Algorithms for automated sensorized L-test. Development and testing on seven patient populations

Piraccini, Lucrezia (2023) Algorithms for automated sensorized L-test. Development and testing on seven patient populations. [Laurea magistrale], Università di Bologna, Corso di Studio in Biomedical engineering [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB) | Contatta l'autore

Abstract

In recent decades, the study of human movement analysis has revealed itself to be increasingly important, as it appears to be directly related to people's psychophysical well-being. Its absence or deficiency causes and is caused by innumerable diseases. quantitative clinical tests, thanks to measuring instruments, obtain new measurement parameters in motion analysis. A new test, recently created for amputees, is called the Functional Mobility L-test. It's similar to the Timed Up and Go, but with 2 extra turns of 90 degrees each. The purpose of this thesis is to use this new test in other populations and above all to make it sensorized in order to extract new quantitative features. The test was applied to 7 different populations, Parkinson's disease, multiple sclerosis, people with lower limb amputation, patients with a proximal femur fracture, people with chronic heart failure, chronic obstructive pulmonary disease, and healthy adults. Each of them wore a wearable sensor on their lower back to subdivide the test in order to extract specific features. Postural transitions, such as getting up from a chair and sitting down, and the turns performed within the test, were identified through a series of algorithms implemented based on the TUG literature. By subsequently validating the algorithms, with a manual segmentation, the results obtained were very good for the turn algorithm, especially for the population with PD and PFF, and good for that of the stand and sit. The next step in the future will be to validate the algorithms using a gold standard, such as stereophotogrammetry, and include more populations with motor impairment.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Piraccini, Lucrezia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM BIOENGINEERING OF HUMAN MOVEMENT
Ordinamento Cds
DM270
Parole chiave
Functional Mobility L-test,movement analysis,wearable sensors,Turn algorithm,Postural Transition Algorithm,Parkinson's Disease,Multiple Sclerosis,Chronic Heart Failure,Chronic Obstructive Pulmonary Disease,Proximal Femural Fracture,Healthy Adults,Amputee
Data di discussione della Tesi
16 Marzo 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^