΩ(x0, r) ∈ BΩ; from inequality (1.1) we have that

Bδ(x0, r − 2δ) ⊆ BΩ(x0, r).

We now define in R the sets Ui :=]ωi(x0)− r + 2δ, ωi(x0) + r − 2δ[ for i ∈ I

and we consider in X the set V :=
⋂

ω∈Ωδ
ω−1
i (Ui) ⊆ Bin.

We have that x0 ∈ V and it remains to show that V ⊆ BΩ(x0, r). If z ∈ V ,

then |ωi(z) − ωi(x0)| < r − 2δ for every ωi ∈ Ωδ. Therefore, x0 ∈ V ⊆
Bδ(x0, r − 2δ) ⊆ BΩ(x0, r). Then τin is finer than τΩ. Hence, the statement

is true.
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1.3. Pseudo-metrics and structure on the space of operations

1.3 Pseudo-metrics and structure on the space

of operations

Proposition 1.19. Every element of AutΦ,Φ′(X) is non-expansive from XΦ′

to XΦ.

Proof. Considering a bijection s ∈ AutΦ,Φ′(X) we have that

DΦ
X(s(x1), s(x2)) = sup

φ∈Φ
|φs(x1)− φs(x2)|

= sup
φ∈Φs

|φ(x1)− φ(x2)|

≤ sup
φ′∈Φ′

|φ′(x1)− φ′(x2)| = DΦ′

X (x1, x2)

for every x1, x2 ∈ X. Then, s ∈ NE(XΦ′ , XΦ) and the statement is proved.

Now we are ready to put more structure on AutΦ,Φ′(X). Considering a

set Ω ⊆ RX
b of bounded real-valued functions ω : X → R, we can endow the

set Aut(X) with a pseudo-metric inherited from Ω:

DΩ
Aut(s1, s2) := sup

ω∈Ω
∥ωs1 − ωs2∥∞

for any s1, s2 in Aut(X).

Remark 1.20. As in Remark 1.8, the sets Φ and Φ′ can endow Aut(X) with

two possible pseudo-metrics DΦ
Aut and D

Φ′
Aut.

In particular, we can consider AutΦ,Φ′(X) as a pseudo-metric subspace of

Aut(X) with the induced pseudo-metrics.

Remark 1.21. We observe that, for any s1, s2 in Aut(X),

DΩ
Aut(s1, s2) := sup

ω∈Ω
∥ωs1 − ωs2∥∞

= sup
x∈X

sup
ω∈Ω

|ω(s1(x))− ω(s2(x))|

= sup
x∈X

DΩ
X(s1(x), s2(x)). (1.2)

From this result, we can see that the metric we defined, which is based on

the action of the elements of Aut(X) on the set Ω, is exactly the uniform

metric on XΩ.
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1.3. Pseudo-metrics and structure on the space of operations

1.3.1 Some observations on the composition of opera-

tions

Consider the following sets of transformations:

AutΦ(X) := {s ∈ Aut(X), φs ∈ Φ for every φ ∈ Φ};
AutΦ′(X) := {s ∈ Aut(X), φ′s ∈ Φ′ for every φ′ ∈ Φ′};

AutΦ,Φ′(X) = {s ∈ Aut(X), φs ∈ Φ′ for every φ ∈ Φ}

It can be observed that in AutΦ,Φ′(X) it seems natural to choose only the

pseudo-metric DΦ
Aut since we are interested only in transformations of func-

tions in Φ. However, when we look at the composition of certain elements in

AutΦ,Φ′(X), it is necessary to take the pseudo-metric DΦ′
Aut in order to main-

tain the continuity of the composition operation, whenever it is admissible.

Consider two elements s, t in AutΦ,Φ′(X) such that st is still an element of

AutΦ,Φ′(X), i.e., for every function φ ∈ Φ we have that φst ∈ Φ′. Then, for

any φ ∈ Φ we have that

φ′ := φs ∈ Φs ⊆ Φ′, φ′t ∈ Φ′.

Therefore, t is also an element of AutΦs,Φ′(X). By definition Φs is contained

in Φ′ for every s ∈ AutΦ,Φ′(X) and this justifies the choice of considering in

AutΦ,Φ′(X) also the pseudo-metric DΦ′
Aut.

We have shown in particular that if s, t are elements of AutΦ,Φ′(X) such that

st is still an element of AutΦ,Φ′(X), then t is an element of AutΦs,Φ′(X),

which is an implication of the following Proposition:

Proposition 1.22. Let s, t be elements of AutΦ,Φ′(X). The composition st

belongs to AutΦ,Φ′(X) if and only if t belongs to AutΦs,Φ′(X).

Proof. Consider s, t ∈ AutΦ,Φ′(X). If the composition st belongs to AutΦ,Φ′(X),

we have already proved that t ∈ AutΦs,Φ′(X).

On the other hand, if t ∈ AutΦs,Φ′(X) we have that φ̄t ∈ Φ′ for every φ̄ ∈ Φs.

Since all the elements of Φs are in the form φs for some φ ∈ Φ, we have that

φst ∈ Φ′ for every φ ∈ Φ. Therefore, st ∈ AutΦ,Φ′(X) and the statement is

proved.

Remark 1.23. Let t be an element of AutΦ,Φ′(X). We can observe that if

s ∈ AutΦ(X), then Φs ⊆ Φ and st ∈ AutΦ,Φ′(X).
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1.3. Pseudo-metrics and structure on the space of operations

Corollary 1.24. Suppose Φ′ := ∪s∈AutΦ,Φ′ (X)Φs. Let t be an element of

AutΦ,Φ′(X). The composition st belongs to AutΦ,Φ′(X) for every s ∈ AutΦ,Φ′(X)

if and only if t belongs to AutΦ′(X).

Proof. Consider t ∈ AutΦ,Φ′(X). Because of Proposition 1.22, the compo-

sition st belongs to AutΦ,Φ′(X) for every s ∈ AutΦ,Φ′(X) if and only if t ∈
AutΦs,Φ′(X) for every s ∈ AutΦ,Φ′(X). However, since Φ′ = ∪s∈AutΦ,Φ′ (X)Φs,

this is true if and only if t ∈ AutΦ′(X).

1.3.2 Structure on the set of operations

We denote by Π ⊆ AutΦ,Φ′(X) × AutΦ,Φ′(X) the set containing the pairs

(s, t) such that st belongs to AutΦ,Φ′(X).

Lemma 1.25. Consider r, s, t ∈ Aut(X). It holds that

DΩ
Aut(rt, st) = DΩ

Aut(r, s).

Proof. Consider r, s, t ∈ Aut(X). Since Rt preserve distances, we have that:

DΩ
Aut(rt, st) := sup

ω∈Ω
∥ωrt− ωst∥∞

= sup
ω∈Φ

∥ωr − ωs∥∞

= DΩ
Aut(r, s).

Lemma 1.26. Consider r, s ∈ Aut(X) and t ∈ AutΦ,Φ′(X). It holds that

DΦ
Aut(tr, ts) ≤ DΦ′

Aut(r, s).

