Giardinelli, Vito
(2022)
Quasi-random systems: duality transformations and numerical simulations.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (5MB)
|
Abstract
For classical systems, the concept of thermalization, introduced by Boltzmann in 19th century, is the main instrument for explaining the equilibrium thermodynamics. For quantum systems, although the Schrodinger unitary evolution is deterministic and invertible, it is possible to extend the thermalization concept by considering a subsystem that thermalizes with the rest of the system. However, as in the classical case, there is a class of systems that violate the ergodic principle and do not thermalize. This phenomenon of egodicity breaking is present in models with disorder introduced by P.W. Anderson in 1958. In chapter 1 of our work, we present the class of quasi-random systems, showing their most important features like the ergodicity breaking, the self-duality and the presence of mobility edges. In chapter 2, as original work, we found the phase transition lines of the superconducting Aubry-André model using the analytical tool of the duality transformations. Moreover, we investigate directly the many body localization performing simulations of several quantities like the IPR, the imbalance and the fidelity to detect the many body localization. In the last chapter, we analyse the Jordan-Wigner and Bravy-Kitaev transformations for the quantum simulation of our fermionic systems.
Abstract
For classical systems, the concept of thermalization, introduced by Boltzmann in 19th century, is the main instrument for explaining the equilibrium thermodynamics. For quantum systems, although the Schrodinger unitary evolution is deterministic and invertible, it is possible to extend the thermalization concept by considering a subsystem that thermalizes with the rest of the system. However, as in the classical case, there is a class of systems that violate the ergodic principle and do not thermalize. This phenomenon of egodicity breaking is present in models with disorder introduced by P.W. Anderson in 1958. In chapter 1 of our work, we present the class of quasi-random systems, showing their most important features like the ergodicity breaking, the self-duality and the presence of mobility edges. In chapter 2, as original work, we found the phase transition lines of the superconducting Aubry-André model using the analytical tool of the duality transformations. Moreover, we investigate directly the many body localization performing simulations of several quantities like the IPR, the imbalance and the fidelity to detect the many body localization. In the last chapter, we analyse the Jordan-Wigner and Bravy-Kitaev transformations for the quantum simulation of our fermionic systems.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Giardinelli, Vito
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Duality transformations,Quasi-random systems,random systems,Aubry-André model,Anderson localization,Many body localization,Mobility edge,Ergodicity breaking,ETH hypothesis
Data di discussione della Tesi
18 Febbraio 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Giardinelli, Vito
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Duality transformations,Quasi-random systems,random systems,Aubry-André model,Anderson localization,Many body localization,Mobility edge,Ergodicity breaking,ETH hypothesis
Data di discussione della Tesi
18 Febbraio 2022
URI
Statistica sui download
Gestione del documento: