Il Teorema di Connettività per i Campi Vettoriali di Hörmander, e Applicazioni

Rosa, Alessandro (2022) Il Teorema di Connettività per i Campi Vettoriali di Hörmander, e Applicazioni. [Laurea], Università di Bologna, Corso di Studio in Matematica [L-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (9MB)

Abstract

Lo scopo di questa Tesi di Laurea è quello di dimostrare il Teorema di Connettività per un sistema di Hörmander di campi vettoriali, il quale ci fornisce una condizione sufficiente alla connessione di un aperto di R^N tramite curve integrali a tratti dei campi vettoriali stessi e dei loro opposti, e presentarne alcune applicazioni. Nel primo Capitolo daremo i prerequisiti necessari alla trattazione degli altri tre, con particolare attenzione ad un Lemma che mette in relazione le curve integrali del commutatore di m campi vettoriali con la composizione di un opportuno numero di mappe flusso dei campi vettoriali che costituiscono il commutatore. Il secondo Capitolo è interamente dedicato alla dimostrazione del Teorema di Connettività e all'analisi della definizione delle curve subunitarie in un aperto rispetto ad una famiglia di campi vettoriali X, dette curve X-subunitarie. Nel terzo Capitolo forniremo una introduzione alla distanza di Carnot-Carathéodory, detta anche distanza di X-controllo, arrivando a dimostrare il notevolissimo Teorema di Chow-Rashewskii, il quale ci fornisce, sotto le ipotesi del Teorema di Connettività, una stima tra la metrica Euclidea e la distanza di X-controllo, mediante due disuguaglianze. Queste ultime implicano anche una equivalenza tra la topologia indotta dalla distanza di X-controllo e la topologia Euclidea. Nel quarto e ultimo Capitolo, indagheremo gli insiemi di propagazione tramite curve integrali dei campi vettoriali in X e tramite curve X-subunitarie. Utilizzando la definizione di invarianza di un insieme rispetto ad un campo vettoriale e avvalendosi del Teorema di Nagumo-Bony, dimostreremo che: la chiusura dei punti raggiungibili, partendo da un punto P in un aperto fissato, tramite curve integrali a tratti dei campi vettoriali in X e dei loro opposti, è uguale alla chiusura dei punti raggiungibili, sempre partendo da P, tramite un particolare sottoinsieme di curve X-subunitarie C^1 a tratti.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Rosa, Alessandro
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
campi vettoriali teorema connettività condizione del rango di Hörmander curve X-subunitarie distanza Carnot-Carathéodory teorema Chow-Rashewskii insiemi propagazione
Data di discussione della Tesi
30 Settembre 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^