Proof. Consider r, s ∈ Aut(X) and t ∈ AutΦ,Φ′(X). Since Φt ⊆ Φ′, we have

that:

DΦ
Aut(tr, ts) = sup

φ∈Φ
∥φtr − φts∥∞

= sup
φ′∈Φt

∥φ′r − φ′s∥∞

≤ sup
φ′∈Φ′

∥φ′r − φ′s∥∞

= DΦ′

Aut(r, s).
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1.3. Pseudo-metrics and structure on the space of operations

Remark 1.27. We may consider Π to be a pseudo-metric subspace of the

product space (AutΦ,Φ′(X), DΦ
Aut) × (AutΦ,Φ′(X), DΦ′

Aut). In particular, we

consider on Π the pseudo-metric

DΠ((s1, s2), (t1, t2)) = DΦ
Aut(s1, s2) +DΦ′

Aut(t1, t2).

Observe that the topology induced by this pseudo-metric is equivalent to the

classical product topology.

Proposition 1.28. Consider Π ⊆ (AutΦ,Φ′(X), DΦ
Aut)× (AutΦ,Φ′(X), DΦ′

Aut).

Then the function ◦ : Π → (AutΦ,Φ′(X), DΦ
Aut) that maps (s, t) to st is con-

tinuous.

Proof. Consider two elements (s1, t1), (s2, t2) of Π. Because of Lemma 1.25

and Lemma 1.26, we obtain that

DΦ
Aut(s1t1, s2t2) ≤ DΦ

Aut(s1t1, s2t1) +DΦ
Aut(s2t1, s2t2)

= DΦ
Aut(s1, s2) +DΦ

Aut(s2t1, s2t2)

≤ DΦ
Aut(s1, s2) +DΦ′

Aut(t1, t2).

Therefore, the statement is proved.

Denote as Υ ⊆ AutΦ,Φ′(X) the set containing the elements s such that

s−1 belongs to AutΦ,Φ′(X).

Proposition 1.29. The function (·)−1 : (Υ, DΦ′
Aut) → (AutΦ,Φ′(X), DΦ

Aut),

that maps s to s−1, is continuous.

Proof. Consider two bijections s1, s2 ∈ Υ. Because of Lemma 1.25 and

Lemma 1.26, we obtain that

DΦ
Aut(s

−1
1 , s−1

2 ) = DΦ
Aut(s

−1
1 s2, s

−1
2 s2)

= DΦ
Aut(s

−1
1 s2, idX)

= DΦ
Aut(s

−1
1 s2, s

−1
1 s1)

≤ DΦ′

Aut(s1, s2).

Therefore, the statement is true.

We have previously defined the map

R : Φ× AutΦ,Φ′(X) → Φ′, (φ, s) 7→ φs

where R(Φ, s) = Rs(Φ), for every s ∈ AutΦ,Φ′(X).
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1.3. Pseudo-metrics and structure on the space of operations

Proposition 1.30. The function R is continuous, by choosing the pseudo-

metric DΦ
Aut on AutΦ,Φ′(X).

Proof. We have that

∥R(φ, t)−R(φ, s)∥∞ = ∥φt− φs∥∞
≤ ∥φt− φs∥∞ + ∥φs− φs∥∞
= ∥φt− φs∥∞ + ∥φ− φ∥∞
≤ DΦ

Aut(t, s) + ∥φ− φ∥∞
for any φ, φ ∈ Φ and any t, s ∈ AutΦ,Φ′(X). This proves thatR is continuous.

Now, consider a subset S ⊆ AutΦ,Φ′(X); we can give a result about the

compactness of (S,DΦ
Aut), under suitable assumptions.

Theorem 2. If Φ and Φ′ are totally bounded, then (S,DΦ
Aut) is totally bounded.

Proof. Consider a sequence (si)i∈N in S and take a real number ε > 0. Since

Φ is totally bounded, we can find a finite subset Φε = {φ1, . . . , φn} such

that for every φ ∈ Φ there exists φr ∈ Φ for which ∥φ − φr∥∞ < ε. Now,

consider the sequence (φ1si)i∈N in Φ′. Since also Φ′ is totally bounded, from

Lemma 1.10 it follows that we can extract a Cauchy subsequence (φ1sih)h∈N.

Again, we can extract another Cauchy subsequence (φ2siht )t∈N. Repeating

the process for every k ∈ {1, . . . , n}, we are able to extract a subsequence of

(si)i∈N, that for simplicity of notation we can indicate as (sij)j∈N, such that

(φksij)j∈N is a Cauchy sequence for every k ∈ {1, . . . , n}.
By definition Φε is finite, then we can find an index ȷ̄ such that for any

k ∈ {1, . . . , n}

∥φksil − φksim∥∞ ≤ ε, for every l,m ≥ ȷ̄. (1.3)

Furthermore we have that, for any φ ∈ Φ, any φk ∈ Φε and any l,m ∈ N

∥φsil − φsim∥∞ ≤ ∥φsil − φksil∥∞ + ∥φksil − φksim∥∞ + ∥φksim − φsim∥∞
= ∥φ− φk∥∞ + ∥φksil − φksim∥∞ + ∥φk − φ∥∞.

We observe that the choice of ȷ̄ in (1.3) depends only on ε and Φε, not on k.

Then, choosing a φk ∈ Φε such that ∥φk−φ∥∞ < ε, we get ∥φsil −φsim∥∞ <

3ε for every φ ∈ Φ and every l,m ≥ ȷ̄. Hence,

DΦ
Aut(sil , sim) = sup

φ∈Φ
∥φsil − φsim∥∞ < 3ε
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1.3. Pseudo-metrics and structure on the space of operations

Therefore (sij)j∈N is a Cauchy sequence. For Lemma 1.10 the statement

holds.

Corollary 1.31. If (S,DΦ
Aut) is complete, then it is also compact.

Proof. From Theorem 2 we have that S is totally bounded and since by

hypothesis it is also complete, the statement holds.
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Chapter 2

The space of P-GENEOs

In this chapter we introduce the concept of Partial Group Equivariant Non-

Expansive Operator (P-GENEO). P-GENEOs allow the transformation of

data sets, preserving symmetries and distances and maintaining the accept-

ability conditions of the transformations. We will also describe some topo-

logical results about the structure of the space of P-GENEOs. We recall the

following definition:

Definition 2.1. Let X be a set. A perception triple is a triple (Φ,Φ′, S)

with Φ,Φ′ ⊆ RX
b and S ⊆ AutΦ,Φ′(X).

The set X is called the domain of the perception triple.

Definition 2.2. Let X, Y be sets and (Φ,Φ′, S), (Ψ,Ψ′, Q) be perception

triples with domains X and Y , respectively. Consider a triple of functions

(F, F ′, T ) with the following properties:

• F : Φ → Ψ, F ′ : Φ′ → Ψ′, T : S → Q;

• for any s, t ∈ S such that st ∈ S it holds that T (st) = T (s)T (t);

• for any s ∈ S such that s−1 ∈ S it holds that T (s−1) = T (s)−1;

• (F, F ′, T ) is equivariant, i.e., F ′(φs) = F (φ)T (s) for every φ ∈ Φ,

s ∈ S.

The triple (F, F ′, T ) is called a perception map or a Partial Group

Equivariant Operator (P-GEO) from (Φ,Φ′, S) to (Ψ,Ψ′, Q).
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When the map T is fixed and specified, we will consider simply pairs of

operators (F, F ′) instead of triples (F, F ′, T ) and we say that (F, F ′) is a

P-GEO associated with or with respect to the map T .

Moreover, in this case we indicate the property of equivariance of the triple

(F, F ′, T ) writing that the pair (F, F ′) is T -equivariant.

