Tabarroni, Luca
(2022)
Black holes as quantum bound states.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
We present a new quantum description for the Oppenheimer-Snyder model of gravitational collapse of a ball of dust. Starting from the geodesic equation for dust in spherical
symmetry, we introduce a time-independent Schrödinger equation for the radius of the
ball. The resulting spectrum is similar to that of the Hydrogen atom and Newtonian
gravity. However, the non-linearity of General Relativity implies that the ground state
is characterised by a principal quantum number proportional to the square of the ADM
mass of the dust. For a ball with ADM mass much larger than the Planck scale, the
collapse is therefore expected to end in a macroscopically large core and the singularity
predicted by General Relativity is avoided. Mathematical properties of the spectrum are
investigated and the ground state is found to have support essentially inside the gravitational radius, which makes it a quantum model for the matter core of Black Holes. In
fact, the scaling of the ADM mass with the principal quantum number agrees with the
Bekenstein area law and the corpuscular model of Black Holes. Finally, the uncertainty
on the size of the ground state is interpreted within the framework of an Uncertainty
Principle.
Abstract
We present a new quantum description for the Oppenheimer-Snyder model of gravitational collapse of a ball of dust. Starting from the geodesic equation for dust in spherical
symmetry, we introduce a time-independent Schrödinger equation for the radius of the
ball. The resulting spectrum is similar to that of the Hydrogen atom and Newtonian
gravity. However, the non-linearity of General Relativity implies that the ground state
is characterised by a principal quantum number proportional to the square of the ADM
mass of the dust. For a ball with ADM mass much larger than the Planck scale, the
collapse is therefore expected to end in a macroscopically large core and the singularity
predicted by General Relativity is avoided. Mathematical properties of the spectrum are
investigated and the ground state is found to have support essentially inside the gravitational radius, which makes it a quantum model for the matter core of Black Holes. In
fact, the scaling of the ADM mass with the principal quantum number agrees with the
Bekenstein area law and the corpuscular model of Black Holes. Finally, the uncertainty
on the size of the ground state is interpreted within the framework of an Uncertainty
Principle.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Tabarroni, Luca
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Oppenheimer Snyder Model,Black Holes,Bound States Quantization Model,Hydrogen Atom,Uncertainty Principle,Generalized Uncertainty Principle
Data di discussione della Tesi
31 Maggio 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Tabarroni, Luca
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Oppenheimer Snyder Model,Black Holes,Bound States Quantization Model,Hydrogen Atom,Uncertainty Principle,Generalized Uncertainty Principle
Data di discussione della Tesi
31 Maggio 2022
URI
Statistica sui download
Gestione del documento: