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Abstract

For classical systems, the concept of thermalization, introduced by Boltzmann in
the 19th century, is the main instrument for explaining the equilibrium thermo-
dynamics. For quantum systems, although the Schrodinger unitary evolution is
deterministic and invertible, it is possible to extend the thermalization concept by
considering a subsystem that thermalizes with the rest of the system. However,
as in the classical case, there is a class of systems that violate the ergodic prin-
ciple and do not thermalize. This phenomenon of egodicity breaking is present
in models with disorder introduced by P.W. Anderson in 1958. In chapter 1 of
our work, we present the class of quasi-random systems, showing their most im-
portant features like the ergodicity breaking, the self-duality and the presence of
mobility edges. In chapter 2, as original work, we found the phase transition lines
of the superconducting Aubry-André model using the analytical tool of the dual-
ity transformations. Moreover, we investigate directly the many body localization
performing simulations of several quantities like the IPR, the imbalance and the
fidelity to detect the many body localization. In the last chapter, we analyse the
Jordan-Wigner and Bravy-Kitaev transformations for the quantum simulation of
our fermionic systems.
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Introduction

The concept of thermalization, on which the classical equilibrium thermodynamics
is built, can also be extended to the quantum case [1, 2, 3, 4]. Here, the unitary
evolution of the Schrodinger equation is actually deterministic and invertible, so,
apparently, there is no possibility of thermalization. Nevertheless, considering a
subsystem of the whole quantum system taken in exam, a definition of thermal-
ization can be implemented because the subsystem uses the rest as a thermal bath
with which it can thermalize [5, 6, 7]. On the other hand, there are some quantum
systems that show a non-ergodic behaviour in the presence of the many body lo-
calization [8]. This phenomenon is actually present in models with quasi-random
disorder, as theorized by P.W. Anderson in 1958 [9].

The relative branch of condensed matter physics, in the later years, is devel-
oping on the experiments side [10] as well as on the side of analytical results and
numerical simulations [3]. The majority of experiments conducted on this field
is based on cold atoms. In fact, in this physical situation it is easier to isolate
the system and control the disorder or the interactions, as it has been done for
instance in the remarkable experiment described in [11]. This experiment aims at
studying the Hubbard Hamiltonian in a system made with cold atoms whose inter-
actions are controlled with Feshbach resonances and whose disorder is reproduced
by two laser beams with incommensurate frequencies. This experiment is the first
where many-body localization in an interacting model has been observed. Another
experiment, conducted with trapped ions of ytterbium, revealed the many-body
localization of an Ising model with long range interaction and random external
field [12]. Moreover, the many-body localized states are also proposed as a possi-
ble candidates to store quantum information [13]. In fact, in the localized phase,
the non-thermalization of the system can be used to store information [14] as well
as the many body dephasing can be used as purification resource [15].

On the other hand, there are also open problems about the physics of those
systems. For example, what is the role played by the disorder [16] in the many-
body localization or by the symmetries in the phase transition [17]. Also the phase
diagrams themselves are often determined only approximately or numerically [18,
19, 11]. So, the physics of the quasi-random quantum systems is a field of research
that has increased its importance in the last years.

In our work we do a review of the most important fermionic quasi-random
models and provide a set of numerical and analytical results about this class of
systems.

In chapter 1, we describe the Anderson model that historically introduced
the disorder in condensed matter systems [9]. Then, after having introduced the
Anderson localization, we explored several variants of the aforementioned model.
In particular, we present the Aubry-André model [20] and a duality transformation
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based on a Fourier transform that allows us to compute the critical lines of the
model. We present also non-dual models that show a mobility edge [21] as well as
interacting versions that show an ergodicity breaking and scar states [11].

In chapter 2, we present all the results of our numerical and analytical simula-
tions. We consider a generalized Aubry-André model both with superconducting
and interacting terms and we perform numerical simulations to detect the afore-
mentioned phenomena like Anderson localization and ergodicity breaking. In par-
ticular, we used different quantities to detect these phenomena and introduced a
new one independent from time. Moreover, we introduce a novel duality trans-
formation for the superconducting Aubry-André model. With this transformation
we are able to obtain the exact position of the critical lines of the phase diagram.

Then, in chapter 3, we investigate two methods to implement fermionic simu-
lations on quantum computers. Usually, this operation is done with the Jordan-
Wigner transformations. In the work of Bravy and Kitaev [22] a new kind of
transformations to pass from a fermionic Hilbert space to a spin one is introduced.
Today these transformations could be used to improve the efficiency of quantum
computation [23]. In our work we compare the computational efficiency of Bravy-
Kitaev and the Jordan-Wigner transformations.
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Chapter 1

Quasi-Random Systems

The world of quasi-periodic quantum systems have to be explored in large part yet.
Until now, different approaches were tried to analytically integrate or to simulate
numerically these models. In particular, with respect to the periodic or random
counterpart, the quasi-periodic systems show some intermediate features [24]. To
understand better the effects of quasi-periodicity we can look at the Aubry-Andrè
model and its generalizations. All those models, that contain a quasi periodic
term, show a particular phase transition due to the phenomenon of the Anderson
localization.

1.1 Anderson localization

The Anderson localization is a physical phenomenon that was introduced by
P.W.Anderson in 1958 [9]. He introduced it in the scope of condensed matter
to study the conductance of metals. In his article ”On the absence of diffusion in
certain random lattices”, Anderson investigated the properties of lattices with a
random potential applied to the reticular sites. He tried to explain the behaviour
of some kinds of materials that showed a metal-insulator phase transition when
the density of impurities overcome a certain limit. This particular insulator phase
transition is due to the diffusion that falls to 0. In particular, materials like metal-
lic alloys have that behaviour [25]. Without impurities they are metals because
the density of states at the Fermi level is finite. When the disorder induced by the
impurities overcomes a certain critical value, they become insulators. This kind
of phase transition give rise to Anderson insulators. The vanishing diffusion is
due to the fact that electron eigenstates at the Fermi level have been localized by
the random impurity potential [26]. In fact, the impurities induce a perturbation
to the Bloch waves that turn out to be a quantum destructive interference. This
interference is the cause of the exponential decaying of the electronic wave func-
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tions. This phenomenon is called Anderson localization. Moreover, in the localized
phase, states close by in energy are far away spatially and vice versa. Changing
dimension, the phase transition is different. In fact in 3D, given a low density
of impurities, the perturbative approach allow to compute the scattering time to
whom the conductivity is proportional to. On the other hand if the the density
of impurities overcome the critical value the perturbation series does not converge
anymore and the phase transition occurs. Instead in 2D and 1D the series does
not converge at all, regardless of the disorder strength, and the states become all
localized.

Now we explore the 1D case. Anderson used a random potential with a different
value on each site to model the impurities, then added an hopping term:

H =
N∑
j=1

t1

(
fjf

†
j+1 + f †j+1fj

)
+ Vjf

†
j fj (1.1)

Here, the t1 is the coupling of the hopping term while Vj is a uncorrelated and
bounded random potential depending the occupation of the jth site. This is the
simplest formulation of our family of tight binding models and it can be analytically
solved. Here it can be shown that in d = 1 every eigenstate of the system is
localized for any non-zero value of the potential strength. But how to measure the
localization of a certain eigenstate? The tool we will use is the Inverse Participation
Ratio, briefly IPR. This quantity is defined for the ith eigenstate and for q fixed
as:

IPRi
q =

∑
n |uin|2q

(
∑

n |uin|2)q
(1.2)

Where uin are the projections of the ith eigenstate on the n-th state of the config-
uration basis. The values of this quantity belong to the interval [0, 1]. It tends to
0 if the state is not localized, while has a finite value in localized states. Moreover,
the value of IPR(q) numerator increase like ξ−d(q−1), where ξ is the correlation
length, for localized states and L−d(q−1), where L is the length of the system, for
extended states [26].

1.2 Ergodicity Breaking and quantum scars

Another aspect of our systems that can be studied is the behaviour of the observ-
ables during the time. To do that, we have to step back and return to the classical
theory of ergodicity. The ergodic hypothesis was formulated in the end of 18th

century by Ludwig Boltzmann. This hypothesis states that in a chaotic ensemble,
like particles interacting by collisions, the system will visit all the phase space PS
and the observables O relax in few time and reach a thermal value stable in time.
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Mathematically this allow to exchange the temporal mean of the observable with
that on the phase space, avoiding the computation of the phase flux, i.e. solving
the equation of motion:

O∞ = lim
T→∞

1

T

∫ T

0

O(x(t), p(t)) dt −→ 1

V

∫
V (PS)

O(~x, ~p) d~xd~p (1.3)

Now there is a need to translate this concept to quantum systems. Fundamentally
the phase space is replaced by the Hilbert space H, while the observable O is
replaced by an operator Ô. So, given a basis of states |k〉, we can rewrite the
previous expression as:

〈O〉∞ = lim
T→∞

1

T

∫ T

0

〈
ψ(t)|Ô|ψ(t)

〉
dt −→

∫
| 〈ψ0|k〉 |2

〈
k|Ô|k

〉
dk (1.4)

To maintain a formal continuity with the classical formula we have assumed a
continuous spectrum of eigenvectors, but it in the discrete case the same relation
is valid with the integral replaced by a sum. Moreover, the so called ”Eigenstate
Thermal Hypothesis” implies that that the time average of a quantum observable
is a function of the energy independently from the initial conditions. To be a
thermalizing observable O must also have certain features: its off diagonal terms

in the energy base of eigenvectors must decay exponentially
〈
εk|Ô|εj

〉
∝ e|εk−εj |

, and the magnitude of its diagonal elements varies smoothly with the length of

the system
〈
εj|Ô|εj

〉
−
〈
εj−1|Ô|εj−1

〉
= ∆i ∝ e−N . So, now we can look at the

systems that do not respect, at least partially, this statement. The two kinds of
mechanisms that we can distinguish are the strong and the weak loss of ergodicity.
In the strong loss of ergoditity all the eigenstates do not termalize and there is no
subsystem in which the ETH holds. On the other hand, with the weak mechanism
only a part of the Hilbert space has lost the ergodicity while the rest continues to
thermalize.

Another concept that can be useful for our purposes is that of the quantum
scars. Those quantum scars were first introduced in [27], in the scope of the single-
particle chaotic billiards. Practically, in the solution of the Schrodinger equation
of a free single particle with boundary condition of a stadium billiard emerged that
the pattern of classical unstable periodic orbits was conserved in the quantum case.
For this reason the states that do not thermalize are called quantum scar states in
analogy with the classical case [5]. In the next sections we will explore quantum
scars of our systems and will try to understand their behaviour.

1.2.1 An example of Ergodicity Breaking: PXP model

Often, quantum scars are associated to a model coming from condensed matter
physic: the PXP model [28]. The model comes from a simplification of the real

11



situation of a platform of Rydberg atoms that strongly repel between each other
when they are excited. This system can be modeled considering Rydberg atoms like
two-state spins and preventing the possibility to find two neighbors both excited.
Starting from the microscopic Hamiltonian:

H =
N∑
j=1

(
Ω

2
σxj −∆qj

)
+

N∑
i<j

Vi,jqiqj (1.5)

where Ω is the Rhabi frequency, ∆ is the detuning parameter and Vi,j is the van
der Waals interaction that goes like ∝ |i − j|6. The operator qi = (1 − σzj )/2
counts the excitation in the site j, so the term qiqj take in account the excitations
of all possible couple of sites. Now we can assume strong repulsion and stop the
interaction on first neighbors, then we assume zero detuning ∆ = 0 and the limit
V >> Ω. The asintotic Hamiltonian turn out to be:

H =
N∑
i=1

qiqi+1 + ε
N∑
i=1

σjx (1.6)

and ε is the vanishing parameter Ω
2V

. The paramagnet part become relevant only in

the subspace without neighbor excitations, so introducing the projectors Pj =
1−σzj

2

we can write the effective PXP Hamiltonian:

H =
N∑
i=1

Pj−1σ
j
xPj+1 (1.7)

This Hamiltonian shows quantum scars with opportunely built observables. For
example, the observable Oz = (1/L)

∑L
j=1 σ

z
j is one of them. Moreover, with PBC

and the induced translation symmetry, the observable Oz is equal to 〈σz1〉 = 〈Z1〉,
i.e. the occupation of the first site. To test if the system is ergodic with respect to
the previous observable, the operator associated to it have to fulfill the Sredniki
ansaz. The following ansaz is about the form of the matrix elements of the operator
in the eigenstates basis:

Oab = O′(E)δab + e−S(E)/2f(E,ω)Rab (1.8)

where E = (Ea + Eb)/2 and ω = Ea − Eb. Then, O′ is a smooth function of E, S
is the the thermodynamic entropy and f is a smooth function of E and ω. In the
end the coefficients Rab are random numbers with 0 mean. This ansaz divides the
canonical ensemble prediction corresponding to the diagonal part of the operator
from the off-diagonal elements that are exponentially dumped by the entropy and
whose mean vanishes. The canonical prediction is computed from the Gibbs states
defined by the density matrix ρ ∝ e−βĤ .
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Figure 1.1: Here we can see the mean value of the observable 〈Z1〉 for each eigen-
state as function of the energy. The colorscale indicates the density of points. The
computed expectation value can be compared with the canonical ensemble predic-
tion. As we can see the majority of the states have an expectation value around
the canonical one. Picture take from [28]

The simulations of the expectation value of 〈Z1〉 show that for several states the
expectation value is significantly different from the canonical ensemble prediction
(fig 1.1). These states form a peculiar states tower structure. Although the greater
part of the eigenstates has an expectation value near to the canonical one, these
states are an example of quantum scars.

1.3 The Aubry-André model

The concept behind the Anderson model is largely generalized to models with
an incommensurate potential. Here we present the Aubry-André model, that is
the most simple generalization of the Anderson model. Next we see other models
with different terms in the Hamiltonian that show phenomena like mobility edges,
critical phases and ergodicity breaking.

1.3.1 Self-Duality

The Aubry-André Hamiltonian is the following:

H =
N∑
j=1

t1

(
fjf

†
j+1 + f †j+1fj

)
+ V cos(2πjφ+ α0)f †j fj (1.9)

The difference with the pure Anderson model is the form of the random potential.
Here, Vj has the form of a quasi-periodical random number: Vj = V cos(2πjφ+α0)
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where V is the amplitude of the incommensurate potential, φ = 1+
√

5
2

is the golden
ratio and α0 is the actual random parameter, uniformly distributed in the interval
[0, 2π]. Now we will focus on results obtained with a single realization of α0.

So, also for this model all the eigenstates are either localized or extended. This
happens if V > 2t1, where t1 is the coupling constant of the hopping term [20].
This behaviour arises because this model has a so called ”self duality” in the point
of the phase diagram V = 2t1. This self duality is recovered through the following
transformations:

un =
∑
m

wme
im(2πφn+α0)eiα0n (1.10)

This transformation exchanges localized states with extended states. In few words,
for every localized block function un in the phase V > 2t, there exists another one
wn in the extended regime V < 2t.