In Remark 1.3 we observed that idX ∈ AutΦ,Φ′(X) if and only if Φ ⊆ Φ′.

Then we can consider a perception triple (Φ,Φ′, S) with Φ ⊆ Φ′ and idX ∈
S ⊆ AutΦ,Φ′(X). Now we will show how a P-GEO from this perception triple

behaves.

Lemma 2.3. Consider two perception triples (Φ,Φ′, S) and (Ψ,Ψ′, Q) with

domains X and Y , respectively, and with idX ∈ S ⊆ AutΦ,Φ′(X). Let

(F, F ′, T ) be a P-GEO from (Φ,Φ′, S) to (Ψ,Ψ′, Q). Then Ψ ⊆ Ψ′ and

idY ∈ Q ⊆ AutΨ,Ψ′(Y ).

Proof. Since (F, F ′, T ) is a P-GEO, by definition, we have that, for any

s, t ∈ S such that st ∈ S, T (st) = T (s)T (t). In particular idX ∈ S, then

T (idX) = T (idX idX) = T (idX)T (idX)

and hence T (idX) = idY ∈ Q ⊆ AutΨ,Ψ′(X). Moreover, for Remark 1.3, we

have that Ψ ⊆ Ψ′.

Proposition 2.4. Consider two perception triples (Φ,Φ′, S) and (Ψ,Ψ′, Q)

with domains X and Y , respectively, and with idX ∈ S ⊆ AutΦ,Φ′(X). Let

(F, F ′, T ) be a P-GEO from (Φ,Φ′, S) to (Ψ,Ψ′, Q). Then F ′|Φ = F .

Proof. Since (F, F ′, T ) is a P-GEO, it is equivariant and by Lemma 2.3 we

have that

F ′(φ) = F ′(φidX) = F (φ)T (idX) = F (φ)idY = F (φ)

for every φ ∈ Φ.

Definition 2.5. Assume that (Φ,Φ′, S) and (Ψ,Ψ′, Q) are perception triples.

If (F, F ′, T ) is a perception map from (Φ,Φ′, S) to (Ψ,Ψ′, Q) and F , F ′ are

non-expansive , i.e.,

∥F (φ1)− F (φ2)∥∞ ≤ ∥φ1 − φ2∥∞,
∥F ′(φ′

1)− F ′(φ′
2)∥∞ ≤ ∥φ′

1 − φ′
2∥∞

for every φ1, φ2 ∈ Φ, φ′
1, φ

′
2 ∈ Φ′, then (F, F ′, T ) is called a Partial Group

Equivariant Non-Expansive Operator (P-GENEO).
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In other words, a P-GENEO is a triple (F, F ′, T ) such that F, F ′ are

non-expansive and the following diagram commutes:

Φ Φ′

Ψ Ψ′

Rs

F F ′

RT (s)

for every s ∈ S.

Remark 2.6. We can observe that a GENEO can be represented as a special

case of P-GENEO, considering two perception triples (Φ,Φ′, S), (Ψ,Ψ′, Q)

in which:

1. the two function spaces are equal, Φ = Φ′ and Ψ = Ψ′;

2. the subsets containing the invariant transformations S andQ are groups

(and then, by definition, the map T : S → Q is a homomorphism).

In this setting, a P-GENEO (F, F ′, T ) is a triple where the first two oper-

ators are equal F = F ′ (because of Proposition 2.4) and the map T is a

homomorphism. Hence, instead of the triple, we can simply write the pair

(F, T ), that is a GENEO.

Considering two perception triples, we typically want to study the space

of all P-GENEOs between them with the map T fixed. Therefore, when

the map T is fixed and specified, we will consider simply pairs of operators

(F, F ′) instead of triples (F, F ′, T ), and we say that (F, F ′) is a P-GENEO

associated with or with respect to the map T .

We denote the set of all P-GENEOs from (Φ,Φ′, S) to (Ψ,Ψ′, Q) associated

with the map T : S → Q by the symbol

Fall
T ((Φ,Φ′, S), (Ψ,Ψ′, Q)),

or simply Fall
T if the perception triples are clear from the context.

Example 2.7. Let X = R2. Take a real number l > 0. In X consider

the square Q1 := [0, l] × [0, l], and its translation of a vector (s1, s2) ∈ R2

Q′
1 := [s1, l + s1] × [s2, l + s2]. Analogously, let us consider a real number

0 < ε < l and two squares inside Q1 and Q′
1, Q2 := [ε, l − ε]× [ε, l − ε] and

Q′
2 := [s1 + ε, l + s1 − ε]× [s2 + ε, l + s2 − ε], as in Figure 2.1.
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Figure 2.1: Square supports of functions.

Consider the following function spaces in RX
b :

Φ := {φ : X → R | supp(φ) ⊆ Q1}
Φ′ := {φ′ : X → R | supp(φ′) ⊆ Q′

1}
Ψ := {ψ : X → R | supp(ψ) ⊆ Q2}
Ψ′ := {ψ′ : X → R | supp(ψ′) ⊆ Q′

2}.

Let S := {s−1}, where s is the translation operator of vector (s1, s2). The

triples (Φ,Φ′, S) and (Ψ,Ψ′, S) are perception triples.

This example could model the translation of two nested grey-scale images.

We want to build now an operator between these images in order to obtain

a transformation that preserves the translation invariance.

We can consider the triple of functions (F, F ′, T ) defined as follows. F : Φ →
Ψ is the operator that maintains the output of functions in Φ at points of

Q2 and set them to zero outside it; analogously F ′ : Φ′ → Ψ′ is the operator

that maintains the output of functions in Φ′ at points of Q′
2 and set them to

zero outside it; and T = idS. Therefore, the triple (F, F ′, T ) is a P-GENEO

from (Φ,Φ′, S) to (Ψ,Ψ′, S). It turns out that the maps are non-expansive

and the equivariance holds:

F ′(φs−1) = F (φ)T (s−1) = F (φ)s−1

for any φ ∈ Φ. From the point of view of application, we are considering two

square images and their translations and we apply an operator that ‘cuts’
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2.1. Compactness and convexity of the space of P-GENEOs

the images, taking into account only the part of the image that interests the

observer.

This example justifies the definition of P-GENEO as a triple of operators

(F, F ′, T ), without requiring F and F ′ to be equal in the possibly non-empty

intersection of their domains. In fact, if φ is a function contained in Φ ∩ Φ′,

its image via F and F ′ may be different.

2.1 Compactness and convexity of the space

of P-GENEOs

Given two perception triples, under specific assumptions about the data sets,

it is possible to show two features useful in applications: compactness and

convexity. Indeed, from a computational point of view, a compact space can

be approximated by a finite set and the convexity guarantees the possibility

of creating new P-GENEOs, as convex combination of some preexisting ones.

Before proceeding we need to endow the space of P-GENEOs with a topology.

Let X, Y be sets. Considering two sets Ω ⊆ RX
b ,∆ ⊆ RY

b , we can define the

distance

DΩ
NE(F1, F2) := sup

ω∈Ω
∥F1(ω)− F2(ω)∥∞

for every F1, F2 ∈ NE(Ω,∆).

