Nanni, Giacomo
(2023)
Classification of Lagrangian planes in Kummer-type Hyperkähler Manifolds.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
Abstract
We generalise a result from Bakker on K3 type hyperkähler manifolds proving that a line in a Lagrangian plane on an hyperkähler manifold X of Kummer type has Beauville-Bogomolov-Fujiki square −(n+1)/ 2 and order 2 in the discriminant group of H^2(X, Z). Viceversa, an extremal primitive ray of the Mori cone verifying these conditions is in fact the class of a line in some Lagrangian plane. In doing so, we show, on moduli spaces of Bridgeland stable objects on an abelian surface, that Lagrangian planes on the fiber of the Albanese map correspond to sublattices of the Mukai lattice verifying some numerical condition.
Abstract
We generalise a result from Bakker on K3 type hyperkähler manifolds proving that a line in a Lagrangian plane on an hyperkähler manifold X of Kummer type has Beauville-Bogomolov-Fujiki square −(n+1)/ 2 and order 2 in the discriminant group of H^2(X, Z). Viceversa, an extremal primitive ray of the Mori cone verifying these conditions is in fact the class of a line in some Lagrangian plane. In doing so, we show, on moduli spaces of Bridgeland stable objects on an abelian surface, that Lagrangian planes on the fiber of the Albanese map correspond to sublattices of the Mukai lattice verifying some numerical condition.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Nanni, Giacomo
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
hyperkähler,Lagrangian planes,Bridgeland stability,MMP,moduli spaces,algebraic geometry
Data di discussione della Tesi
31 Marzo 2023
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Nanni, Giacomo
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
hyperkähler,Lagrangian planes,Bridgeland stability,MMP,moduli spaces,algebraic geometry
Data di discussione della Tesi
31 Marzo 2023
URI
Statistica sui download
Gestione del documento: