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Abstract

We generalise a result from [Bak15] on K3 type hyperkähler manifolds
proving that a line in a Lagrangian plane on an hyperkähler manifold X of
Kummer type has Beauville-Bogomolov-Fujiki square −n+1

2
and order 2 in

the discriminant group of H2(X,Z). Viceversa, an extremal primitive ray of
the Mori cone verifying these conditions is in fact the class of a line in some
Lagrangian plane. In doing so, we show, on moduli spaces of Bridgeland
stable objects on an abelian surface, that Lagrangian planes on the fiber of
the Albanese map correspond to sublattices of the Mukai lattice verifying
some numerical condition.

Sommario

Generalizziamo un risultato da [Bak15] sulle hyperkäler di tipo K3 pro-
vando che la retta di un qualsiasi piano Lagrangiano su una varietà hy-
perkählerX di tipo Kummer ha quadrato−n+1

2
rispetto alla forma di Beauville-

Bogomolov-Fujiki e che ha ordine due nel gruppo dicriminante di H2(X,Z).
Viceversa un raggio estremale primitivo del cono di Mori che verifica questa
uguaglianza è in effetti classe di una retta in qualche piano Lagrangiano.
Nel provarlo, mostriamo che, negli spazi di moduli di oggetti stabili secondo
Bridgeland su una superficie abeliana, i piani Lagrangiani in una fibra della
mappa di Albanese corrispondono a sottoreticoli del reticolo di Mukai che
verifichino alcune condizioni numeriche.
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Introduction

The study of hyperkähler manifolds arises quite naturally from two differ-
ent approaches: from one side, they appear as one of the “building blocks” of
Ricci-flat Kahler manifolds (together with complex tori and Calabi-Yau man-
ifolds) and from the other one they provide the higher dimensional analogues
of K3 surfaces (for which a more classical theory is well known).

The first motivation is closer to riemaniann geometry and has been linked
to problems from physics, in particular from string theory. The second point
of view is more algebraic: on K3 surfaces, Torelli type results are well known
(similar to the classical Torelli result for abelian varieties) giving a correspon-
dence between isomorphisms of surfaces and isomorphisims of the Hodge
structure on the second degree cohomology. Such results do have weaker
analogues on hyperkähler manifolds (provided by Verbitsky in [Ver09] and
refined by Marman in [Mar11]) that allow to study the geometry via a lat-
tice structure on the H2 of the manifold, whose bilinear pairing is called
Beauville-Bogomolov-Fujiki form.

Because of these algebraic results, hyperkäler manifolds provide a testing
ground for many more general conjectures in algebraic geometry. Nonethe-
less, one very central problem in the field is that (probably because of the
extreme rigidity of these objects) examples are quite hard to find. At the
moment, the only ones known are classified in two families (presented by
Beauville in [Bea83]) called K3-type and Kummer type, each one giving a
deformation class in every even dimension , with the exception of two spo-
radic examples from O’Grady (discovered in [O’G97],[O’G00]) that only exist
in dimension 6 and 10.

It is in this perspective, as a generalisation of K3 surfaces, that our result
has to be interpreted. On a K3 surface an explicit description of the cone of
effective curves (the Mori cone) grants that extremal rays are those of square
−2 for the intersection form.
Hasset and Tschinkel in [HT09, Thesis 1.1] proposed that something similar
could happen in higher dimension: they conjectured that the square (with
respect to the lattice structure of H2) of the class of a line in a Lagrangian
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plane (a Lagrangian plane is a subvariety isomorphic to a projective space
of half the dimension of the manifold) is constant for every such plane and
invariant in the deformation family of the hyperkähler. Morever they sug-
gested that this square could be the minimal one achievable by the class of
an effective curve.

Since then, results in this direction have been provided by the same two
authors in [HT10] for a Kummer 4-fold, and from Bakker in [Bak15] for K3-
type in any dimension. More work has been done by Song in his PHD thesis
[Son], where he conjectured a formula for the class of a line that has been
proved in the K3-type case under the additional hypothesis of primitivity by
Oberdieck in [Obe22].

We adapt the techniques from the article of Bakker to extend his results to
the Kummer type case. The main achievement of this thesis is the following
theorem: (here εX = 1 for M of K3 type, εX = 0 for the Kummer case )

Theorem 0.0.1 (see Cor. 4.5.4 and Thm. 4.5.5)
Let (M,h) be an holomorphic symplectic variety of K3 or Kummer-type and
dimension 2n, with P a Lagrangian plane, and let R ∈ H2(M,Z) be the class
of the line.
Then

(R,R) = −n+ 1 + 2εX
2

and 2R ∈ H2(M,Z) (1)

Moreover for R a primitive generator of an extremal ray of the Mori cone,
R is the class of a line in a Lagrangian plane if and only if R verifies the
condition (1).

This theorem is obtained, modulo some general argument of deformation
for hyperkähler manifolds, mainly using techniques relating the birational
geometry of moduli spaces of Bridgeland stable objects on a K3 or abelian
surface to sublattices of the Mukai lattice, which can be thought as the
Groethendieck group of the surface equipped with the bilinear form defined
by the relative Euler characteristic.

This notion of stability has been introduced by Bridgeland in [Bri02]
and [Bri03] as a categorification of some properties of the more classical
Gieseker stability. The mathematical need they solve is that, differently
from Gieseker’s, Bridgeland stability is stable under Fourier-Mukai trans-
form. This is one of the reasons it gives rise to a very well behaved theory
of moduli spaces, retaining most of the results that are known for Gieseker
stability, while introducing more geometry in the relation between the space
Stab(X) of such stability conditions (which can be realised as a complex
manifold) on a K3 surface X and birational models of the moduli space: in
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particular there is a wall and chamber decomposition of Stab(X), such that
conditions in the same chamber have the same (semi)stable objects, and in
the case of a K3 or abelian surface each chamber corresponds to a K-trivial
birational model of the same hyperkäler manifold.

This connection with the Minimal Model Program for hyperkäler mani-
folds have been developed first by Yoshioka, with Minamide and Yanagida, in
the case of abelian surfaces (for example in [Yos12; MYY11b]) and by Bayer
and Macr̀ı in [BM14] for K3 type manifolds. In particular they found that
every birational model of a moduli space can be interpreted in terms of wall
crossing of the stability condition. Moreover, to each wall W is associated
a sublattice of the Mukai lattice HW and the geometry of the contraction is
encoded in the numerical properties of HW .

All this will be made more precise in the corresponding chapters.
This perspective is the main point of view of our work, that makes use

of this interpretation in terms of wall crossing and associated sublattices
to achieve a classification of Lagrangian planes on moduli spaces: (for the
notations see Sections 3.2.1 and 4.2)

Theorem 0.0.2 (see Prop. 4.4.2)
Let v ∈ H̃alg(X,Z) primitive and v2 > 0, and let σ be a generic stability
condition w.r.t. v.
If P ⊂ Yσ(v) is an extremal Lagrangian plane, then there is a P type sublattice
H ⊂ H̃alg(X,Z).
Moreover, for a generic stability condition σ0 ∈ WH, if s ∈ H is a minimal
square class realising the minimum (s, v) = v2

2
and P := [v = s + (v − t)],

there is an open dense set U of MP s.t P is one of the connected components
of U ∩Yσ(v)

This theorem is the key point that allows us to do an almost direct com-
putation for the class of a line of a Lagrangian plane in a moduli space in
terms of Mukai homomorphism. Then the proof of the main theorem 0.0.1
only relies on general deformation arguments.

Structure

We will now give an outline of the structure of this thesis.

1. Chapter 1 contains preliminary material from the general theory of
hyperkählers: we make more precise the assertions at the beginning of
this introduction motivating the study of such manifolds both from a
riemaniann and an algebraic point of view.
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We review the construction of Beauville’s examples and we present the
Markman Hodge theoretic Torelli theorem, defining the BBF form and
the period map.

We conclude recalling the cone theorem, a classical and central result
in the study of birational geometry, with its specialisation to the case
of hyperkäler manifolds: in particular we will recall that contractible
lines stay in the closure of the movable cone.

2. Chapter 2 is all about the definition and presentation of the main prop-
erties of Bridgeland stability. Since the subject is based in the theory of
derived categories, we will recall some terminology from category the-
ory and present the construction of the derived category of an abelian
category.

Then we will get into the core of the chapter, where we will give the def-
inition of a stability condition and will present the main ideas around
Bridgeland stability, with some special attention to the case of the
bounded derived category of coherent sheaves on a K3 or abelian sur-
face.

3. In Chapter 3 we approach the study of moduli spaces.
We will define the Mukai vector to fix some numerical invariant, and
recall results on the existence and projectivity of coarse moduli spaces
for the stack of families of Bridgeland (semi)stable objects.
This part is the most geometrical and is designed to provide an overview
of the tools that we use to prove our result.

4. Finally in the last Chapter 4 we start tackling the proof of our gener-
alisation. A precise plan is explained at the beginning of the chapter.

A general idea, is that we will use and adapt results of [BM14] to
classify extremal Lagrangian planes on moduli spaces of Bridgeland
stable objects using sublattices of the Mukai lattice respecting some
numerical conditions (that we call P-type). From this we will be able
to calculate the class of a line using the Mukai homorphism.

Then to extend the result to the entire deformation type we will re-
peat almost the same argument of [Bak15] and use more general results
about density of periods of moduli spaces in small deformation of hy-
perkähler manifolds to conclude.
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Chapter 1

Preliminaries on Hyperkähler
manifolds

In this chapter we will review some material on hyperkähler manifolds.

1.1 Hodge decomposition and Kähler condi-

tion

A complex manifold X of dimension n can also be seen as a real manifold
of dimension 2n. Clearly multiplication by i in each chart glue together to a
map I : X → X such that I2 = − idX , whose differential define at the level
of tangent spaces a R linear map dxI : TxX → TxX.
This can be used to define a Hodge structure on each tangent space: let
TxXC := TxX ⊗ C, considering the complexified map IC : TxXC → TxXC
gives a decomposition TxXC = TxX

1,0⊕TxX0,1 where TxX
1,0 and TxX

0,1 are
the eigenspaces of dxI respectively of eigenvalue i and −i.
This induces a similar decomposition on the cotangent space that in turn
gives a bidegree on the exterior algebra

∧
TxXC.

Globalising the construction, we get sheaves Ap,q as C∞C -modules whose fibres
are differential forms of bidegree p, q (so on coordinate open sets, sections
are linear combination of forms of degree p, q with coefficients in the complex
valued C∞ functions onX). Similarly, indicatingOX the sheaf of holomorphic
functions, we define Ωp,q the OX-module having the same fibres.
Now, if Ak = ⊕p+q=kAp,q is the sheaf of complex valued k-forms, the usual
differential is a map d : Ak → Ak+1.
We can decompose it defining two new operators: let Πp,q : Ap+q → Ap,q
the natural projection, then we define ∂ := Πp+1,q ◦ d : Ap,q → Ap+1,q and
∂̄ := Πp,q+1 ◦ d : Ap,q → Ap,q+1 .

5



1.1. HODGE DECOMPOSITION AND KÄHLER CONDITION

It can be verified that ∂̄2 = ∂2 = 0, so that it makes sense to define:

Definition 1.1.1
The chain complexes (Ap,·, ∂̄) are called Dolbeault complexes.
The (p, q)-Dolbeault cohomology is the cohomology

Hp,q(X) := Hq(Ap,·(X), ∂̄)

the key importance of these objects is made evident by the following fact:

Proposition 1.1.2 ([Huy05] Cor 2.6.21)
The Dolbeault cohmology of X computes the cohomology of the sheaf Ωp, i.e.
Hp,q ∼= Hq(X,Ωp)

Note that in particular Hp,0(X) = H0(X,Ωp) = Ωp(X) are the holomor-
phic p-forms: in fact the kernel of ∂̄ : Ap,0(X) → Ap,1(X) is exactly the
subspace of holomorphic global p-forms.
What we would like to do now is to introduce a Riemaniann metric on X.
This is naturally associated to a connection on the tangent bundle, the Levi-
Civita connection ∇ (the unique torsion free connection compatible with the
metric).
Clearly there are some compatibility conditions we could ask between the
metric and the complex structure.
For example, ∇ would induce a connection also on the holomorphic tan-
gent bundle TX (which is the OX-module having as section on coordinate
open sets the linear combination of complexified tangent vectors, taken with
holomorphic coefficients: it is therefore a subsheaf of TX). Recalling the
decomposition of TX = TX0,1 ⊕ TX1,0, since TX ∼= TX0,1 as vector spaces.
it would make sense to ask for the restriction to the 0, 1 part of the connec-
tion ∇0,1 to coincide with the ∂̄ operator (extended from A to bundles in the
obvious way: the bundle can be seen as TX ⊗ A and the operator acts on
the second term).
Similarly, we could ask for the complex structure I to be parallel with respect
to ∇.
All these geometric conditions do not hold in general, since they are equiva-
lent to the following request:

Definition 1.1.3
A Riemann metric g on X is Kähler if the form ω = g(I·, ·) is closed: dω = 0.
The form ω is called a Kähler form.
A complex manifold admitting a Kähler metric is said to be Kähler.

It is a theorem that this condition is equivalent to the desired property
for ∇ (see [Huy05] Appendix 4.A).
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CHAPTER 1. PRELIMINARIES ON HYPERKÄHLER
MANIFOLDS

One of the main consequences for a complex manifold of being Kähler is the
existence of the Hodge decomposition:

Proposition 1.1.4 ([Huy05] Cor. 3.2.12)
Let X be a compact Kähler manifold. Then there exists a decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

.
Moreover, with respect to complex conjugation on H∗(X,C) one has Hp,q =
Hq,p and by Serre duality Hp,q ∼= Hn−p,n−q.
This decomposition do not depend on the choice of the Kähler form.

It is a common notation to write Hp,q(X,R) (or Hp,q
R when there is no

ambiguity) for Hp,q ∩Hp+q(X,R) and similarly for Z instead of R.
As the Hodge decomposition do not depend on the Kähler form, the following
makes sense:

Definition 1.1.5
The Kähler cone of a Kähler manifold is the cone KX ⊂ H1,1(X,R) of Kähler
classes.

1.2 Motivation

Hyperkähler manifolds can be approached in different ways, both from a
more algebraic and a more riemannian geometry point of view.
To build an intuition, the latter one is easier to grasp, so we will start from
there. Anyway, for the main part on the work in chapter 4 we will use the
algebraic one.

Let (X, g) be a Riemannian manifold. Fixed a point x ∈ X , for any closed
loop based in x we can parallel transport (with respect to the Levi Civita con-
nection ∇) the tangent space, defining an automorphism Tx(X) → Tx(X).
This defines a subgroup of GL(Tx(X)) that we call holonomy group and we
indicate Holx(∇).
For a connected manifold this doesn’t depend on the point x: taking x, y ∈ X
composing with parallel trasport along a path γ connecting x to y gives an
isomorphism Holx(∇) ∼= Holy(∇) (note that the isomorphism strongly de-
pends on γ so it is far from beeing natural).
Therefore, when we are only interested in the isomorphism class of the group,
we can drop the subscript and talk about the holonomy group Hol(∇) of the
manifold (X, g).
A big part of the geometry of the manifold is encoded in the holonomy group:

7



1.2. MOTIVATION

Theorem 1.2.1
Let (M, g) a complete simply connected Riemannian manifold. Then M is
isometric to a product M0×M1× ...×Mk where M0 is a euclidean space and
Mi are irreducible. This decomposition is unique up to permutation of the
factors. Let p = (p0, ..., pk) ∈M be a point and Hol(Mi) the holonomy group
of Mi in pi. Then the holonomy group of M in p is the product

∏
Hol(Mi)

acting on TpM =
∏
TpiMi by the product representation. If M is Kähler, all

Mi are Khäler and the isometry is biholomorphic.

This naturally asks for the study of irreducible representation, aiming to
a classification of manifolds based on their holonomy. In the case of Ricci-
flat varieties (equivalently, of trivial first Chern class), Beauville refined the
theorem: he showed that only two cases are possible for Hol(Mi), since each
one must be either the special group of unitary complex transformations
SU(m) ⊂ SO(2m) or the special group of unitary quaternionic transforma-
tions Sp(m) ⊂ SO(4m).

Theorem 1.2.2 ([Bea83] Thm. 1)
Let X be a compact Kähler Ricci-flat manifold. The universal cover is iso-
morphic (as a Kähler manifold) to a product Ck×

∏
Vi×

∏
Xj where Ck are

equipped with the standard metric, Vi and Xj are simply connected Kähler
manifolds of holonomy group respectively SU(m) and Sp(m). This decompo-
sition is unique up to permutation.
Moreover there exists a finite étale cover of X isomorphic (as a Kähler man-
ifold) to a product T ×

∏
Vi ×

∏
Xj, where T is a complex torus and Vi, Xj

are as above.