Consider the space Fall
T of all the P-GENEOs between two perception triples

(Φ,Φ′, S) and (Ψ,Ψ′, Q) associated with the map T . We define a distance

DP-GENEO on Fall
T :

DP-GENEO((F1, F
′
1), (F2, F

′
2)) := max{DΦ

NE(F1, F2), D
Φ′

NE(F
′
1, F

′
2)}

= max{sup
φ∈Φ

∥F1(φ)− F2(φ)∥∞, sup
φ′∈Φ′

∥F ′
1(φ

′)− F ′
2(φ

′)∥∞}

for every (F1, F
′
1), (F2, F

′
2) ∈ Fall

T . Observe that the pseudo-metrics are all

well-defined, since by definition F1, F2 ∈ NE(Φ,Ψ) and F ′
1, F

′
2 ∈ NE(Φ′,Ψ′).

2.1.1 Compactness

Before proceeding, we recall some definitions:

Definition 2.8. A relatively compact subset B of A is a subset whose

closure is compact.
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Definition 2.9. Let (P, dP ) and (Q, dQ) be two pseudo-metric spaces. A

family H of functions from P to Q is called equicontinuous at a point

p0 ∈ P if for every ε > 0, there exists a δ > 0 such that dQ(h(p0), h(p)) < ε

for any h ∈ H and for any p ∈ P such that dP (p0, p) < δ.

If the family H is equicontinuous at each point of P , it is called pointwise

equicontinuous or simply equicontinuous.

Definition 2.10. Let (P, dP ) and (Q, dQ) be two pseudo-metric spaces. A

family H of functions from P to Q is called uniformly equicontinuous if

for every ε > 0, there exists a δ > 0 such that dQ(h(p1), h(p2)) < ε for any

h ∈ H and for any p1, p2 ∈ P such that dP (p1, p2) < δ.

Note that a uniformly equicontinuous set is equicontinuous at every point.

We can now recall a generalization of the Ascoli-Arzelà Theorem for pseudo-

metric spaces (see [23]):

Theorem 3 (Generalization of the Ascoli-Arzelà Theorem). Let P be a com-

pact space and (Q, d) a pseudo-metric space. For H ⊂ C(P,Q), the following

are equivalent:

1. H is relatively compact in C(P,Q);

2. H is equicontinuous and K := {g(p) : g ∈ H, p ∈ P} is relatively

compact in (Q, d);

3. H is equicontinuous and H(p) := {g(p) : g ∈ H} is relatively compact

in (Q, d) for each p ∈ P .

Corollary 2.11. If (P, dP ), (Q, dQ) are compact pseudo-metric spaces, then

NE(P,Q) is compact.

Proof. The non-expansiveness condition directly implies that NE(P,Q) is

uniformly equicontinuous. Indeed, for every ε > 0 we can take δ = ε and we

have that

dQ(F (p1), F (p2)) ≤ dP (p1, p2) < δ = ε

for every F ∈ NE(P,Q) and for every p1, p2 ∈ P such that ∥p1 − p2∥∞ < δ.

Therefore, NE(P,Q) is also equicontinuous at each point.

Since every subset of a compact have a compact closure and Q is compact,

we have that K := {F (p) : F ∈ NE(P,Q), p ∈ P} ⊆ Q is relatively com-

pact. Since P is compact, we are in the hypothesis of Theorem 3 considering
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H = NE(P,Q) ⊂ C(P,Q) and we have proven that assertion 2 holds. Hence,

for assertion 1, NE(P,Q) is relatively compact. So, in order to prove our

statement, it will suffice to show that NE(P,Q) is closed. Consider a se-

quence (Fi)i∈N in NE(P,Q) such that limi→∞ Fi = F . We have that

dQ(F (p1), F (p2)) = lim
i→∞

dQ(Fi(p1), Fi(p2)) ≤ dP (p1, p2)

for every p1, p2 ∈ P . Therefore, F ∈ NE(P,Q) and the statement is true.

Returning to our model, we consider two perception triples (Φ,Φ′, S) and

(Ψ,Ψ′, Q), with domains X and Y , respectively, and the space Fall
T of P-

GENEOs between them, associated with the map T : S → Q. The following

result holds:

Theorem 4. If Φ,Ψ and Φ′,Ψ′ are compact, then Fall
T is compact with respect

to the pseudo-metric DP−GENEO.

Proof. By definition, Fall
T ⊆ NE(Φ,Ψ) ×NE(Φ′,Ψ′). Since Φ,Ψ and Φ′,Ψ′

are compact, for Corollary 2.11 the spaces NE(Φ,Ψ) and NE(Φ′,Ψ′) are

compact, and then, from Tychonoff’s Theorem, the product NE(Φ,Ψ) ×
NE(Φ′,Ψ′) is also compact, with respect to the product topology. Hence,

in order to prove our statement it will suffice to show the closure of Fall
T .

Let us consider a sequence ((Fi, F
′
i ))i∈N of P-GENEOs. Since NE(Φ,Ψ) ×

NE(Φ′,Ψ′) is compact, there is a subsequence that converges to a couple

of non-expansive operators (F, F ′) ∈ NE(Φ,Ψ) × NE(Φ′,Ψ′). Now, from

Proposition 1.30, we have that the actions of the sets S and Q are continuous

choosing the pseudo-metrics DΦ
Aut on S and DΨ

Aut on Q. Moreover, since

(Fi, F
′
i ) is T-equivariant for every i ∈ N, we have that

F ′(φs) = lim
i→∞

F ′
i (φs) = lim

i→∞
Fi(φ)T (s) = F (φ)T (s)

for every s ∈ S and every φ ∈ Φ. Since equivariance is maintained, the

couple (F, F ′) belongs to Fall
T . Hence, Fall

T is a closed subset of a compact

set and then it is also compact.

2.1.2 Convexity

Assume that Ψ,Ψ′ are convex. Let (F1, F
′
1), . . . , (Fn, F

′
n) ∈ Fall

T and con-

sider an n-tuple (a1, . . . , an) ∈ Rn with ai ≥ 0 for every i ∈ {1, . . . , n} and
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∑n
i=1 ai = 1. We can define two operators FΣ : Φ → Ψ and F ′

Σ : Φ
′ → Ψ′ as

FΣ(φ) :=
n∑

i=1

aiFi(φ), F ′
Σ(φ

′) :=
n∑

i=1

aiF
′
i (φ

′)

for every φ ∈ Φ, φ′ ∈ Φ′. Observe that the assumption on the convexity for

Ψ,Ψ′ guarantees that FΣ and F ′
Σ are well defined.

Proposition 2.12. Under the previous assumptions, (FΣ, F
′
Σ) belongs to

Fall
T .

Proof. We have to prove that (FΣ, F
′
Σ) is a P-GEO with respect to T and

that is non-expansive. By hypothesis, for every i ∈ {1, . . . , n} (Fi, F
′
i ) is a

perception map, therefore:

F ′
Σ(φs) =

n∑
i=1

aiF
′
i (φs) =

n∑
i=1

ai(Fi(φ)T (s))

=
( n∑

i=1

aiFi(φ)
)
T (s)

= FΣ(φ)T (s)

for every φ ∈ Φ and every s ∈ S. Furthermore, since for every i ∈ {1, . . . , n}
Fi(Φ) ⊆ Ψ and Ψ is convex, also FΣ(Φ) ⊆ Ψ. Analogously, since Ψ′ is convex,

F ′
Σ(Φ

′) ⊆ Ψ′. Therefore (FΣ, F
′
Σ) is a P-GEO. It remains to show the of FΣ

and F ′
Σ. By definition every Fi is non-expansive, then for every φ1, φ2 ∈ Φ

we have that

∥FΣ(φ1)− FΣ(φ2)∥∞ =
∥∥∥ n∑

i=1

aiFi(φ1)−
n∑

i=1

aiFi(φ2)
∥∥∥
∞

=
∥∥∥ n∑

i=1

ai(Fi(φ1)− Fi(φ2))
∥∥∥
∞

≤
n∑

i=1

|ai|∥Fi(φ1)− Fi(φ2)∥∞

≤
n∑

i=1

|ai|∥φ1 − φ2∥∞ = ∥φ1 − φ2∥∞.