It is interesting to show how the self-duality is reached. From the Hamiltonian
(1.1), we have the following Schrodinger equation:

Eun = t1(un−1 + un+1) + Vnun (1.11)

where Vn = V cos(2πnφ+α0). Now, applying the transformations (1.10), we want
an equation for the wm. First of all, work out the form of the left hand side of
equation (1.9):

Eun =
∑
m

eim(2πφn+α0)eiα0nEwm (1.12)

On the other hand, the shifted hopping terms assume the following form:

t1un+1 =
∑
m

eim(2πφ(n+1)+α0)eiα0(n+1)t1wm =
∑
m

eim(2πφn+α0)eiα0n[t1wme
im2πφ+α0 ]

(1.13)

t1un−1 =
∑
m

eim(2πφ(n−1)+α0)eiα0(n−1)t1wm =
∑
m

eim(2πφn+α0)eiα0n[t1wme
−im2πφ−α0 ]

(1.14)
Then, the hopping term carries out a cos-like factor:

t1(un+1 + un−1) =
∑
m

eim(2πφn+α0)eiα0nt1wm[e+im2πφ+α0 + e−im2πφ−α0 ] = (1.15)

=
∑
m

eim(2πφn+α0)eiα0nt1wm[2 cos(2πmφ+ α0)] (1.16)

Notice that the hopping term corresponds to a potential of the same form of Vn in
the wm space. Now, we have to transform the original potential. If the duality is
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respected, we expect that the potential Vn give rise to a hopping term in the wm
space. The calculation goes as follow:

V cos(2πnφ+ α0)un =
∑
m

eim(2πφn+α0)eiα0nV wm[cos(2πnφ+ α0)] = (1.17)

=
∑
m

eim(2πφn+α0)eiα0n
V

2
wm[e+in2πφ+α0 + e−in2πφ−α0 ] = (1.18)

=
∑
m

eim(2πφn+α0)eiα0n
V

2
wm[e+in2πφ+α0 ] +

∑
m

eim(2πφn+α0)eiα0n
V

2
wm[e−in2πφ−α0 ] =

(1.19)

=
∑
l

ei(l+1)(2πφn+α0)eiα0n
V

2
wl +

∑
k

ei(k−1)(2πφn+α0)eiα0n
V

2
wk (1.20)

Notice tat in the last passage we renamed the indexes. Now, we can shift the first
sum setting m = l+ 1 and the second one setting m = k−1 to get the final result:

V cos(2πnφ+ α0)un =
∑
l

ei(l+1)(2πφn+α0)eiα0n
V

2
wl +

∑
k

ei(k−1)(2πφn+α0)eiα0n
V

2
wk =

(1.21)

=
∑
m

eim(2πφn+α0)eiα0n
V

2
[wm+1 + wm−1] (1.22)

Clearly, we have to assume the termodynamic limit to shift the sum. The last step
is to put together all the pieces and extract the Schrodinger equation for wm:∑

m

eim(2πφn+α0)eiα0n

[
V

2
(wm+1 + wm−1) + 2t1 cos(2πmφ+ α0)wm − Ewm

]
= 0

(1.23)
We can immediately find the relations between the coefficients in the two rep-
resentations comparing with the original equation (1.11) the term in the square
brackets in (1.23). The result is:(

V ′

t′1

)
=

(
0 2
1
2

0

)(
V
t1

)
(1.24)

From the mathematical properties of this transformation, we can extract some
physical information. First of all, its eigenvalues are ±1, so that exists a dual
vector on which the transformations acts like the identity, while there is another
that is reflected with respect to the origin. Those two vectors λ± are the following:

λ+ =

(
2
1

)
λ− =

(
2
−1

)
(1.25)
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In the plane t− V these two vectors corresponds to the straight lines V = 2t and
V = −2t. Given that the transformation is dual on the line V = 2t1 because
V ′ = V and t′1 = t1 that implies un and wm satisfy the same equation. On the
other hand the other eigenvector tells us that the transformations exchange the
localization of the wave function. In fact, taking t1 and V greater than 0, the
transformation maps points in the half-plane V < 2t1 to the region V > 2t1. It
can be shown in a few passages:

We can take a point in the space of couplings (V0, t0)

in the extended phase where V < 2t1

Given

{
V ′ = 2t0

t′ = V0/2
we can write the following inequality:

V ′ = 2t0 > V0 = 2t′ that implies V ′ > 2t′

so, the point (V ′, t′) falls in the localized phase

This means that while un respects a Schrodinger equation in the localized phase,
wm evolution is governed by an equation laying in the extended one and vice versa.

1.3.2 Mobility Edges

What is interesting now is to look at its generalizations to see the emergence of a
”mobility edge”. The mobility edge is nothing but a net division in the spectrum
between localized and extended states.

In a few words, the localized states tend to be less energetic with respect to
these extended and there exists a critical boundary over which this happens. To
understand better all the theory behind the mobility edge and the Aubry-André
model is instructive to observe its mathematical structure [8]. Diddle and Sarma
studied a generalization of the Aubry-André model. This model has an infinite
sum of hopping terms whose coupling decays exponentially.

H =
N∑
j=1

[∑
i 6=j

t1e
−p|i−j|

(
fif
†
j + f †j fi

)]
+ V cos(2πjφ+ α0)f †j fj (1.26)

In the Hamiltonian (1.26) p, can be considered the correlation length of the hopping
interaction. The associated Schroedinger equation has the form:

Eui =
∑
i 6=j

te−p|i−j|uj + V cos(2πjφ+ α0)ui (1.27)

For this model with a exponentially dumped long range hopping, a self duality in
the Aubry-André model form does not hold. Nevertheless, with a proper formu-
lation, there is a generalized self duality that help us to find the mobility edge.
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Defining ω as:
ω =

√
p(E + t1)2 − V 2 (1.28)

We can derive the following relation:

Tj =
cosh(p0)− cos(2πjφ+ α0)

sinh(p0)
, (1.29)

where Tj is equal to the next espression, introducing the parameter p0:

(E + t1)− V cos(2πjφ+ α0) = ωTj, (1.30)

Putting together these equations we can we obtain that:

E + t

V
= cosh(p0) (1.31)

Now, substituting Tn in the Schrodinger equation we get the equation:

ωTjuj =
∑
m

t1e
−p|m−j|um (1.32)

that turn out to be dual under the transformations given by:

wi =
∑
m

eim(2πφj+α0)Tmum (1.33)

It can be shown [8] that the so formulated Schroedinger equation (1.32), after the
aforementioned transformation (1.33), become the following equation:

ωT̃iwi =
∑
m

t1e
−p0|m−j|wm (1.34)

with T̃i equal to:

T̃i =
cosh(p)− cos(2πiφ+ α0)

sinh(p)
, (1.35)

Now, the duality condition where (1.34) and (1.32) are exactly the same equation
is p = p0. The request of duality take to the following condition:

V =
E + t1
cosh(p)

(1.36)

So, we have an equation for the Anderson localization phase transition line V (t)
parametrized also by E and p. It means that if a state is localized does not depend
only on the coupling constants V and t1 but also on the value of the exponential
dumping p and the energy of the state E. Now, for all states whose value of p > p0
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are localized and vice versa for p < p0. The fact that V = V (t1, E, p) allow the
existence of a mobility edge.

Basically, in figure 1.2, we can observe the localization of the single particle
states for a chain 500 sites long. Here the color indicates the value of the IPR of
the states. We can see for four different values of the parameter p the mobility
edge theoretically predicted versus the actual IPR of the states. In particular it
has a form of a straight line in the plane E

t1
- V
t1

. In this case cosh(p) is the slope
of the mobility edge line. To make a comparison between this model and the pure
AA model we have the two duality conditions:{

V
t1

= 2 for the Aubry-André model
E
t1

= V
t1

cosh(p) + 1 for the exponential dumping model
(1.37)

The first one is a vertical line in the plane E
t1

- V
t1

, while the second, as said
before, is a straight line of slope cosh (p). If we perform the limit p → ∞ we
recover a vertical line, but its equation become V

t1
= 0 that means that there are

only localized states. In fact, in the limit p → ∞ all the hopping terms in the
Hamiltonian (1.32) vanish.

1.4 Non-dual tight binding models

Here we explore other variants of Aubry-André model that do not have a duality at
all. Those models cannot be approached theoretically. An attempt to approximate
them can be done with the exponential model, whose mobility edge can be solved
exactly. We will show the different behaviours of several kinds bindings. The first
case we analyze is a model with second order hopping term. Then we explore
a Gaussian short range hopping and a power law long range dumping [21]. In
these models we have profoundly different situations compared to the exponential
dumping one. So, the approximations can be done if the hopping falls enough
rapidly with the distance |i− j|.

1.4.1 Second order binding

The model with the second order hopping, also called t1-t2 model, has the following
Hamiltonian:

Ht1−t2 =
N∑
j=1

t1

(
fif
†
i+1 + f †i fi+1

)
+ t2

(
fif
†
i+2 + f †i fi+2

)
+ V cos(2πjφ+ α0)(f †j fj)

(1.38)
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(a) (b)

(c) (d)

Figure 1.2: In this figure we can see the single particle eigenstates of the exponen-
tial binding model 500 sites long for different values of the parameter p: (a) p = 1,
(b) p = 2, (c) p = 3, (d) p = 4. On every graph, on the left the for increasing V the
value of IPR for each eigenstate and on the right the IPR for each eigenvalue. The
straight lines E

t1
= cosh(p)V

t1
+ 1 show the boundary between spatially localized

and spatially extended states. We can see that cosh(p) is the slope of the curve.
For small values of p the mobility edge is more pronounced. Picture taken from
[21]
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with the following Schrodinger equation:

Eun = t1(un+1 + un−1) + t2(un+2 + un−2) + V cos(2πjφ+ α0)un (1.39)

In this case we have two couplings for the hopping terms t1 and t2 and they have
to put in relation with the exponential dumping te(−p|i−j|). This can be done in the
limit t2 << t1. In fact, in this case the second order dumping is governed by the
ratio t1/t2. Imposing the two following relation we get the approximate version of
the exponential model: {

p = ln(t1/t2)

t = t1e
p

(1.40)

In figure 1.3 we can see the plot of the eigenvalues ordered with increasing energy
and in the plane E/t1- V/t1. The color stands for the value of the IPR. The
different plots are done with different values of the ratio t2/t1. We can observe
that when t2

t1
< 0.3 the mobility edge is compatible with the solid line made using

the equation (1.36) using p = ln(t2/t1).

1.4.2 Gaussian decaying binding

The Gaussian tight-binding model Hamiltonian has the following form:

Hgau =
N∑
j=1

[∑
i 6=j

e−σ|i−j|
2

(fif
†
j + f †j fi)

]
+ V cos(2πjφ+ α0)(f †j fj) (1.41)

with the associated Schrodinger equation:

Eun =
∑
j 6=n

e−σ|n−j|
2

uj + V cos(2πjφ+ α0)un (1.42)

Here the Gaussian dumping is parametrized by σ. We have to find a relation be-
tween σ and the correlation length of the exponential decaying model p. Again, we
can consider the first two terms of the Gaussian dumped hopping that corresponds
to the couplings of the first and the second order hopping terms:{

t1 = e−σ for j = n+ 1

t2 = e−4σ for j = n+ 2
(1.43)

Then using the relations (1.40) we get:{
p = 3σ

t = e−σep
(1.44)
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(a) (b)

(c) (d)

Figure 1.3: In this figure we can see the single particle eigenstates in the t1 − t2
model 500 sites long for different values of the parameter t2/t1: (a) t2/t1 = 0.05,
(b) t2/t1 = 0.1, (c) t2/t1 = 0.2, (d) t2/t1 = 0.3. On every graph, on the left the
for increasing V the value of IPR for each eigenstate and on the right the IPR
for each energy eigenvalue. The straight lines are the mobility edge boundaries
approximated with exponential binding model using p′ = log( t1

t2
). Pictures taken

from [21]
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As we know, the approximation holds for small values of t2/t1 << 1, so that now
this condition translates into σ >> 1.

In figure 1.4 we have the plots of the IPR of the ordered eigenvalues for the
increasing energy. The IPR value is indicated by the color. The solid lines show
the predicted mobility edges made with the with the previous approximation. As
we expected, the approximation holds well for larger values of σ.

1.4.3 Long range power-law binding

The last case we took in exam is the long range power-law binding. Its Hamiltonian
is the following:

H =
N∑
j=1

[∑
i 6=j

|i− j|−r(fif †j + f †j fi)

]
+ V cos(2πjφ+ α0)(f †j fj) (1.45)

with the Schroedinger equation:

Eun =
∑
j 6=n

|j − n|−ruj + V cos(2πjφ+ α0)un (1.46)

With the same arguments used for the first two cases of tight binding one can
write t1 and t2 as: {

t1 = 1 for j = n+ 1

t2 = 2−r for j = n+ 2
(1.47)

and the analogous values of p and t for the exponential model:{
p = r ln(2)

t = ep
(1.48)

Then the validity of the approximation is guaranteed for t2/t1 << 1, so that we
have to request r >> 1. In figure 1.5 we have the same kind of graphs we had for
the second order and the Gaussian binding. The color indicates the IPR of the
states in the plane E/t1-V/t1 and in the graphs with energy ordered eigenvalues.
For different values of r we have the predicted mobility edges using our approxi-
mation versus the actual IPR of the states. As expected the prediction holds for
greater values of r.

1.5 Further extensions of the Aubry-André model

Now we investigate two extensions of the Aubry-André model with a p-wave su-
perconducting term and an interacting term.
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(a) (b)

(c) (d)

Figure 1.4: In this figure we can see the single particle eigenstates in the gaussian
binding model for different values of the parameter σ: (a) σ = 0.1, (b) σ = 0.25,
(c) σ = 0.5, (d) σ = 1. On every graph, on the left for increasing V the value
of IPR for each eigenstate and on the right the IPR for each energy eigenvalue.
The straight lines are the mobility edge boundaries approximated with exponential
binding model using p′ = 3σ. Picture taken from [21]
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(a) (b)

(c)

Figure 1.5: In this figure we can see the single particle eigenstates in the polynomial
binding model for different values of the parameter r: (a) r = 0.3, (b) r = 2, (c)
r = 3. On every graph, on the left for increasing V the value of IPR for each
eigenstate and on the right the IPR for each energy eigenvalue. The straight lines
are the mobility edge boundaries approximated with exponential binding model
using p′ = rln(2). Picture taken from [21]
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Figure 1.6: This figure show the phase diagram of Aubry-André with p-wave
superconductor model. There are three phases corresponding to the degree of lo-
calization of eigenstates. In the critical phase eigenfunctions assume a multifractal
behaviour. Picture taken from [29]

1.5.1 Aubry-André Model with superconducting term

This model is the extension of the Aubry-André model with a p-wave supercon-
ducting term [29]. Its Hamiltonian looks like:

H =
N∑
j=1

−J(f †j fj+1 + f †j+1fj) + ∆(f †j+1f
†
j + fj+1fj)−V cos(2πjφ+α0)f †j fj (1.49)

Where J is the coefficient of the hopping term, ∆ is the coefficient of the p-wave
superconducting term and V is the amplitude of the incommensurate potential. It
is interesting to look at its phase diagram to understand its features figure 1.6. As
showed in [18], its phase space is rich and well defined. The phase transition curves
are V = 2|1+∆| and V = 2|1−∆|. We have an extended phase for V < 2|1−∆| a
localized phase for V > 2|1+∆| and a critical behaviour in between. In this model
we will not see mobility edges because there are no long range hopping terms. This
system can be diagonalized with Bogoliubov transformations imposing:

η†n =
N∑
j

(un,jf
†
j + vn,jfj)

where n label stands for the n-th eigenstate of the Hamiltonian, while un,j and
vn,j are the Bogoliubov modes chosen to be real. The result is an Hamiltonian like
this:

H =
N∑
j=1

Ej(η
†
jηj −

1

2
)
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While, expressing the wave function in the following way:

〈ψn| = [un,1, vn,1, un,2, vn,2, ..., un,Nun,N ]T (1.50)

We have the following Schroedinger equation for uj and vj:

Euj = −J(uj+1 + uj−1)−∆(vj+1 − vj−1)− Vjuj (1.51)

Evj = J(vj+1 − vj−1) + ∆(uj+1 − uj−1) + Vjvj (1.52)

Now we can explicit some symmetries of that model [18]: there is a particle- hole
symmetry and a duality symmetry . The first one means that for every solution
with energy E > 0 we have a symmetric solution with E ≤ 0. This happen because
changing fj → f †j does not affect the definition of ηn, given that un,j and vn,j are
chosen to be real. The other symmetry is linked with the substitution to the kj
ladder operators fj → kj if j is even and fj → −k†j if j is odd. In fact, doing

those substitutions plus α0 → α0 + 1
2
, the Hamiltonian does not change form, but

the role of J and ∆ is exchanged. This means that the Hamiltonian is self-dual in
∆ = J . Clearly, exist also a form of Aubry-André duality between localized and
extended states, but its analytical expression is not in a simple form.

1.5.2 Aubry-André model with interactions

This model, whose behaviour is discussed in [11], shows the ergodicity breaking.
The model has the Hamiltonian (1.53).

H =
N∑
j,σ

t

(
fj,σf

†
j+1,σ+f †j,σfj,σ

)
+V cos(2πjφ+α0)f †j,σfj,σ+

N∑
j,σ

Unj,σnj+1,σ (1.53)

Where nj,σ is the number operator and σ ∈ {↑, ↓} is the value of the spin. We
can now focus on the behaviour of our system. As we can expect, when U = 0
we fall into the Aubry-André model, of which we know that the localized phase
subsists when V > 2t. In the regime with U > 0 there is an interaction that tends
to move away the particles, so that the configurations with two adjacent sites are
energetically inconvenient. Now to study the Anderson localization, we can use
another observable that characterize the system: the imbalance.