The pieces of type Xj are those that we call hyperkähler:

Definition 1.2.3
Let (X, g) a compact Riemann manifold of dimension 4n. We say that it is
Hyperkähler if Hol(∇) ∼= Sp(n)

At this point it could seem that these manifolds have nothing to do with
algebraic geometry, being more related to differential-riemannian properties.
Nonetheless, an equivalent definition can be given in a much more algebraic
flavour:

Definition 1.2.4 (Irreducible holomorphic symplectic)
A compact Kähler complex manifold is said to be irreducible holomorphic
symplectic (IHS) if:

1. it is symply connected

8



CHAPTER 1. PRELIMINARIES ON HYPERKÄHLER
MANIFOLDS

2. there exist a non degenerate holomorphic symplectic form σ s.t.

H2,0(X,C) = Cσ

Actually these two definitions happen to be exactly the same. In fact

Proposition 1.2.5 ([Bea83] Prop 4)
Let X be a compact Kähler complex manifold of dimension dimCX = 2r.
The following conditions are equivalent:

� X admits a Kähler metric with holonomy group a subgroup of Sp(r).

� X admits a symplectic structure

Moreover, the following conditions are equivalent:

� X admits a Kähler metric with holonomy group Sp(r)

� X is IHS

1.3 Known types of hyperkählers

While finding examples of hyperkähler of higher dimension is an active
research problem, the case of surfaces is much easier and reduce to surfaces
known as K3:

Definition 1.3.1
A K3 surface is a simply connected compact complex manifold of dimension
2 admitting a non-degenerate holomorphic symplectic form.

The following is not completely trivial, as a priori K3 surfaces are not
required to be Kähler, but in dimension two this follows automatically

Proposition 1.3.2
Hyperkähler manifolds of dimension 2 are the same as K3 surfaces

Examples of K3 surfaces are fairly easy to provide: the Fermat quartic
(the zero locus of x4

0 + x4
1 + x4

2 + x4
3 in P3) is a K3 surface.

A different but very classical example is the Kummer surface.
Consider an abelian surface T , let i : T → T be the involution x 7→ −x
and take the quotient by the action of i over T . Blowing up the 16 singular
points, one gets a smooth manifold which turns out to be a K3 surface.

Before citing the known examples, a first observation is that deformations
of hyperkähler manifolds stay hyperkähler:

9



1.3. KNOWN TYPES OF HYPERKÄHLERS

Proposition 1.3.3 ([Bea83] Prop 9 Rmk.1)
Let X → B a smooth proper deformation of an IHS manifold X0 over an
analytic base B with Kähler fibres . Then every deformation Xs, s ∈ B is
IHS.

Therefore the interest is in finding non-deformation equivalent examples.
At the moment, there are very few known deformation types. Apart from
two sporadic cases (one in dimension 10 and one in dimension 6, called re-
spectively OG10, OG6: the O’Grady examples), there are only two known
deformation types for each even dimension: the K3[n] type and the Kum[n]
type. The next subsection will give an idea of the construction.

1.3.1 Beauville examples

In [Bea83], Beauville used these low dimensional cases to generate in each
even dimension two families of hyperkähler, providing two examples of non-
deformation equivalent hyperkähler manifolds.
We will just sketch the main steps.
First start from a compact complex surface S. Let S(r) be the r-th symmetric
power of S (alias the quotient of Sr by the symmetric group Sr), and let
π : Sr → S(r) be the projection map. Let ∆ ⊂ Sr be the closed subset of
r-uples having at least one repeated element. Then S(r) is singular on π(∆).
The Hilbert scheme (or Douady space) of r points on S, has a projection
ε : S[r] → S(r) which is a resolution of singularities.
Denote ∆∗ the open subset of ∆ where there is exactly one repetition (all

elements are different except two). Let Sr∗ = (Sr \∆) ∪∆∗, S
(r)
∗ = π(Sr∗) its

image on S(r) and S
[r]
∗ = ε−1(S

(r)
∗ ).

It can be deduced that S
[r]
∗ can be identified with the quotient of the blow

up Bl∆(Sr∗) of the diagonal ∆ ⊂ Sr∗ by the action of the symmetric group
(which extends from Sr to the entire blow up).
We get a commutative diagram:

Bl∆(Sr∗) S
[r]
∗

Sr∗ S
(r)
∗

If S admits a non-degenerate symplectic form σ, clearly one can take the
sum of its pullback by each projection Sr → S to get a symplectic form on

10



CHAPTER 1. PRELIMINARIES ON HYPERKÄHLER
MANIFOLDS

Sr invariant under the action of Sr. Pulling back on Bl∆(Sr∗) gives a non
degenerate symplectic form still invariant under the action of the symmetric
group. Therefore, it comes from a form on S

[r]
∗ . It is completely non trivial,

but this non-degenerate symplectic form obtained on an open set of S[r] ex-
tends to a global non-degenerate holomorphic symplectic form.
Also, it can be proved that S[r] has the same fundamental group of S ([Bea83]
Lemme 1), and there are explicit formulas for the cohomology.
There are two kind of surfaces we can input in this construction: K3 and
abelian ones.
Starting from a K3 surface, for each r we get directly a 2r complex dimen-
sional hyperkähler manifold. This is not the case for abelian surfaces: the
fundamental group is non-trivial.
To solve the problem, Beauville shows that we can kill the fundamental group
restricting to a fibre of the Albanese map. Explicitly he considers the map
S(r) → S sending the r unordered points to their sum: then the composition
alb : S[r] → S(r) → S is the Albanese map of the Hilbert scheme and a fibre
Kr := alb−1(0) is a 2r-dimensional hyperkähler manifold. We call Kr the
generalised Kummer manifold of S of dimension 2r (notice that for r = 1
the construction gives exactly the Kummer surface).

The explicit formulas on cohomology allow to check these two examples are
not deformation equivalent (they have different Betti numbers).
The deformation class of the Hilbert scheme of r points on a K3 surface is
called K3[r], the one of Kr is called Kum[r].
With the exception of the two O’Grady’s examples, any other known hy-
perkähler has been proved to be in one of these classes.

1.4 Torelli theorem

1.4.1 Beauville-Bogomolov-Fujiki form

On K3 surfaces the second order cohomology is Poincaré-dual to itself,
therefore the intersection form of H∗(X,Z) induces a perfect pairing on
H2(X,Z), making it a lattice. Moreover, there is the additional data of
the Hodge decomposition.
A big part of the geometry of K3 surfaces is encoded in its lattice and Hodge
theoretic properties:

Theorem 1.4.1 ([Huy16] Thm.5.3)
Two complex K3 surfaces X,X ′ are isomorphic if and only if there exists an
Hodge isometry ψ : H2(X,Z)→ H2(X ′,Z).

11



1.4. TORELLI THEOREM

Moreover, any Hodge isometry ψ : H2(X,Z) → H2(X ′,Z) with ψ(KX) ∩
KX′ 6= ∅ is induced (via pullback) by a unique isomorphism X

∼−→ X ′

It’s kind of surprising that this central role of the second degree cohomol-
ogy is somehow preserved in higher dimensions.
But clearly the intersection form is not any more a bilinear form on H2.
The right generalisation is due to Beauville, Bogomolov and Fujiki :

Definition 1.4.2
Let X be an IHS manifold of dimension 2n and σ a generator for H2,0(X,C).
For α ∈ H2(X,C) let α = λσ + β + µσ̄ be its Hodge decomposition.
Let:

qX(α) := λµ+
n

2

∫
X

β2(σσ̄)n−1

This defines a quadratic form qX on H2(X,C) and therefore a bilinear form.
They are called Beaville-Bogomolov-Fujiki form (BBF form) resp. pairing.

From the definition, it is obvious that, with respect to this form, the
decomposition H2(X,R) = (H0,2⊕H2,0)R⊕H1,1

R is an orthogonal decompo-
sition.
Notice that if n = 1 (which means X is a K3 surface) we clearly recover the
intersection form. Another direct consequence of the definition is that the
form is positive definite on (H0,2⊕H2,0)R and a direct calculation shows that
for a Kähler form ω, we also get qX(ω) > 0.
The complete statement is:

Proposition 1.4.3 ([Ell+12], Cor. 23.11)
The BBF form qX on H2(X,R) has index (3, b2 − 3) (where b2 is the sec-
ond Betti number). If [ω] ∈ H1,1

R is a Kähler class, qX is positive definite
on (H0,2 ⊕ H2,0)R ⊕ R[ω] and negative definite on the primitive (1,1)-part
H1,1(X)ω

Moreover it can be normalised to induce a primitive integral quadratic
form on the integral cohomology:

Proposition 1.4.4 ([Ell+12] Prop.23.14)
Let X be an irreducible holomorphic symplectic manifold. Then there exists
a positive constant c ∈ R such that qX(α)n = c

∫
X
α2n for all α ∈ H2

R(X).
In particular, qX can be renormalised such that qX is a primitive integral
quadratic form on H2(X,Z).

12
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MANIFOLDS

1.4.2 Period map

Consider a deformation like in 1.3.3 of a hyperkähler manifold X on an
analytic space. We can assume it to be the universal deformation f : X →M
family known as Kuranishi family (it is a universal deformation in the sense
that every germ of a proper smooth family on an analytic base is pullback
of this one). A result of Bogomolov (see [Bea83] Sec. 8) showed that up to
restricting M we can assume it to be smooth and connected and that there
exists a diffeomorphism u : X×M→ X . For s ∈M we denote Xs = f−1(s),
we write σs for the symplectic form on Xs and us : X → Xs for the restriction
of u.
We can define the period map as

Definition 1.4.5
The local period map is the application:

p :M→ P(H2(X,C))

s 7→ u∗s(σs)

Theorem 1.4.6
Consider the open subset on a quadric:

Ω := {[α] ∈ P(H2(X,C)), qX(α) = 0, qX(α + ᾱ) > 0}

The image of p is contained in Ω and p :M→ Ω is a local isomorphism.

Definition 1.4.7
The open set Ω on a quadric of the previous proposition is called period
domain

In order to state a global version of this result, the first thing we notice is
that there isn’t any special fibre over zero. We need to introduce a somehow
external reference, and this leads to the definition of a marking:

Definition 1.4.8
([Bea83] Thm. 5) A marking on a hyperkähler manifold X is the datum of
an even lattice Λ of signature (3, b2 − 3) and an isometry η : H2(X,Z)→ Λ
where the bilinear form on H2(X,Z) is the BBF pairing.
A couple (X, η) of a hyperkähler manifold and a marking is called a marked
hyperkähler.

In the local case, for each fiber Xs the marking is the monodromy opera-
tor induced by parallel transport H2(Xs,Z)→ H2(X,Z).

13



1.4. TORELLI THEOREM

To substitute M we introduce the coarse moduli space MΛ of marked hy-
perkähler (on the fixed lattice Λ). Unfortunately it is not a manifold: in
particular it is not Hausdorff.
Then we can give a global definition:

Definition 1.4.9
The global period map is the application:

P : MΛ → P(Λ⊗ C)

(X, η) 7→ [η(H2,0(X))]

and similarly define ΩΛ := {[a] ∈ P(Λ⊗ C), (a, a) = 0, (a, ā) > 0}.
To control non-separable points the following definition will be useful:

Definition 1.4.10
The positive cone CX of a hyperkähler manifold X is the connected component
of the cone: {

α ∈ H1,1(X,R), (α, α) > 0
}

containing the Kähler cone KX .

The global result due to Verbitsky (see [Ver09]) is:

Theorem 1.4.11 ([Mar11] Thm.2.2)
Fix a connected component M0

Λ ⊂MΛ

1. The period map P restricts to a surjective holomorphic map P0 : M0
Λ →

ΩΛ

2. The fiber P−1
0 (p) consists of pairwise inseparable points for all p ∈ ΩΛ

3. Let (X1, η1) and (X2, η2) be two inseparable points of M0
Λ, then X1, X2

are birationally equivalent

4. The marked pair (X, η) ∈MΛ is a Hausdorff point if and only if CX =
KX

5. The fiber P−1
0 (p), p ∈ ΩΛ, consists of a single Hausdorff point if Λ1,1(p)

is trivial or if Λ1,1(p) is of rank 1, generated by a class α satisfying
(α, α) > 0

The last two conditions suggest that fixed a period (which means, fixed
the Hodge structure on the H2) the ambiguity on the birational model of X
is encoded in a choice of the Kähler cone inside the positive cone. In fact,
while KX depends on X, the positive cone is defined lattice theoretically

14
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(except for the connected component to be taken, but in [Mar11] Sec. 4 it is
shown that this is determined by the connected component M0

Λ) and is fixed
on Λ once the Hodge structure has been chosen.
This is exactly the refinement obtained by Markman in its Hodge theoretic
version of global Torelli.
For (X, η) ∈ M0

Λ let Mon2
Hdg(X) be the group of monodromy operators

(Hodge isometries induced on H2(X;Z) by parallel transport operators on
X).

Definition 1.4.12
A Kähler-type chamber of CX is a subset of the form g[f ∗KX ] for f : X 99K Y
a bimeromorphic map to an IHS manifold Y and g ∈ Mon2

Hdg(X).

Fixing a period p ∈ P(Λ⊗C) we can define the positive cone Cp ⊂ Λ and
the Kähler-type chambers of Cp are defined as the subsets of the form η(Ch),
with (X, η) a marked pair and Ch a Kähler-type chamber on X. Denote
KT (p) the set of Kähler-type chambers.
For any pair (X, η) ∈ P−1

0 (p) we can inject Mon2
Hdg(X) ↪→ O(Λ) via g 7→

ηgη−1. Denote Mon2
Hdg(p) the image of this injection (which do not depend

on the choice of the pair in the fiber). This group acts on elements of KT (p)
permuting chambers.
Defining the action of Mon2

Hdg(p) on the fiber P−1
0 (p) as g(X̃, η̃) = (X̃, gη̃),

he gets :

Theorem 1.4.13 ([Mar11] Thm. 5.16)
The map

ρ : P−1
0 (p)→ KT (p)

given by ρ(X, η) = η(KX) is a Mon2
Hdg(p)-equivariant bijection

Two main problems still persist in achieving a complete understanding
of the moduli space of marked hyperkählers: a description of KT (p) only
depending on p is still not known, and also the relation between different
connected components is not clear.

1.5 Cone theorem

In the last paragraphs we have dealt with the birational models which
stay hyperkäler.
Clearly this is not enough to run the Minimal Model Program, since con-
tractions can introduce singularities. One of the central tools in MMP is
the Cone theorem, which characterises classes of effective curves that can be

15
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contracted (in the category of complex spaces). In the case of hyperkähler
manifols, the classical result can be stated in the following way:

Theorem 1.5.1 ([HT07] Prop. 11)
Let X be a smooth projective variety with KX = 0 and ∆ an effective Q-
divisor on X. Then the closed cone of effective curves NE1(X) can be ex-
pressed:

NE1(X) = NE1(X)∆.C≥0 +
∑
j

R≥0[Cj],∆.Cj < 0

where the Cj are extremal and represent rational curves collapsed by con-
tractions of X. This is locally finite in the following sense: Given an ample
divisor A and ε > 0, there are a finite number of Cj with Cj.(∆ + εA) < 0.

Remark. A remarkable difference between this and the classical formulation
is that nothing is required on the singularities of ∆. This is due to the fact
that (as explained in [HT07] in the remark following the theorem), it’s always
possible to find ε > 0 such that (Y, ε∆) has the right type of singularities
(Kawamata log terminal).

An interesting consequence of the fact that X is hyperkähler is that the
divisors associated to contractions of these extremal rays Cj are contained in
the closure of the movable cone.
This can be summarised as follows.
Take C ∈ NEX having negative BBF square :(Cj, Cj) < 0. The orthogonal
must contain some D ∈ CX for signature reasons. Now take A an ample
divisor on X.
Clearly we have

(D − εA).C = −εA.C < 0

Fix ∆ε := D − εA and apply the cone theorem 1.5.1 to get a contraction
π : X → X̄. Assume that D has been chosen general enough such that C
was the only class in the orthogonal. Because π∗∆ε is now nef and big, it is
movable so the codimension of |∆ε| is at least 2.
Results from Kaledin (see [Kal06]) assure that the codimension of the singular
locus is at least 4. Pulling it back on X, the base locus will have at least
codim 2 so it is movable. Therefore since ∆ε −−→

ε→0
D the divisor D must be

in the closure of the movable cone.
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Chapter 2

Bridgeland stability

Bridgeland stability conditions have been introduced in [Bri02] in an at-
tempt to study Gieseker stability of sheaves.

The main idea is to give some kind of categorical version of the proper-
ties used in constructing moduli spaces for more classical stability. In this
perspective, it is natural to try to recover as much as possible of the clas-
sical picture, in particular a wall and chamber decomposition of the space
of stability conditions. This attempt actually results in a more formal but
better behaved theory of moduli spaces, where the price to pay is shifted in
the objects parametrised: a triangulated category is needed so instead of the
usual category of coherent sheaves, the attention is brought to its bounded
derived category.
Moreover Bridgeland stability makes sense for any triangulated category, so
it can be used to look for new invariant of autoequivalences of triangulated
categories and it is stable under Fourier-Mukai transform.
However, we will just provide definitions for the general case, while the main
focus will be on the more concrete case of complexes of sheaves.

2.1 The large volume limit

This section serves more as a motivation to the study of Bridgeland sta-
bility. The facts reported here will not be used in the rest of the thesis and
will be presented relying on definitions and notations that will be introduced
in the rest of the chapter.