Analogously, since every F ′
i is non-expansive, for every φ′

1, φ
′
2 ∈ Φ′ we have

that

∥F ′
Σ(φ

′
1)− F ′

Σ(φ
′
2)∥∞ ≤

n∑
i=1

|ai|∥φ′
1 − φ′

2∥∞ = ∥φ′
1 − φ′

2∥∞.
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Therefore, we have proven that (FΣ, F
′
Σ) is a P-GEO with FΣ and F ′

Σ non-

expansive. Hence it is a P-GENEO.

Then, the following result holds:

Corollary 2.13. If Ψ,Ψ′ are convex, then the set Fall
T is convex.

Proof. It is sufficient to apply Proposition 2.12 for n = 2, by setting a1 = t,

a2 = 1− t for 0 ≤ t ≤ 1.
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Chapter 3

Methods for building

P-GENEOs

In Theorem 4 we have proved that Fall
T is compact if Φ,Ψ and Φ′,Ψ′ are

compact. This is useful from a computational point of view since a compact

space can be approximated by a finite set. In this chapter, we will illustrate

general methods for building P-GENEOs.

3.1 Building P-GENEOs by means of a finite

set of known P-GENEOs

Starting from a finite number of P-GENEOs, we will find some methods for

building new P-GENEOs.

First of all, we can prove that the composition of two P-GENEOs is still a

P-GENEO.

Proposition 3.1. If we consider two P-GENEOs

(F1, F
′
1, T1) : (Φ,Φ

′, S) → (Ψ,Ψ′, Q),

(F2, F
′
2, T2) : (Ψ,Ψ

′, Q) → (Ω,Ω′, K),

then the composition

(F, F ′, T ) := (F2 ◦ F1, F
′
2 ◦ F ′

1, T2 ◦ T1) : (Φ,Φ′, S) → (Ω,Ω′, K)

is a P-GENEO.
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3.1. Building P-GENEOs by means of a finite set of known P-GENEOs

Proof. We can observe that the map T = T1 ◦ T2 respects the properties

required in the definition of P-GENEOs. Therefore, it remains to verify

that F (Φ) ⊆ Ω, F ′(Φ′) ⊆ Ω′ and that the properties of equivariance and

non-expansiveness are maintained.

1. Since F1(Φ) ⊆ Ψ and F2(Ψ) ⊆ Ω, then we have that

F (Φ) = (F2 ◦ F1)(Φ) = F2(F1(Φ)) ⊆ F2(Ψ) ⊆ Ω.

Hence F (Φ) ⊆ Ω. Since F ′
1(Φ

′) ⊆ Ψ′ and F ′
2(Ψ

′) ⊆ Ω′, we can prove

with the same steps that F ′(Φ′) ⊆ Ω′.

2. Since (F1, F
′
1, T1) and (F2, F

′
2, T2) are equivariant, then (F, F ′, T ) is

equivariant; indeed, for every φ ∈ Φ we have that

F ′(φs) = (F ′
2 ◦ F ′

1)(φs) = F ′
2(F

′
1(φs))

= F ′
2(F1(φ)T1(s)) = F2(F1(φ))T2(T1(s))

= (F2 ◦ F1)(φ)(T2 ◦ T1)(s) = F (φ)T (s).

3. Since F1 and F2 are non-expansive, then F is non-expansive; indeed for

every φ1, φ2 ∈ Φ we have that

∥F (φ1)− F (φ2)∥∞ = ∥(F2 ◦ F1)(φ1)− (F2 ◦ F1)(φ2)∥∞
= ∥F2(F1(φ1))− F2(F1(φ2))∥∞
≤ ∥F1(φ1)− F1(φ2)∥∞
≤ ∥φ1 − φ2∥∞.

Analogously, since F ′
1 and F

′
2 are non-expansive, then F

′ is non-expansive:

∥F ′(φ′
1)− F ′(φ′

2)∥∞ ≤ ∥φ′
1 − φ′

2∥∞.

Therefore, the statement is proven.

Now, given a finite number of P-GENEOs with respect to the same fixed

map T , we illustrate a general method to build a new operator as a combi-

nation of them.

Consider two sets X and Y . Consider a finite set H1, . . . , Hn of functions

from Ω ⊆ RX
b to RY

b and a map L : Rn → R, where Rn is endowed with the
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norm ∥(x1, . . . , xn)∥∞ := max1≤i≤n |xi|. We define L∗(H1, . . . , Hn) : Ω → RY
b

as

L∗(H1, . . . , Hn)(ω) := [L(H1(ω), . . . , Hn(ω))],

for any ω ∈ Ω, where [L(H1(ω), . . . , Hn(ω))] : Y → R is defined by setting

[L(H1(ω), . . . , Hn(ω))](y) := L(H1(ω)(y), . . . , Hn(ω)(y))

for any y ∈ Y .

Consider two perception triples (Φ,Φ′, S) and (Ψ,Ψ′, Q) with domains

X and Y , respectively, and a finite set of P-GENEOs (F1, F
′
1), . . . (Fn, F

′
n)

between them, associated with the map T : S → Q. Let L : Rn → R be a

non-expansive map. We can consider two functions L∗(F1, . . . , Fn) : Φ → RY
b

and L∗(F ′
1, . . . , F

′
n) : Φ

′ → RY
b , defined as previously.

Proposition 3.2. Consider a finite set of P-GENEOs (F1, F
′
1), . . . , (Fn, F

′
n)

from (Φ,Φ′, S) to (Ψ,Ψ′, Q) with respect to T : S → Q and a non-expansive

map L from Rn to R. If

L∗(F1, . . . , Fn)(Φ) ⊆ Ψ, L∗(F ′
1, . . . , F

′
n)(Φ

′) ⊆ Ψ′,

then (L∗(F1, . . . , Fn),L∗(F ′
1, . . . , F

′
n)) is a P-GENEO from (Φ,Φ′, S) to (Ψ,Ψ′, Q)

with respect to T .

Proof. By hypothesis, L∗(F1, . . . , Fn)(Φ) ⊆ Ψ and L∗(F ′
1, . . . , F

′
n)(Φ

′) ⊆ Ψ′,

so we just need to verify the properties of equivariance and non-expansiveness

are maintained.

1. Since (F1, F
′
1), . . . , (Fn, F

′
n) are T -equivariant, then for any φ ∈ Φ and

any s ∈ S we have that:

L∗(F ′
1, . . . , F

′
n)(φs) = [L(F ′

1(φs), . . . , F
′
n(φs))]

= [L(F1(φ)T (s), . . . , Fn(φ)T (s))]

= [L(F1(φ), . . . , Fn(φ))]T (s)

= L∗(F1, . . . , Fn)(φ)T (s).

Therefore (L∗(F1, . . . , Fn),L∗(F ′
1, . . . , F

′
n)) is T -equivariant.