I =
Ne −No

Ne +No

(1.54)

In its definition (1.54) Ne and No are the number of particles in even and odd sites
respectively. This observable is very relevant in Néel states like |Z2〉 = | • ◦ • ◦ . . . 〉
and its complementary. In fact, these are the states with the maximum number of
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Figure 1.7: Here is explained the function of the various terms in the Aubry-André
model with interactions. On the left there is a representation A of a charge density
wave corresponding to the Neèl state. In image C there is a visual representation
of the three terms of the Hamiltonian (1.53). On the right B there is a phase
diagram that shows if the imbalance of the aforementioned state falls to 0 or has
a finite value. In the striped area the transition depends on number of doblons,
while over the black solid line the no doblons are allowed. The grey lines indicate
the renormalization flow. Notice that in the regimes U = 0 and U =∞ the phase
transition is governed by the Aubry-André renormalization points in V = 2. The
red dot stays for the many body localization transition point. Picture taken from
[11]

particles and imbalance I = ±1. The ergodicity breaking can be easily detected
looking at the value of imbalance evolving the system during the time. In fact
an extended phase will spread the initial state among all the others, so that the
imbalance will fall to zero immediately. On the other hand, if we are in a localized
phase, the imbalance stays at a fixed value different from zero. This is a clear
example of an observable that in a certain regime do not thermalizes.
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Chapter 2

Simulation of generalized
Aubry-Andrè model

As original work, we want to explore deeply using simulations our class of systems.
Firstly, we introduce the a generalized Aubry-Andrè model, then we analyze the
submodels contained in it performing simulations on the inverse participation ratio,
on the fidelity and the time evolution to detect phase transitions. The study of the
different Hamiltonians belonging to the various submodels is made also visualizing
the matrix elements of the Hamiltonian itself and of the observables taken in exam.
In the end, the most remarkable result we got is the reformulation of the phase
diagram of the superconducting Aubry-Andrè model. We achieved this result
generalizing the duality transformations showed in 1.3.1. Moreover, our proposal
of phase diagram seems to have more consistent limits of the coupling constants,
thing that reinforces its possible validity.

2.1 Interacting Aubry-André model with p-wave

superconducting term

We can now introduce our model that is a hybrid model between the supercon-
ducting Aubry-André model and the Aubry-André model with interactions. Its
Hamiltonian is the following:

H =
L∑
j=1

−J(f †j fj+1 +f †j+1fj)+∆(f †j+1f
†
j +fj+1fj)+V cos(2πjφ+α0)nj +Unjnj+1

(2.1)
where nj = f †j fj. In the Hamiltonian H we have the nearest neighbor hopping
term, the p-wave superconductive one, the incommensurate potential and the first
neighbor interaction. The incommensurate potential is made by an irrational
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parameter φ, and a random phase α0 chosen from the uniform distribution in
the range [0, 2π]. In our model the original interaction term of equation (1.53)
has been substituted by a nearest neighbor interaction, because we want to study
spinless fermions.

2.2 Aubry-Andrè model

To start our analysis we can focus on the Aubry André model. It is obtained from
our model setting ∆ = U = 0. Without loss of generality we can also put J = 1,
so that the only independent parameter is now V . Now we present wide range
results obtained on this model, looking at different quantities that characterize its
behaviour.

2.2.1 The incommensurate potential

The first aspect of our model that can be studied is the effect of the incommensu-
rate parameter φ = 1+

√
5

2
. In figure 2.1 we can see the different behaviour of the

spectrum for an 8-sites chain. We performed the computation with α0 = 0 because
we want to focus on the parameter φ. The color indicates the IPR, while on the x-
axis there is the value of the magnitude V of the potential. The cases represented
are: a constant potential on the various sites Vj = V (a), two strictly periodic
potentials Vj = V cos (πj) (b) and Vj = V cos (πj/2) (c), and the incommensurate
potential Vj = V cos (2πjφ) (d).

The differences in terms of IPR, defined in (1.2), between different forms of
potential are very deep. In fact for V = V0 the depth of the potential well is
equal for all sites. So, the IPR is practically always 0 because the particles do
not have favourite sites to stay. In the periodic cases the IPR is significantly
different from 0 only in several eigenstates. This happens because now the depth
of the potential wells is periodic on the sites. Finally, the incommensurate case is
profoundly different from the others because we can see that IPR is different from 0
in all eigenstates when V > 2 as predicted by the theory behind the Aubry-André
model 1.3.1. To emphasize the two different regimes of localization, we can do a
mean of the IPR over many different realization of the starting phase α0. In figure
2.2 we can see the result of the mean over 100 different values of α0 uniformly
distributed in the interval [0, 2π]. We can see a more gradual transition and a
soother change of IPR with increasing V .
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Figure 2.1: In this figure there is the plot of the IPR for every eigenstate in
Aubry-André model. We took in exam 8 sites and 100 values of V equally spaced
between 0 and 10. The different plots belong to different form of potential: (a)
constant potential V = V0, (b) periodic V cos(πj), (c) periodic V cos(πj/2), (d)
incommensurate potential V cos(2πjφ) .
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Figure 2.2: Here we can see the map of the IPR for every eigenstate with 101
values of V taken from 0 to 10. For every initialization of V, the IPR is the mean
of 100 realizations of the value α0. Clearly, the transition between low IPR states
and high IPR states is more smooth and the IPR fluctuations in the spectrum are
smaller than the single realization case in figure 2.1

.
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2.2.2 Time evolution of localized and extended states

In the previous sections 1.1 we have already seen localized and extended phase of
our Aubry-Andrè model. To understand better what effectively it means, we can
look at fig 2.3. Here we computed the time evolution:

|c(t)〉 = e−iĤt |c〉0 (2.2)

of the initial state of the configuration basis |c〉0 = |10101010〉 with the following
Aubry-Andrè Hamiltonian:

H =
L∑
j=1

−J(f †j fj+1 + f †j+1fj) + V cos(2πjφ+ α0)f †j fj (2.3)

and plotted the modulus of projection of the evolved state on all the states of the
configuration basis:

|αk| = | 〈ck|c(t)〉 | with k = 1 . . . 2L (2.4)

The two pictures correspond to two different values of V with L = 8. In the figure
2.3 (a) V is set to 1, so that we are in the extended phase. It can be seen because
the projections on other states become immediately significantly different from 0
and the projection on the initial state falls around 0.2. On the contrary the figure
2.3 (b) show a totally different situation. Here V = 8 and the most significant
component of the evolved state is represented by the initial state during all the
evolution.

Hamiltonian visualization and state ordering

Another way to visualize the phase transition is throughout the Hamiltonian op-
erator and the basis change between the eigenstates basis and the number basis.
In the previous chapters, we encountered different kinds of state basis to describe
our systems. For example, the Hilbert space represented in the configuration basis
Hc is the most intuitive one, and is built acting with the creation operators f †j on
the vacuum |0〉. The order in which the states are arranged is arbitrary, because
it does not affect the physics of the system. Nevertheless, it is important to vi-
sualize the system properties. For this reason, an instructive view is to represent
our Hamiltonian in the basis of the number operator. The number operator N̂ is
given by:

N̂ =
L∑
j=0

f †j fj (2.5)
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Figure 2.3: Here we can see the evolution of the projection of the initial state on the
configuration basis. The initial state is the neel state |10101010〉 that corresponds
to the state 169. On the left the evolution with V = 1, on the right V = 8. During
the time in the extended phase it spreads on other states (a) while on the localized
phase (b) the greater part of the evolved state remains on the initial state. Here
the color indicates the modulus of the projection of the evolved state on the entire
configuration basis. The plot is realized with 20 realization of the noise with 100
time steps.
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with the Hilbert space Hn, built on the eigenstates of the number operator. The
configuration basis is also a basis of eigenvectors for N̂ , but this time is sorted
following increasing number of particles. For example, for a 4-particle system we
would have:

|0000〉 subspace with 0 particles

|1000〉 , |0100〉 , |0010〉 , |0001〉 subspace with 1 particles

|1100〉 , |0110〉 , |0011〉 , |1010〉 , |1001〉 , |0101〉 subspace with 2 particles

|1110〉 , |0111〉 , |1101〉 , |1011〉 subspace with 3 particles

|1111〉 subspace with 4 particles

(2.6)

For a generically large system of L spinless fermions the subspace Hm with m
particles has dimension equal to the corresponding binomial coefficient:

dim(Hm) =
L!

(L−m)!m!
=

(
L

m

)
(2.7)

The basis change transformation used to pass from the configuration basis to that
of the number operator corresponds to what called mathematically a permutation
matrix. A permutation matrix Π is defined as a permutation of the identity matrix
columns. For example, the permutation for the 4-sites long chain that maps the
configuration basis to the number operator one is the following :

Π4 =





1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(2.8)

A generic operator A transforms following the equation:

A′ = ΠAΠ−1 (2.9)
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Moreover it can be also considered as a unitary transformation when it acts on
Hermitian operators. Now we can look at the Hamiltonian operator written in the
number basis.

In figure 2.4, we can see the matrix elements of the Hamiltonian of the AA
model for different values of V. Given two states in the configuration basis 〈ci|,
〈cj|, in the figure we show the magnitude of the matrix element | 〈ci|H |cj〉 | for a 6-
sites system that has 64 states. Immediately it is visible a block structure in low V
cases. This is due to the hopping term that mixes only states with the same number
of particles. So, in this case the number of particle is conserved. In fact, every
block corresponds to subspaces with 0,1,2,3,4,5 and 6 particles. Clearly, because of
combinatorics, the middle subspaces are that with the higher dimensionality. On
the other hand when V increases the hopping part of the Hamiltonian disappears
and only the diagonal part survives.

Another proof of the conservation of the number of particles is given in figure
2.5. Here we have the same evolution of figure 2.3, but this time the states are
ordered following the number basis. We can clearly see that the evolution is
confined on the subspace with 4 particles, even in the extended phase.

Moreover, can be useful visualization is that of the unitary matrix Ue7→n that
maps the eigenstates basis He, ordered with increasing values of the relative
eigenenergies, into the number basis Hn. It is directly connected with the IPR.
Moreover, increasing V can be detected the phase transition. In figure 2.6 we can
see the modulus of the matrix elements of the basis change. Practically, element
βij is the projection of the eigenstate |ei〉 on the states of number operator basis
|nj〉:

|βij| = | 〈ei|nj〉 | (2.10)

The link with the IPR is the following: if we raise to the fourth power every element
of the matrix taken singularly, the IPR of the j-th eigenstate would be the sum
of j-th row elements. From this point of view, for V < 2 we are considering
an highly non-local transformation. In fact, qualitatively, one can understand
from the figure that the projection of whatever eigenstate spread out onto many
different states of number basis. On the other hand, when V starts to increase, the
entire basis change falls in a simple permutation transformation governed by the
incommensurate potential. In this regime the eigenstates of the hamiltonian tend
to be the same of the number operator, with a corresponding increment of the
IPR. But, in both cases, the transformation mixes states with the same number
of particles. It can be seen from the column structure of the transformations.

36



0 20 40 60
0

20

40

60
V = 0

0 20 40 60
0

20

40

60
V = 1

0 20 40 60
0

20

40

60
V = 2

0 20 40 60
0

20

40

60
V = 4

0 20 40 60
0

20

40

60
V = 8

0 20 40 60
0

20

40

60
V = 16

0 20 40 60
0

20

40

60
V = 32

0 20 40 60
0

20

40

60
V = 64

0 20 40 60
0

20

40

60
V = 128

Hamiltonian operator

Figure 2.4: Here we can see nine figures of the modulus of matrix elements
〈ci|H |cj〉 of the Hamiltonian operator written in the number operator basis for
different values of the incommensurate potential depth V . We can see that for
small values of V he Hamiltonian has a block structure given by the conservation
of number of particles. While V increases the matrix elements hopping terms
tends to be neglected and the Hamiltonian get a diagonal form given by the lonely
incommensurate potential. Here the we have a qualitative colorscale in which the
background color indicates values equal to 0.
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Figure 2.5: Here we can see the evolution of the projection of the initial state on
the configuration basis. The initial state is the state |10101010〉. As we can see the
evolution is confined on the subset of states with 4 particles. The plot is realized
with 20 realization of the noise with 100 time steps.
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Figure 2.6: Here we can see the basis change matrix Ue7→n between the energy
eigenstates basis and the number eigenstates basis for a 6-sites long system. For
different values of V we observe a radical change. Especially when V < 2 we
have an highly non-local transformation. When V is much greater than 2 we
fall in a permutation because the hopping term become a perturbation of the
incommensurate potential. Nevetheless, also in extended regime we can recover
the conserved number of particles because are distinguishable some subsets of
columns that do not comunicate with each other. Here we have a qualitative
colorscale in which the background color indicates values equal to 0.
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2.3 Aubry-Andrè model with interactions

In this section we study the interacting version of the Aubry-Andrè model:

H =
L∑
j=1

−J(f †j fj+1 + f †j+1fj) + V cos(2πjφ+ α0)nj + Unjnj+1 (2.11)

We want to investigate the ergodicity breaking of that system. To do it, for every
state of the configuration basis we can build a diagram that shows if the ergodicity
breaking happens or not. This diagrams are build given an initial configuration
state |c〉0, choosing an observable Ô and plotting its asymptotic value varying the
coupling constants U and V :

lim
t→∞
〈c(t)|Ô|c(t)〉U,V = γ(U, V ) (2.12)

The time evolution is implied to be done with the Hamiltonian (2.11). The aim of
these diagrams is using the expectation value of the observable to detect different
phases depending on the value of the couplings. In our case we have to choose an
observable to detect the ergodicity breaking due to the Anderson localization. For
example, we can take the imbalance operator defined as:

Î =
1

N̂

L−1∑
j=0

(−1)jf †j fj (2.13)

We can use it as an indicator of the phase localized or extended of the system.
Roughly speaking the imbalance is the number of particles in even sites minus the
number of particles in odd sites normlaized with the total number of particles. It
has a value equal to 1 or -1 in the states whose the particles lies in all even (I=1)
or odd sites (I=1). If the system is in an extended phase, an initial state with an
high value of the imbalance, due to the diffusion of the particles, evolves in as state
whose expectation value of the imbalance falls to 0. Otherwise, if the system is in
a localized phase, the expectation value of imbalance holds a finite value because
the most significant projection on of the evolved state is made by that on the
initial state. Notice that the imbalance cannot detect the phase transition in these
states whose initial expectation value is 0. This is due to the fact that even in the
localized phase its value does not change.

We can see that time evolution of the expectation value of the imbalance can
have for the same initial state different behaviours depending on the value of α0,
fig 2.7. To regularize the results and decrease the fluctuations, we can take a mean
on the realizations that we will call mean-imbalance. We have shown the results
obtained doing a mean over many realizations of the parameter α0 in figure 2.8.

40



0 5 10 15 20 25 30
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ea

n 
In

ba
la

nc
e

0 = 2.49
0 = 5.436
0 = 2.739
0 = 6.155
0 = 2.193
0 = 3.344
0 = 1.974
0 = 4.863
0 = 0.792
0 = 5.798

M-I

Figure 2.7: We can see here 10 different realizations of the noise α0. Because of
for different values of it we can have that imbalance fluctuations are more or less
intense, it is useful perform a mean to make more smooth the behaviour of the
observable during the time. As initial state we used the 4-alternate particle state.

In the end the true indicator of the ergodicity breaking is the asymptotic value of
the mean-imbalance.

Now we can look at the results of our simulations. We have taken in exam four
initial configuration states: |1000000〉 single particle state, |10100000〉 2-alternate
particle state, |10101000〉 3-alternate particle state and the Néel state |10101010〉.
This choice of states is made because they are the states with maximum imbalance
with a given number of particles. All the other states with I 6= 0 show an interme-
diate behaviour respect to that of our states. On the other hand, states with an
initial value of imbalance equal to 0 do not show any trace of localization, as we
have explained before. In figure 2.9 we can see the results. Here, for each value
of U and V, we evolved the mean-imbalance I with a mean on 50 values of α0.
Then we took the expectation value of the imbalance for 50 values of time equally
spaced between 20 and 30 time units. We did a temporal mean because we want
to avoid the fluctuations in the asymptotic value. We can observe that for the
single particle there is no dependence from the coefficient U and we recover the
Aubry-André transition when V > 2. When the number of particle increases there
is a straight line pattern that emerges, while the Aubry-André extended phase
band become less marked. In particular, the extended phase disappear totally for
4-alternate particles state when U > 5 it is confined around the straight oblique
line V ' 1

2
U .
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Figure 2.8: Here is shown the evolution of the expectation value of the imbalance
through the time. For every value of U and V the mean imbalance is the mean
on 50 realizations of the noise. We can see that with U = 0 the amplitude of the
fluctuations is greater, especially in the extended phase. In the bottom figure we
investigated the line U = 10. Here the imbalance stabilizes always on non-zero
values. Moreover, the imbalance seems to be smaller when V/U = 1

2
. We always

used the 4-alternate particle state as initial state.
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Figure 2.9: This figure represents the phase space of four different initial states
in terms of Imbalance. Practically, we took the mean evolution over 50 noise
realizations of the imbalance I of the initial state and took a mean of it after a
certain time. The initial states studied are a single particle |10000000〉 state, two
alternate particle state |10100000〉, three alternate particle state |10101000〉 and
the Nèel state |10101010〉. In the first three cases we considered the mean on 50
values of imbalance from 20 to 30 time units. For the last case we performed
the mean on 5 values taken between 20 to 22 time units. This different sampling
strategy is referred to the fact that the fluctuations in the last case are significantly
less. The values of U and V are 200 equally spaced between 0 and 40.
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We can also see our diagrams from the point of the standard deviation σ of
the samplings taken in the time interval. In this way we want to investigate if
the imbalance is constant during the time or it oscillate, so that only its temporal
mean is constant. From figure 2.10 we can observe clearly that the areas belonging
to the extended phase in figure 2.9 now are those with a greater deviation from
the mean. We can conclude that the states with a greater localization are also
those with a more regular behaviour of the imbalance during the time.