Fix X to be a K3 surface.
One of the problem of Gieseker stability is that it is not preserved by twist-
ing with a line bundle (while it is the case for slope stability). A slight
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2.1. THE LARGE VOLUME LIMIT

generalisation of Gieseker stability that can take twists into account is the
following:

Definition 2.1.1
Let β, ω ∈ NS(X)⊗ R a pair of R-divisors with ω ∈ Amp(X) ample. Let E
be a torsion-free sheaf on X with Mukai vector v(E) = (r(E), c1(E), s(E))
and define

µβ,ω(E) :=
(c1(E)− r(E)β) · ω

r(E)
and νβ,ω

s(E)− c1(E) · β
r(E)

A torsion-free sheaf E on X is said to be twisted semistable with respect to
the pair (β, ω) if

µβ,ω(A) < µβ,ω(E)

or

µβ,ω(A) = µβ,ω(E) and νβ,ω(A) ≤ νβ,ω(E)

for all subsheaves 0 6= A ⊂ E

Remark. Notice that for β = 0 this reduces to Gieseker stability

The relation with Bridgeland stability appears as follows: for every pair
β, ω as before we can actually define a stability condition that has central
charge dual to exp(β + iω) similar to those that we will present in 2.5.2.
Taking large enough multiples of ω, the objects that stays semistable are the
shifts of twisted semistable sheaves. In this sense we can describe twisted
(and therefore Gieseker) stability as limits of Bridgeland stability for large
volume, meaning for large enough multiples of the ample divisor. The precise
statement is:

Theorem 2.1.2 ([Bri03] Prop. 14.2)
Fix a pair βω ∈ NS(X)⊗Q with ω ∈ Amp(X) ample.
For integers n >> 0 there is a unique stability condition σn ∈ U(X) having
central charge Zn(−) := (exp(β + inω),−).
Suppose E ∈ Db(X) satisfies

r(E) > 0 and (c1(E)− r(E)β) · ω > 0

Then E is σn-semistable for n >> 0 precisely if E is a shift of a (β, ω)-twisted
semistable sheaf on X

18



CHAPTER 2. BRIDGELAND STABILITY

2.2 Some category theory language

A big part of the content of this chapter is purely categorical. Even if we
are interested in the specific case of coherent sheaves on a complex variety,
there is really no advantage in stating nor proving these results in the con-
crete context and it could actually make arguments less transparent.
For this reason, we introduce some of the needed language from the more
abstract point of view.
For the reader not familiar with the basic language of category theory a ref-
erence could be [Lan13].

The categories we will be interested in usually exhibit additional struc-
ture.

Definition 2.2.1
Let R be a ring. An R-category is a category A such that for each couple
A,B ∈ ObA , the set HomA(A,B) has an R-module structure such that

1. The composition HomA(A,B) × HomA(B,C) → HomA(A,C) is R-
bilinear

2. There exists an object 0 ∈ A such that Hom(0, 0) is trivial

3. For any couple A,B ∈ Ob(A) there exists an object A ⊕ B ∈ Ob(A)
and morphisms

A A

A⊕B

B B

making A⊕B both the direct sum and the direct product of A,B

A Z-category is called an additive category

We recall that direct product means that for all diagrams of the following
form there exists a unique C 99K A⊕B

A

A⊕B C

B

19
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and similarly direct sum means that all diagrams of the following form have
a unique A⊕B 99K C fitting

A

C A⊕B

B

An additive category typically is not enough, in particular doesn’t allow to
define (co)-homology. In analogy to categories arising from algebraic struc-
tures, one is interested to restore the concept of Ker and Coker. The two
notions can be categorified via universal properties.

Definition 2.2.2
For a morphism f : A → B the kernel is the morphism Ker f : Ker f → A
(abusing notation we indicate both the morphism and the object with the same
symbol) such that commutative diagram of this form exist and can always be
completed with a unique 99K

A

Ker f B

C

f

0

0

Dually the cokernel Coker f : B → Coker f is the morphism such that com-
mutative diagram of this form exist and can always be completed with a unique
99K

B

A Coker f

C

0

f

0

Then one can define image and coimage as
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Definition 2.2.3
For a morphism f : A→ B, its image is defined

Im f := Ker Coker f

and dually
Coimg f := Coker Ker f

The nice categories on which this kind of operations are always allowed
are the abelian ones

Definition 2.2.4
An abelian category is an additive category such that it admits kernel and
cokernel for any morphism f and the natural map Coimg f → Im f is an
isomorphism

The main reason to work in an abelian category is that here exact se-
quences make sense:

Definition 2.2.5
A sequence A

f−→ B
g−→ C is exact if Ker g = Im f

Unfortunately, asking for a category to be abelian is a very strong prop-
erty, and we will see that introducing the derived category we will be forced
to leave the abelian realm. So we will need some notion to get around exact
sequences when they are not available, introducing some different structure.
An adequate substitute in our case will be provided by distinguished trian-
gles:

Definition 2.2.6
A triangulated category is an additive category A together with an additive
equivalence

T : A → A
called the shift functor, and a set of distinguished triangles

A→ B → C → T (A)

subject to the axioms TR1-TR4.
We denote A[1] = T (A).

TR1 1. Any triangle of the form

A A 0 A[1]
idA

is distinguished.
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2. Any triangle isomorphic to a distinguished triangle is distinguished

3. any morphism f : A → B can be completed to a distinguished
triangle

A B C A[1]
f

TR2 The triangle

A B C A[1]
f g h

is distinguished if and only if

B C A[1] B[1]
g h −f [1]

is distinguished

TR3 Suppose there is a commutative diagram of distinguished triangles

A B C A[1]

A′ B′ C ′ A[1]

f h f [1]

then it can be completed by a (not necessarily unique) h : C → C ′

TR4 Given distinguished triangles

A B C ′ A[1]

B C A′ B[1]

A C B′ A[1]
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CHAPTER 2. BRIDGELAND STABILITY

fitting in a commutative diagram

X[1]

Z ′ X[1]

Y Y ′

Z

X X ′

Y [1]

Z ′[1]

There exist a distinguished triangle

C ′ B′ A′ C[1]

completing the commutative diagram

Notice that for a category to be triangulated (meaning, to admit a trian-
gulated structure) is not a weaker (nor stronger) condition than to be abelian.
They are two different request and distinguished triangles are not in general
an analogue to exact sequences: it is just in the context of the homotopy
or derived category (which will be defined in the next section) that distin-
guished triangles can be chosen in such a way that they in some sense carry
the same information. It is also important to stress that while abelianity is
an intrinsic property of the category, the choices of the shift functor and the
family of distinguished triangles are not canonical.

2.3 The derived category

References for this section can be found in [Huy06; Ver96]
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This section is actually purely categorical, so it really makes no difference
to present the general case of an abelian category A.
Anyway to have a more concrete example, fix a complex variety X and let
A be the category of coherent sheaves on X.
In this example, it is usually useful for studying homological properties in A
to consider resolutions via locally free sheaves. Therefore it seems natural
to introduce a new category having as objects such complexes. Anyway it is
technically easier to allow any object of A to appear in the complex.
This leads to the definition:

Definition 2.3.1
The category of complexes Kom(A) on A is the category having as objects
diagrams in A of the form

... −→ Ai−1 di−1
A−−→ Ai

diA−→ Ai+1 → ...

where Ai ∈ Ob(A) and diA ◦ di−1
A = 0. Such diagrams are called complexes

and Ai are called the degree i component of A.
Morphisms between complexes A,B of Kom(A) are commutative diagrams of
the form

... Ai−1 Ai Ai+1 ...

... Bi−1 Bi Bi+1 ...

di−1
A

f i−1

diA

f i f i+1

di−1
B diB

This category is clearly abelian as A was.
Plus, it has a very remarkable functor, the shift functor:

Definition 2.3.2
The shift functor is the functor [1] : Kom(A)→ Kom(A) defined:

� On objects, A ∈ Ob(A) is mapped to the complex A[1] such that

– A[1]i = Ai+1

– diA = di+1
A

� On morphisms, f ∈ Hom(A,B) is mapped to f [1] such that f [1]i = fi+1

Proposition 2.3.3 ([Huy06] Cor 2.5)
The shift functor is an equivalence of categories and its inverse is denoted
[−1].
The notation [±n] is used to indicate the composition [±1]n for n ∈ N.
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Still the shift doesn’t make Kom(A) a triangulated category: the obvious
choice of short exact sequence in A to define distinguished triangles doesn’t
respect the needed axioms.
For example, if we try to define distinguished triangle as those diagram
A → C → B → A[1] for A,B,C fitting in a short exact sequence 0 →
A→ C → B → 0 clearly it doesn’t respect the axiom TR2.
Because we are mainly interested in cohomological property of the complex,
we actually can condense some information: first of all homotopic equiva-
lent complexes have the same homology, and moreover in Kom(A) there are
morphisms that are not isomorphism and that induce isomorphisms in coho-
mology, called quasi-isomorphisms.
Fortunately this is possible in a universal way:

Theorem 2.3.4 ([Huy06] Thm 2.10)
There exists a category D(A) and a functor Q : Kom(A)→ D(A) such that

1. If f : A → B is a quasi-isomorphism in Kom(A), then Q(f) is an
isomorphism in D(A).

2. Any functor Kom(A) → F satisfying the previous property factorise
uniquely via Q

Definition 2.3.5
The category D(A) of the previous theorem is called the derived category of
A

Remark. Clearly we have a functor A → Kom(A) sending an object to the
corresponding complex concentrated in degree 0. This identification allows to
think object of A as object of D(A) composing with the functor Kom(A)→
D(A).

This definition is fairly abstract and in this form can be seen as a special
case of a more general construction of localisation of morphisms (see [Ver96,
Ch. 2]). However, a direct proof of the existence gives also a description of
the objects and morphisms of the category. The rest of the section will give
a sketch of the main steps to prove the theorem. Details are in [Huy06]
It is useful to introduce an intermediate category:

Definition 2.3.6
The homotopic category of A is the category K(A) having

1. as objects the same objects as Kom(A)

2. as morphisms equivalence classes of homotopy equivalent morphisms
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We recall what homotopic equivalent means from homological algebra:

Definition 2.3.7
Two morphisms f, g ∈ HomKom(A)(A,B) are homotopy equivalent if there is
a collection h = (hi)i∈N of morphisms hi : Ai → Bi+1 such that:

f i − gi = hi+1 ◦ diA + di−1
B ◦ hi

The collection h is called an homotopy.

With the introduction of the homotopic category, the only morphism that
we want to get rid of are the quasi-isomorphisms.
In D(A) they must became isomorphism, so for every diagram in K(A) of
the form:

C

A B
qis

(where qis stands for quasi isomorphism) there must be a morphism A→ B
in D(A).
Therefore we take such diagrams as the definition of morphisms in D(A).
To define composition is not completely obvious: it would be natural to pose

C

A B
qis

◦
D

B E
qis

as the diagram resulting as

C̃

C D

A B E

qis

qis qis

But the existence of C̃ is not trivial. To solve this we introduce the cone of
a morphism:

Definition 2.3.8
Let f : A→ B be a morphism in Kom(A). Its mapping cone is the complex
C(f) defined as

C(f)i = Ai+1 ⊕Bi and diC(f) =

(
−di+1

A 0
f i+1 diB

)
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Clearly the natural injection Bi → Ai+1⊕Bi and projection Ai+1⊕Bi →
Ai+1 = A[1]i induce two natural morphisms B → C(f) and C(f)→ A[1].
This is in some sense the best avatar of short exact sequences that we have
in this more general context:

Proposition 2.3.9 ([Huy06] Ex. 2.27)
For every short exact sequence 0 → A → B → C → 0 in A there is an
isomorphism C → C(f) in D(A)

Since as we said short exact sequences were not a suitable choice to define
distinguished triangles, the next candidates are of the kind

A→ B → C(f)→ A[1]

.
In this case the TR2 axiom holds in K(A)

Proposition 2.3.10 ([Huy06] Prop. 2.16)
Let f ∈ HomK(A)(A,B) and τ : B → C(f) the natural morphism, then
there exists an isomorphism g ∈ HomK(A)(A[1], C(τ)) such that the following
diagram commutes:

A[1]

B C(f) B[1]

C(τ)

−f

gτ

This is also the key ingredient of the following proposition, solving the
problem of the composition of morphisms in D(A):

Proposition 2.3.11 ([Huy06] Prop 2.17)
Every diagram in K(A) of the form

C D

B
qis
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can be completed in a commutative diagram

C̃

C D

B

qis

qis

Finally, it is not trivial since all the other axiom must be tested, but it
can be verified that

Proposition 2.3.12 ([Huy06] Prop 2.24)
The categories K(A) and D(A) equipped with the shift functor and with the
family of distinguished triangles given by triangles isomorphic to some se-

quence A
f−→ B → C(f)→ A[1], is a triangulated category

Notice that a direct consequence of 2.3.9 is

Corollary 2.3.13
Every short exact sequence induces a distinguished triangle.
More precisely, for any exact sequence 0→ A→ B → C → 0 there is a map
C → A[1] making A→ B → C → A[1] a distinguished triangle.

Some notable subcategories of Kom(A),K(A),D(A) are those composed
by complexes having many zero components. It is possible to re-run the
entire construction starting from the subcategory in Kom(A) to recover the
corresponding ones in the other two.
Anyway, this provides essentially the same objects that one would get re-
stricting D(A) to the full subcategory of object for which the corresponding
cohomology groups vanish :

Definition 2.3.14
Let ∗ = +(resp. −, resp b and let Kom(A)∗ be the full subcategory of Kom(A)
of complexes having Ai = 0 for i << 0 (resp. i >> 0 resp. |i| >> 0).
Let D(A)+ (resp. −, b) be the corresponding derived category.

Proposition 2.3.15 ([Huy06] Prop 2.30)
The natural functors D(A)+ → D(A) (resp. D(A)−,D(A)b) define equiv-
alences with the full triangulated subcategory of D(A) with H i(A) = 0 for
i << 0 (resp. i >> 0, |i| >> 0)
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2.3.1 Grothendieck group

The classical definition of Grothendieck group can be generalised to abelian
categories:

Definition 2.3.16
Let A be an abelian category. Its Grothendieck group K(A) is the quotient
of the free group on objects of A quotiented by the relations A− B + C = 0
for A,B,C ∈ ObA fitting in an exact sequence 0→ A→ B → C → 0

If the abelianity fails, but the triangulated structure is provided, we can
define a similar notion :

Definition 2.3.17
Let D be a triangulated category. Its Grothendieck group K(D) is the quotient
of the free group on objects of D quotiented by the relations A− B + C = 0
for A,B,C ∈ ObD fitting in a distinguished triangle A→ B → C → A[1]

We said that the derived category of an abelian category is not abelian,
but it is triangulated.
Fortunately, the following proposition shows the information in the Grothendieck
group of the derived category is essentially the same:

Proposition 2.3.18 ([Vir] Prop. 0.3)
Let A be an abelian category and D(A) it’s derived category.
Then

K(A) ∼= K(D(A))

Proof. The natural map on objectsA → D(A) induces a map on Grothendieck
groups by 2.3.13 that we will call β.
We need to provide an inverse.
Define

α : K(D(A))→ K(A)

[A] 7→
∑
i

(−1)i[H i(A)]

This is a well defined group homomorphism because given a triangle A→
B → C → A[1] the long exact sequence induced in homology gives that
α(B) = α(A) + α(C).
To prove this is an inverse for α, the composition α ◦ β is easy to check (the
complex associated to an object A has only one term, so cohomology is A in
degree 0, 0 otherwise). For the composition β ◦ α we need some more work.
Let A ∈ D(A) and An be the non vanishing term of highest degree.
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Then we can obtain a complex isomorphic to A by writing the commutative
diagram:

... An−2 An−1 An 0

... An−2 An−1 Imφ 0

=

φ

= Imφ

This is a morphism in D(A) and its cone is isomorphic to Hn(A)[−n] (in
D(A)) which has the same class in the Grothendieck group as H i(A). We
iterate the procedure to finish the proof.

2.4 Bridgeland stability

Let D be a triangulated category. We introduce the notation

A B

C

meaning A B C A[1] is an exact triangle.

Once again, if someone wants to avoid the abstract nonsense, one can think
of D as the bounded derived category of coherent sheaves (to which we will
reduce in the next section).
Mimicking the Harder-Narasimhan filtration of slope stability, Bridgeland
gives the following definition

Definition 2.4.1
A slicing of D is a family P = (P(φ))φ∈R of full additive subcategories of D
such that

1. P(φ)[1] = P(φ+ 1)

2. for φ1, φ2 ∈ R>0, φ1 > φ2 then
∀E1 ∈ P(φ1), E2 ∈ P(φ2),Hom(E1, E2) = 0

3. for E ∈ D, E 6= 0 there exists an Harder-Narasimhan filtration a.k.a:
∃(Ei)i=0,...,n ∈ D s.t

0 = E0 E1 ... En−1 En = E

A1 A2 An−1 An
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with Ai ∈ P(φi) and the sequence (φi)i = 1...n strictly decreasing.
The Ai are called Jordan-Hölder factors of E, and are unique up to
permutation.