47



3.1. Building P-GENEOs by means of a finite set of known P-GENEOs

2. Since F1, . . . , Fn and L are non-expansive, then for any φ1, φ2 ∈ Φ we

have that:

∥L∗(F1, . . . , Fn)(φ1)− L∗(F1, . . . , Fn)(φ2)∥∞
= max

y∈Y
|[L(F1(φ1), . . . , Fn(φ1))](y)− [L(F1(φ2), . . . , Fn(φ2))](y)|

= max
y∈Y

|L(F1(φ1)(y), . . . , Fn(φ1)(y))− L(F1(φ2)(y), . . . , Fn(φ2)(y))|

≤ max
y∈Y

∥(F1(φ1)(y)− F1(φ2)(y), . . . , Fn(φ1)(y)− Fn(φ2)(y))∥∞

= max
y∈Y

max
1≤i≤n

|Fi(φ1)(y)− Fi(φ2)(y)|

= max
1≤i≤n

∥Fi(φ1)− Fi(φ2)∥∞

≤ ∥φ1 − φ2∥∞.

Hence, L∗(F1, . . . , Fn) is non-expansive. Analogously, since F ′
1, . . . , F

′
n

and L are non-expansive, then L∗(F ′
1, . . . , F

′
n) is non-expansive; indeed,

following the same steps we have that:

∥L∗(F ′
1, . . . , F

′
n)(φ

′
1)− L∗(F ′

1, . . . , F
′
n)(φ

′
2)∥∞ ≤ ∥φ′

1 − φ′
2∥∞.

for any φ′
1, φ

′
2 ∈ Φ′.

Therefore (L∗(F1, . . . , Fn),L∗(F ′
1, . . . , F

′
n)) is a P-GENEO from (Φ,Φ′, S) to

(Ψ,Ψ′, Q) with respect to T .

3.1.1 Examples of operators

The above result describes a general method to build new P-GENEOs, start-

ing from a finite number of known P-GENEOs. In the following, we show

some examples.

Maximum operator Consider a finite set H1, . . . , Hn of functions from

Ω ⊆ RX
b to RY

b and the function

max(H1, . . . , Hn)(ω) := [max(H1(ω), . . . , Hn(ω))]

from Ω to RX
b , where [max(H1(ω), . . . , Hn(ω))] : Y → R is defined by setting

[max(H1(ω), . . . , Hn(ω))](y) := max{H1(ω)(y), . . . , Hn(ω)(y))}

for every y ∈ Y .
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Remark 3.3. If we call L the maximum function max: Rn → R that maps x =

(x1, . . . , xn) to max{x1, . . . , xn}, we can note that the function max(H1, . . . , Hn)

that we have just built is exactly the map L∗(H1, . . . , Hn) previously defined.

Consider two perception triples (Φ,Φ′, S) and (Ψ,Ψ′, Q) with domains

X and Y , respectively, and a finite set of P-GENEOs (F1, F
′
1), . . . (Fn, F

′
n)

between them, associated with the map T : S → Q. Consider the functions

max(F1, . . . , Fn) : Φ → RY
b and max(F ′

1, . . . , F
′
n) : Φ

′ → RY
b .

Proposition 3.4. If max(F1, . . . , Fn) ⊆ Ψ and max(F ′
1, . . . , F

′
n) ⊆ Ψ′, then

(max(F1, . . . , Fn),max(F ′
1, . . . , F

′
n)) is a P-GENEO from (Φ,Φ′, S) to (Ψ,Ψ′, Q)

associated with the map T .

In order to prove the above result, we recall the following Lemma:

Lemma 3.5. For every u1, . . . , un, v1 . . . , vn ∈ R it holds that

|max{u1, . . . , un} −max{v1, . . . , vn}| ≤ max{|u1 − v1|, . . . , |un − vn|}.

Proof. We can suppose that max{u1, . . . , un} = u1, up to permutations of

indices. If max{v1, . . . , vn} = v1, the claim trivially follows since it holds

that |u1 − v1| ≤ max{|u1 − v1|, . . . , |un − vn|}. It only remains to check the

case max{v1, . . . , vn} = vi, i ̸= 1. We have that

max{u1, . . . , un} −max{v1, . . . , vn} = u1 − vi

≤ u1 − v1

≤ |u1 − v1|
≤ max{|u1 − v1|, . . . , |un − vn|}.

On the other hand, we have that

max{v1, . . . , vn} −max{u1, . . . , un} = vi − u1

≤ vi − ui

≤ |ui − vi|
≤ max{|u1 − v1|, . . . , |un − vn|}.

Therefore, the statement is true.

Using the result just shown of Lemma 3.5, we can now give the proof of

Proposition 3.4:
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Proof. Because of Proposition 3.2, it is sufficient to show that the maximum

function max: Rn → R that maps x = (x1, . . . , xn) to max{x1, . . . , xn} is

a non-expansive function. Consider two n-tuples x = (x1, . . . , xn) and y =

(y1, . . . , yn) of real numbers. Then, using Lemma 3.5, we have that

|max(x)−max(y)| = |max{x1, . . . , xn} −max{y1, . . . , yn}|
≤ max{|x1 − y1|, . . . , |xn − yn|}
= ∥x− y∥∞.

Hence, the maximum function is a non-expansive function.

Translation operator Consider two perception triples (Φ,Φ′, S) and

(Ψ,Ψ′, Q) with domains X and Y , respectively. Let (F, F ′) be a P-GENEO

between them, associated with the map T : S → Q. Consider the functions

Fb : Φ → RY
b and F ′

b : Φ
′ → RY

b defined by setting

Fb(φ) := F (φ)− b, F ′
b(φ

′) := F ′(φ′)− b

Proposition 3.6. If Fb(Φ) ⊆ Ψ and F ′
b(Φ

′) ⊆ Ψ′, then (Fb, F
′
b) is a P-

GENEO from (Φ,Φ′, S) to (Ψ,Ψ′, Q) with respect to T .

Proof. The function Sb : R → R defined by setting Sb(x) := x − b preserves

the distances; indeed, for every x, y ∈ R we have that

|Sb(x)− Sb(y)| = |x− b− y + b| = |x− y|.

Then, because of Proposition 3.2, (Fb, F
′
b) is a P-GENEO from (Φ,Φ′, S) to

(Ψ,Ψ′, Q) with respect to T .

Convex combination operator Consider two perception triples (Φ,Φ′, S)

and (Ψ,Ψ′, Q) with domains X and Y , respectively, and a finite set of

P-GENEOs (F1, F
′
1), . . . (Fn, F

′
n) between them, associated with the map

T : S → Q. Consider an n-tuple (a1, . . . , an) ∈ Rn with
∑n

i=1 |ai| ≤ 1.

We can define two functions FΣ : Φ → RX
b and F ′

Σ : Φ
′ → RX

b such that

FΣ(φ) :=
n∑

i=1

aiFi(φ), F ′
Σ(φ

′) :=
n∑

i=1

aiF
′
i (φ

′)

for every φ ∈ Φ, φ′ ∈ Φ′.
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Proposition 3.7. If FΣ(Φ) ⊆ Ψ and F ′
Σ(Φ

′) ⊆ Ψ′, then (FΣ, F
′
Σ) is a P-

GENEO from (Φ,Φ′, S) to (Ψ,Ψ′, Q) with respect to T .