Fidelity as ergodicity breaking indicator

Until now we have described the various phases using the imbalance I. Another
quantity that can detect the various phases is the fidelity F . The concept of fidelity
is built on the density matrices formalism.

Next to the bra/ket formalism the entire quantum mechanics can be reformu-
lated using density matrices. A density matrix ρ, given a basis of states ψi . . . ψn,
is defined in the following way:

ρ =
n∑
i

pi |ψi〉 〈ψi| (2.14)

where pi are the probabilities of finding the system in the state i. There is a bi-
jective correspondence between states and density matrices. Moreover the density
matrices are Hermitian operators and have some peculiar properties:

• ρ has a trace always equal to 1

• ρ is semi positive defined

Moreover, the density matrix can be defined also for classical statistics mixtures.
In other words, a density matrix can be written also in a deterministic case in which
the uncertainty is not given by a superposition of states but from our ignorance
on the state of the system. Furthermore, the classical mixture does not have off-
diagonal interference terms. However, in our case the density matrices are referred
to quantum states which do not include the classical mixture. In these cases, ρ has
the property to be idempotent: ρ2 = ρ. The states described by these particular
density matrices are called pure states. Clearly, the form of ρ depends on the basis
chosen. Coming back to the fidelity, it is often used in quantum computation as a
notion of distance between different quantum states φ1,φ2. Its definition is given
in terms of the relative density matrices ρ1, ρ2 :

F (ρ1, ρ2) = tr

√
ρ

1/2
1 ρ2ρ

1/2
1 (2.15)
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Figure 2.10: In this figure we can observe the standard deviation of the data showed
in figure 2.9. The initial states studied are a single particle |10000000〉 state, two
alternate particle state |10100000〉, three alternate particle state |10101000〉 and
the Néel state |10101010〉. We considered the mean on 50 values of imbalance from
20 to 30 time units. As we can see the extended phases are those with a greater
value of σ. It means that even if the mean imbalance has a temporal 0 mean, it
significantly oscillate. The values of U and V are 100 equally spaced between 0
and 10.
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Figure 2.11: This figure was obtained evolving the fidelity F from 20 to 30 time
units, taking its asymptotic value with the mean on 50 values taken interpolating
the time interval. Then is taken the mean of 20 asymptotic values obtained with
different random values of α0 and . The initial states chosen are the same used for
the imbalance. As we can see respect to the imbalance we observe almost perfectly
stackable results. The values of U and V are 200 equally spaced between 0 and 40.
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We can use this quantity to measure, during the time evolution, what is the
probability to find the evolved state in the initial one. In our case, choosing the
configuration basis, the initial states that we have considered in previous compu-
tations are all pure states. Given that, the fidelity reduces to the simple form of
the projection of the evolved state |ψ(t)〉 on the initial state |ψ(0)〉:

F (ψ(t), ψ(0)) = | 〈ψ(t)|ψ(0)〉 | (2.16)

In particular we can ask how much the expectation value of the imbalance im-
balance depends on the permanency in the initial state. The answer is in figure
2.11. Here we have plotted the temporal mean of the fidelity for the same values
of U and V . If we compare it with 2.9, the same pattern of localization arise.
The regimes with an high imbalance perfectly coincide with a high fidelity. For
example, in the Neèl state the imbalance is given almost only by the fidelity be-
cause it is the only state with four particles that has imbalance equal to 1. The
magnitude differences between the two plots are given by the fact that the fidelity
is the modulus of the projection, while the imbalance is proportional to the square
modulus of the projection.

2.3.1 The relation between two observables: Hamiltonian
and Imbalance

To understand better what is the role played by the Hamiltonian respect to the
imbalance, we can look at its form in the imbalance basis Hi, made by the eigen-
states of the imbalance ordered with increasing values of I. This time we use the
un-normalized imbalance:

Î =
L∑
j=0

(−1)jf †j fj (2.17)

because the number operator is not completely invertible. In figure 2.12 the Hamil-
tonian does not have blocks anymore, so that it mixes states with different values
of imbalance. This means that the two operators do not commutes. In fact, the
off-diagonal terms are those that belong to the hopping term:

Ĵ =
L−1∑

0

(f †j fj+1 + f †j+1fj) (2.18)

This latter, in a system with PBC, acts shifting the site in which the particle lays,
so that if the particle was in an even site is shifted in an odd one and vice versa.
Given that, the contribution of the particle to the imbalance value change sign
after having applied the hopping, so that the imbalance is not conserved.
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Figure 2.12: Here there are the plots of the Hamiltonian operator in the basis of un-
normalized imbalance and the basis change between the eigenstates basis and the
imbalance basis with V = 1. As we can see, differently from the number operartor,
there are no blocks because the Hamiltonian mixes subspaces with different values
of imbalance. In particular, in red there are the matrix elements belonging to the
potential, while the green dots are the elements belonging to the number operator.
Analogously the basis change is very chaotic because there are no distinguishable
columns that represent subspaces that have the same number of particles.
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2.3.2 Evolution of the IPR

Despite our analysis of extended and localized phase is built on the IPR, we did
not talk about this quantity yet. In particular its treatment is not trivial because
we have defined this quantity for the eigenstates expressed in the configuration
basis, while our simulations until now are based on initial configuration states. A
solution can be try to compute the IPR for an evolved state IPR(|c(t)〉). Now we
show that it is a quantity that changes during the time.

Given the configuration state |c〉we can write it in the eigenstates basis like: |c〉 =
∑
j

φcj |ej〉

then we evolve the state in the eigenstates basis:

|c(t)〉 = exp(−iHt) |c〉 = exp(−iHt)
∑
j

φcj exp(−iejt)φcj =
∑
j

exp(−iejt)φcj |ej〉

We want the projection on the configuration state |ck〉:
〈ck|c(t)〉 =

∑
lj

〈el| U †(e7→c)lk exp(−iejt)φcj |ej〉

using the orthonormality of the eigenstate basis we have: 〈el|ej〉 = δlj

so that the projection on the state |ck〉 is: 〈ck|c(t)〉 =
∑
j

U †(e 7→c)jk exp(−iejt)φcj

To compute the IPR we have only to sum over k all the projections raised to the 4-th power:

IPR(|c(t)〉) =
∑
k

| 〈ck|c(t)〉 |4 =
∑
k

∣∣∣∣∑
j

U †(e 7→c)jk exp(−iejt)φcj
∣∣∣∣4

(2.19)

Moreover, can be shown that the square modulus of the projections | 〈ck|c(t)〉 |2
depends on mixed terms like cos(t(ei − ej)) that continuously oscillate, such that
the projection is not constant.

2.3.3 Building a time independent localization indicator

We can try to build a quantity that is fixed in time using the projections on the
eigenstates. First of all, we want to show that the modulus of the projections
of a given state of the configurations basis on the eigenstates basis is constant.
Taking the state |c〉 we write it in the eigenstate basis |c〉 =

∑
j φ

c
j |ej〉 and then

we compute the time evolution |c(t)〉 =
∑

j exp(−iejt)φcj |ej〉 as did before. But
now we look for the projection on the eigenstates basis. The result turns out to
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be, using orthonormality:

〈ek|c(t)〉 = 〈ek|
∑
j

exp(−iejt)φcj |ej〉 = exp(−iekt)φck (2.20)

But taking the square modulus the phase depending on time vanish because of the
product with its complex conjugate:

| 〈ek|c(t)〉 |2 =

(
(φck)

∗ exp(iekt)

)(
exp(−iekt)φck

)
= |φck|2 (2.21)

So that for every eigenstate the projection of the initial state on him has a con-
stant modulus. Given that we can build a quantity that we call Weighted Inverse
Participation Ratio WIPR. This quantity is defined in the following way for all
the states of the configuration basis:

WIPR(|c〉) =
∑
j

|φcj|2IPR(|ej〉) (2.22)

In practice, we do a weighted mean of the IPR of the eigenstates using the square
modulus of the projections of the configuration state on the eigenstates as weight
because it is already normalized. Looking at graphical representations of the
two quantities we have just described, we can notice some differences between
them. First of all we can analyze the evolved IPR in figure 2.13. Here we see
a situation strongly similar to that we have observed for the imbalance and the
fidelity. There are some differences given by the fact that the imbalance is an
observable acting on the ket vector, so that its value is proportional to the square
of the linear combination coefficients | 〈ck|c(t)〉 |2, while the fidelity is the modulus
of the projection of the evolved state on the initial one | 〈c(0)|c(t)〉 |, so that it
represents only the most significant term of the IPR when it is raised to the
fourth power. Nevertheless, the phase diagrams show the same behaviour. Slightly
different is the situation for the WIPR. In this case, figure 2.14, an anomalous
behaviours appear. In particular, we see that with respect to the figure 2.13,
in the down right case with 4 particles, the region V ≤ U/2 seems to be not
completely localized. The difference probably lays in the different definition of the
two quantities, so that the WIPR can only provide an estimation of the IPR.

2.4 Aubry-André model with p-wave supercon-

ducting term

Another regime of the model we presented in section 2.1 that can be studied is
when U = 0 and ∆ 6= 0. We recover the AAH model. Starting from the view of the
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Figure 2.13: This figure represents the phase space of four different initial states in
terms of the temporal mean of the IPR of the evolved state. Practically, for every
value of U and V we evolved the initial configuration state from 20 to 30 time
units and performed the mean of 50 values of the IPR picked up in this interval.
Moreover we performed also the mean on 10 realizations of α0. As we can see, the
phase diagram is almost the same of imbalance and fidelity. The values of U and
V are 200 equally spaced between 0 and 40.
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Figure 2.14: This figure represents the phase space of four different initial states in
terms of Weighted IPR. Practically, for every value of U and V we performed the
weighted mean of the IPR using as weights the square modulus of the projection of
the configuration state on the eigenstates. Moreover we performed also the mean
on 10 realizations of α0. As we can see, even with some differences, the form of
the phase diagram is the same of imbalance and fidelity. The values of U and V
are 200 equally spaced between 0 and 40.
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Figure 2.15: Here there is the phase diagram of the the weighted-IPR, WIPR. It
is obtained, given values of U and V , computing the IPR for every eigenstate.
Then, given a configuration state, is performed a weighted mean of the IPR of the
eigenstates using the square modulus of the projections of the configuration state
on the eigenstates basis as weight. In this case we can see this operation made for
the Néel state with α0 = 0.
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Hamiltonian, we can find some new features respect to the previous cases. Here
the p-wave superconductor term ∆̂ = ∆

∑L
0 (f †j f

†
j+1 + fjfj+1) creates/destroy

a couple of particle in adjacent sites. This change deeply the properties of our
system.

2.4.1 Hamiltonian and Hilbert space description

From figure 2.16 we can observe also graphically that the number of particles is
not conserved anymore. This is represented by the off-diagonal blue dots in the
upper left image: in the number basis the Hamiltonian is not made only by blocks.
On the contrary, the superconductive term inexorably creates one particle in an
even site and another in an odd site. This effect leave unchanged the imbalance,
but only if it is not normalized with respect to the number of particles. In the
end, the only quantity conserved in a system with the hopping term, the potential
and the superconductive one is the parity. The parity operator P̂ is defined in the
following way:

P̂ =
L−1∏
j=0

(I − 2f †j fj) (2.23)

It has value -1 if the number of particles is odd and 1 if the number of particles is
even. So that, the Hamiltonian mixes the states in the subspaces with the same
parity of particles.

2.4.2 IPR phase diagrams and time evolution

To study the phase diagram we can start with the evolved IPR. As we can see from
figure 2.17, the situation is quite specular to that we observed in the case with
U turned on. As we expected, the superconductive term amplifies the extended
phase. In fact now the evolved state can spread out on a subspace with dimen-
sionality 2L−1, that is half of the total dimension. So that, we should observe a
localized regime approximately when V ≥ 2|∆ + 1|, according to the theoretical
prediction given in section 1.5.1. Clearly, for an 8-sites simulation we cannot pre-
tend to have a net division between the localized and the extended phase. The
same, looking at the evolution of the localization in the initial state we can see
that the evolution is confined in the subspace with the same parity 2.18.

54



0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

Hamiltonian operator

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

Basis change matrix

Figure 2.16: Here we can see the AAH Hamiltonian and their basis change respect
to other three different basis. On the left we have the relation with the different
basis. Now the blue dots are referred to the superconductive term. We can see that
in the number operator basis, they break the block diagonality of the operator,
because the Hamiltonian put in communication subspaces with the same parity of
particles. The same, the basis change projects the eigenvectors on the configuration
states with the same parity. At center, we can see the same Hamiltonian in the
imbalance basis. Now the superconductive term preserve this quantity, while the
hopping one not. In the last case on the right, we have all represented in the parity
operator basis, that is the only quantity conserved by the system, in which the
Hamiltonian shows 2 blocks belonging to the subspaces with an even ad an odd
number of particles.
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Figure 2.17: Here we see the phase diagram of the evolved IPR. The sampling
strategy used is always taking 50 values in the interval between 20 and 30 time
units. Moreover the mean is performed on 10 realizations of the random parameter.
Notice that the first three pictures are represented in logarithmic colorscale. The
initial states are: the single particle one (a), the two alternate particle (b), the
three alternate (c) and the Néel state (d).
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Figure 2.18: Here we have the evolution of the projections of the Néel state on
the configuration states. We have the scheme of the configuration basis (a) and
the same evolution (b) made in the parity operator basis. Here we can easily see
that our state evolves exploring the half of Hilbert space with the same parity. To
perform our evolution we have chosen V = 1, ∆ = 1 and J = 1. Moreover, the
simulation is made on 20 realizations of the random parameter.
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2.5 Duality transformations for Aubry-André model

with p-wave superconductor

We can study the duality of the Aubry-André model with p-wave superconducting
term. Until now none explicit expression of the Aubry-André duality for this model
is known. The main problem is that we have to absorb the p-wave superconducting
term in the Anderson duality transformations (1.10). In section 1.3.1 we have
shown all the steps that lead to the duality symmetry in the Aubry-André model.
Moreover, we have seen that from the duality symmetry it is possible also recover
the phase transition line. We show now how to get a similar result including the
p-wave term, obtaining a transformation that maps the Schrodinger equation to
another one in the phase space.

First of all, to diagonalize the following Hamiltonian:

H =
N∑
j=1

−J(f †j fj+1 + f †j+1fj) + ∆(f †j+1f
†
j + fj+1fj)−V cos(2πjφ+α0)f †j fj (2.24)

we have to use the Bogoliubov De Gennes transformations. We define a new set
of ladder operators η and η† that turn the original Hamiltonian into the canonical
one:

H =
N∑
j=1

Ej(η
†
jηj −

1

2
)

where

η†j =
N∑
n

(un,jf
†
j + vn,jfj)

with u and v coefficients of the transformations chosen to be real. Defining the
wave function in the following way

|ψj〉 = [uj,1, vj,1, uj,2, vj,2, ..., uj,Nuj,N ]T (2.25)

we can write the Schrodinger equation:

E |ψj〉 = H |ψj〉 (2.26)

from this relation we get an equation for the un and vn, hiding the energy level
index j:

Evn = J(vn+1 + vn−1) + ∆(un+1 − un−1) + Vnvn (2.27)

Eun = −J(un+1 + un−1)−∆(vn+1 − vn−1)− Vnun (2.28)
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As we can see now we have two equation to transform, moreover the ∆ terms
mixes un and vn. The first task is to write the previous equations in a clearer
form. To do this we can put un and vn in a column vector ~ψj = (un, vn)T , then
the equations reads:

E

(
vn
un

)
= J

(
1 0
0 −1

)(
vn+1 + vn−1

un+1 + un−1

)
+∆

(
0 1
−1 0

)(
vn+1 − vn−1

un+1 − un−1

)
+Vn

(
1 0
0 −1

)(
vn
un

)
(2.29)

Substituting ~ψj:

E ~ψn = Jσz(~ψn+1 + ~ψn−1) + ∆iσy(~ψn+1 − ~ψn−1) + Vnσ
z ~ψn (2.30)

We can notice that the Pauli matrices appear in the equation formulated in this
way. Now we can write our duality transformations, where the imaginary unit is
replaced by the iσx matrix.

