Fontana, Gaia
 
(2022)
Rational algorithms for the decomposition of
Feynman integrals via intersection theory.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Physics [LM-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (1MB)
 | 
        
      
    
  
  
    
      Abstract
      The decomposition of Feynman integrals into a basis of independent master integrals is an essential ingredient of high-precision theoretical predictions, that often represents a major bottleneck when processes with a high number of loops and legs are involved. In this thesis we present a new algorithm for the decomposition of Feynman integrals into master integrals with the formalism of intersection theory. Intersection theory is a novel approach that allows to decompose Feynman integrals into master integrals via projections, based on a scalar product between Feynman integrals called intersection number. We propose a new purely rational algorithm for the calculation of intersection numbers of differential $n-$forms that avoids the presence of algebraic extensions. We show how expansions around non-rational poles, which are a bottleneck of existing algorithms for intersection numbers, can be avoided by performing an expansion in series around a rational polynomial irreducible over $\mathbb{Q}$, that we refer to as $p(z)-$adic expansion. The algorithm we developed has been implemented and tested on several diagrams, both at one and two loops.
     
    
      Abstract
      The decomposition of Feynman integrals into a basis of independent master integrals is an essential ingredient of high-precision theoretical predictions, that often represents a major bottleneck when processes with a high number of loops and legs are involved. In this thesis we present a new algorithm for the decomposition of Feynman integrals into master integrals with the formalism of intersection theory. Intersection theory is a novel approach that allows to decompose Feynman integrals into master integrals via projections, based on a scalar product between Feynman integrals called intersection number. We propose a new purely rational algorithm for the calculation of intersection numbers of differential $n-$forms that avoids the presence of algebraic extensions. We show how expansions around non-rational poles, which are a bottleneck of existing algorithms for intersection numbers, can be avoided by performing an expansion in series around a rational polynomial irreducible over $\mathbb{Q}$, that we refer to as $p(z)-$adic expansion. The algorithm we developed has been implemented and tested on several diagrams, both at one and two loops.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Fontana, Gaia
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          THEORETICAL PHYSICS
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          scattering amplitudes,high-energy physics,intersection theory,feynman integrals,finite fields,multiloop calculations,precision physics,rational algorithm
          
        
      
        
          Data di discussione della Tesi
          28 Ottobre 2022
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Fontana, Gaia
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          THEORETICAL PHYSICS
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          scattering amplitudes,high-energy physics,intersection theory,feynman integrals,finite fields,multiloop calculations,precision physics,rational algorithm
          
        
      
        
          Data di discussione della Tesi
          28 Ottobre 2022
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        