Definition 2.4.2
A Bridgeland stability condition σ on D is the datum of a couple (Z,P)
where:

� P is a slicing of D

� Z : K(X)→ C is a group homomorphism from the Grothendieck group
of X verifying

Z(P(φ) \ {0}) ⊆ R>0e
iπφ

for every φ ∈ R.

The morphism Z is called the central charge.

The existence of a stability condition forces the slicing to be in abelian
subcategories

Lemma 2.4.3 ([Bri02] Lemma 5.2)
If (Z,P) is a stability condition, then the P(φ) are abelian

In order to be able to have decent results, it is necessary to restrict to
some more hypothesis:

Definition 2.4.4
A slicing P is locally finite if there exists η ∈ R>0 such that for all t ∈ R the
subcategory P(t− η, t+ η) are of finite length.
A stability condition is locally finite if its slicing is locally finite.

These locally finite stability conditions are those we are mainly interested
in, because their set admits a structure of complex manifold.
This is obtained by introducing a generalised metric on the set of locally
finite slicings and for each stability condition a generalised norm.
Alternatively, the same topology can be induced by a generalised metric.
This boils down to the following result

Proposition 2.4.5 ([Bri02] Thm. 1.2)
Let Stab(D) be the set of locally finite stability conditions.
It admits a topology such that for Σ ⊂ Stab(D)a connected component, there
is a linear subspace with a linear topology V (Σ) ⊂ Hom(K(D),C) such that
the map (Z,P) 7→ Z defines a local homeomorphism Σ→ V (Σ)
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A very useful fact is that Stab(D) has two groups acting on it

Proposition 2.4.6 ([Bri02] Lemma 8.2)
The space Stab(D) carries:

� a right action of G̃L(2,R)+ (the universal cover of GL(2,R))

� a left action by isometries of the group Aut(D) of autoequivalences of
D

The two actions commute

The left action clearly makes ψ ∈ Aut(D) act by sending (Z,P) 7→ (Z ◦
ψ−1, ψ(P)).

The right action is defined considering elements of G̃L(2,R) as couples (T, f),
with T ∈ GL(2,R) and f : R→ R increasing, verifying f(φ+ 1) = f(φ) + 1

and such that the induced map on S1 = R�2Z = R
2 \ {0}�R>0

are the same.

Then (T, f) acts as (Z,P) 7→ (T−1 ◦ Z,P ′) where P ′(φ) = P(f(φ)).

2.5 On K3 and abelian surfaces

We go back to the more geometric context: from now on, D will be the
bounded derived category of coherent sheaves on a K3 or an abelian surface
X.
In this case D is of finite type and it is possible to define a bilinear form χ on
K(X) (the Grothendieck group is the same for the two categories of coherent
sheaves and its bounded derived one) as, for E,F ∈ D

χ(E,F ) :=
∑
i∈N

(−1)i dimC HomX(E,F [i])

This allows one to define the numerical Grothendieck group

N (X) := K(X)�K(X)⊥

(notice that K(X)⊥ = ⊥K(X)) on which χ induces a non degenerate bilinear
form.

Remark. The Chern character ch : K → H̃alg(X,Z) induces an isomorphism
N (X) ∼= H̃alg(X,Z).
This could be used to define the Mukai product in the first place for a more
abstract perspective than the one we will propose in the next chapter.
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Definition 2.5.1
A stability condition σ = (Z,P) is called numerical if Z factors trough N (X).
Equivalently if there is π(σ) ∈ N (X)⊗ C such that Z(·) = −χ(π(σ), ·)

From now on, Stab(X) will be the space of locally finite numerical sta-
bility conditions.
First of all, the problem of the existence of stability conditions should be
addressed.
In particular it would be nice to construct stability conditions from an ample
divisor and a twist, as it’s done for Gieseker stability: E.Macr̀ı and P.Stellari
independently achieved exactly that.

Proposition 2.5.2 ([Bri03] Prop. 7.1)
Let ω, β ∈ NS(X)⊗ (Q) with ω ∈ Amp(X) and define:

Zβ,ω(E) := (exp(β + iω), v(E))

Then there exist a stability condition σ having Z as central charge.
Moreover, all skyscraper sheaves OX,x are σ-stable.

and Bridgeland generalised the result :

Proposition 2.5.3 ([Bri03] Lemma 6.2,6.3)
Take β, ω ∈ NS(X)⊗ R with ω ∈ Amp(X) and ω2 > 2.
Then the function Zβ,ω (defined as in the previous proposition) is the central
charge of a stability condition for which all skyscrapers sheaves are stable.

Remark. The condition ω2 > 2 is stronger than what is actually needed. In
fact Bridgeland states that it is enough to ask for Zβ,ω(S) 6∈ R≤0 for spherical
objects.

These are not all the possible stability conditions. But they almost form
a connected component of Stab(X). We will explain in what sense, but first
we need to introduce the definition of good stability condition.

If Stab∗(X) ⊂ Stab(X) is a connected component, the projection of 2.4.5
becomes π : Stab∗(X)→ N (X)⊗ C and also the space V (Σ) in the propo-
sition coincide with N (X)⊗ C.
Moreover, π is a covering map over the subset P0(X) ⊂ N (X) ⊗ C defined
as follows:
Let P(X) ⊂ N (X) ⊗ C the subset of vector whose imaginary and real part
span a positive definite 2-plane in N (X)⊗ R. Then define

P0(X) := P(X) \
⋃

δ∈N (x)
(δ,δ)=−2

δ⊥
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Definition 2.5.4
A connected component Σ ⊂ Stab(X) is said to be good if π(Stab(X)) ∩
P0(X) 6= ∅.
A stability condition is said to be good if it lies in a good component.

Definition 2.5.5
We denote Stab†(X) ⊂ Stab(X) the good component containing stability
conditions for which skyscraper sheaves OX,x are stable of the same phase for
every x ∈ X
Remark. In the previous definition, it is not at all trivial that Stab†(X) is
unique or that it even exists. This requires some work developed in [Bri03]
Sect.11.

So by definition Stab†(X) contains all stability conditions arising from
2.5.3. The main reason to restrict to good components is that they allow a
wall-chamber decomposition

Proposition 2.5.6 ([Bri03] Prop 9.3)
Let B ⊂ Stab∗(X) be a compact subset and S ⊂ D a subset of bounded mass
in a good component Stab∗(X) ⊂ Stab(X) (i.e. supE∈Smσ(E) <∞ for some
σ ∈ Stab∗(X)).
Then there is a finite collection {Wj, j ∈ Γ} of real codimension 1 submani-
folds of Stab∗(X) such that for any connected componet

C ⊂ B \
⋃
∈Γ

Wj

the set of semistable objects in S stays constant for σ varying in C.
Moreover if E ∈ S has primitive Mukai vector, S is stable for all σ ∈ C.

Remark. In the previous theorem the fact that boundedness is tested for
some σ ∈ Stab∗(X) is equivalent to asking that for any σ the sup is finite.
This is a consequence of the definition of the topology on Stab(X) via the
generalised metric.

Remark. Notice that the collection of objects having fixed Mukai vector is
bounded

Still a priori Stab†(X) contains more stability conditions than those con-
structed before.
In the fist place, because the action of G̃L

+
(2,R) on one of the stability

conditions stays in the same connected component.
But this can be in some sense modded out : define

U(X) := {σ ∈ Stab(X)|σ is good and OX,x is σ-stable for any x ∈ X}

By definition Stab†(X) is the component containing U(X). Then
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Proposition 2.5.7 ([Bri03] Prop. 10.3)

For each σ ∈ U(X) there is a unique element g ∈ G̃L
+

(2,R) that sends σ in
one of the stability condition of 2.5.3

The boundary of U(X) has been described in Sect 12 of [Bri03] as a lo-
cally finite union of codimension one real submanifolds, and for a stability
condition to be on one of these corresponds to having a certain Jordan-Holder
filtration for sheaves OX,x .
These filtrations involve spherical objects (for the definition of spherical ob-
ject see the remark after definition 4.2) that do not exist on abelian sufaces
(see [Bri03, Lemma 15.1]).
Because of that, in the abelian case there is no boundary. This means that

U(X) = Stab†(X), which implies that Stab†(X)�
G̃L

+
(2,R)

can be identified

with NS(X)R × Amp(X)R.
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Chapter 3

Moduli spaces of Bridgeland
semistable objects

As we have already said, one of the main reason to introduce Bridge-
land stability to replace Gieseker stability, is a very well behaved theory of
moduli spaces. In particular the case of a K3 and of an abelian suface have
been studied in depth by various authors (the two main references will be
the works of Bayer and Macr̀ı for K3s, and those of Yoshioka for abelian
surfaces). In particular for the next chapter the main result that we need
to cite is that minimal model program for moduli spaces can be runned via
wall-crossing: every birational model of a moduli space (for stability con-
dition in a certain connected component) has an interpretation in terms of
changing the chamber of the stability condition.

3.1 Mukai lattice

As for almost every moduli problem, we will need to fix some numerical
invariant: in this case it will be the Mukai vector. We will state most results
for vector bundles, but the same can be extended first to the category of
coherent sheaves using a resolution via locally free sheaves, and then to the
bounded derived category of coherent sheaves Db(X) using additivity.

A very pervasive and classical result in complex geometry is the Riemann-
Roch theorem, that for our purpose can be stated as following: :

Theorem 3.1.1 ([Huy05] Thm. 5.1.1)
Let E be an holomorphic vector bundle on a compact complex manifold X.
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Then its Euler characteristic is given by:

χ(X,E) =

∫
X

ch(E) Td(X)

Remark. Clearly the integral is to be intended as the integration of the max-
imal degree component of the form.

With this in mind, the motivation behind the following definition will be
clearer:

Definition 3.1.2
Let E be a vector bundle on a complex manifold X.
We define its Mukai vector v(E) as:

v(E) := ch(E)
√

Td(X)

By Riemann-Roch it is clear that it is enough to use the Mukai vectors
to calculate the relative Euler characteristic of two vector bundles.
To recall, we define

Definition 3.1.3
Let E,F two vector bundles on X. The relative Euler caracteristic is:

χ(E,F ) =
∑
i∈Z

(−1)i Exti(E,F )

which gives the following identity :

Lemma 3.1.4
Let E,F be two vector bundles on X. Then:

χ(E,F ) = χ(X,F ⊗ E∗)

Therefore it’s a very simple calculation that:

χ(E,F ) =χ(X,F ⊗ E∗) =

∫
X

ch(F ⊗ E∗) Td(X) =

∫
X

ch(F ) ch(E∗) Td(X)

=

∫
X

v(F )v(E∗)

In this way we can evaluate the Euler characteristic of two vector bundles as
a function of their Mukai vectors very easily.
Let us fix X to be a complex surface. Using the explicit description of the
Chern character we can observe that taking the dual inside the Mukai vector
corresponds to a sign change in the H2 component.
Therefore we give the following definitions:
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Definition 3.1.5
Let X be a complex surface.
Consider the decomposition H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z).
Define for v = (a,B, c) ∈ H∗(X,Z) the dual

v̌ := (a,−B, c)

Then define the product:

(a,B, c)(a′, B′, c′) := BB′ − ac′ − a′c

or equivalently

< v,w >:= −
∫
X

vw̌

This defines a lattice structure on H∗(X,Z). We will call this lattice Mukai
lattice and we will indicate it with the notation H̃(X,Z).

To sum up the discussion above the definition we can state:

Proposition 3.1.6
Let E,F holomorphic vector bundles on X. Then:

χ(E,F ) = −(v(E), v(F ))

Proof. We continue the chain of equalities presented to motivate the defini-
tion of Mukai lattice:

χ(E,F ) =χ(X,F ⊗ E∗) =

∫
X

ch(F ⊗ E∗) Td(X) =

∫
X

ch(F ) ch(E∗) Td(X) =∫
X

v(F )v(E∗) =

∫
X

v(F )v(E )̌ = −(v(F ), v(E))

Some more structure appears on the Mukai lattice once we have an Hodge
decomposition for X.

Definition 3.1.7
Assume X is also Kähler (so that it admits a Hodge decomposition).
Then there is a natural pure weight 2 Hodge structure on the Mukai lattice
posing:

H̃0,2 =H0,2

H̃2,0 =H2,0

H̃1,1 =H0 ⊕H1,1 ⊕H4

We denote H̃alg(X,Z) = H̃1,1 ∩ H̃(X,Z) and we call it the algebraic part of
the Mukai lattice.
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Such X for us will be a K3 or abelian surface.
Note that the first Chern class takes holomorphic vector bundles to (1,1)
forms so the Chern character (and the Mukai vector) is in H̃alg(X,Z), and
that the Todd class Td(X) is either 1 in the abelian case or in the K3 one:
in both cases it is invertible.
Therefore the map v : K(X) → H̃alg(X,Z) is an isomorphism if and only if
the Chern character is one.
This has beeen proved in [AT14]

Proposition 3.1.8 ([AT14] Sec. 2.1,2.2)
The Chern character induces an isomorphism between the Grothendieck group
of the derived category and the algebraic part of the Mukai lattice.

Moreover proposition 3.1.6 shows that it is an isometry of lattices. This
can also be seen as an altenative way to define the Mukai product on the
Mukai lattices using the identification with K(X) (but this would be limited
to these cases of the K3 and the abelian surfaces).

3.2 Projectivity and existence of moduli spaces

Let X be a K3 or abelian surface. We will use the notation:

εX :=

{
1 if X is a K3 surface

0 if X is an abelian surface

Let v ∈ H̃alg(X,Z) a Mukai vector and σ ∈ Stab†(X) a stability condition
and φ ∈ (0, 1] a phase.

Definition 3.2.1
A flat family of σ-(semi)stable objects of Mukai vector v and phase φ on an
algebraic space S is an object E ∈ Db(S ×X) such that for any closed point
s ∈ S, denoting is : X ↪→ S ×X the inclusion x 7→ (s, x), then i∗sE ∈ Db(X)
is a σ (semi)stable object of Mukai vector v and phase φ

We can indicate the corresponding stack of σ-semistable (resp. stable)
objects of Mukai vector v and phase φ as Mσ(v, φ)(resp. Ms

σ(v, φ)).

First notice that the G̃L(2,R) action gives isomorphisms Mσ(v, φ) ∼= Mσ(v, φ′)
for any φ, φ′ ∈ (0, 1]. So we can reduce to the case φ = 1 and drop the phase
from the notation.
A priori, it is not clear even when semistable objects exist, but it has been
proved that this depends on the Mukai vector:
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Lemma 3.2.2 ([BM12] Thm. 6.8, [Yos12] )
Let v ∈ H∗alg(X,Z). Assume that v = mv0 with m ∈ Z>0 and v0 primitive
with v2

0 ≥ −2εX .
Then Mσ(v, φ)(C) is non-empty for all σ ∈ Stab†(X) and φ ∈ R such that
Z(v) ∈ R>0e

iφπ

Thanks to works from Toda, Yoshioka, Bayer and Macr̀ı, under some
assumptions on v and σ these stacks admit a coarse moduli space. We recall
what this means:

Definition 3.2.3
Let F be a presheaf. A coarse moduli space is an algebraic space M together
with a morphism F → hM such that:

1. for any algebrically closed field k, F (k)→ hM(k) = Hom(k,M)

2. has the following universal property: for each M ′ algebraic space and
F → h′M there exists a morphism M →M such that

F hM ′

hM

When it exists, we will denote Mσ(v) (resp. Ms
σ(v)) the coarse moduli

space for Mσ(v)(resp. Ms
σ(v)).

The previous definition for our case means the following: take an algebraic
space S and E ∈ Db(X × S) a family of σ-(semi)stable objects of Mukai
vector v (and phase 1). Then by definition E ∈Mσ(v)(S) →Mσ(v)(S). So
for each family E we get a morphism S →Mσ(v). Notice that the viceversa
is not true, alias not every morphism S → Mσ(v) induces a family, except
when S = k. The universal property states that Mσ(v) is minimal, in the
sense that any other algebraic space doing so will factor through Mσ(v).

Theorem 3.2.4 ([BM12] Thm. 1.3,[MYY11b] Thm. 0.0.2)
Let X be a smooth projective K3 surface and let v ∈ H̃alg(X,Z).
If σ ∈ Stab†(X) is generic (does not lie on a wall with respect to v) then
there is a coarse moduli space Mσ(v) for Mσ(v) as a normal projective ir-
reducible variety, parametrising the S-equivalence classes, with Q-factorial
singularities.

Remark. When we say that the coarse moduli space parametrises S-equivalence
classes, we admit that we have been slightly imprecise: in order to get base
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change (and having a stack more than a functor) we need to collapse some
things. So the C-points of the moduli space are actually S-equivalence classes
which, we recall, means that objects with the same JH factors are collapsed
together.
Notice that for stable objects the S-equivalence classes coincides with the
object itself, so there is no problem. The precise definition of the stack and
the moduli can be found in [AHLH18] and in more generality in [Bay+21].