Proof. Consider an n-tuple (a1, . . . , an) ∈ Rn with
∑n

i=1 |ai| ≤ 1. Because of

Proposition 3.2, it is sufficient to show that the function Σ: Rn → R that

maps x = (x1, . . . , xn) to
∑n

i=1 aixi is a non-expansive function. Consider

two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) of real numbers. We have

that:

|Σ(x)− Σ(y)| =
∣∣∣ n∑
i=1

aixi −
n∑

i=1

aiyi

∣∣∣
=
∣∣∣ n∑
i=1

ai(xi − yi)
∣∣∣

≤
n∑

i=1

|ai||xi − yi|

≤
n∑

i=1

|ai|∥x− y∥∞

≤ ∥x− y∥∞.
Hence, Σ is a non-expansive function.

Remark 3.8. We can observe that Proposition 2.12 is a special case of Propo-

sition 3.7, where we consider the n-tuple (a1, . . . , an) ∈ Rn with the additional

requests that ai ≥ 0 for every i ∈ {1, . . . , n} and
∑n

i=1 ai = 1.

Power mean operator Before applying Proposition 3.2, we recall some

definitions and properties about power means and p-norms.

Definition 3.9. Consider a real number p > 0. The power mean operator

Mp is the function Mp : Rn → R such that

Mp(x1, . . . , xn) :=
( 1
n

n∑
i=1

|xi|p
) 1

p

for any x = (x1, . . . , xn) ∈ Rn.

Definition 3.10. Consider a real number p > 0. The p-norm is the function

∥ · ∥p : Rn → R such that

∥x∥p := (|x1|p + · · ·+ |xn|p)
1
p

for any x = (x1, . . . , xn) ∈ Rn.
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Remark 3.11. It is well known that, for p ≥ 1, ∥ · ∥p is a norm. Moreover, if

x ∈ Rn and 0 < p < q <∞ we have

lim
q→∞

∥x∥q = ∥x∥∞ and ∥x∥q ≤ ∥x∥p ≤ n
1
p
− 1

q ∥x∥q.

Then, for q tending to infinity, we obtain the following inequality:

∥x∥∞ ≤ ∥x∥p ≤ n
1
p∥x∥∞. (3.1)

Now, we can consider a finite set of P-GENEOs (F1, F
′
1), . . . , (Fn, F

′
n)

from (Φ,Φ′, S) to (Ψ,Ψ′, Q) with respect to T : S → Q, where we call Y the

domain of the functions in Ψ,Ψ′. Consider also a real number p > 0. We can

define the operatorsMp(F1, . . . , Fn) : Φ → RY
b andMp(F

′
1, . . . , F

′
n) : Φ

′ → RY
b

by setting

Mp(F1, . . . , Fn)(φ)(y) :=Mp(F1(φ)(y), . . . , Fn(φ)(y))

Mp(F
′
1, . . . , F

′
n)(φ

′)(y) :=Mp(F
′
1(φ

′)(y), . . . , F ′
n(φ

′)(y))

for every y ∈ Y , every φ ∈ Φ and every φ′ ∈ Φ′.

Proposition 3.12. Consider p ≥ 1. If Mp(F1, . . . , Fn)(Φ) ⊆ Ψ and

Mp(F
′
1, . . . , F

′
n)(Φ

′) ⊆ Ψ′, then (Mp(F1, . . . , Fn),Mp(F
′
1, . . . , F

′
n)) is a P-GENEO

from (Φ,Φ′, S) to (Ψ,Ψ′, Q) with respect to T .

Proof. By Proposition 3.2, it will suffice to show that Mp is a non-expansive

function. Take two n-tuples x = (x1 . . . , xn), y = (y1 . . . , yn) ∈ Rn. Since

∥ · ∥p is a norm, the reverse triangle inequality holds. Hence, using inequality

(3.1), we have that:∣∣∣∣∣∣
(
1

n

n∑
i=1

|xi|p
) 1

p

−
(
1

n

n∑
i=1

|yi|p
) 1

p

∣∣∣∣∣∣ =
(
1

n

) 1
p

∣∣∣∣∣∣
(

n∑
i=1

|xi|p
) 1

p

−
(

n∑
i=1

|yi|p
) 1

p

∣∣∣∣∣∣
=

(
1

n

) 1
p

|∥x∥p − ∥y∥p|

≤
( 1
n

) 1
p∥x− y∥p

≤
( 1
n

) 1
p
n

1
p∥x− y∥∞

= ∥x− y∥∞.

Therefore, for p ≥ 1, Mp is a non-expansive operator and because of Propo-

sition 3.2 the statement of Proposition 3.12 is true.
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3.2 Series of P-GENEOs

In this section we will describe a method to build P-GENEOs starting from an

infinite set of known P-GENEOs and studying series of P-GENEOs. Before

proceeding, we recall some results about series of functions (see [27]).

Theorem 5. Let (ak)k∈N be a positive real sequence such that (ak)k∈N is

decreasing and limk→∞ ak = 0. Let (gk)k∈N be a sequence of bounded functions

from the topological space X to C. If there exists a real number M > 0 such

that ∣∣∣∣∣
n∑

k=1

gk(x)

∣∣∣∣∣ ≤M

for every x ∈ X and every n ∈ N , then the series
∑∞

k=1 akgk is uniformly

convergent on X.

Now we recall a second result, which ensures that a uniformly convergent

series of continuous functions is a continuous function.

Theorem 6. Let (fn)n∈N be a sequence of continuous functions from a com-

pact topological space X to R. If the series
∑∞

k=1 fk is uniformly convergent,

then
∑∞

k=1 fk is continuous from X to R.

Now, we can define a series of P-GENEOs. Consider two perception

triples (Φ,Φ′, S) and (Ψ,Ψ′, Q) and the space of P-GENEOs Fall
T between

them with respect to T : S → Q. Assume that the domain Y of Ψ,Ψ′ is

a compact pseudo-metric space with respect to both the pseudo-metrics

DΨ
Y and DΨ′

Y . Let (ak)k∈N be a positive real sequence such that (ak)k∈N
is decreasing, limk→∞ ak = 0 and

∑∞
k=1 ak ≤ 1. Suppose that a sequence

((Fk, F
′
k))k∈N ∈ Fall

T is given and that for any φ ∈ Φ, φ′ ∈ Φ′, there exist

M(φ) > 0 and M ′(φ′) > 0 such that∣∣∣∣∣
n∑

k=1

Fk(φ)(y)

∣∣∣∣∣ ≤M(φ),

∣∣∣∣∣
n∑

k=1

F ′
k(φ

′)(y)

∣∣∣∣∣ ≤M ′(φ′)

for every y ∈ Y and every n ∈ N. Hence, the hypothesis of Theorems 5 and

6 are satisfied and then the following operators are well-defined; we consider

F : Φ → C0
b (Y,R) and F ′ : Φ′ → C0

b (Y,R) defined by setting

F (φ) :=
∞∑
k=1

akFk(φ), F ′(φ′) :=
∞∑
k=1

akF
′
k(φ

′),
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Proposition 3.13. If F (Φ) ⊆ Ψ and F (Φ′) ⊆ Ψ′, then (F, F ′) ∈ Fall
T .