~ψn =
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)~ϕm (2.31)

Where we use the Euler formula in the following matrix form:

eiσ
xt = I cos(t) + iσx sin(t) (2.32)

Then we can proceed as done in the 1.3.1 computing the transformed terms. The
right side of equation (2.30):

E~ψn =
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)E~ϕm =
∑
m

e−iσ
xm(cn+d+β)e−iσ

xn(d−β)E~ϕ−m,−d

(2.33)
In the last step we have changed the sign of m and d because the next terms does
not commute with the exponential. The index d is implied in the next calculations.
On the other hand for the hopping term we have:

Jσz(~ψn+1 + ~ψn−1) = 2Jσz
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)

[
cos(cm+ d− β)~ϕm

]
=

=
∑
m

e−iσ
xm(cn+d+β)e−iσ

xn(d−β)2Jσz cos(cm+ d− β)~ϕm

(2.34)

Notice that when σz passes through the sum the exponential changes sign, due to
the anti-commutation of Pauli matrices. The superconductive one instead gives:

∆iσy(~ψn+1 − ~ψn−1) =

= 2∆iσy
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)

[
iσx sin(cm+ d− β)~ϕm

]
=

=
∑
m

e−iσ
xm(cn+d+β)e−iσ

xn(d−β)2∆(−iσz) sin(cm+ d− β)~ϕm

(2.35)
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Also here the exponential changes sign when σy is taken into the sum. Now we
can work out the transformations for the incommensurate potential:

σzVnψn = σzV cos(cn+ d) =

= σz
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)V

2

(
eiσ

x(cn+d) + e−iσ
x(cn+d)

)
~ϕm =

= σz
∑
l

eiσ
x(l+1)(cn+d+β)eiσ

xn(d−β)e−iσ
xβ V

2
~ϕl+

+ σz
∑
l

eiσ
x(k−1)(cn+d+β)eiσ

xn(d−β)e−iσ
xβ V

2
~ϕk

(2.36)

Now, doing the same trick we used in the Anderson transformation, we can
translate the sum indexes and reorder the various terms:

σzVnψn = σz
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)V

2
(~ϕm+1e

−iσxβ + ~ϕm−1e
iσxβ) =

= σz
∑
m

eiσ
xm(cn+d+β)eiσ

xn(d−β)V

2
×

×
[
cos(β)(~ϕm+1 + ~ϕm−1)− iσx sin(β)(~ϕm+1 − ~ϕm−1)

] (2.37)

Then we can take σz into the sum:

σzVnψn =

=
∑
m

e−iσ
xm(cn+d+β)e−iσ

xn(d−β)V

2
×

×
(
σz cos(β)(~ϕm+1 + ~ϕm−1) + σy sin(β)(~ϕm+1 − ~ϕm−1)

) (2.38)

we can write the equation for φm reintroducing the d index:

E~ϕ−m,−d =
V

2
σz cos(β)(~ϕm+1,d + ~ϕm−1,d) +

V

2
σy sin(β)(~ϕm+1,d − ~ϕm−1,d)+

+ 2Jσz cos(cm+ d− β)~ϕm,d − 2i∆σz sin(cm+ d− β)~ϕm,d
(2.39)

Now, we want a complete equivalence with (2.30), so we have to manipulate
two terms of (2.39) to get :

2Jσz cos(cm+ d− β)~ϕm − 2i∆σz sin(cm+ d− β)~ϕm =

= 2Jσz
(

cos(cm+ d− β)− i∆
J

sin(cm+ d− β)

)
(2.40)
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Clearly, the choice to put in evidence J is arbitrary. It can be done also with ∆,
but the result is the same. We can pose, ∆

J
= −i tan(β). Then we have:

2Jσz
(

cos(cm+ d− β)− tan(β) sin(cm+ d− β)

)
=

=
2J

cos(β)
2Jσz

(
cos(β) cos(cm+ d− β)− sin(β) sin(cm+ d− β)

)
=

=
2J

cos(β)
σzcos(cn+ d− β + β) =

2J

cos(β)
cos(cn+ d) =

2Jn
cos(β)

(2.41)

Now the equation for ~ϕ is the following:

E~ϕ−m,−d =
V cos(β)

2
σz(~ϕm+1,d+~ϕm−1,d)+

V sin(β)

2
σy(~ϕm+1,d−~ϕm−1,d)+

2Jn
cos(β)

σz ~ϕm,d

(2.42)
Now we have the same functional form of (2.30) for the Schrodinger equation of
and we can explicit the duality relations:

V −→ 2J/ cos(β)

J −→ V cos(β)/2 with ∆
J
−→ −i tan(β)

∆ −→ −iV sin(β)/2

(2.43)

Notice that the condition we ∆
J

= −i tan(β) implies that β is an imaginary angle.
So that the circular cos(β) and sin(β) become respectively cosh(|β|) and i sinh(|β|).
We can express them writing sin(β) and cos(β) as functions of the tangent:cos(β) = 1√

1−(∆/J)2

sin(β) = i ∆/J√
1−(∆/J)2

(2.44)

In the square root tan(β)2 = −(∆/J)2. As expected they are the expression of the
hyperbolic sine and cosine as function of the hyperbolic tangent. We get a form
with an explicit dependence from J and ∆:

V −→ 2J
√

1− (∆/J)2

J −→ V 1

2
√

1−(∆/J)2

∆ −→ V ∆/J

2
√

1−(∆/J)2

(2.45)

Notice that these transformations are completely real when ∆ is less than J . In
the end, we get an explicit expression for the transformations that map the initial
constants to new constants. The new constants that identify another system laying
in the opposite Anderson phase with respect to the previous one (extended or
localized)
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2.5.1 Properties of the duality transformations

Now we can analyze the transformations and try to check if they are consistent
with the Aubry-André limit and if they share the same properties.

We can rewrite our transformations with the explicit dependence from J and
∆. They can be put in a matrix D and looks as follow:V ′J ′

∆′

 =


0 2

√
1− (∆/J)2 0

1

2
√

1−(∆/J)2
0 0

∆/J

2
√

1−(∆/J)2
0 0


VJ

∆

 (2.46)

As we can see they are highly non-linear transformations, but some result can be
achieved. Moreover, one can check that also for the other component of ~ψ the
transformations have the same form. The first counter-proof to check the self-
consistency of our transformations is looking at their limits. The limit for ∆→ 0
is immediately done:

lim
∆→0


0 2

√
1− (∆/J)2 0

1

2
√

1−(∆/J)2
0 0

∆/J

2
√

1−(∆/J)2
0 0

 =

0 2 0
1
2

0 0
0 0 0

 (2.47)

As we can see, it is exactly the matrix we got for the Aubry-André duality. On
the contrary, this formulation is not suitable for the limit J → 0 because the term√

1 + (∆/J)2 diverges on the first row. This is not a problem because can be
developed equivalent transformations, putting in evidence ∆ instead of J in the
equation (2.40). They turn out to be:

DAA =


0 0 2 J

∆

√
1− (∆/J)2

1

2
√

1−(∆/J)2
0 0

∆/J

2
√

1−(∆/J)2
0 0

 (2.48)

Whose limit J → 0 is not well defined because it is imaginary. Nevertheless, it
suggests a duality for the subsystem made by the incommensurate potential plus
the superconductive term:

lim
J→0


0 0 2 J

∆

√
1− (∆/J)2

1

2
√

1−(∆/J)2
0 0

∆/J

2
√

1−(∆/J)2
0 0

 =

 0 0 2i
0 0 0
−i/2 0 0

 (2.49)

Notice that in the third row: limJ→0
∆/J√

1−(∆/J)2
= i.
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Another property that we want to show is the idempotence, that is iterating
two times the transformations gives the identity. For example when we studied
the Anderson duality for the AA model, we get a matrix D whose square was the
identity. Now the same procedure can be done getting the following result:V ′J ′

∆′

 =

1 0 0
0 1 0
0 ∆

J
0

VJ
∆

 =

1 0 0
0 1 0
0 0 1

VJ
∆

 (2.50)

The non-linearity is crucial to get explicitly the identity. In fact, when we multiply
the last row of the first matrix we get exactly ∆, so that we can rewrite the identity
in the canonical way. Another important feature of our transformations is that
they are homogeneous. In fact, if we do the replacement:

V −→ kV

∆ −→ k∆

J −→ kJ

(2.51)

where k could be also a function k(V, J,∆). we can see that the transformation
does not change their form, because it depends non-linearly only by the ratio ∆/J .

So, we can conclude that in the space of couplings holds D(k~V ) = kD(~V ). This
result can be generalized because these transformations are completely linear in
V . In fact, as long as the ratio ∆/J is fixed, they are linear. Roughly speaking,
the following relation holds:

D

aV1

aJ
a∆

+

bV2

bJ
b∆

 = aD

V1

J
∆

+ bD

V2

J
∆

 (2.52)

From a geometrical point of view, once fixed the ratio ∆/J = m, we have linear
transformations in the plane spanned by the ax V and the line of equation ∆ = mJ
in the plane J-∆. In a few words, we have a family of transformations labeled by
the ratio m.

2.5.2 Finding duality

Our goal is to find a plane in which the transformation acts like the identity.
Given that surface, we immediately can conclude that the transformations maps
the system over that surface, determining the Anderson transition. In the Aubry-
André duality, this corresponds to the eigenvector belonging to the eigenvalue
+1. In that case it was simple to do it because the transformation was a linear
application. Now, we cannot repeat the same procedure, but an analogous of
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eigenvectors and eigenvalues can be found. In fact, given the structure of our
transformations, we should have two eigenvectors for every value of the ratio ∆/J ,
because we have seen that once fixed this ratio the transformations are linear. For

example we can look at the parametrization given by ~λ1 =

(
∆, J, 2J

√
1− (∆

J
)2

)T
and look in what vector is mapped by D:

0 2
√

1− (∆/J)2 0
1

2
√

1−(∆/J)2
0 0

∆/J

2
√

1−(∆/J)2
0 0


2J

√
1− (∆

J
)2

J
∆

 =

2J
√

1− (∆
J

)2

J
∆


(2.53)

surprisingly this vector is mapped into itself, so we can consider it as an eigenvector
with eigenvalue +1. A similar computation can be done for the eigenvector ~λ−1 =(

∆,−J, 2J
√

1− (∆
J

)2

)T
that is mapped into its opposite, with eigenvalue -1.

Notice that for every eigenvector we have a multiple choice of ±∆, but we are
interested in the region with positive constants. Now we have formalized the dual
surface as the variety given by the equation:

V = 2
√
J2 −∆2 (2.54)

The homogeneity of the transformations tell us that if a point Q is on the critical
surface, also all the points that lies in the line passing through the origin O and
the point Q are in the critical surface. So that the space of couplings is perfectly
divided in an extended phase and in a localized phase. Then, we can use the
argument used for Aubry-André duality to show that our transformations map
points from one side to the other side of the surface:

Given


V ′ = 2J

√
1− (∆/J)2

∆′ = −V∆/2J
√

1− (∆/J)2

J ′ = V/2
√

1− (∆/J)2

, we can take a point in the extended phase.

Then, this point fulfills the following inequality: V < 2J
√

1− (∆/J)2

We can write the following chain of inequalities:

V ′ = 2J
√

1− (∆/J)2 > V = 2J ′
√

1− (∆/J)2

that implies V ′ > 2J ′
√

1− (∆′/J ′)2

(2.55)

Notice that in the last expression ∆′/J ′ = ∆/J because the transformations leave
unchanged the ratio. So, we have showed that our transformations map a point
under the surface V = 2J

√
1− (∆/J)2 to another one over that surface. This is

what concerned the sector ∆ < J .
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2.5.3 Extension of duality

The transformations we got can be extended to recover the entire phase diagram
like that shown in fig 1.6. In the previous section we have derived the following
critical surface:

V 2 = 2J2 − 2∆2 (2.56)

and the following transformations:
V −→ 2

√
J2 −∆2

J −→ V J
2
√
J2−∆2

∆ −→ V ∆
2
√
J2−∆2

(2.57)

that are real in the region ∆ < J . So, looking at figure 2.19 (a), in the plane
V -∆ we have transformations that map points in the red zone inside the ellipse
V 2 + 2∆2 = 2J2 to points in the black zone outside the ellipse. Clearly the blue
line fixes the limit of validity of the transformations. On the other hand, we can
manipulate the equation 2.30 to get the extension on the values ∆ > J . This
extension can be obtained adding a phase with the following transformation:

ψn = eiσ
y π

2ψ′n (2.58)

applied on 2.30. Then one applies the transformations 2.31 and again 2.58. The
result is the following:

E~ϕm,d =
V cos(β)

2
(~ϕm+1,d + ~ϕm−1,d)−

V sin(β)

2
iσx(~ϕm+1,d− ~ϕm−1,d) +

2∆n

cos(β)
~ϕm,d

(2.59)
Where we imposed:

J

∆
= i tan(β) (2.60)

instead of ∆
J

= i tan(β). The result is that the extended transformations are real
for ∆ > J : 

V −→ ±2
√

∆2 − J2

J −→ ±V J
2
√

∆2−J2

∆ −→ ±V ∆
2
√

∆2−J2

(2.61)

Notice that the sign ± arise because the two components are decoupled by the
transformations. Nevertheless, the physics of the system does not change. In fact,
the critical surface is the same for both the component of ~ϕm:

V 2 = 2∆2 − 2J2 (2.62)
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(a) (b)

Figure 2.19: Here we can see the partial phase diagram made with the transforma-
tions 2.57 and 2.65 for J = 1. In (a) we have the partial critical surface represented
by the black solid line. Our transformations map points in the red region with
points in the black region. On the critical surface, instead, the points are mapped
into themselves. The blue line indicates the maximum value of ∆ for which the
transformations are real. In (b) we can see the phase diagram with the extended
duality. Geometrically, we added to the ellipse V 2 + 2∆2 = 2J2 a branch of the
hyperbola V 2− 2∆2 = 2J2. This give rise to two extended zones: Extended I and
Extended II. Now, also the points in the region Extended II are mapped in the
localized phase by the duality transformations.

66



For those transformations, all the properties we have showed in section 2.5.1 are
conserved, except the limits that are exchanged. Now the limit J → 0 is real:

lim
J→0


0 0 2

√
1− (J/∆)2

J/∆

2
√

1−(J/∆)2
0 0

1

2
√

1−(J/∆)2
0 0

 =

 0 0 2
0 0 0

1/2 0 0

 (2.63)

While the limit ∆→ 0 is imaginary:

lim
J→0


0 2∆

J

√
1− (J/∆)2 0

J/∆

2
√

1−(J/∆)2
0 0

1

2
√

1−(J/∆)2
0 0

 =

 0 2i 0
−i/2 0 0

0 0 0

 (2.64)

Now we can write the complete version of the transformations putting together
the two real branches: 

V −→ 2
√
|J2 −∆2|

J −→ V J

2
√
|J2−∆2|

∆ −→ V ∆

2
√
|J2−∆2|

(2.65)

With the extended critical surface given by:

V 2 = 2|J2 −∆2| (2.66)

In figure 2.19 (b) we can see the phase diagram for the two branches: now there
are two different extended regions.

Moreover there is a further extension using the following transformations:

~ψn =
∑
m

eiσ
ym(cn+d+β)eiσ

ynd~ϕm (2.67)

Notice the difference with respect to 2.31: the matrix σx is replaced with σy. Ap-
plying these transformations directly on 2.30 we get the following transformations:

V −→ 2
√
J2 + ∆2

J −→ V J
2
√
J2+∆2

∆ −→ V ∆
2
√
J2+∆2

(2.68)

setting ∆/J = tan(β). So, in this case β is real parameter. The critical surface
for these transformations is:

V 2 = 2∆2 + 2J2 (2.69)
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(a) (b)

(c)

Figure 2.20: Here we can see the complete phase diagram obtained with duality
transformations (a) and the phase diagram currently accepted (b). Our phase
diagram is obtained combining the critical surfaces V 2 = 2∆2 + 2J2 and V 2 =
2|∆2 − J2|. By analogy with (b) we assigned to the four regions the label of the
corresponding phase. We can see that the topology of the two phase diagrams is the
same, but their limits are different. In fact in (a) the critical phase disappear when
V,∆ → ∞, while in (b) persists. In fact, in (c) we see again our phase diagram
obtained with the duality transformations in the plane V -∆ in logarithmic scale
for J = e. Now is manifest that the critical region disappear for ∆, V >> J , so
that we recover the critical line V = 2∆
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This last equation complete the phase space, showed in figure 2.20 (a). Here we
have three different regions that can be associated, by analogy, to the extended,
critical and localized phases of the diagram 2.20 (b) belonging to the theoretical
prediction given by the works [18], [30],[31]. We can see that the result of our
computations in significantly different from the currently accepted prediction. In
fact we have: {

V1 = 2|J2 + ∆2|1/2 vs V1 = 2|J + ∆|
V2 = 2|J2 −∆2|1/2 vs V2 = 2|J −∆| (2.70)

Nevertheless, we can adduce an argument to reinforce our results. The argument is
the following: in the currently accepted phase diagram the critical phase persists,
even in the limit ∆, V →∞. In fact:{

lim∆→∞ V1 = lim∆→∞ 2|J + ∆| =∞
lim∆→∞ V2 = lim∆→∞ 2|J −∆| =∞ (2.71)

But the quantity |V1 − V2| remains finite as long as J 6= 0:

lim
∆→∞

|V1 − V2| = lim
∆→∞

2

∣∣∣∣|J + ∆| − |J −∆|
∣∣∣∣ = 4|J | (2.72)

Of course, the same discussion can be done with the limit J → ∞ because all
critical surfaces are invariant under the exchange J ⇐⇒ ∆, but this is a non
physical situation.