At least for the moduli of stable objects the expected dimension can be
computed checking that if A ∈ Db(X) is a stable object of Mukai vector v,
it follows v2 = ext1(A,A)− 2 so ext1(A,A) = v2 + 2.
Notice that the moduli space of stable objects, if not empty, exists and is
smooth of the expected dimension. This can be deduced from a classical
result from Mukai and Artamkin [Art89; FMM12; IM19], which asserts that
obstructions to deformations for a sheaf F are contained in the kernel of a
surjective trace map Ext2

X(F ,F) → H2(X,O). But if F is simple and X
is a surface, this is a surjective map C → C, so the kernel is trivial and
deformations are unobstructed.
Imposing numerical conditions on the Mukai vector also assures that the
moduli space has the expected dimension (The following result is stated for
twisted K3 surfaces, but Yoshioka and also Macr̀ı prove the projectivity of
moduli spaces constructing isomorphisms with such moduli, so it must hold
in the same way for K3 and abelian surfaces)

Theorem 3.2.5 ([BM14] Thm. 2.15)
Let v = mv0 ∈ H∗(X,Z) be a Mukai vector, with v0 primitive and m > 0
and let σ ∈ Stab†(X) a generic stability condition with respect to v. Then

1. The coarse moduli space Mσ(v) is non-empty if and only if v2+2εX ≥ 0

2. Ms
σ(v) 6= ∅ and dim Mσ(v) = v2 + 2 if and only if m = 1 or v2

0 > 0 .

Actually, something more can be said and Bayer and Macr̀ı state this fact
as part of a discussion just before the previous theorem: if v is primitive (and
the condition is generic) the moduli spaces of stable and semistable objects
coincides. In the non primitive case, if v2 > 0, all that can be said is that
the moduli of stable objects is a smooth open set of the moduli space of
semistable objects.
Now, because of the first statement in the theorem, the non empty cases that
do not fit in the situation of the second statement are those of non-primitive
isotropic vector, which give the following
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Proposition 3.2.6 (from [BM12] Lemma 6.6)
Let v ∈ H∗(X,Z) of the form v = mv0, with v2

0 = 0 and m > 1. Then

Mσ(v) ∼= Symm(Mσ(v0))

3.2.1 Hyperkählers in moduli

Fix σ ∈ Stab†(X) and v ∈ H∗(X,Z) a primitive Mukai vector with v2 > 0.
We have seen that the moduli space Mσ(v) is an irreducible projective variety,
smooth and with a symplectic form.
We can hope it is an hyperkähler, the only condition left to check is the
triviality of the fundamental group. While this actually holds in the case of
a K3 surface, for an abelian surface it is not as straightforward. Mimicking
the classical construction by Beauville, we can find a generalised Kummer
inside the moduli space of an abelian surface.
Let us fix T an abelian suface, then the Albanese map of Mσ(v) can be
described as follow.
Fix an E0 ∈Mσ(v)(C). Then define

alb :Mσ(v)→T × Tˇ

E →(det ΦP (E − E0), det(E − E0))

where P is the Poincarè bundle on T × Tˇdefined trivially by the fact that
Tˇparametrises line bundles (equivalent to zero) on T .

Definition 3.2.7
Let v ∈ H∗(X,Z) a primitive Mukai vector with v2 ≥ 6 and σ ∈ Stab†(X)
generic. We denote Kσ(v) the fiber of alb.

Theorem 3.2.8 ([Yos12] Thm 1.13)
For v, σ as in the previous definition, Kσ(v) is an irreducible symplectic man-
ifold of dim Kσ(v) = v2 − 2 which is deformation equivalent to a generalised
Kummer variety.

In what follows, when it is needed to discriminate the two cases, we will
denote Yσ(v) ⊂Mσ(v) respectively

Mσ(v) if X is a K3 surface

Kσ(v) if X is an abelian surface
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3.3 Some tools on moduli spaces

In this section we gather some useful tools that are available to work on
moduli spaces. In particular we will recall some facts about HN filtrations
in families, then we will proceed to define the Mukai homomorphism and
identify a Nef divisor associated with a stability condition, which will be the
main character in the next section linking the decomposition of the space
of stability conditions, separating chambers of general stability conditions.
with that of the Mori cone, separating the ample cones of different birational
models.

3.3.1 Filtration in families

A very natural thing we would like to do is to decompose a (semi)stable
object in its Jordan-Hölder factors, possibly with respect to different sta-
bility conditions. To do so in a geometric way on the moduli space, we
need to be able to define in some way an Harder-Narasimhan filtration on a
(quasi)universal family.
This can be done, under some hypotesis on the stability condition, and in
the precise sense that will be stated at the end of this subsection. Now let Y
be a smooth projective variety over C and σ ∈ Stab†(Y ) a stability condition
on Db(Y ).

Definition 3.3.1
We say σ satisfies openness of stability if the following condition holds: for
any scheme of finite type over C and for any E ∈ Db(S × Y ) such that its
derived restriction Es is a σ-semistable object of Db(Y ) for some s ∈ S, there
exists an open neighborhood U ⊂ S of s such that Es′ is σ-semistable for all
s′ ∈ U (equivalently E|U is a σ semistable family on U)

in our context this is always the case

Theorem 3.3.2 ([Tod07], Section 3)
Openness of stability holds on K3 (or abelian) surfaces and σ ∈ Stab†(X)

Theorem 3.3.3
Let σ ∈ Stab†(Y ) be an algebraic stability condition satisfying openness of
stability. Let S be an irreducible variety over C and an object E ∈ Db(S×Y ).
Then there exists a system of maps:

0 = E0 → E1 → ...→ Em = E
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in Db(Y ) and an open set U ⊂ S with the following property: for any s ∈ U
the derived restriction of the system of maps

0 = E0
s → E1

s → ...→ Ems = Es

is the HN filtration of Es.

So using this result we can obtain the decomposition as follows. Let
v ∈ H∗alg(X,Z) and σ ∈ Stab†(X) generic. Let E a σ stable object of Mukai
vector v (which corresponds to a point in Mσ(v)). Take γ a different stability
condition. Let Ai be the γ-stable factors of E and denote ai := v(Ai) their
Mukai vectors. Denote Mγ,P the locally closed stratum of objects having JH
partition which is a refinement of P .
Suppose that Mσ(v) admits a universal family E . Then consider the re-

striction E|Mγ,P
and take the filtration in families Ei. Setting Ai := Ei+1�Ei

we have families of γ stable objects on an open set of Mγ,P with generi-
cal fiber having Mukai vector ai, which induce respectively rational maps
Mγ,P 99K Ms

γ(ai). By universal property of fiber product we get a rational
map Mγ,P 99K×Ms

γ(ai).
If a universal family is not available, take an étale neighborhood f : U →
Mσ(v) of s admitting a universal family. The maps obtained by the previous
construction from U will factor through f (see [BM14] end of the proof of
Lemma 6.5).

3.3.2 The Mukai homomorphism

The first thing we are naturally interested into is the H2(M,Z) for M =
Mσ(v) a moduli space.
The Mukai homomorphism will provide a connection between this and the
cohomology of X.
Remember that taking Mukai vector is an isometry between the numerical
Grothendieck group with the relative Euler characteristic and the Mukai
lattice v : (Knum(X), χ) ∼= (H∗alg(X,Z), (, )).

We denote v# = v−1(v⊥), equivalently the orthogonal to the preimage of the
chosen Mukai vector.
A classical construction is that of the Donaldson morphism:

Definition 3.3.4
Let S be an algebraic space.
Let σ ∈ Stab†(X), v ∈ H∗(X,Z) and E ∈Mσ(v)(S).
We define the Donaldson morphism

λE : v# → N1(X)
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as the composition

v# p∗X−→ Kperf
num(S ×X)R

·[E]−−→ Kperf
num(S ×X)R

(pS)∗−−−→ Kperf
num(S)R

det−→ N1(S)

which explicitly means

λ([E]) := det((pS)∗([E ] · p∗X [E])) = det(ΦE(E))

The most natural family to choose would be a universal family.
But since the moduli spaces are semistable, we cannot hope to find a global
universal family. Fortunately we have something quite close to it:

Definition 3.3.5
Let S be an algebraic space of finite type over C. Fix v ∈ H∗(X,Z) a Mukai
vector and σ ∈ Stab†(X) a stability condition.

1. A flat family E ∈ Db(X × S) is a quasi-family on S if for each s ∈ S
closed point there exists an integer ρ > 0 and a σ-semistable object E of
Mukai vector v (said differently: E ∈Mσ(v)) such that E|{s}×X ∼= Eρ.
If S is connected ρ doesn’t depend on s and is called similitude of E

2. two quasi-families E1, E2 on S are called equivalent if there are V1, V2

vector bundles on S such that E ⊗ V1
∼= E2 ⊗ V2

3. A quasi-universal family is a quasi-family E such that for any scheme
S ′ and any quasi family E ′ on S ′ there exists a morphism f : S ′ → S
such that f ∗E and E ′ are equivalent.

Thanks to a result of Mukai,

Theorem 3.3.6 ([BM12] Rmk 4.6)
If Mσ(v) = Ms

σ(v) and admits a coarse moduli space Mσ(v) , there exists a
quasi-universal family on Mσ(v) which is unique up to equivalence.

Therefore we can define the Donaldson morphism choosing a quasi-universal
family.
Its dual version is called the Mukai homomorphism, and can be defined as:

Definition 3.3.7
Fix a primitive Mukai vector v ∈ H∗alg(X,Z) and σ ∈ Stab†(X) generic with
respect to v.
We define the Mukai homomorphism θ : v⊥ → H2(Mσ(v)) by the formula

θ(w).C =
1

ρ
(w,ΦE(Oc))

where C is a curve in Mσ(v), w ∈ v⊥ and E is a quasi-universal family of
similitude ρ. The definition doesn’t depend on E.
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It is just a calculation ([BM12] Rmk 5.5) that the following identity holds:

θ(v(E)) = −λ(E )̌

for E ∈ Db(X).
Moreover, under positivity of the Mukai vector, θ identifies the Neron-Severi
of Yσ(v) with a sublattice of the Mukai lattice:

Theorem 3.3.8 ([BM12] Thm. 6.10, [Yos12] Thm.1.13)
Let v ∈ H∗alg(X,Z) be a primitive Mukai vector with v2 ≥ 6(1− εX), and let

σ ∈ Stab†(X) be a generic stability condition.
Then Yσ(v) is an irreducible symplectic projective manifold and the Mukai
homomorphism induces an isomorphism:

θ : v⊥
∼−→ NS(Yσ(v)) if v2 > 0

θ : v
⊥
�v

∼−→ NS(Yσ(v)) if v2 = 0

3.3.3 A Nef divisor

Recall that Stab†(X) projects very naturally on Hom(Knum(X),C) via
the map σ = (Z,P) 7→ Zσ := Z (cfr. 2.4.5).
Since the Euler characteristic is a non-degenerate bilinear form on Knum(X)R,
we can assign to a stability condition σ the vector wσ ∈ Knum(X) dual to
IZσ and get via the Donaldson morphism λ an element of N1(X).
This subsection will summarise the main steps exposed in [BM12] to give an
explicit description of such a divisor.
Firstly it is defined at the level of stacks:

Definition 3.3.9 ([BM12] Def. 3.2)
Let C → Mσ(v) be an integral projective curve over Mσ(v) with induced
universal family E ∈ Db(C×X) and ΦE : Db(C)→ Db(X) the corresponding
Fourier-Mukai transform.
We define the following real number:

Lσ.C := IZσ(ΦE(OC))

Then it is not modified by:

1. tensoring E with the pull-back of a line bundle on C

2. replacing OC with any line bundle on C

We think of Lσ as a divisor class in N1(Mσ(v)).
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Proposition 3.3.10 ([BM12] Lemma 3.3)
The divisor class Lσ is nef: Lσ.C ≥ 0.
Moreover, we have that Lσ.C > 0 if and only if for two general closed points
c, c′ ∈ C the corresponding objects Ec, Ec′ ∈ Db(X) are not S-equivalent

Taking a family E ∈ Mσ(v)(S) on some algebraic space S, it is possible
to induce a divisor on S:

Theorem 3.3.11 ([BM12] Thm. 4.1)
The assignment C 7→ Lσ.C only depends on the numerical class of the curve
in N1(S).
It defines a nef divisor class `σ,E ∈ N1(S) invariant under tensoring E with
a line bundle pulled back from S.
Moreover for a curve C ⊂ S we have `σ,E .C > 0 if and only if for two general
closed points c, c′ ∈ C, the corresponding objects Ec, Ec′ ∈ Db(X) are not
S-equivalent

To see that this divisor is the one described at the beginning of the sub-
section, denote wσ ∈ Knum(X) the only vector such that χ(wσ,−) = IZ(−).

Proposition 3.3.12 ([BM12] Prop. 4.4)
For any integral curve C ⊂ S, we have

λE(wσ).C = IZ(ΦE(OC)) = `σ,E .C

Taking a quasi-universal family E on a moduli space Mσ(v) defines `σ,E ∈
N1(Mσ(v)). To make the choice canonical, since changing the quasi-universal
family multiplies the divisor by the similitude, we can normalise and define
`σ := 1

ρ
`σ,E for any E quasi-universal family of similitude ρ.

Now, fix a chamber C ⊂ Stab†(X). Since σ-semistable objects stay the same
for σ ∈ C we write MC(v) to underline the independence on σ ∈ C.
Then we can define a map:

`C :C → N1(MC(v))

σ 7→ `σ

Abusing the notation we will indicate `C also the co-restriction to N1(Yσ(v)).
So we can map each chamber in the ample cone of the moduli space. What
happens on the walls?
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3.4 MMP for moduli spaces

3.4.1 Wall-crossing

Fix a primitive Mukai vector v ∈ H∗(X,Z) with v2 ≥ −2 + 8εX , take
C± two adjacent chambers of Stab†(X) and W ⊂ Stab†(X) to be the wall
separating them. Clearly we have the two maps `C± : C± → N1(YC±(v))
induced by the quasi-universal families E±.
Fix a generic stability condition σ0 ∈ W (meaning, that doesn’t lie in the
intersection with another wall) and let us call σ± ∈ C± two generic stabil-
ity conditions on each side of the wall. Since σ± semistable objects stay
semistable for σ0, the two quasi-families E± are also σ0 quasi-families, so
they induce two nef divisors `0,E± ∈ N1(Yσ±(v)).

Theorem 3.4.1 ([BM12] Thm. 1.4,[MYY11b] Prop 3.29 (2))
The classes `0,± are big and nef and induce birational contraction morphisms

π± : Yσ±(v)→ Y±

with Y± normal irreducible projective varieties. The curves contracted by π±
are exactly those of objects S-equivalent with respect to σ0

The idea is that since Yσ±(v) have trivial canonical bundles, the Base
Point Free Theorem ([Kol+98] Theorem 3.3) shows `0,± are semi-ample and
therefore they induce the contractions ([Laz04]). The second statement de-
scends directly from 3.3.11.
To discriminate the behaviour around the wall, there are 4 possible situations

Definition 3.4.2
A wall W is called:

1. a fake wall if there are no curves in Yσ±(v) S-equivalent to each other
with respect to σ0.

2. a totally semistable wall if Ms
σ0

(v) = ∅

3. a flopping wall if we can identify Y+ = Y− and the induced map Yσ+(v) 99K
Yσ−(v) induces a flopping contraction

4. a divisorial wall if the morphisms π± are both divisorial contractions
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3.4.2 Lattice associated to a wall

A very useful tool to classify walls consist in associating to each wall a
sublattice of the Mukai lattice.

Definition 3.4.3
Let v ∈ H∗alg(X,Z) a primitive Mukai vector with v2 > 0 and W ⊂ Stab†(X)
a wall with respect to v. The lattice associated to W is

HW :=

{
w ∈ H∗alg(X,Z), I

Z(w)

Z(v)
= 0 for all σ = (Z,P) ∈ W

}
sublattices arising in this way have the following properties

Proposition 3.4.4 ([BM14] Prop. 5.1)
In the same hypothesis of the previous definition, HW has the following prop-
erties:

1. It is a primitive sublattice of rank two and of signature (-1,1) (with
respecto to te restriction of the Mukai form)

2. Let σ+, σ− two sufficiently close and generic stability conditions on op-
posite sides of W, and consider a σ+stable object E ∈ Mσ+(v). Then
every factor Ai of the HN filtration of E has Mukai vector v(Ai) ∈ HW

3. If σ0 ∈ W is a generic stability condition on the wall, the previous
property holds substituting σ0 with σ−

Not all primitive sublattices of rank 2 and signature (-1,1) come from a
wall. This leads to the definition of potential walls

Definition 3.4.5
Let H ⊂ H∗alg(X,Z) a primitive sublattice of rank 2 and signature (-1,1). A
potential wall associated to H is denoted WH and is a connected component
of the real codimension 1 submanifold of stability conditions σ = (Z,P) such
that Z(H) is contained in a line.