Proof. Consider s ∈ S. We recall that T (s) is uniformly continuous from YΨ′

to YΨ, since Proposition 1.19 guarantees that every element of AutΨ,Ψ′(Y ) is

non-expansive from YΨ′ to YΨ. Moreover, (Fk, F
′
k) is T -equivariant and then

we have that:

F ′(φs) =
∞∑
k=1

akF
′
k(φs)

=
∞∑
k=1

akFk(φ)T (s)

=

(
∞∑
k=1

akFk(φ)

)
T (s)

= F (φ)T (s)

for any φ ∈ Φ. Since Fk is non-expansive for every k ∈ N and
∑∞

k=1 ak ≤ 1,

F is non-expansive:

∥F (φ1)− F (φ2)∥∞ =

∥∥∥∥∥
∞∑
k=1

akFk(φ1)−
∞∑
k=1

akFk(φ2)

∥∥∥∥∥
∞

=

∥∥∥∥∥ limn→∞

(
n∑

k=1

akFk(φ1)−
n∑

k=1

akFk(φ2)

)∥∥∥∥∥
∞

= lim
n→∞

∥∥∥∥∥
n∑

k=1

ak(Fk(φ1)− Fk(φ2))

∥∥∥∥∥
∞

≤ lim
n→∞

n∑
k=1

(ak ∥Fk(φ1)− Fk(φ2)∥∞)

≤ lim
n→∞

n∑
k=1

(ak ∥φ1 − φ2∥∞)

=
∞∑
k=1

ak ∥φ1 − φ2∥∞

≤ ∥φ1 − φ2∥∞
for any φ1, φ2 ∈ Φ. Analogously, since F ′

k is non-expansive for every k ∈ N
and

∑∞
k=1 ak ≤ 1, F ′ is non-expansive:

∥F ′(φ′
1)− F ′(φ′

2)∥∞ ≤ ∥φ′
1 − φ′

2∥∞
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for any φ′
1, φ

′
2 ∈ Φ′.
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Since real-world data rarely follows strict mathematical symmetries due to

noisy or incomplete data or to symmetry breaking features, in some cases it

is desirable to consider only some transformations of the data set, ignoring

others. The theory of GENEOs studies applications in which the set con-

taining all the symmetries, for which the equivariance holds, is represented

by a group. In this thesis we have proposed a generalization of some known

results in the theory of GENEOs to a new mathematical framework, where

the collection of all symmetries is represented by a subset of a transformation

group. Therefore, we have introduced the concept of P-GENEO, replacing

the group with a subset having a weaker structure. In particular, we have

shown that P-GENEOs are an extension of GENEOs since a GENEO can

be represented as a special case of P-GENEO.

In our mathematical setting, we have defined data sets and the set of ad-

missible transformations. We have then defined topological structures, by

defining pseudo-metrics, on the space of data and consequently on the space

of P-GENEOs. Under the assumption that the function spaces are com-

pact and convex, we have obtained the compactness and the convexity of the

space of P-GENEOs. The compactness guarantees that any operator can al-

ways be approximated by a finite number of operators belonging to the same

space, while the convexity allows to take convex combinations of P-GENEOs.

Compactness and convexity together ensure that every strictly convex loss

function on the space of P-GENEOs admits one and only one global mini-

mum. In order to have more tools to analyze the space of P-GENEOs we

also have presented some methods to build P-GENEOs starting from a finite

or an infinite set of known P-GENEOs.

However, in the theory of GENEOs there are other results that could be gen-

eralized to our new mathematical framework, e.g., [25], [3], [1], [8], [11],and

[15]. For example, persistent homology has been investigated as an impor-
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tant tool to find a fast comparison of functions and then a fast comparison

of GENEOs. Moreover, there is another method to define new GENEOs, by

means of permutant measures. This technique is based on the use of a sym-

metric weighted average to build new GENEOs. Furthermore, a Riemannian

structure on manifolds of GENEOs has been defined, allowing the use of

gradient methods to find optimal operators in such manifolds. It would be

interesting to try to generalize these results in the theory of P-GENEOs.

In addition, perhaps the concept of P-GENEO could be weakened further to

give even more freedom of choice to the observer, depending on the applica-

tion considered. So far, admissible transformations have been represented by

bijections on the space X, i.e., subsets of Aut(X). But one could consider

the more general space of all the functions (or relations) between elements

of X and try to investigate how the topological structure varies and which

results continue to hold. All this could form the subject of further research.
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Geometric Deep Learning: Grids, groups, graphs, geodesics, and gauges,

arXiv preprint arXiv:2104.13478, (2021).

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst, Geometric Deep Learning: Going beyond Euclidean data,

IEEE Signal Processing Magazine, 34 (2017), pp. 18–42.

58



Conclusions

[8] F. Camporesi, P. Frosini, and N. Quercioli, On a new method to

build group equivariant operators by means of permutants, in Machine

Learning and Knowledge Extraction: Second IFIP TC 5, TC 8/WG

8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-

MAKE 2018, Hamburg, Germany, August 27–30, 2018, Proceedings,

Springer, 2018, pp. 265–272.

[9] Z. Cang, L. Mu, and G.-W. Wei, Representability of algebraic

topology for biomolecules in machine learning based scoring and virtual

screening, PLoS Computational Biology, 14 (2018), p. 1005929.

[10] G. Carlsson, Topology and data, Bulletin of the American Mathemat-

ical Society, 46 (2009), pp. 255–308.

[11] P. Cascarano, P. Frosini, N. Quercioli, and A. Saki, On the

geometric and riemannian structure of the spaces of group equivariant

non-expansive operators, arXiv preprint arXiv:2103.02543, (2021).

[12] W. Chacholski, A. De Gregorio, N. Quercioli, and

F. Tombari, Landscapes of data sets and functoriality of persistent

homology, arXiv preprint arXiv:2002.05972, (2020).

[13] F. Chazal and B. Michel, An introduction to Topological Data Anal-

ysis: Fundamental and practical aspects for data scientists, Frontiers in

Artificial Intelligence, 4 (2021), p. 667963.

[14] T. Cohen and M. Welling, Group equivariant convolutional net-

works, in International Conference on Machine Learning, PMLR, 2016,

pp. 2990–2999.

[15] F. Conti, P. Frosini, and N. Quercioli, On the construction of

group equivariant non-expansive operators via permutants and symmet-

ric functions, Frontiers in Artificial Intelligence, 5 (2022), p. 16.

[16] H. Edelsbrunner and J. L. Harer, Computational Topology: an

Introduction, American Mathematical Society, 2022.

[17] L. Fan, T. Zhang, X. Zhao, H. Wang, and M. Zheng, Deep topol-

ogy network: A framework based on feedback adjustment learning rate

for image classification, Advanced Engineering Informatics, 42 (2019),

p. 100935.

59



Conclusions

[18] M. Finzi, G. Benton, and A. G. Wilson, Residual pathway pri-

ors for soft equivariance constraints, in Advances in Neural Informa-

tion Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,

P. Liang, and J. W. Vaughan, eds., vol. 34, Curran Associates, Inc.,

2021, pp. 30037–30049.

[19] S. Gaal, Point Set Topology, ISSN, Elsevier Science, 1964.

[20] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew,

Deep learning for visual understanding: A review, Neurocomputing, 187

(2016), pp. 27–48.

[21] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,

N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.

Sainath, and B. Kingsbury, Deep neural networks for acoustic mod-

eling in speech recognition: The shared views of four research groups,

IEEE Signal Processing Magazine, 29 (2012), pp. 82–97.

[22] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521

(2015), pp. 436–444.

[23] R. Li, S. Zhong, and C. Swartz, An improvement of the Arzelà–
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