On the other hand, our results share the same limits for V1 and V2:{
lim∆→∞ V1 = lim∆→∞ 2|J2 + ∆2|1/2 =∞
lim∆→∞ V2 = lim∆→∞ 2|J2 −∆2|1/2 =∞ (2.73)

But they show the correct limit for the quantity |V1 − V2|:

lim
∆→∞

|V1 − V2| = lim
∆→∞

∣∣∣∣2∆
√
|1 + (J/∆)2| − 2∆

√
|1− (J/∆)2|

∣∣∣∣ = 0 (2.74)

In a few words the two branches in our prediction converge to the same line
as we can see in the figure 2.20 (c), where the phase diagram is represented in
logarithmic scale. Here we can clearly see the critical phase disappearing and,
moreover, we recover the critical line V = 2∆. Instead, the currently accepted
phase diagram shows a critical strip for every value of J 6= 0. So, in the end, we got
an explicit expression for the critical surfaces that generates a new phase diagram.
The new phase diagram could be proposed to solve the asymptotic problems of
the currently accepted one. If supported by simulations, our results can deepen
a lot the comprehension of the Aubry-André model with p-wave superconducting
term.
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2.6 Interacting Aubry-André model with p-wave

supercoducting term

The last version of the Aubry-André model that we analyze is the most complex
version with the superconducting p-wave term and the interaction. In this case
cannot be done observations on the duality, because the interaction does not allow
to write the single particle Hamiltonian. Moreover, applying the Fourier transform
on the first-neighbor interaction, the result would be a long range interaction. This
long range interaction cannot be reduced to an analogous Hamiltonian as we have
done in the other cases. Nevertheless we can simulate the system setting again
J = 1 and looking at our phase diagrams for a given initial state. We performed
simulations on the U − V plane for some values of ∆. In figure 2.21 we can see
the phase diagram for the Neèl state and for four values of ∆. We can see that
for ∆ = 1 (a) and ∆ = 2 (b) the diagram is not different respect to the ∆ = 0
case. On the other hand, a phase transition seems to happen for ∆ = 5 (c) and
∆ = 10 (d) because the topology of the diagrams change profoundly. In particular,
emerges a localized region for small values of V . Unfortunately, we are not able to
find an analytical explanation of these behaviours.

2.7 Numerical details of the simulations

For our simulations we used the pyton library qutip. This library is made on
purpose of classical simulations of quantum systems. The idea behind the library
is to put all phisical elements like states, eigenstates, density matrices, observables
or operators in a class called Qobj.

Now we describe how we developed the codex to perform our simulations.
Qtip is built to simulate standard quantum mechanics, so we cannot implement
directly the fermionic Hamiltonians. To simuate Aubry-André like models we used
the Jordan-Wigner transformations. In fact, with this method, the Hamiltonian
is a sum of products of Pauli matrices that can be easily implemented in qtip.
Given that, our codex starts initializing ladder operators with the relative Qobj

given by the tensorial product of the Pauli matrices. Our library already contains
the Pauli matrices as variables and the method Qobj.tensor(args) returns the
tensor product of a given list of arguments. Provided the ladder operators, we can
wrote the Hamiltonian as a Qobj. Then, up to the simulations we needed we used
several methods. In particular, we always used the attribute Qobj.eigenstates()
to get eigenvectors and eigenvalues of the Hamiltonian. We also plenty used the
method Qobj.sesolve() to solve the Schrodinger equation and compute the time
evolution for a given initial state. Moreover, Qobj.sesolve() can be used also
to get the time evolution of the expectation value of a given operator. We used
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Figure 2.21: Here we see the phase diagram of the evolved IPR of the Neèl state.
The sampling strategy used is always taking 50 values in the interval between
20 and 30 time units. Moreover the mean is performed on 10 realizations of the
random parameter. The pictures correspond to four different values of ∆ the value
of the IPR. As we can see for ∆ = 1 (a) and ∆ = 2 (b) the phase diagram is similar
to the case with ∆ = 0 (fig 2.9). On the contrary for ∆ = 5 (c) and ∆ = 10 (d)
the diagram become more chaotic and the localized phase is in the region with
small values of V
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abundantly this property to compute the time evolution of the imbalance. Those
two methods resume the main structure of our codex. In fact, all the simulations
we did were made starting from the exact diagonalization of the Hamiltonian and
computing the time evolution of the quantities we evolved. As we have seen the
computation we made is on an 8-site long chain with PBC. This corresponded to
the diagonalization of a 256× 256 matrix.
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Chapter 3

The Bravy-Kitaev and
Jordan-Wigner transformations

Here we describe and analyze in detail Jordan-Wigner and Bravy-Kitaev trans-
formations. These unitary transformations allow to pass from a fermionic for-
mulation to a spin variables formulation of the same phisical problem. We show
how they are built and what are their uses and advantages. In particular we see
their application to the mathematical problem of integrating the XY model and
their advantage in term of resource needed to perform a simulation in the scope
of quantum computing.

3.1 Jordan-Wigner transformations

In the late 20’s Pascual Jordan and Eugene Wigner were trying to integrate spin
chains models [32] . They found an analogy between spin 1

2
variables and spin-

less fermions that can simplify the calculations. This analogy is suggested by
the structure of the Fock space of both systems. Then, they developed unitary
transformations that map fermionic excitations into spin variables.

These transformations allow us to write fermionic ladder operators f and f † in
terms of Pauli matrices σx, σy, σz. A spinless fermionic system with length L has a
Fock space Ff of dimension 2L because there can be only one fermionic excitation
for each site. In the second quantization formalism the Fock space is built using
fermionic ladder operators f and f †. A basis state has the form

|ψ〉f = |n0, n1, ..., nj, ...nL−1〉 = f †0f
†
1 . . . f

†
L−1 |0〉

where nj ∈ {0, 1} specifies the occupation number of the jth site, fj creates a
fermion in the site j and |0〉 is the vacuum. Ladder operators are ruled by their
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canonical anti-commutation relations:

[fi, fj]+ = 0, [f †i , f
†
j ]+ = 0, [fi, f

†
j ]+ = δi,j (3.1)

The effect of ladder operators on a basis state is summarized in the following
equations:

f †j |n0, n1, ..., 0j, ...nL−1〉 = (−1)
∑j−1
k=0 nj |n0, n1, ..., 1j, ...nL−1〉 (3.2)

f †j |n0, n1, ..., 1j, ...nL−1〉 = 0 (3.3)

fj |n0, n1, ..., 1j, ...nL−1〉 = (−1)
∑j−1
k=0 nj |n0, n1, ..., 0j, ...nL−1〉 (3.4)

fj |n0, n1, ..., 0j, ...nL−1〉 = 0 (3.5)

As we can see, creating a particle in a filled site or destroying a particle in a
empty site gives 0. Moreover, from (3.1), operators belonging to different sites
anti-commute, so that emerges a phase:

φj = (−1)
∑j−1
k=0 nj (3.6)

This phase is due to the order exchange of creation operators acting on vacuum,
like in the following situation:

f †3 |1, 0, 0, 0, 0〉 = f †3f
†
0 |0〉 = −f †0f †3 |0〉 = − |1, 0, 0, 1, 0〉

Jordan and Wigner found an analogy between the Fock space of those fermions
and that of spin chains and developed their tranformations. For example their di-
mension is the same. The unitary mapping create a combination of Pauli matrices
such that it follows the canonical anti-commutation relations of the fermionic lad-
der operators (3.1).

In the spin chain the Fock space Fσ is built applying σ+
j and σ−j , defined as:

σ+ =
1

2
(σx − iσy), σ− =

1

2
(σx + iσy) (3.7)

to a basis state

|ψ〉σ = |s0, s1, ..., sj, ...sL−1〉 = σ+
0 . . . σ

+
L−1 |−10,−11, . . . ,−1L−1〉

where sj ∈ {−1,+1} is the spin value of the site. Those operators (3.7) rise and
lower the value of spin in the j-th site and |−1〉 is the vacuum. The Pauli matrices
commutation and anti-commutation relation are the following:

[σiσj] = 2iεijkσk

[σiσj]+ = 2δij
(3.8)
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Using (3.8) can be shown that [σ+
i , σ

+
i ]+ = [σ−i , σ

−
i ]+ = 0 and [σ−i , σ

+
i ]+ = 1.

Unfortunately, for different sites they commutes. So, σ+
i and σ−i act similarly to

fi and f †i up to the anti-commutation on different sites. In the fermionic case the
anti-commutation is responsible of the arising phase φ (3.6).

The anti-commutation property is obtained adding a string of σz on all the
previous sites respect to that we want to fill or empty with σ+

i and σ−i . In this
way we gain a phase for each site that has spin down. Given that, the Jordan-
Wigner transformations assume the mathematical expression:

f †i = σ+
i

i−1∏
j=0

σzj fi = σ−i

i−1∏
j=0

σzj (3.9)

We can call parity set the set of indices on which we apply σz, that is from 0
to i − 1. This definition will be crucial on the next part, where we discuss the
Bravy-Kitaev transformations.

3.1.1 Recovering the canonical anti-commutation relations

We can directly verify the anti-commutation relations. For simplicity we can iden-
tify our terms with capital letters A,B,C,D.

A± = σ±i , B =
i−1∏
j=0

σzj C± = σ±k , D =
k−1∏
j=0

σzj (3.10)

The anti-commutation relations look like this:

[fi, fk]+ =

[
σ−i

i−1∏
j=0

σzj , σ
−
k

k−1∏
j=0

σzj

]
+

=

[
A−B,C−D

]
+

= 0 (3.11)

[f †i , f
†
k ]+ =

[
σ+
i

i−1∏
j=0

σzj , σ
+
k

k−1∏
j=0

σzj

]
+

=

[
A+B,C+D

]
+

= 0 (3.12)

[fi, f
†
k ]+ =

[
σ−i

i−1∏
j=0

σzj , σ
+
k

k−1∏
j=0

σzj

]
+

=

[
A−B,C+D

]
+

= δik (3.13)

The algebra of Pauli matrices on the same site is given by (3.8) and tells us that on
different sites they commute: [σli, σ

m
j ] = 0 with l,m ∈ {x, y, z} for i 6= j. Without

loss of generality we can assume in the anti-commutator i ≤ k. Then, we can write
the commutators that are null:[

σ±i ,
i−1∏
j=0

σzj

]
=

[
A±, B

]
= 0,

[
σ±k ,

k−1∏
j=0

σzj

]
=

[
C±, D

]
= 0 (3.14)
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[
σ±i , σ

±
k

]
=

[
A±, C±

]
= 0 (3.15)

[i−1∏
j=0

σzj ,
k−1∏
j=0

σzj

]
=

[
B,D

]
= 0 (3.16)

[i−1∏
j=0

σzj , σ
±
k

]
=

[
B,C±

]
= 0 (3.17)

We can see that the couples A/B and C/D commutes because in the fermionic
operator the string of σz ends before the site on which act σ± (3.14). Then, the
eq (3.15) is due to the fact that on different sites σ+ and σ− commute, while on
the same site holds (σ+

i )2 = (σ−i )2 = 0. In eq (3.16), B and D chains commute
because there are only σz and then their commutator is always null. In the last
equation (3.17), given that k ≥ i, B chain commutes with σ±k because its upper
extreme index is less than k. On the contrary, the anti-commutator:[

σ±i ,
k−1∏
j=0

σzj

]
+

=

[
A±, D

]
+

= 0 (3.18)

is null because i ≤ k and is present σzi in the D chain. In fact, being σ±i a
linear combination of σxi and σyi it anti-commutes with σzi from (3.8). Now we
can demonstrate (3.11) and (3.12). To lighten the notation we use A = A± and
C = C±. We have: [

AB,CD

]
+

= ABCD + CDAB (3.19)

We can rewrite BC± and DA± such that:

ABCD + CDAB = A

(
CB +

[
B,C

])
D + C

([
A,D

]
+

− AD
)
B (3.20)

using (3.17) and (3.18) the result is the following:

ABCD + CDAB = ACBD − CADB (3.21)

Then applying the same technique to BD and CA and using the commutation
rules (3.15) and (3.16) we get 0.

ACBD − CADB = AC

(
DB +

[
B,D

])
−
(
AC −

[
A,C

])
DB =

= ACDB − ACDB = 0

(3.22)
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The for last commutator (3.13) the we have to study two cases i < k and i = k.
In the first case, we have the anti-commutator equal to 0 while in the second case
it is the identity. To demonstrate the first one we need to use the following null
commutators: [

σ−i , σ
+
k

]
=

[
A−, C+

]
= 0[

σ+
i , σ

−
k

]
=

[
A+, C−

]
= 0

(3.23)

They vanish because we are only studying cases in which i 6= k. Using these
commutators instead of (3.15) we can repeat all the steps from (3.19) to (3.22)
and get 0. So we have demonstrated that [fi, f

†
k ]+ = 0 for i 6= k. For the last

case there is a difference. Here A and D does not anti-commute anymore. On the
contrary, for i = k the D and B chain are equal, so both σ±i and σ±k commute with
them. Then we have, using A = A± and C = C∓:[

σ±i , k
k−1∏
j=0

σzj

]
=

[
A,D

]
= 0 (3.24)

Using (3.24),(3.14) and (3.17) we can solve the anti-commutator:[
AB,CD

]
+

= ABCD + CDAB =

A

(
CB +

[
B,C

])
D + C

([
A,D

]
+ AD

)
B =

ACBD + CADB =

[
A,C

]
+

BD = I

(3.25)

Here, [A,C]+ is the identity because σ+σ− = σ−σ+ = 1
2
I. Also BD is the identity

because we have a product like
∏k−1

j=0(σzj )
2 = Ik = I. Then we have completed the

demonstration of our canonical commutation relations and we can study several
cases in which the transformations are used.

3.1.2 An example: XY Chain

As we mentioned before, the Jordan-Wigner transformations were invented to find
the energy spectrum of spin chains. Their use is well explained in the quantum
XY model. This toy model is a generalization of the more famous Ising model. Its
Hamiltonian is shown here:
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Hσ =
J

2

N∑
j=1

[(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ

2

)
σyjσ

y
j+1 + hσzj

]
(3.26)

Here the phase diagram is parametrized by the anisotropy parameter γ cap-
turing the relative strength of interaction in the x and y components and by the
external magnetic field h, directed along the transverse z-axis. It is instructive to
observe the passages that show the power of the Jordan-Wigner transformations.
They are particularly useful in the diagonalization of Hamiltonian. In this case we
transform the Hamiltonian of a spin chain into a sum of fermionic ladder operators
using the inverse transformations:

σ+
j = fj

i=1∏
j−1

(I − 2f †i fi), σ−j = f †j

i=1∏
j−1

(I − 2f †i fi), σzj = (I − 2f †j fj) (3.27)

With these transformations, spin up is mapped into an empty state and a spin down
to an occupied one. After having applied the them we obtain the Hamiltonian:

Hf = −1

2

N−1∑
j=1

(
f †j fj+1+f †j+1fj + γf †j+1f

†
j + γfj+1fj) +

N∑
j=1

2hf †j fj −
hN

2

+
µxN
2

(f †Nf1 + f †1fN + γf †Nf
†
1 + f †1f

†
N)

(3.28)

where µxN is given by

µxN =
N∏
j=1

σzj =
N∏
j=1

(I − f †j fj) (3.29)

It is the parity operator and has eigenvalues +1 or −1 if the number of particles
is even or odd. Notice that the number operator

νN =
N∑
j=1

σzj =
N∑
j=1

(I − f †j fj) (3.30)

does not commute with the Hamiltonian, because the number of particles is not
conserved. Nevertheless, µxN does because particles are created in couples and
the parity is conserved. Given that, Hilbert space can be divided in two sectors
labelled by the eigenvalues of µxN and divided by the projectors:

E =
1− µxN

2

O =
1 + µxN

2

(3.31)
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The two sectors are the subspace with an even number of particles and the other
with odd number of particles.

f+
j+N = −f+

j for µxN = +1

f−j+N = f−j for µxN = −1
(3.32)

Choosing the proper boundary conditions (3.32), i.e. periodic for even sector and
anti-periodic for odd sector, boundary terms can be discarded. Then, we get the
following Hamiltonian for both sectors:

H± = −1

2

N∑
j=1

(
f †j fj+1 + f †j+1fj + γf †j+1f

†
j + γfj+1fj − 2hf †j fj

)
− hN

2
(3.33)

Now, starting from left, are already visible hopping term, superconductive term
and the number term inside the sum. The next step to solve exactly the system
is to apply a Fourier transform:

f±j =
ei
π
4

N

∑
q∈Γ±

ei
2π
N
qjfq, f±q = e−i

π
4

N∑
j=1

e−
2π
N
qjf±j (3.34)

Here Γ± indicates the set of momentum values belonging to the respective
sector:

q ∈ N +
1

2
=

1

2
,
3

2
, ...N − 1

2
for Even Particle Number

q ∈ N+ = 1, 2, ...N − 1 for Odd Particle Number
(3.35)

Now we have the formulation in momentum space (3.36).