A useful fact is that proposition 3.4.4 still holds substituting to W ,HW
the potential wall of a lattice WH,H.
All the geometry of the contraction at the wall is encoded in the numerical
properties of the lattice HW . The following result is specifically proved for
K3 surfaces.
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Theorem 3.4.6 ([BM14] Thm. 5.7)
Let X be a K3 surface, fix v ∈ H∗alg(X,Z) a primitive positive Mukai vector.
Let H ⊂ H∗alg(X,Z) be a primitive hyperbolic rank two sublattice containing

v. Let W ⊂ Stab†(X) be a potential wall associated to H.
The set W is a totally semistable wall if and only if there exists either an
isotropic class w ∈ H with (v, w) = 1, or an effective spherical class s ∈
CW ∩H with (s, v) < 0. In addition:

1. The set W is a wall inducing a divisorial contraction if one of the
following three conditions holds:
(Brill-Noether): there exists a spherical class s ∈ H with (s, v) = 0
(Hilbert-Chow): there exists an isotropic class w ∈ H with (w, v) = 1
(Lie-Gieseker-Uhlenbeck):there exists an isotropic class w ∈ H with
(w, v) = 2

2. Otherwise v can be written as the sum v = a+ b of two positive classes,
or if there exists a spherical class s ∈ H with 0 < (s, v) ≤ v2

2
then W

is a wall corresponding to a flopping contraction.

3. In all other cases W is either a fake wall (if it is totally semistable) or
it is not a wall

In the case of abelian surfaces the picture is similar. The only thing that
is different is that Brill.Noether contraction do not occur (which agrees with
the absence of spherical classes).

3.4.3 Birationality of moduli spaces

One consequence of the study of wall crossing is the following result:

Theorem 3.4.7 ([BM14] Thm. 1.1, [MYY11a] Cor. 3.3.9)
Let σ, τ ∈ Stab†(X) be two generic stability condition with respect to v ∈
H∗alg(X,Z) a primitive Mukai vector with v2 > 0.

1. The two spaces Mσ(v) and Mτ (v) are birational to each other

2. More precisely there is a birational map induced by a derived (anti-
)equivalence Φ of Db(X) in the following sense: there exists a common
open subset U ⊂Mσ(v), U ⊂Mτ (v), with complement of codimension
at least two such that for any u ∈ U the corresponding objects Es ∈MσV
and Fu ∈Mτ (v) are related via Fu = Φ(Eu).
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This leads to the following observation: we can improve the construction
of `C (see end of section 3.3.3). Since for any two generic stability condi-
tion we have a rational map between moduli spaces, we can identify the
Neron-Severi N1(Mσ(v)) for any generic σ ∈ Stab†(X) and deduce a map
Stab†(X) \

⋃
W wallsW → N1(Mσ(v))→ N1(Yσ(v)). Moreover the study of

wall crossing also allows to prove that

Lemma 3.4.8 ([BM14] 10.1)
Let C+, C− ⊂ Stab†(X) adjacent chambers separeted by the wall W. Then
the two maps `C+ , `C− agree on W when extended by continuity.
Let π+ : YC+(v)→ Y+ the contraction induced by W, then

1. When π+ is an isomorphism or a small contraction then the maps
`C+ , `C− are analytic continuations of each others

2. When π+ is a divisorial contraction, then the analytic continuations of
`C+ , `C− differ by the reflection at the divisor D contracted π+.

This allows to think of ` as a continuous map defined globally on Stab†(X).
This result summarizes all the geometry encoded in ` and makes precise the
statement about Minimal Model Program in the introduction to this section:

Theorem 3.4.9
Fix a base point σ ∈ Stab†(X) generic with respect to a primitive positive
Mukai vector v ∈ H∗alg(X,Z).

1. Under the identification of the Neron-Severi groups induces by the bira-
tional maps of 3.4.7 the maps `C glue to a piece-wise analytic continuous
map

` : Stab†(X)→ NS(Mσ(v))

2. The image of ` is the intersection of the movable and big cone of Mσ(v)

3. The map ` is compatible, in the sense that for generic σ′ ∈ Stab†(X),
the moduli space Mσ′(v) is the birational model corresponding to `(σ′).
In particular every K-trivial smooth birational model of Mσ(v) appears
as a moduli space MC(v) of Bridgeland stable objects for some chamber
C ⊂ Stab†(X)

4. For a chamber C ⊂ Stab†(X), we have `C = Amp(MC(v))
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Chapter 4

Main results

This chapter will present the original part of this work.
As anticipated in the introduction, our result is a generalisation to Kummer
type hyperkählers of the one proved by Bakker on K3-type presented in
[Bak15].
His strategy can be broken down to the following steps:

� prove the existence, on moduli spaces, of extremal Lagrangian planes
associated to a sublattice with some numerical conditions

� check that all such planes verify the conditions on the line

� prove that all extremal Lagrangian planes on moduli spaces can be
reached by the previous construction

� extend to the entire deformation type class via a density argument

Our generalisation follows the same frame and for most of the argument the
two cases can be developed in parallel.
Because of this, to avoid redundant constructions, we will try as much as
possible to condense analogue lemmas and propositions in one. We will try
to empathise where the two cases diverge.

The first section 4.1 will be devoted to recall generalities about La-
grangian planes. We will then fix notations and provide analogues to some
results of Bayer and Macr̀ı on rank two sublattices of the Mukai lattice.
In Section 4.3 we will construct the planes and reproduce the calculation for
the homology class of a line. Then the last part of the result on moduli spaces
will be proved in 4.4 and we will need to point out some differences between
the two deformation types, the K3-type and the generalised Kummer: the
proofs are almost the same but they differ in some technical details.
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Finally in 4.5 we will review how to extend the results to the entire defor-
mation type class. Here the argument of Bakker stays practically unaltered
because it relies on general results on hyperkähler manifolds.

One last note on the presentation order: the main results of sections 4.3
and 4.4 do not depend one on the other, and they could be exchanged. The
choice of this particular order has been made because it is easier and maybe
cleaner to present things this way. On the other hand, section 4.4 could be
seen as the motivation to give definitions as we do, and it provides a better
reason why we expect this machinery to work out. We will say more on this
point of view in the concerned section. Anyway, if the numerical conditions
on the sublattice seem a little bit unnatural, we suggest to give a look a few
pages after to the characterisation to get a better idea of why this is not so
ad hoc as it appears.

4.1 Lagrangian planes

Our main objects of study are Lagrangian planes. In this section we will
recall the definition and some generalities.
Let V be a R-vector space of dimension 2n and let σ be a symplectic bilinear
form.

Definition 4.1.1
A Lagrangian subspace is a maximal isotropic subspace of V with respect to
σ

It is very clear that Lagrangian subspaces must be of dimension n. The
global analogue of this is a Lagrangian subvariety of a symplectic manifold

Definition 4.1.2
Let (X, σ) be a symplectic manifold
(a.k.a. X is a real manifold of dimension 2n and σ a 2-form such that
the bilinear form σx induced on the tangent space TxX is symplectic for all
x ∈ X).
A Lagrangian subvariety is a submanifold i : L ↪→ X such that
for all l ∈ L, x = i(l) the inclusion i∗ : TlL ↪→ TxX identifies TlL to a
Lagrangian subspace of TxX with respect to σx

From now on, we will be working on C in the category of complex mani-
folds and the symplectic manifold will be a holomorphic symplectic manifold
(see definition 1.2.4).
In particular it is interesting to reduce ourselves to grassmanians
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Definition 4.1.3
Let X be a holomorphic symplectic manifold.
A Lagrangian grassmanian of X is a Lagrangian subvariety isomorphic to a
grassmanian GrC(n, r) for some n, r ∈ N.
A Lagrangian plane of X is a Lagrangian subvariety isomorphic to a projec-
tive space PnC for some n ∈ N.

Notice that a Lagrangian plane is nothing more than a half-dimensional
projective space embededd in X.
In fact, all Lagrangian planes must be half dimensional because all La-
grangian subspaces of a 2n dimensional space are n dimensional, and at
the same time any projective space P that embeds in X must be isotropic:
the restriction of σ to P is a holomorphic form but on PnC there are no non-
trivial holomorphic 2-forms.

Why are grassmanians and projective space so special? One particular,
and crucial in what will follow, property is that they are very rigid:

Proposition 4.1.4 ([Bak15] Lemma 11)
Let G ⊂ X be a Lagrangian Grassmanian in a holomorphic symplectic va-
riety. Then G does not deform as a subscheme. If G ∼= P is a Lagrangian
plane, then no curve C ⊂ P deforms out of P

Proof. This proof is slightly different from the one of Bakker, and I have to
thank Enrico Fatiguenti for sharing it with me.
First, observe that because G is Lagrangian, we get an isomorphism ΩG

∼=
NG|X where NG|X is the normal bundle of the immersion G ↪→ X. Therefore
it is clear that

H0(NG|X) ∼= H0(ΩG) ∼= H0,1(G)

The Hodge numbers of the Grassmanian are known (they can be obtained
by the Schubert cellular decomposition) and in particular the h0,1(G) = 0
(more generally, the cohomology of a Grassmanian is non-zero only in even
degree and it concentrates in the central Hp,p).
This prove the first assertion, since H0(NG|X) implies that there are no de-
formation of G as a subscheme of X.
For the second part, we consider the normal sequence induced by the embed-
ding ([Stacks, Tag 0473]):

0→ NC|P → NC|X → NP|X |C → 0

To prove the assertion is reduced to prove that H0(NP|X |C) ∼= H0(ΩP|C) = 0

since then one can deduce that H0(NC|P)→ H0(NC|X) is an isomorphism.
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Tensoring the sequence

0→ IC → OP → O|C → 0

provided by the embedding of the curve in P by ΩP we get:

0→ ΩP ⊗ IC → ΩP → ΩP|C → 0

Since H0(ΩP) = 0, it is once again possible to move the problem on checking
H1(ΩP ⊗ IC) = 0.
Now we consider the Euler sequence:

0→ ΩP → OP(−1)n+1 → OP → 0

and we tensor for the ideal of the curve IC . We get

0→ ΩP ⊗ IC → IC(−1)n+1 → IC → 0

Then we have that

H0(IC)→ H1ΩP ⊗ IC → H1(IC(−1))n+1

.
We can see that H0(IC) = 0 since it is the kernel of the map H0(OP) →
H0(OC) which is an isomorphism (They both are C and the map is non-
zero).
So in the end, the only thing we need is that H1(IC(−1)) = 0. But again from
the sequence of the curve we get that this is the case since H0(OC(−1)) =
0 = H1(OP(−1)).

Moreover Lagrangian planes are known to be contractible in the analytic
(or even algebraic) category.
However, to assure the contraction can be realised inside the category of
complex spaces, we need to ask something more:

Definition 4.1.5
A Lagrangian plane P ⊂ X is called extremal if the class of a line in P is an
extremal ray of the Mori cone

As a consequence of the cone theorem, extremal Lagrangian planes can
be contracted.
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4.2 Notations and rank 2 sublattices

For the rest of this chapter we will refer to this section for notations.
Let X be a K3 or an abelian surface. We will set

εX :=

{
1 for X a K3 surface

0 for X an abelian surface

As before H̃(X,Z) will be the Mukai lattice. Fix a Mukai vector v ∈
H̃alg(X,Z), with v2 > 0.
For σ ∈ Stab†(X) we recall that Mσ(v) is the moduli space of σ-semistable
sheaves of Mukai vector v and phase 1. We denote

Yσ(v) :=

{
Mσ(v) for X a K3 surface

Kσ(v) for X an abelian surface

Definition 4.2.1
A pointed period is a pair (Λ̃, v) where Λ̃ is a pure weight 2 Hodge structure
on the Mukai lattice with dim Λ̃2,0 = 1 and v ∈ Λ̃alg

Definition 4.2.2
A pointed sublattice of a pointed period (Λ̃, v) is a saturated sublattice H ⊂
Λ̃alg containing v.

Not all elements of the Mukai lattice can be reached as Mukai vector of
some sheaf

Definition 4.2.3
An element a ∈ H̃alg(X,Z) is called an effective class if there exist a complex
A ∈ Db(X) such that v(A) = a

There is a minimal square that can be achieved by effective classes of
stable objects in the Mukai lattice:

Lemma 4.2.4
Let s ∈ H̃alg(X,Z) be an effective class, coming as Mukai vector of a stable
object for some stability condition, then (s, s) ≥ −2εX

Proof. this is almost trivial because for any stable object S ∈ Db(X) we have

(v(S), v(S)) = −2 dim Hom(S, S) + dim Ext1(S, S) ≥ 2εX
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Definition 4.2.5
A class s ∈ H̃alg(X,Z) is said to be of minimal square if it is primitive and
s2 = −2εX .
An object S ∈ Db(X) is said to be of minimal square if v(S) is a class of
minimal square.

Remark. A simple object of minimal square S ∈ Db(X) is the same as an
object verifying:

hom(S, S) = ext0(S, S) = 1

ext1(S, S) = 2(1− εX)

ext2(S, S) = 1

Remark. In the case of K3 surfaces, classes of minimal square are spherical
classes (alias, classes of square −2), and simple objects of minimal square
are spherical objects. Moreover it is clear that spherical classes must be
primitive: if s = mŝ then −2 = s2 = m2ŝ2 which implies m = 1.

Definition 4.2.6
A pointed sublattice H ⊂ H̃alg(X,Z) is said to be of P type if

v2

2
= min

s∈H,
s minimal square

|(s, v)|

We will show in a few pages that to give a P type sublattice grants us a
decomposition of the Mukai vector in two effective classes of minimal square.
We need some preliminary work, which for the case of K3 surfaces is con-
tained in [BM14].The proofs hold almost identical for the abelian case, so we
group them up.

Proposition 4.2.7
Let S ∈ Db(X) σ-semistable of minimal square. Then the Jordan-Holder
factors of S are simple objects of minimal square

Proof. Suppose S is not simple (otherwise there is nothing to prove). Then
we could get its J-H factors A1, ..., Am and the corresponding Mukai vectors
a1, ..., am. So there would be a map∏

i

Ms
σ(ai)→Mσ(s)

which locally has a section. So the space on the left must have smaller
dimension than the one on the right. This yields

∑
i a

2
i + 2m ≤ s2 + 2.
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Because m ≥ 2 cleary this implies s2 ≥ a2
i for each i so by the minimality

4.2.4 we get a2
i = −2εX .

The primitivity of ai is trivial in the K3 case, while in the abelian one we
can observe that any primitive vector generating ai must be isotropic and
the proposition 3.2.6 applies.
So each stable factor must be of minimal square.

Remark. Notice that in abelian surfaces the same procedure gives an even
stronger result: from

∑
i a

2
i + 2m ≤ s2 + 2 we get 2− 2εX ≥ m(−2εX) + 2m

and so 0 ≥ 2(m − 1)(1 − εX) implying m = 1. So we find once again that
for semistable objects having primitive isotropic Mukai vector is equivalent
to being stable.
So notice that in fact on abelian surfaces S, being of minimal square implies
being simple.

Once this preliminary lemma is available, we can recover also in the case
of abelian surfaces the following

Proposition 4.2.8
Let W the potential wall associated to a primitive hyperbolic lattice H, and
σ ∈ W generic.
Then one of the following holds:

� There are no minimal square classes in H

� There is a unique minimal square class s ∈ H (up to sign), and there
exists S ∈ Pσ(1) with v(S) = s

� There are infinitely many minimal square classes, and there are exactly
two minimal square classes s, t ∈ H such that there exist S, T ∈ Pσ(1)
with v(S) = s, v(T ) = t.
Moreover on abelian surfaces they are the only two classes of minimal
square.

Proof. If s ∈ H is a minimal square class, (s, s) ≥ −2 so the moduli space
Mσ(s) is non-empty. In other words there exists a σ-semistable object
S ∈ Pσ(1) and v(S) = s.
If the minimal square class is unique, then S is simple: otherwise it would
have different Jordan-Holder factors, which are of minimal square by 4.2.7,
and their Mukai vectors , which are contained in H by [[BM14], 5.1], would
contradict unicity.
For the same reasoning if there are two linearly independent classes of mini-
mal square, then there must be two stable objects S, T ∈ Pσ(1) of minimal
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square, that have independent Mukai vectors. Notice that for K3 surfaces a
priori they are not the same as those we started with, while for the abelian
case they must be the same because of the remark stated above.
Suppose now there are three stable objects S1, S2, S3 ∈ Pσ(1) of minimal
square and set si = v(Si).
Because they are of the same phase, hom(Si, Sj) = δij where δij = 0 for i 6= j
and δii = 1 and by Serre duality the same holds for ext2(Si, Sj) = δij.
So we can write down the following relations:

(si, sj) = −2δij + ext1(Si, Sj)

which give

(si, sj) ≥0 for i 6= j

(si, si) =− 2εX

Now it is a lattice theoretic argument to prove that such si’s do not exist.
The sublattice H is a rank 2 lattice of signature (1,−1). We can assume
s1, s2 to be linearly independent.
Writing s3 = xs1 + ys2 and setting m := (s1, s2) = ext1(S1, S2) we get

(s1, s3) ≥ 0 =⇒ ym ≥ 2xεX (4.1)

(s2, s3) ≥ 0 =⇒ xm ≥ 2yεX (4.2)

(s3, s3) = −2εX =⇒ 2xym+ (−2εX)(x2 + y2 − 1) = 0 (4.3)

from the last one we can conclude

2xym = 2εX(x2 + y2 − 1) ≤ ymx+ xmy − 2εX = 2xym− 2εX

and therefore
0 ≤ −2εX

Therefore in the case of K3 surfaces we are done.
For abelian surfaces, it is enough to observe that (s3, s3) = −2εX reads:

2xym = 0

therefore forcing either x or y to be 0.
But then s3 is a multiple of s2 or s1, which contradicts primitivity.