H± =
1

N

∑
q∈Γ±

[
h− cos

(
2π

N
q

)]
f †q fq +

γ

2N

∑
q∈Γ±

sin

(
2π

N
q

){
fqf−q +f †q f

†
−q

}
(3.36)

In the end, a Bogoliubov diagonalization of the Hamiltonian written in momentum
space gives a canonical Hamiltonian written in terms of Bogoliubov quasi-particles
ladder operators χ†q, χq:

H± =
1

N

∑
q∈Γ±

ε

(
2π

N
q

)[
χ†qχq −

1

2

]
(3.37)

The resulting energy spectrum is shown here:

ε(α) =
√

(h− cos(α))2 + γ2 sin2(α) (3.38)

In this section we have seen briefly what are able to do our transformations and
how they are the mathematical formulation of a deep analogy between different
kinds of physical quantum systems. Moreover we introduced some operators like
the number operator and the parity operator that will be crucial in the future
discussions.
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Figure 3.1: This image show the passages between the femionic and qbit languages
and the embedding of the occupation basis in another. Taken from [22]

3.2 The Parity transformations

After having seen how Jordan-Wigner transformations work, it is the time to
deepen the Bravy-Kitaev transformations. Those transformations were introduced
in the scope of quantum computation [22]. To understand how the transforma-
tions are built we can follow the construction in [33]. For now we explore their
”embedding” and only at a later time the form of the ladder fermionic operators,
that we call ”encoding”. For ”embedding” we mean a bijective map between two
basis used to describe the Fock space in the same formulation, i.e. choosing one
between spinless fermions or spin variables. For ”encoding” instead, we mean the
transformations used to pass from spins to fermions and vice-versa. Figure 3.1
shows a map of the encodings (horizontal arrows) and the embeddings (vertical
arrows) of unitary maps between fermionic and spin systems.

To clarify what is an embedding, we have to take our ket vectors |ψ〉 =
|n0, n1, ..., nj, ...nL−1〉 and treat them as binary vectors |ψ〉 −→ ~v = (nL−1, nL−2, ..., nj, ...n0)T .
Notice that order is inverted. Then, an embedding is a binary isomorphism
T : ~v −→ ~v′. It is important underline that T does not act on the Fock space. In
fact v has dimension L and not 2L and belongs to the modulus ZL2 , consequently
T belongs to the space of applications T : ZL2 −→ ZL2 . Now we examine several of
those isomorphisms. First of all, it is necessary to introduce the occupation basis
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that is the most intuitive embedding. It is the Fock space F built with f †i acting
on the vacuum |0〉. In this case, there is an identity between the state of the Fock
basis and the binary vectors ~v.

Another basis that can be defined is what is called ”parity basis”. We can
create a trasformation that links the occupation basis with the parity basis. It is
described by a L × L upper triangular matrix Pij, made by ones if i ≤ j and 0
otherwise. It has the following form:

P =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

 (3.39)

A generic state in the occupation basis ~ψO = (nL−1, nL−2, ..., nj, ...n0)T , with n ∈
{0, 1}, is written in the parity basis as ~ψP = (pL−1, pL−2, ..., pj, ...p0)T , where pj =∑j

i=0 ni with the sum intended mod ≡ 2. We can see it in an exemple:

Given the row vector: ~u = (1, 1, 0, 1)T

we can apply P: u −→ Pu

(10, 11, 02, 13)O −→
(

10, (10 + 11), (10 + 11 + 02), (10 + 11 + 02 + 13)

)
P

= (1, 0, 0, 1)P

(3.40)

So, if in the j-th element of the state in the parity basis is equal to 0 or 1 it means
that if one count the number of particles in the occupation basis in the sites with
i ≤ j get an even or an odd number respectively. This embedding carries a new
kind of transformations based on the parity.

Those parity transformations have a chain of σx on the sites that come after
the site j. (3.43). In fact, creating or destroying a particle change the parity on
the remaining sites sites with indexes i = j + 1, ..., L − 1, while does not affects
the previous ones. Moreover, we have to consider that the parity of the sites with
index i < j change the effect of σ+ and σ− on the site j. In fact, acting on σ+ on
the index j while the parity of the sites i < j is odd does not create a particle, but
destroys one. So, to establish if the role of σ± is exchanged is sufficient to check
the parity of all previous sites. This can be done looking at the parity coefficient
pj−1 that stores the parity of all the sites from 0 to j−1. In the formulations of the
fermionic ladder operators this corresponds to add in the string of pauli matrices
σzj−1. Can be also defined projectors on the even and odd subspaces:

Êj−1 =
1

2
(I + σzj−1) Ôj−1 =

1

2
(I − σzj−1) (3.41)
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To define new operators that lower and rise the spin:

s±j = σ±Êj−1 − σ∓Ôj−1 =
1

2
(σzj−1σ

x
j ± iσyj ) (3.42)

Then, the expression of the fermionic ladder operators is:

f †j = s+
j

L−1∏
i=j+1

σxi fj = s−j

L−1∏
i=j+1

σxi (3.43)

Analogously to what we have done in Jordan-Wigner transformations, now we can
call the set of indices of the σx chain update set. This definition comes from the
fact that we have to ”update” the parity of the sites that come after the site j
exchanging their state. Instead the index j − 1 can be associated to a flip set,
because in a certain sense, it ”flips” the effect of σ+ and σ−. This behaviour is
said dual respect to the Jordan-Wigner one.

3.2.1 Recovering the anti-commutation relations

We can recover the fermionic anti-commutation relations, as did in 3.1.1, also fo
rthe parity transformations.we can identify our terms with capital letters A,B,C,D.

A± = s±i , B =
L−1∏
j=i+1

σxj C± = s±k , D =
L−1∏
j=k+1

σxj (3.44)

Notice that now σ± are replaced by s±. The anti-commutation relations look like
this:

[fi, fk]+ =

[
s−i

L−1∏
j=i+1

σxj , s
−
k

L−1∏
j=k+1

σxj

]
+

=

[
A−B,C−D

]
+

= 0 (3.45)

[f †i , f
†
k ]+ =

[
s+
i

L−1∏
j=i+1

σxj , s
+
k

L−1∏
j=k+1

σxj

]
+

=

[
A+B,C+D

]
+

= 0 (3.46)

[fi, f
†
k ]+ =

[
s−i

L−1∏
j=i+1

σxj , s
+
k

L−1∏
j=k+1

σxj

]
+

=

[
A−B,C+D

]
+

= δik (3.47)

As said before, algebra of Pauli matrices on the same site is given by (3.8),
while on different sites they commute: [σli, σ

m
j ] = 0 with l,m ∈ {x, y, z} for i 6= j.

Again we can assume in the anti-commutator i ≤ k. Then, we can write the null
commutators:[

s±i ,
L−1∏
j=i+1

σxj

]
=

[
A±, B

]
= 0,

[
s±k ,

L−1∏
j=k+1

σxj

]
=

[
C±, D

]
= 0 (3.48)
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[
s±i , s

±
k

]
=

[
A±, C±

]
= 0 for i 6= k − 1 (3.49)[ L−1∏

j=i+1

σxj ,

L−1∏
j=k+1

σxj

]
=

[
B,D

]
= 0 (3.50)

[
s±i ,

L−1∏
j=k+1

σxj

]
=

[
A±, D

]
= 0 (3.51)

We can see that the couples A/B and C/D commutes because the string of σx

starts after the site on which act s± (3.48). The eq (3.49) is different with respect
to (3.15) because s+ and s− commute for every i except for i = k − 1. On the
same site holds: (s+

i )2 = (s−i )2 = 0 and (s−i s
+
i ) = I. This happens because in this

case the in the explicit expression appear two different Pauli matrices acting to
the same site: [

s±k−1, s
±
k

]
=

1

4

[
σzk−2σ

x
k−1 ± iσyk−1, σ

z
k−1σ

x
k ± iσyk

]
(3.52)

we can see that there are in both members Pauli matrices acting on the site k− 1.
In eq (3.50), B and D chains commute because there are only σx and then their
commutator is always null. In the last equation (3.51), given that i ≤ k, D chain
commutes with s±k because its lower extreme index is greater than i. On the
contrary, the anti-commutator:[ L−1∏

j=i+1

σxj , s
±
k

]
+

=

[
B,C±

]
+

= 0 for i 6= k − 1 (3.53)

is null because i ≤ k − 1 and are present a σxk and a σxk−1 in the B chain. In fact,
being s±k = 1

2
(σzk−1σ

x
k± iσyk) given the aforementioned conditions, it anti-commutes

with the chain segment σxk−1σ
x
k . Notice that if i = k − 1, σxk−1 does not belong to

the B chain and the anti commutation is not realized. In fact:

s±k σ
x
k =

1

2
(σzk−1σ

x
k ± iσyk)σxk = σxk

1

2
(σzk−1σ

x
k ∓ iσyk) = σxks

∓
k 6= −σxks±k (3.54)

Now we can demonstrate (3.45) and (3.46) for i = j and i < k− 1. To lighten the
notation we use A = A± and C = C±. We have:[

AB,CD

]
+

= ABCD + CDAB (3.55)

We can rewrite BC± and DA± such that:

ABCD + CDAB = A

([
B,C

]
+

− CB
)
D + C

(
DA+

[
A,D

])
B (3.56)
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using (3.51) and (3.18) the result is the following:

ABCD + CDAB = CADB − ACBD (3.57)

Then because B and D commute:

CADB − ACBD =

[
C,A

]
BD = 0 (3.58)

Using the (3.49) we get 0. Now we have to explore the case i = k − 1. Here we
can use the equation (3.54) to show that:

BC±=C
∓B (3.59)

So that the solution is the following:

A±BC±D+C±DA±B = A±C∓BD+C±A±BD =

(
A±C∓+C±A±

)
BD (3.60)

Notice that now the product BC is only σxk . The last step is to show that the
therm into the parenthesis in the last member is 0. To do this we write explicitly
the product C±A±:

s±k s
±
k−1 =

1

4

(
σzk−1σ

x
k ± iσyk

)(
σzk−2σ

x
k−1 ± iσyk−1

)
=

=
1

4

(
σzk−1σ

x
k ± iσyk

)(
σzk−2σ

x
k−1

)
± i

4

(
σzk−1σ

x
k ± iσyk

)(
σyk−1

)
=

=
1

4

(
σzk−2

)(
σzk−1σ

x
k ± iσyk

)(
σxk−1

)
± i

4

(
σzk−1σ

x
k ± iσyk

)(
σyk−1

)
A this point we have splitted sk−1. Then, σzk−2 passes through sk. In the last
passages we have to care about anti commutation of Pauli matrices with index
k − 1:

1

4

(
σzk−2

)(
σzk−1σ

x
k ± iσyk

)(
σxk−1

)
± i

4

(
σzk−1σ

x
k ± iσyk

)(
σyk−1

)
=

=
1

4

(
σzk−2σ

x
k−1

)(
−σzk−1σ

x
k ± iσyk

)
± i

4

(
σyk−1

)(
−σzk−1σ

x
k ± iσyk

)
=

=
1

4

(
σzk−2σ

x
k−1 ± iσyk−1

)(
−σzk−1σ

x
k ± iσyk

)
Extracting a minus sign from the second factor we get:

1

4

(
σzk−2σ

x
k−1i± iσyk−1

)(
−σzk−1σ

x
k ± iσyk

)
= −1

4

(
σzk−2σ

x
k−1 ± iσyk−1

)(
σzk−1σ

x
k ∓ iσyk

)
=

= −s±k−1s
∓
k
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Then for i = k − 1 we have:

C±A± = −A±C∓ (3.61)

This statement concludes the demonstration of (3.45) and (3.46). The last anti-
commutator (3.47) can be solved for i < k−1 with the same argument we used for
(3.45) and (3.46). In fact in this case we have all the null commutation relations
(3.48), (3.51), (3.50) plus the following one:[

s−i , s
+
k

]
=

[
A−, C+

]
= 0 for i ≤ k − 1 (3.62)

to use in the last passage (3.58) instead of (3.49). On the other hand when i = k
we have that the B and D chains disappear and the anti-commutator reduces to
the identity: [

s−i , s
+
i

]
+

=

[
A−, B+

]
+

= I (3.63)

The last case i = k − 1 is solved through the following steps:

A−BC+D+C+DA−B = BDA−C+ +BDC−A− = BD

(
A−C+ +C−A−

)
(3.64)

Where we have used the null commutators (3.48), (3.51), (3.50) and the relation
(3.59). But the parenthesis of the last product are null. In fact from (3.61) we have
that A−C+ = −C−A−. This ends the checking of the canonical anti-commutation
relations for the Parity transformations.

3.3 The Bravy-Kitaev transformations

The Bravy-Kitaev embedding is an half way between Jordan-Wigner transforma-
tions and the Parity transformations. There are some indexes in this basis that
store exactly the occupation number of the site, while there are others that store
the parity of a subset of sites given by the embedding. Our objective is that of
writing the fermionic ladder operators in a way similar to that of Jordan-Wigner
transformations or Parity transformations. We will see that the peculiar structure
of Bravy-Kitaev transformations generate an expression for f and f † composed by
a string of σz belonging to a proper parity set of indices, a spin ladder operator
σ± and a string of σx belonging to a proper update set of indices. First of all, in
the Bravy-Kitaev binary vector ~ψB = (bL−1, bL−2, ..., bj, ...b0)T the coefficients bj
are given, depending on j, by the embedding in the following way:

• If j is even the index store exactly the occupation number: bj = nj
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Figure 3.2: Here we can see the embedding of Bravy and Kitaev for 8 sites. Every
box belong stores the parity of the sites contained in him. We can see in black the
boxes with index of the form 2k − 1, in red the boxes with an even index and in
green the box with an odd index bot not of the form 2k − 1.

• If j is odd but not of the form 2k − 1 it stores the parity of the sites j and
j − 1: bj = nj + nj−1

• If j is of the form 2k − 1 it stores the parity of all previous sites with index
i = 0, · · · , j: bj =

∑j
k=0 nk

The matrix related to this coding from the occupation basis is defined in the
following recursive way in:

BK2x+1 =


BK2x

1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

0 BK2x

 (3.65)

With as initial value BK20 = 1. With this construction is sufficient to take the
L × L submatrix if the total number of sites L is not a power of two. Now we
can pass to the examination of the expression of the fermionic ladder operators in
terms of Pauli matrices.

3.3.1 Three set of indices

To obtain an expression for our ladder operators that looks like (3.9) or (3.43), it
is necessary to define the sets of indices needed to built our transformations: the
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parity set, the update set and the flip set. The meaning of these three sets can
be understood through the graphical representation of figure 3.2. Here we can see
the embedding for 8 sites, indicated with n labeled with j ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
Every box contains the indices whose parity is stored in. The sites occupation
stored in the boxes can be summarized in the following scheme:

B0 = {n0} B1 = {n0, n1} B2 = {n2} B3 = {n0, n1, n2, n3} B4 = {n4}

B5 = {n4, n5} B6 = {n6} B7 = {n0, n1, n2, n3, n4, n5, n6, n7}
We can immediately see that even index boxes store only the parity of the single
site, i.e. the occupation number of that site. On the other hand, the boxes with
the indexes 1, 3 and 7 store the parity of all the previous sites. In the end index
5 store their parity and that of the previous site respectively. Then, we have to
define our sets.

The parity set, P (j) is the set of indexes that contain the parity in the j-th
site. Roughly speaking we have to count the parity of the number of filled sites
from i = 0 to i = j − 1. For Jordan-Wigner is composed by all the indexes that
run from 0 to j − 1, while for the Parity transformations is always the empty set.
To recover it we have to look at the index of all the higher level boxes that are
included at its left. For Bravy-Kitaev is not necessary to take the entire string,
because there are some boxes Bj that contains the parity of a larger set of sites.