Now we prove the decomposition assuming a minimality condition on v.
This will turn out not to be restrictive in any way: if the decomposition holds
for such a minimal v then via reflections we can extend the result to any v.
We will say that
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Definition 4.2.9
The Mukai vector v is said to be minimal for H if

(v, s) ≥ 0, for any effective class of minimal square s ∈ H

Proposition 4.2.10
Let H be a P type sublattice, and σ0 ∈ WH a generic condition on the wall.
If v is minimal for H, then there exist two objects of minimal square S, T ∈
Pσ0(1) such that v(S), v(T ) ∈ H and v = v(S) + v(T ).

Proof. Let s ∈ H one of the minimal square class realising the minimum
(s, v) = v2

2
in the definition of P type.

Then t := v − s is of minimal square:

t2 = v2 + s2 − 2(v, s) = s2 = −2εX

and t also realise the minimum

(t, v) = v2 − (s, v) =
v2

2

This fact also grants us that t is primitive: otherwise t = mt̂ would give
v2

2
= m(t̂, v) and (t̂, v) < v2

2
that contradict the fact that v2

2
is a minimum.

By 4.2.8 we get that there exist two simple objects S, T ∈ Pσ0(1) of minimal
square having linearly independent Mukai vectors s0, t0.
Writing s = xs0 + yt0 (with x, y ∈ N) we apply the minimality and the
definition of P type:

v2

2
= (s, v) = x(s0, v) + y(t0, v) ≥ (x+ y)

v2

2

therefore x = 1 and y = 0 or viceversa, and up to exchanging s and t we
have s = s0 and t = t0.

As anticipated before, the assumption of minimality is not required.

Proposition 4.2.11
Let H be a P type sublattice, and σ ∈ WH a generic condition on the wall.
Then there exist two objects of minimal square S, T ∈ Pσ0(1) such that
v(S), v(T ) ∈ H and v = v(S) + v(T )

Proof. The case of abelian surfaces is the easier one: notice that in the
previous proof the minimality was used to prove that s0, t0 = s, t. This is
automatic for abelian surfaces.
In the case of K3 something more must be said: it has been proved in [BM14,
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Prop. 6.8] that there is a sequence of spherical reflections R := Rs1 ◦ ...◦Rsm

taking v to a minimal vector. We can therefore get the decomposition after
the reflections for v0 := R(v) ∈ R(H): for a generic σ ∈ Stab†(X) there exist
S0, T0 ∈ Pσ0(1) with v(S0) = s0, v(T ) = t0 classes of minimal square realising
the minimum in the definition of P type such that v0 = s0 + t0 . To each
spherical reflection corresponds a spherical twist Ti : Db(X)→ Db(X) which
is an autoequivalence of categories inducing Rsi in cohomology. Reversing
this sequence we get S = T −1

m ◦ ...◦T −1
1 (S0) and similarly for T . Their Mukai

vector s = R−1(s0), t = R−1(t0) are still of minimal square and realise the
minimum.

Finally we want to point out that this decomposition is actually an equiv-
alent definition of P type lattice:

Proposition 4.2.12
Let H ⊂ H̃alg(X,Z) be a rank two pointed sublattice such that for σ0 ∈ WH
there exist two simple object of minimal square S, T ∈ Pσ0(1) with Mukai
vector v(S) = s, v(T ) = t giving a decomposition v = s + t, s, t ∈ H and
(s, v) = v2

2
. Then H is of P type.

Proof. Clearly s, t are of minimal square (for the same reasoning used to
prove t was of minimal square in 4.2.10) and by 4.2.8 they are the only two
coming as Mukai vectors of simple objects of minimal square of phase 1.
So for any other effective class of minimal square α we can write α = xs+ yt
for x, y ∈ N not both zero. Therefore |(α, v)| = |(x+ y)|v2

2
≥ v2

2

4.3 Construction of Lagrangian planes

We are now ready to construct the Lagrangian plane.
The idea is the following: we consider the objects granted by the proposition
of last section, then we take extensions of the two. This is a projective space
of the right dimension. The rest of the proposition serves to give a canonical
way to embed it in the moduli space.
There is only one caveat: while for K3 surfaces there is no choice for the
two stable objects and therefore we get immediatly a single projective space,
for abelian surfaces we don’t really have a way to canonically choose the two
objects, so we get a projective bundle over a 4-fold parametrising the possible
choices.

Firstly, we review an application of the filtration in families presented in
[BM14]: take the moduli space Mσ(v) a stability condition γ ∈ Stab†(X)
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and a partition P = [v =
∑

i ai].
Consider Mγ,P the closed stratum of points parametrising S-equivalence
classes of objects which J-H partition with respect to γ is P .
Then suppose for a moment Mσ(v) admits a universal family E .
Taking the filtration in families with respect to γ of E|Mγ,P

we get a sequence
0→ E1 → E2 → ...→ En. The quotient of a family of γ (semi)stable objects

is still a family of γ (semi)stable objects. So the quotients Ai := Ei+1�Ei are
families of σ stable modules and on an open subset U ⊂ Mγ,P , the fibers
(Ai)|x for x ∈ U are the Jordan Holder factors of Ex with respect to γ.
But given the description of Mγ,P , it is clear that Ai are families of γ-stable
objects of Mukai vector ai.
Therefore we get a rational map

JH : Mγ,P 99KMs
γ(a1)× ...×Ms

γ(an)

that to a point (in the open set of definition) parametrising a complex as-
sociates the tuple of its JH factors.

If a universal family doesn’t exist, we can still define the map on an étale
neighbourhood, where a universal family exists, and the defined map will
factor trough the moduli space (see [BM14] in the proof of Lemma 6.5).
Moreover it is clear that we have a section associating to the Jordan-Holder
factor the trivial extension.
What are the fibres of this map?
They correspond to possible extensions of the Jordan-Holder factors.
The following proposition constructs explicitly the fibers for partition of
lenght 2:

Proposition 4.3.1
Let σ be a (generic) stability condition with respect to v, γ ∈ Stab(X) .
Given a partition P = [v = s + t] with (s, t) 6= 0 let JH be defined as above
on Mγ,P .
Let S, T ∈ Pσ(1) be simple objects such that v(S) = s, v(T ) = t, then

JH−1((S, T )) ∼= P(Ext1(S, T ))

Proof. Fix P := P(Ext1(S, T )) and pX : P×X → X the projection.
Define E ∈ Db(X) as the cone:

(p∗XS)(1)→ E → p∗XT → (p∗XS)(1)[1]

Reducing to the fiber on l ∈ P we get a triangle

S → El → T → S[1] (4.4)
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so v(El) = v(S) + v(T ) = v.
It remains to prove El is γ-semistable.
But we can observe that taking Hom(T,−) on the last triangle we get an
exact sequence

Hom(T, S) Hom(T,El) Hom(T, T ) Hom(T, S[1])

0 C Ext1(T, S) 6= 0

∼= ∼= =

the last map in the sequence acts as multiplication by a scalar, so it is injective
if and only if the last term is non zero. But this clearly happens, because

dim Hom(T, S[1]) = ext1(T, S) = (v(T ), v(S)) 6= 0

Using the fact that Hom(T,El) = 0 we can invoke the following category
theory lemma:

Lemma 4.3.2
Let A,B simple object of an abelian category and E an object fitting into a
sequence:

A ↪→ E � By

such that Hom(B,E) = 0.
Then every proper quotient of E is of the form Bz for some z ∈ N

Therefore every proper quotient of El is of the form T z for some z ∈ N and
so it has the same phase as T with respect to γ. So El cannot be destabilised,
in other words it is γ-semistable and E induces a morphism P→Mσ(v). To
see it realises an isomorphism with the fibre, it is obvious that the image is
contained in the fibre (in 4.4 we see that S, T are the JH factors of El) and
because of the dimension it must be an isomorphism.

Our Lagrangian planes arise simply as fibres of bundles like those in the
last proposition starting from the decomposition of 4.2.10.
Here the case of abelian surfaces is slightly more subtle: we need to intersect
the bundle with the Kummer Kσ(v).
To state the two cases as one, we say:

Proposition 4.3.3
Let H be a P type sublattice, then there are lagragian planes in Yσ(v).
In particular for generic σ0 ∈ WH and P = [v = s + t] the corresponding
partition, there is an open set U ⊂ MP such that Yσ(v) ∩ U is a union of
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isolated Lagrangian planes.
In the case of a K3 surface, U can be taken to be MP and there is only one
component (only one plane appears in the union)

Proof. By 4.2.10 we have for generic σ0 ∈ WH the decomposition P and two
minimal square objects S, T ∈ Pσ0(1) with Mukai vecors respectively s, t.
We can apply 4.3.1 to get an open dense set U ⊂ MP with a map U →
Ms

σ0
(s)×Ms

σ0
(t), which is a fiber bundle with fiber Pn, where n+ 1 = (s, t).

It is easy to verify that dim Yσ(v) = 2n:

2n = 2(s, t)− 2 = 2(s, v)− 2(s, s)− 2 = v2 + 4εX − 2 = dimY

In the case of K3 surfaces, there is nothing more to prove: the base Ms
σ0

(s)×
Ms

σ0
(t) is a single point.

Hence U is the fibre, it is isomorphic to Pn and therefore MP = U by density.
The Kummer case is slightly more subtle.
We need to prove that:

1. Fibres are contained in Kσ(v)

2. The intersection of Kσ(v) with the base is transverse (this only makes
sense locally using a section)

1:
Take a fibre P, which we know to be isomorphic to Pn.
Then it would induce a rational curve via the Albanese map:

P ⊂Mσ(v)→ X ×Xˇ

But there are no rational curves on an abelian variety.
So P is contained in a fibre of the Albanese map, which by definition is Kσ(v)
2:
By the previous point we know that each fiber is contained in one of the fibers
of the Albanese map, so fixed Kσ(v) one specific fiber is either contained in
it or disjoint.
If the planes were not isolated then we would get a deformation of the La-
grangian plane inside the Kummer. But this is not possible because of the
rigidity (see lemma 4.1.4)

Now, observe that on planes arising from this construction we can calcu-
late the class of a line.
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Proposition 4.3.4
Let R ∈ H2(X,Z) be the class of a line on the Lagrangian plane P obtained
by the spherical lattice H. Let s, t ∈ H be the two classes of minimal square
realising the minimum, as in the construction of proposition 4.3.3.
Then R = ±θ (̌s), where θ is the Mukai homomorphism defined in 3.3.7.
Moreover, crossing WH, R changes the sign: so P is extremal.

Proof. Up to exchanging names we can suppose φ(S) < φ(T ).
Take C a curve in Mσ(v).
Then

θ(w).C = (w, v(ΦE((O)C)))

To prove the thesis it is enough to assume w ∈ v⊥.
So in our case, if R is the class of a certain P1 ⊂Mσ(v) then

θ(w).R = (w, v(pX∗E|P1×X))

To calculate the last part we can use the K-theory and this very useful
projection formula:

Proposition 4.3.5 ([Har13], ch III ex 8.3 )
Let X → Y a morphism of ringed spaces, let F an OX-module and E a locally
free OY -module of finite rank.
Then for each i ∈ N

Ri f∗(F ⊗ f ∗E) ∼= Ri f ∗(F)⊗ E

so in K-theory we can write:

pX∗E|P1×X = pX∗((p
∗
XS)(1)|P1×X) + pX∗p

∗
XT|P1×X = S · pX∗p∗P1OP1(1) + T

We can calculate pX∗p
∗
P1OP1(1) as:

Lemma 4.3.6
Let X be a projective variety, let pX , pPn be the projection from X × Pn.
Then for k ≥ 0 :

pX∗p
∗
PnOPn(k) ∼= O

⊕(n+kn )
X

Proof. It follows by a direct computation using proposition 4.3.5:
take an open set U ⊂ X. Then

pX∗p
∗
PnOPn(k)(U) = p∗PnOPn(k)(p−1

X (U)) = p∗PnOPn(k)(Pn ×X)
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The pull back is defined with the inverse limit, but the only open subset
containing pPn(Pn × U) = Pn is the entire Pn so we continue:

p∗PnOPn(k)(Pn × U) = OPn(k)(Pn)⊗OPn (Pn) OX×Pn(U × Pn)

= C(n+kn ) ⊗C OX(U) = OX(U)⊕(n+kn )

so in K theory pX∗p
∗
P1OP1(1) = 2 and therefore

θ(w).R = (w, v(2S + T )) = (w, 2s+ t) = (w, v + s) = (w, s)

On the other side of the wall, we have that φ(S) > φ(T ), so we get

R = θ (̌t) = θ (̌−s) = −θ (̌s)

.

4.4 Characterisation of extremal Lagrangian

planes

In this section we will see that actually every extremal Lagrangian plane
can be obtained by the construction of 4.3.3.
As we already said, the order of these two sections could be exchanged. While
the chosen one is more direct, this part is more geometrical and could be seen
as the motivation to look for P type sublattices in the first place.
We will summarise the ideas before entering the proper proof.
It is a general fact descending from the cone theorem that extremal La-
grangian planes can be contracted to a point: it is enough to observe that, as
the class of a line is extremal, we can contract it and in doing so we contract
all the the span of the line, which surely includes the plane. A priori we
could be contracting much more than the Lagrangian plane.
Bayer and Macr̀ı [BM14] provided that minimal models on moduli spaces
can be runned via wall crossing, so the contraction of the Lagrangian plane
must be a map between moduli spaces obtained by crossing some wall.
Therefore it is natural to study the properties of the corresponding sublattice
and we will see that it is of P type.
Moreover the contraction sends the plane on a point in a moduli space, alias
a S-equivalence class. This naturally gives a stratum associated with the
partition corresponding to the equivalence class, and in the proof we will see
that (for K3 surfaces) this is exactly the plane that we started with.
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All this gives a strong motivation for all the previous section and I think very
much clarifies the geometric picture.
Before getting into the main result of this section, notice that

Lemma 4.4.1
Fix a Mukai vector v and a generic stability condition σ. Let γ another
stability condition and Ai be γ-stable objects such that ai = v(Ai).
Let P = [v =

∑
ai]and Mγ,P ⊂ Mσ(v) the corresponding locally closed

stratum. Let C ⊂ Mγ,P a subvariety and c ∈ C a point whose J-H factor
with respect to γ are the Ai.
Then if the Ai deform on some base S, C deforms as well locally around c
in Mσ,P on the same base S .

Proof. Consider the rational map Mγ,P 99K×i
Mγ(ai). The argument is

local so we will abuse the notation writing morphisms defined locally as
morphisms. Notice that at least locally it has a section (taking direct sum
of universal families)
Let ci the image of c via C →MP →×i

Ms
γ(ai)→Ms

γ(ai).
Since deformations of stable objects on a surface are not obstructed the
deformation of Ai over S gives a deformation of ci in Ms

γ(ai) over S as
Ms

γ(ai) ⊃ Ci → S.
Taking the fiber product over S we get a deformation C =×S

Ci in the
product of moduli spaces:

Mγ,P Mσ(v)

C C ×Ms
γ(ai)

0 S

⊂

(4.5)

Using the local section×Ms
γ(ai)→Mγ,P gives the desired deformation.

Proposition 4.4.2
Let v ∈ H̃alg(X,Z) primitive and v2 > 0, and let σ be a generic stability
condition w.r.t. v.
If P ⊂ Yσ(v) is an extremal Lagrangian plane, then there is a P type sublattice
H ⊂ H̃alg(X,Z).
Moreover, for a generic stability condition σ0 ∈ WH, if s ∈ H is a minimal
square class realising the minimum (s, v) = v2

2
and P := [v = s + (v − t)],
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there is an open dense set U of MP s.t P is one of the connected components
of U ∩Yσ(v)

Proof. The proofs diverge a little in the two cases, even if the structure is
really similar.
Since P ⊂ Yσ(v) is extremal we get a contraction of the Lagrangian plane
π : Yσ(v)→M .
But from 3.4.9, this contraction must be obtained crossing a wall. Therefore
we know that π contracts objects of an S equivalence class. Let A1, ..., Am
be the Jordan Holder factors of the S-equivalence class contracted by π, let
ai := v(Ai) and let P := [v =

∑
i ai] the associated partition.

Now the key observation is that

Lemma 4.4.3
The Ai’s are rigid on Yσ(v) so they are simple object of minimal square
Moreover ∑

ext1(Ai, Ai) ≤ codimMσ(v) Yσ(v)

Proof. Suppose Ai deform on a base Si. Then composing with Si → S :=

×i
Si gives a deformation over S for each Ai.