For example, for the parity in the site 5, we have to remove the box B5 because
it not ends before n5, then at its left there are B3 and B4. So the parity set indexes
of b5 are 3 and 4 (fig 3.3).

So, if we want to know the parity of the j-th site we have only to check the
parity of the Bravy-Kitaev coefficients bi whose index belong to the parity set of
the index j. We can summarize the result for the 8-sites chain in the following
scheme:

P (0) = {} P (1) = {b0} P (2) = {b1} P (3) = {b1, b2}

P (4) = {b3} P (5) = {b3, b4} P (6) = {b3, b5} P (7) = {b3, b5, b6}

The update set, U(j) is the set of sites that have to be updated after changing
the value in the j-th site. In case of Jordan-Wigner is always the empty set, while
for Parity transformations is made by all the indexes between j + 1 and L − 1.
Now we have to update only the sites that store the occupation of our j-th site.
Graphically it can be done looking at the box of nj and see in which others it is
contained. The Bravy-Kitaev embedding guarantees that we have only update a
small amount of indexes because only the boxes bj with j = 2k−1 store the parity
of all the previous sites. Notice that their number grows logarithmically with L.
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Figure 3.3: Here we can see the definition of the parity set for b5. To emphasize
the boxes at left of n5 they are thickened respect to others. We do not care about
the other boxes contained in the red box B3 because only the higher index matters.
Moreover, we can clearly see that the boxes of B5 itself and B7 cannot be counted
because they do not end strictly before the site n5, so they cannot considered at
left of it. In the end the entire parity of the coefficient b5 is contained in B3 and
B4, so that the indexes of the parity set are 3 and 4.

For example, if we look at n0 box it is contained in that of n1, n3 and n7 and
so on for all nj (fig 3.4).

Now if we change the occupation of the j-th site we have only to update the
Bravy-Kitaev coefficients bi whose index i belongs to the update set of indices of
the site j. We can summarize the update set for our chain in the following way.

U(0) = {b1, b3, b7} U(1) = {b3, b7} U(2) = {b3, b7} U(3) = {b7}

U(4) = {b5, b7} U(5) = {b7} U(6) = {b7} U(7) = {}

The flip set, F (j) is the set that indicates if creating or destroying a particle in
the site j we have to act with σ+

j or σ−j or vice versa. Graphically, can be recovered
just looking at the box that contain nj and see the greatest index contained in
each of the other boxes contained in the same box of nj, except nj.

For example, for n3, we see that it contains the boxes of n2 and n1. Obviously,
there is the index 2 and the higher index between 1 and 0 (fig 3.5). For even
indexes it is the empty set because they store their occupation only, so that to fill
or empty these indexes correspond to act with σ+ and σ− respectively.

So if we want to change the occupation of the site j, we have to act with σ+

or σ− up to the parity of a subset of Bravy-Kitaev coefficients defined by the flip
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Figure 3.4: Here we can see the definition of the update set for the first Bravy-
Kitaev coefficient b0. We have to look at what boxes contain the occupation n0. To
emphasize those boxes, we thickened them with respect to others. We can easily
see that n0 is contained in the boxes with indexes 1,3 and 7.

set. We can summarize the update set for our chain in the following way.

F (0) = {} F (1) = {b0} F (2) = {} F (3) = {b1, b2}

F (4) = {} F (5) = {b4} F (6) = {} F (7) = {b3, b5, b6}

With the same graphical representation, we can also recover the Jordan-Wigner
and the Parity transformations. In fact, in the figure 3.6 are represented with Ni

and Pi the boxes that contains the occupation of the sites according to Jordan-
Winger and Parity embeddings. Here we can build again for each index a parity
set, an update set and a flip set. The final results coincide with what we have
already seen in the definitions of the fermionic ladder operators in the equations
(3.9) and (3.43). Using these definitions we can write the three sets of indices for
every site. As we will see they are crucial to write the explicit expressions of the
transformations.

3.3.2 The complete expression

Now we can explicitly write our transformations. We can write the ladder fermionic
operator fj, f

†
j using the product of three terms. The first one is a string of σz

to take in account the parity. Then, σ± to create or destroy the particle. In the
end, a string of σx to update the remaining sites. Differently from J-W and Parity
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Figure 3.5: Here we can see the definition of the flip set for the Bravy-Kitaev
coefficient b3. To emphasize those boxes that are contained in the box B3 they are
thickened respect to others. We can see that it contains only the box B1 and the
red box of B2. We do not care about the box of B0 because we have to take only
the higher indexes between the sites occupation stored in the B3 box. So, the two
indexes belonging to the flip set of B3 are the index 1 and 2.

transformations, here the the indexes of σz and σx are taken by the parity and
update set. For the sites with an even index, the transformations have the form:

f †i = (
∏
j∈P (i)

σzj ) σ+
i (

∏
j∈U(i)

σxj ) fi = (
∏
j∈P (i)

σzj ) σ−i (
∏
j∈U(i)

σxj ) for i Even

(3.66)
Here P (i) and U(i) are the parity set and the update set for the index i. The
previous formula is valid for even indexes only, because they stores the occupation
of the site. In case of j odd, the index stores the parity of a subset of sites. So,
applying f †i not always means acting with σ+

i and the same for fi and σ−i . It is up
to the parity of the flip set of the index j. It is useful define the projectors on the
even and odd Hilbert subspaces:

Ê =
1

2

(
I +

n−1∏
j=0

σzj

)
Ô =

1

2

(
I −

n−1∏
j=0

σzj

)
(3.67)

Now we can define the correct operators that rise and lower the spin taking in
account the parity of the flip set:

s±i = σ±i ÊF (i) − σ∓i ÔF (i) =
1

2
(σxi

∏
F (i)

σz ± σy) (3.68)
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Figure 3.6: Here we can see graphical representation of the Jordan-Wigner em-
bedding (top) and the Parity embedding (bottom). As we can see in the first case
each box stores only the occupation of the corresponding site, while in the parity
case each box contains the occupation of all the previous ones. Using graphical
methods is simple to recover that the parity set for Jordan-Wigner is represented
by all the indexes less than j, because at left of site j there is one box for every
site. On the contrary while the flip set and the update set are empty. As far is
concerned the Parity basis is clear that the update set is made by all the index
greater than j because each box is contained in all the following ones. For the
parity set and the flip set they are completely equivalent because the box j stores
the parity of all the sites between 0 and j. Notice that this is not true in general
for the Bravy-Kitaev basis, but only for the indexes of the form 2k − 1.
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Notice that the projectors are built directly from the flip set F (i). In fact, if we
are on an even site F (i) = 0 and we recover the previous case with s±i = σ±i .
Substituting σ± with s± we obtain the transformations for both j odd and even:

f †i = (
∏
j∈R(i)

σzj )s
+
i (
∏
j∈U(i)

σxj ) fi = (
∏
j∈R(i)

σzj )s
−
i (
∏
j∈U(i)

σxj ) for i Even and Odd

(3.69)
where R(i) = P (i) \F (i) is the difference set between parity set and flip set. Now
we have written an explicit form for the Bravy-Kitaev transformations.

3.4 Quantum Computing

At this point, we must discuss a little on quantum computation and the role of our
transformations in this subject. In 1982 Richard Feynman started the debate about
the simulation of quantum systems. The problem on which Feynman focused on
was try to prevent the exponential growth of resources needed to simulate quantum
systems on classical computers [34]. To give an example of this behaviour we can
look at an ensemble of L two-states quantum systems. The Fock FL space turn
out to be the tensorial product of the two-dimensional Hilbert space H2 of single
subsystems. Its dimension is 2L. Analogously, the vector state is made by 2L

complex numbers. On a classical computer, every single complex number occupy
2 ∗ sizeof(double) bytes. This happens because one double stores the real part
while the other the imaginary part. The total amount of memory needed for a
system is 2n+1∗sizeof(double). In this way with 36 subsystems we reach already
1TB and with 43 sites are necessary around 140TB for every state. This make
impossible to simulate anything to most of classical computers. The answer that
Feynman gave to its question was to simulate quantum systems directly on other
quantum systems, i.e. on quantum computers. A quantum computer is itself a
quantum system that has some particular features:

• The computer is made up of a certain number of cells. These cells are
quantum systems with a low dimensional Hilbert space. In case dimension
d = 2 they are called qubits.

• It must be possible to act on a subset of cells at a time. Every operation on
those cells is described by an unitary operator U . U is the tensor product of
the operators acting on the different cells and the identity on the rest of the
system

• All the cells are identical systems, so that every operator can by classified
by their action on a generic set of cells
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In this framework the classical logical gates are replaced by a proper set of unitary
operators called quantum gates. The advantage of quantum computers is that
the complexity class of some computational problems, like the aforementioned
simulation problem, is lowered respect to classical ones. The complexity class of
a computational problem is the request of resource in terms of space and time
to solve it increasing the length of the input. As we have seen, the simulation
of a quantum systems on a classical computer requires an amount of resources
that grows exponentially with the system length L. So that, this problem belong
to the complexity class O(exp(L)). On the other hand, to simulate a quantum
system on a quantum computer become a computational problem belonging to
the polynomial complexity class O(Lk), for some power k. After this general
description of the quantum computing framework, it is the time to explore more
deeply the physical principles on which it is based on.

3.4.1 Quantum bits and quantum gates

As we said before, a qubit is a two level quantum system whose states are a linear
combination of the ”off” state |0〉 and the ”on” state |1〉 expressed in the following
way:

|ψ〉 = α |0〉+ β |1〉 (3.70)

where α and β respect the relation:

|α|2 + |β|2 = 1 (3.71)

The basis |0〉, |1〉 we used is also called computational basis of the qubit Hilbert
space Hq. The equation (3.71) describes a sphere of unitary radius in the complex
variables |α| and |β|. It follows that can be parametrized by two angular coor-
dinates θ and φ. This construction is made up to a global phase that does not
matters because cannot be measured. Using the spherical coordinates the (3.71)
can be written as:

|ψ〉 = cos (θ/2) |0〉+ exp (iφ) sin (θ/2) |1〉 (3.72)

Using this parametrization also can be done a graphical representation called
”Block sphere” 3.7, in which every point on that sphere corresponds to a certain
state of our qbit.

As far is concerned operators on a quantum computer, are tensorial products
of Pauli matrices belonging to different qubits. Among all possible operators of a
L-qubits quantum computer, only a small subset of them is necessary to perform
a quantum simulation. This subset is called a universal set of quantum gates. It
is not unique and the number of its components can also vary. It is simply a basis
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Figure 3.7: Here we can see the Bloch sphere with the two angular coordinates
that identify uniquely the state. Picture taken from [35]

of operators that allows to write all the others operators as their composition,
but not exactly. In fact, every operator can be written as their composition with
arbitrary great precision. The effective choice of the universal set actually depends
on the architecture of the quantum computer. In fact, qubits can be obtined from
different phisical systems, for example from polarized photons, from two level
atoms or from spin 1

2
particles like electrons. Up to the kind of phisical system

used can be simpler to apply a quantum gate rather than another. The most
single-qbit common gates used in quantum computing are the Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(3.73)

The action of σx is that of changing the state of the qubit, σy do the same adding a
phase ±i up to the initial state of the qbit while σz add a phase leaving unchanged
the state of the qbit. Over these three gates there are three others commonly used:

H =
1√
2

(
1 1
1 1

)
S =

(
1 0
0 i

)
T =

(
1 0
0 exp ( iπ

4
)

)
(3.74)

The first gate is called Hadamard gate and has the porperty to pass from the
basis of σz to that of σx. The other two gates add a phase on the qbit if it is on
the state |0〉. In the end the last three operators used are those defined in this
way: Rx(θ) = exp (−iθσx/2), Ry(θ) = exp (−iθσy/2) and Rz(θ) = exp (−iθσz/2).
These are nothing but the respective complex rotations around the three axis of
the unitary block sphere. As far is concerned the two qbits gates we can mention
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the following two gates:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.75)

Their effect can be summarized in the following way: CNOT stays for Controlled
NOT and exchange the state of the second qbit if the second is set to |0〉, while
the swap gate exchange the state of the two qbits. The CNOT gate belong to the
greater set of controlled gates and can be generalized to the controlled application
of every unitary gate.

3.4.2 Quantum simulations of fermionic systems

Coming back to fermionic systems, we must pass necessarily through our transfor-
mations to write fermionic operators in terms of quantum gates. In fact, simula-
tions performed on a quantum computer are divided in two kinds: ”analogic” and
”digital”. The first kind is referred to simulations of a two state systems like the
computer itself. The second, instead, is referred to all the others quantum systems
and needs a coding to be simulated. In this scope the role of our transformations is
relevant. Roughly speaking, performing a digital quantum simulation means tak-
ing a quantum system and transform it such that its operators, is written in terms
of quantum gates. One use, for example, is that of performing a time evolution of
our fermionic system. In this case, the steps to follow are these:

• Apply Jordan-Wigner or Bravy-Kitaev transformations to our fermionic Hamil-
tonian. After that our Hamiltonian will be a sum of string of Pauli matrices

• Approximate the time evolution operator. It that has the form Û = e
−iĤt

~ ,
and some problems can arise because most of times our Hamiltonian contains
terms that not commute. To avoid this is used the Trotter formula, an
approximation of the exact exponential. Given two non commuting terms Â
and B̂, the formula turn out to be that written in (3.76).

Û(t) = ei(Â+B̂)t = lim
n→+∞

(
ei
Ât
n ei

B̂t
n

)n
(3.76)

This formula allows to approximate the entire evolution in the time interval
[0, t] iterating the same term n times to obtain an arbitrary precision.

• The last task is to compute explicitly the exponential of the single term of
the Trotter evolution. The result of this step give us the corresponding part
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of quantum circuit. In this last part is crucial the set of universal quantum
gates we want to use, because the result have to be expressed only using
those specific quantum gates.

3.4.3 Comparison between Bravy-Kitaev and Jordan-Wigner

Now, knowing how the quantum simulation works, we can talk about our transfor-
mations in terms of computational efficiency. Nowadays, the computational power
of quantum computers is very low respect to their potentiality. Especially, there
are problems with decoerences and also an order of magnitude of ∼ 102 gates
can be difficult to implement. To exploit them at maximum, every means can be
useful. One of them is the coding between fermionic ladder operators and Pauli
matrices. It is so, because a less number of Pauli matrices in the Hamiltonian
means immediately a less number of quantum gates. So we can make a count of
the complexity class of this problem up to our different algorithms:

• Jordan-Wigner transformations: as we have seen there is a chain of σz plus
a σ±. Potentially, the total chain can be long n if i have to act on the last
site, so it belongs to O(n). This is due to the fact that while the occupation
is stored locally, the parity is not

• Parity transformations: in these transformations there is exactly the opposite
situation, the parity is stored locally while the occupation not. The chain of
σx needed to update the parity makes these transformations belong to O(n)
too.

• Bravy-Kitaev transformations: here the situation is different because the
length of both the update and parity set scale as O(log(n)). This is math-
ematically shown in [22]. The difference is that, respect to Jordan-Wigner,
the occupation of sites up to site j is no longer stored in a single qubit and
we no longer need to check the parity of all the qubits with index less than j,
but only those that store the parity of the site j. On the contrary, respect to
Parity transformations, the parity of occupied sites up to site j is no longer
stored in a single qubit and we no longer need to update all the qubits with
index greater than j, but only those that store partial sums which include
occupation number j

As we have seen, the quantum simulation needs tools like Bravy-Kitaev transfor-
mations to be implemented, especially if we refer to the efficiency of the transfor-
mations in terms of quantum circuits length. The discussion can be deepened, for
example applying it in the computing of the value of the ground state energy of
atomic orbitals. In [23] is done an explicit comparison between Barvy-Kitaev and
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Jordan-Wigner in terms of number quantum gates used in the quantum circuit and
is shown that the first kind of transformations generally outperforms the second
one.
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Conclusions

Conclusions and outlook
In this work we study an extension of the Aubry-André model with a super-

conducting term. We derive a duality transformation that allows us to obtain an
analytic form of the phase transition lines. Another consistent part of our original
work is based on numerical simulations. We detect the many-body localization
by computing physical quantities such as the imbalance, the fidelity and the IPR.
Moreover, we propose a weighted IPR as a new indicator for the many-body lo-
calization.

The topics of our work that can be studied more deeply are the following.
Firstly, the critical lines that we obtained by using the duality transformations
could be tested by implementing numerical simulations that probe the physics
in the thermodynamic limit. Then, we can study the origin of the discrepancy
between the weighted IPR and the evolved IPR to establish the validity of our
quantity as a detector of localization.
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