Let C ⊂ P be a curve. By 4.4.1 locally around a point C deforms as well
over S. But the deformations of C would not contract via π: locally Ai stay
stable for σ0 so the Jordan Holder factors of a point in the deformation of C
over a point of (b1, ..., bk) ∈ S are the corresponding deformation of Ai over
bi ∈ Si.
This would imply that C has deformed outside P, but this is not possible by
4.1.4.
The last part is easy to deduce: it suffices to observe that dimS =

∑
i ext

1(Ai, Ai)
and that the previous reasoning actually gives that Yσ(v) intersectB transver-
sally (locally there is a section at least as a differentiable bundle, but differ-
entiability is enough to compare dimensions ).

Here the two cases really diverge.

� abelian surface: In the abelian case, we know that codimMσ(v) Yσ(v) =
4 and the Ai must have ext1(Ai, Ai) ≥ 2. Therefore we get that if #Ai
is the number of factors:

4 ≥
∑

ext1(Ai, Ai) ≥ 2#Ai

Clearly #Ai can’t be 1, because otherwise the S-equivalence class for
σ0 would have been composed of one single element, that would have
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been part of only one S-equivalent class for σ. This would have implied
that only one point of Mσ(v) would have contracted via π to π(P),
which is false.
So #Ai must be 2 and consequently ext1(Ai, Ai) = 2.
This in addition to the fact that the Ai are simple gives us that there
are only two ai and that they are primitive isotropic vectors.
We conclude that H is of P type by 4.2.12.

� K3 surface: For K3 surfaces the bound with the codimension is not
very interesting: Yσ(v) = Mσ(v) so codim Yσ(v) = 0, and rigidity of
Ai is global, so the inequality reduces to 0 ≥ 0.
But in this case the fact that the two classes s, t are unique inH (proved
in 4.2.8) allows us to write P = [xs+ yt] because they are the only two
classes available (in other words each ai must be s or t).
Up to exchanging names we can suppose φ(S) < φ(T ) with respect to
σ. Due to the fact that S and T are rigid (so they do not self extend)
we can write the Harder Narasimhan filtration for every E represented
by a point in P as:

Sx → E → T y → Sx[1] (4.6)

Using this fact we can prove that

Claim. The locally closed stratum MP is a subscheme of the scheme of
maps Px−1×Py−1 → PExt1(S, T ) quotiented by the action of PGL(x)× PGL(y)

(For the proof of this claim, see Appendix A) Therefore we get a bound
on the dimension of MP :

dimMP ≤ xy(s, t)− (x2y2) =
v2

2
+x2 +y2−x2y2 = n− (x2−1)(y2−1)

But at the same time, P ⊂MP so n = dimP ≤ dimMP .
This forces either x = 1 or y = 1 (because they are positive by defini-
tion).
If y = 1 (and similarly otherwise) then MP = Gr(x, (s, t)), but once
again P ⊂MP implies x = 1 and P = MP .
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4.5 Extension to deformation type

Once the result is proved for moduli spaces the procedure to extend it to
the entire deformation type is exactly the same in the cases of K3 type and
generalised Kummer: Bakker uses results that do not depend on the assump-
tion of K3 type, referring to arguments that hold for general hyperkähler.
The idea is simply that given a general hyperkähler of K3 type or generalised
Kummer the moduli spaces are dense in the Kuranishi family (the universal
family of deformation for hyperkähler), so we can find a general deformation
which is a moduli space. Then if we have a Lagrangian plane on the original
manifold this deforms to the moduli space, where we can use the result just
proven to get the P type sublattice and deform it back. For primitive gen-
erators of extremal rays, we can also do the process in the other direction:
we start from the homology class verifying the numerical conditions, we get
a P type sublattice, we deform it to a moduli space to obtain a Lagrangian
plane that we deform back.

Let M be a K3 type manifold of dimension 2n. There is a monodromy
invariant extension ([Mar11] Corollary 9.5):

0→ H2(M,Z)→ Λ̃(M)→ Q→ 0

where Λ̃ is a pure weight-2 Hodge structure on the Mukai lattice of M po-
larised by the intersection form and Q is of rank 1.
We will write v(M) for a primitive generator of H2(X,Z)⊥ ⊂ Λ̃(M) and
θˇ: Λ̃→ H2(M,Z) the dual of the embedding.

Almost the same happens for the abelian case: see [Wie18, Thm. 4.9]
These notations coincide with those we gave more explicitly on moduli

spaces and allow us to state a characterisation of the Mori cone:

Theorem 4.5.1 ([BHT13] Thm. 1, [KLCM15] Thm.2.9)
Let (M,h) be a polarised holomorphic symplectic variety of K3 type or of
generalised Kummer type. The Mori cone of M is generated by the positive
cone and classes of the form{

θ (̌a)|a ∈ Λ̃(M)alg, a
2 ≥ −2εX , |(a, v)| ≤ v2

2
, h.θ(a) > 0

}
From results of Voisin [Voi92] and Ran [Ran95] we have, respectively,

that deformations of the manifold for which a Lagrangian subvariety deform
staying Lagrangian are those preserving some Hodge structure and that they
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are unobstructed . More precisely if i : L ↪→M is a Lagrangian subvariety of
a symlpectic manifold M , the deformation are those that preserve the Hodge
structure ker i∗ ⊂ H∗(M,Z).
This allows Bakker to prove the following lemma for the K3 type case, but
the same proof holds for Kummer type:

Theorem 4.5.2
Let (M,h) be an holomorphic symplectic variety of K3 (resp. Kummer) type
and dimension 2n, with P a Lagrangian plane, and let R ∈ H2(M,Z) be the
class of the line. Then Λ̃(M) admits a P type sublattice H and R = θ (̌s)
with s ∈ H a class of minimal square with |(v, s)| = v2

2

Proof. Because R2 < 0 the argument in ([BHT13] Prop.3) provides a smooth
proper family M→ B over an irreductible analytic base such that on some
0 ∈ B where it specialises to M the local system R2n−2 f∗Z admists an al-
gebraic section specialising to R. This means that paths in B induce via
parallel transport Hodge isometries in cohomology.
Therefore the Lagrangian plane P deforms to the general fiber of this defor-
mation.
Periods of moduli spaces are dense in the Kuranishi family, so we can always
find a specialisation of the deformation to a moduli space for which the plane
P does not degenerate and P is extremal (this two conditions are open, see
[BHT13]) and a path in the base connecting the period of (M,h) and of the
moduli space.
So the plane deforms to an extremal Lagrangian plane on a moduli space
where we have a P type lattice H and the class of a line is as wanted.
Transporting back, via parallel transport along the path, H to M gives the
P type sublattice, as monodromy operators are isometries.

Recall that the discriminant group of a lattice Λ is the quotient Λ∗�Λ
where Λ∗ := Hom(Λ,Z) is the dual lattice.
Now we can just do the following computation:

Lemma 4.5.3
If Λ̃(M) admits a class of minimal square a ∈ Λ̃(M) such that (a, v) = v2

2
,

then R = θ (̌a) has (R,R) = −n+1+2εX
2

and order 2 in the discriminant group
of H2(M,Z)

Proof. Remember that θˇ is the orthogonal projection onto v⊥, composed
with the inclusion H2(M,Z)→ H2(X,Z) we have

(R,R) = (a− v

2
)2 = a2 − (a, v) +

v2

4
= −2εX −

v2

4
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On the other hand we know that

v2

2
= n+ 1− 2εX

so we get

(R,R) = −2εX −
v2

4
= −4εX + n+ 1− 2εX

2
= −n+ 1 + 2εX

2

Clearly 2a − v ∈ v⊥ so R is 2-torsion (2R ∈ H2(X,Z) = v⊥ ⊂ Λ̃(M)), but
R 6= 0 in the discriminant group, so R has order 2.

to conclude:

Corollary 4.5.4
Let (M,h) be as above and let R be the class of a line of a Lagrangian plane.
Then (R,R) = −n+1+2εX

2
and 2R ∈ H2(M,Z).

Remark. Our result is in alignment to that of Hasset and Tshinkel [HT10]
on Kummer fourfolds: in that case n = 2 and so (R,R) = −3

2

The partial converse Thm 25 in [Bak15], holds unaltered:

Theorem 4.5.5
Let (M,h) as above, and let R ∈ H2(M,Z) be a primitive generator of an
extremal ray of the Mori cone. Then R is the class of a line in a Lagrangian
plane if and only if (R,R) = −n+1+2εX

2
and 2R ∈ H2(M,Z).

Proof. One direction of the implication is a direct consequence of the previous
theorem.
The extremality of R implies that because of the description of the Mori cone
, R = mθ (̌a) for some a as in 4.5.1, and primality forces m = 1.
To construct the P type lattice H one can use 4.2.12: defining b := v − a
gives the decomposition that proves H = SpanZ(a, b) is of P type. The only
thing to verify is that (a, v) = v2

2
, but this is a consequence of the numerical

condition:

−n+ 1 + 2εX
2

= (R,R) = (a− (a, v)

v2
v)2 = a2 − (a, v)2

v2

implies

(a, v)2

v2
= a2+

n+ 1 + 2εX
2

= −2εX+
n+ 1 + 2εX

2
=
n+ 1− 2εX

2
=
v2 + 2− 2

4
=
v2

4
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so (a, v) = v2

2
, and therefore H is of P-type.

Now, as in the previous theorem, we have a smooth proper family along which
R stays algebraic that specialises to a moduli space on which the image of R
is extremal. So we have an extremal Lagrangian plane on the moduli space.
Deforming it back to M gives the desired Lagrangian plane P having class
of a line R. It doesn’t degenerate because of the extremality and primitivity
conditions on R.
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Appendix A

Proof of Claim in 4.4.2

Here we will give some more details about the proof of the claim in Thm
4.4.2. We have decided to isolate this part of the proof and relegate it in the
appendix because it is fairly involved, using some results and calculations on
triangulated categories, while not adding much to the geometric picture. It
would have moved the focus from the main objective of Section 4.4.
First we need to derive a classical consequence in the context of derived
category of the Five Lemma. First observe that :

Proposition A.0.1
Let D be a triangulated category. Let A ∈ D. Then any distinguished triangle

X Y Z X[1]
f g

induces an exact sequence

Hom(A,X) Hom(A, Y ) Hom(A,Z)
f∗ g∗

Proof. Clearly the composition g∗ ◦ f∗ is 0 by functoriality.
To check exactness, take some α : A → Y such that g∗(α) = 0. Then we
have a diagram:

A 0 A[1] A[1]

Y Z X[1] Y [1]

α h[1]

idA[1]

α[1]

g f [1]

where the last row is a distinguished triangle by TR2, the first by TR1
(combined with TR2) and the arrow h[1] exists by TR3.
The commutativity of the right square gives α[1] = f [1] ◦ h[1] = (f ◦ h)[1]
and therefore α = f∗(h).
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So using TR2 we can get an infinite exact sequence. This allows to convert
the two Four Lemmas (and therefore the Five Lemma) in the Two-out-of-
three property:

Lemma A.0.2
Given the diagram

X Y Z A[1]

X ′ Y ′ Z ′ X[1]

α

u

β

v

γ

w

α[1]

u′ v′ w′

if α is an isomorphism and γ (resp. β) is a monomorphism (resp. epimor-
phism) then the β (resp. γ) is also a monomorphism (resp. epimorphism).

Proof. For any A ∈ D we have the morphism of long exact sequences :

Hom(A,X) Hom(A, Y ) Hom(A,Z) Hom(A,X[1])

Hom(A,X ′) Hom(A, Y ′) Hom(A,Z ′) X[1]

α∗

u∗

β∗

v∗

γ∗

w∗

α[1]∗

u′∗ v′∗ w′∗

So we by the classical Four Lemma we conclude that being α∗ bijective and
γ injective, β∗ must be injective. The other case is similar.

We are now ready to prove the claim:

Claim. In the same hypothesis and notation of the 4.4.2, in the case of a K3
surface, the locally closed stratum MP is a subscheme of the scheme of maps
Px−1 × Py−1 → PExt1(T, S) quotiented by the action of PGL(x)× PGL(y).

Proof. The idea is that we can use vector spaces U, V of dimension x, y to
parametrise different injections S ↪→ Sx and T ↪→ T y, then we will get a
map U ⊗ V → Ext1 which assign to each choice of these injections how the
copy of S extends over the copy of T .
The picture to have in mind is that we want to complete the diagram:

T [−1] S Xψ,φ T

T y[−1] Sx E T y

φ[−1] ψ φ

α f g

To make this more clear, first choose U, V vector spaces of dimension x, y. We
fix an Hermitian product on each of them (equivalently, we choose a basis)
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Clearly, fixing the basis we fixed isomorphisims Sx ∼= S⊗U and T y ∼= T ⊗V .
Moreover, for each non-zero u ∈ U and v ∈ V we have injections

ψu : S → S ⊗ U
s 7→ s⊗ u

and φv : T → T ⊗ V
t 7→ t⊗ v

We can now consider the diagram

T [−1] S

T ⊗ V [−1] S ⊗ U

φv [−1]

α̂u,v

ψu

α

this is easy to complete since we have a section for ψu given by orthogonal
projection: since we have fixed the product we have a projection U → Cu
that induces S ⊗ U → S ⊗ Cu ∼= S.
This defines a map

α̂ : U ⊗ V → Ext1(T, S)

u⊗ v 7→ α̂u,v

We can now construct the concrete extension as a cone over α̂u,v.
Defining Xu,v as the cone of α̂u,v (see definition ??), we have that the part

of degree i is X
(i)
u,v = T [−1](i+1) ⊕ S(i) = T (i) ⊕ S(i).

Since E fits into a distinguished triangle, we can assume it to be the cone
over α which means E(i) = T (i) ⊗ V ⊕ S(i)⊗U . It is just a calculation to
verify that the maps h

(i)
u,v := φiv ⊕ ψiu define a morphism hu,v : Xu,v → E of

complexes and complete the diagram:

T [−1] S Xu,v T

T ⊗ V [−1] S ⊗ U E T ⊗ V

φv [−1]

α̂u,v

ψu hu,v φu

α f

Now we want to take into account stability: in particular we will see that
for E to be stable implies that the two maps U → Hom(V,Ext1(T, S)) and
V → Hom(U,Ext1(T, S)) are injective.
Suppose the first one is not. Then take a non zero u ∈ Ker. Clearly, this is
the same as saying that α̂u,v = 0 for all v ∈ V .
It is a direct consequence of the definition of cone that the cone over the
zero morphism is the direct sum. So Xu,v = S ⊕ T and we have an arrow
γu,v : T → Xu,v such that T → Xu,v → T is the identity.
Notice that from the analogue of the Four Lemma, h is a monomorphism.
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The idea now is to glue together the Xu,v into S ⊕ (T ⊗ V ) preserving injec-
tivity (in the sense of monomorphism).
We already have h′ : S → E as the composition f ◦ ψu. We can define
h′′ : T ⊗ V → E by the formula:

h′′(t⊗ v) := hu,v(γu,v(t))

. This induces a map h : S ⊕ (T ⊗ V )→ E, by universal property.
So finally we need to check injectivity: using the section of ψu from before,
we have T ⊗ V → S, so by construction we have:

T ⊗ V [−1] S S ⊕ (T ⊗ V ) T ⊗ V

T ⊗ V [−1] S ⊗ U E T ⊗ V

=

ψ−1
u ◦αu,v

ψu hu,v =

α f

The first row is a distinguished triangle if and only if ψ−1
u ◦αu,v = 0. But this

is clearly the case: we can show it is zero on a set of generators of T ⊗V [−1],
so in particular it is enough to test it on elements of the form t⊗v. But then
we can use the fact that they are in the image of φv, so it’s easy to see that:

ψ−1
u ◦ αu,v(t⊗ v) = ψ−1

u ◦ αu,v(φv(t)) = α̂u,v(t) = 0

so because of the Five lemma S ⊕ (T ⊗ V ) ↪→ E.
But this destabilises E since the phase of T is bigger than the one of S so
S⊕(T⊗V ) has bigger phase than E (which have the same phase as Sx⊕T y).
To conclude, the map α̂ : U ⊗ V → Ext1(T, S) induces a map Px × Py →
P(Ext1(T, S)). There is still a problem: this map has been produced by
choosing a basis. We can now show that it is actually independent of that
choice.
But this is easy to show: if D,C are the corresponding automorphisisms of
U, V it is clear by the construction that this commutes:

T [−1] S

T ⊗ V [−1] S ⊗ U

T ⊗ V [−1] S ⊗ U

T [−1] S

φv [−1]

α̂u,v

ψu

idT⊗D

α

idS⊗C

β

φD(v)[−1]

β̂C(u),D(v)

ψC(u)
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were the first and last row are actually the same (non so c’è una notazione per
questo? intendo che posso mettere l’identità tra T[-1] sopra e sotto, e uguale
con S) So the map is α̂ is GL(x)×GL(y) invariant and we can map MP to the
quotient of the scheme of bidegree (1,1) morphisms Px×Py → P(Ext1(T, S)).
Now we can prove it is injective and we are done: for this observe that if
we take α, β : T ⊗ V [−1] → S ⊗ U , if we suppose that the corresponding
corresponding maps are the same α̂ = β̂, then for a generator of the form
t⊗ v we can write:

α(t⊗ v) = α(φv(t)) = ψu(αu,v(t)) = ψu(βu,v(t)) = β(t⊗ v)

And now we are done.
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